JP2005285968A - Capacitor built-in glass ceramic multilayer wiring board - Google Patents

Capacitor built-in glass ceramic multilayer wiring board Download PDF

Info

Publication number
JP2005285968A
JP2005285968A JP2004095515A JP2004095515A JP2005285968A JP 2005285968 A JP2005285968 A JP 2005285968A JP 2004095515 A JP2004095515 A JP 2004095515A JP 2004095515 A JP2004095515 A JP 2004095515A JP 2005285968 A JP2005285968 A JP 2005285968A
Authority
JP
Japan
Prior art keywords
powder
parts
mass
glass
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004095515A
Other languages
Japanese (ja)
Other versions
JP4578134B2 (en
Inventor
Toshihiko Maeda
敏彦 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2004095515A priority Critical patent/JP4578134B2/en
Publication of JP2005285968A publication Critical patent/JP2005285968A/en
Application granted granted Critical
Publication of JP4578134B2 publication Critical patent/JP4578134B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a capacitor built-in glass ceramic multilayer wiring board, having a small capacitance change in a capacitor depending on the temperature. <P>SOLUTION: In the capacitor built-in glass ceramic multilayer wiring board 10, inside of an insulating substrate 11 composed of a glass ceramic sintered body containing glass and a filler, a capacitor 14 is formed which is constituted of a dielectric layer, having barium titanate as the principal component and electrode layers 13a to 13d composed of a sintered body of metal powder. The dielectric layer is comprised of a plurality of dielectric layers 12a to 12c, in which the Curie temperatures are mutually different. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ガラスセラミックス焼結体から成る絶縁層の内部にコンデンサ部を内蔵したコンデンサ内蔵ガラスセラミック多層配線基板に関するものである。   The present invention relates to a capacitor built-in glass ceramic multilayer wiring board in which a capacitor portion is built in an insulating layer made of a glass ceramic sintered body.

従来、携帯電子機器や携帯用情報端末等の分野では、半導体素子を実装した多層配線基板と共に、受動部品として抵抗体,コンデンサ,インダクタ等をプリント回路基板等の基板上に実装したモジュール基板が用いられてきた。   Conventionally, in the fields of portable electronic devices and portable information terminals, module boards in which resistors, capacitors, inductors, etc. are mounted on a substrate such as a printed circuit board as passive components are used together with a multilayer wiring board on which semiconductor elements are mounted. Has been.

しかし近年、このような携帯電子機器や携帯用情報端末等に用いられる部品の小型化、複合化、高性能化が強く求められており、半導体素子を実装する多層配線基板の内部に受動部品に相当する機能を有する電子回路素子を内蔵させて、半導体素子等と受動部品とを高密度で実装した部品の集積化の流れが進んでいる。これらの受動部品を多層配線基板の内部に取り組むことは、多層配線基板の表面にこれら受動部品の実装スペースを確保する必要をなくし、また設計の自由度も増すため、多層配線基板の小型化に寄与できることとなる。   However, in recent years, there has been a strong demand for downsizing, compounding, and high performance of components used in such portable electronic devices and portable information terminals, and as a passive component inside a multilayer wiring board on which a semiconductor element is mounted. The flow of integration of components in which electronic circuit elements having corresponding functions are incorporated and semiconductor elements and passive components are mounted at a high density is advancing. Addressing these passive components inside the multilayer wiring board eliminates the need for a space for mounting these passive components on the surface of the multilayer wiring board and increases the degree of freedom in design. You can contribute.

例えば、コンデンサを内蔵したガラスセラミック多層配線基板を形成する場合、絶縁層を形成するガラスセラミックグリーンシートに誘電体ペーストを部分的に塗工して誘電体層を形成し、その後、所望の導体パターンを形成したガラスセラミックグリーンシートと、誘電体層を形成したガラスセラミックグリーンシートとを積層して、誘電体層および導体パターンをガラスセラミックグリーンシートと同時に焼成することで形成することできる。   For example, when forming a glass ceramic multilayer wiring board with a built-in capacitor, a dielectric paste is partially applied to a glass ceramic green sheet for forming an insulating layer to form a dielectric layer, and then a desired conductor pattern The glass ceramic green sheet formed with a glass ceramic green sheet formed with a dielectric layer is laminated, and the dielectric layer and the conductor pattern are fired simultaneously with the glass ceramic green sheet.

このようにして形成されたコンデンサ内蔵ガラスセラミック多層配線基板(以下、コンデンサ内蔵基板ともいう)の構造は、図2に示すように絶縁層1の層間に配設されたコンデンサ部2を備えており、コンデンサ部2はCu,Ag粉末の焼結体からなる電極層3と、チタン酸バリウム粉末等の誘電体粉末の焼結体からなる誘電体層4から構成されている。   The structure of the capacitor-embedded glass ceramic multilayer wiring board (hereinafter also referred to as a capacitor-embedded substrate) formed as described above includes a capacitor portion 2 disposed between the insulating layers 1 as shown in FIG. The capacitor part 2 is composed of an electrode layer 3 made of a sintered body of Cu, Ag powder and a dielectric layer 4 made of a sintered body of dielectric powder such as barium titanate powder.

また、チタン酸バリウムは誘電率が高く、高誘電率系セラミックコンデンサの分野で主な材料として用いられている。チタン酸バリウムは120℃〜130℃にキュリー温度有し、その誘電率はキュリー温度で急激に増大する。従って、低温から高温までコンデンサの電気的な容量の変化を抑える必要がある場合、キュリー温度における誘電率の増大を抑えるため、誘電体組成物に添加剤(ディプレッサー)を添加することが広く行われている。
上田達也,「低温焼成多層基板、内蔵コンデンサ用高誘電率材料とその応用」ファインセラミックスレポート(Fine Ceramic Report),社団法人日本ファインセラミックス協会,1996年,第14巻,第8号,p.220〜222 亀原伸男、丹羽紘一,「CR複合基板」,ニューセラミックス,1995年,第1号,p.39〜44
Barium titanate has a high dielectric constant and is used as a main material in the field of high dielectric constant ceramic capacitors. Barium titanate has a Curie temperature between 120 ° C. and 130 ° C., and its dielectric constant increases rapidly at the Curie temperature. Therefore, when it is necessary to suppress the change in the electric capacity of the capacitor from a low temperature to a high temperature, an additive (depressor) is widely added to the dielectric composition in order to suppress an increase in the dielectric constant at the Curie temperature. It has been broken.
Tatsuya Ueda, “Low-temperature fired multilayer substrates, high dielectric constant materials for built-in capacitors and their applications,” Fine Ceramics Report, Japan Fine Ceramics Association, 1996, Vol. 14, No. 8, p. 220-222 Nobuo Kamehara and Shinichi Niwa, “CR Composite Substrate”, New Ceramics, 1995, No. 1, p. 39-44

しかし、図2の従来の構成においては、電極層3を介してガラスセラミックグリーンシートと誘電体層4を同時焼成する場合、焼成温度はCu,Ag粉末の融点以上に設定することができない。従って、ディプレッサーを誘電体層4の誘電体組成物に添加した場合、ディプレッサーが誘電体組成物の焼結を阻害して誘電体組成物の誘電率を低下させるという問題点があった。   However, in the conventional configuration of FIG. 2, when the glass ceramic green sheet and the dielectric layer 4 are simultaneously fired through the electrode layer 3, the firing temperature cannot be set higher than the melting point of Cu, Ag powder. Therefore, when a depressor is added to the dielectric composition of the dielectric layer 4, there is a problem that the depressor inhibits the sintering of the dielectric composition and lowers the dielectric constant of the dielectric composition.

また、ガラスセラミックグリーンシートの焼結温度が900℃〜1000℃程度と比較的低温であるため、ディプレッサーと誘電体組成物の反応が十分進まず、キュリー温度における誘電率の増大を十分に抑制することができなくなるという問題点があった。   In addition, since the sintering temperature of the glass ceramic green sheet is relatively low, about 900 ° C to 1000 ° C, the reaction between the depressor and the dielectric composition does not proceed sufficiently, and the increase in the dielectric constant at the Curie temperature is sufficiently suppressed. There was a problem that it was impossible to do.

本発明は、上記の問題点を解決するために完成されたものであり、その目的は、温度によってコンデンサ部の容量変化の小さいコンデンサ内蔵ガラスセラミック多層配線基板を提供することにある。   The present invention has been completed in order to solve the above-described problems, and an object of the present invention is to provide a glass-ceramic multilayer wiring board with a built-in capacitor whose capacitance change is small depending on temperature.

本発明のコンデンサ内蔵ガラスセラミック多層配線基板は、ガラスおよびフィラーを含有するガラスセラミックス焼結体から成る絶縁基体の内部に、チタン酸バリウムを主成分とする誘電体層および金属粉末の焼結体からなる電極層から構成されるコンデンサ部が形成されたコンデンサ内蔵ガラスセラミック多層配線基板であって、前記誘電体層は互いにキュリー温度が異なる複数の誘電体層部から成ることを特徴とする。   The glass-ceramic multilayer wiring board with a built-in capacitor according to the present invention includes a dielectric layer mainly composed of barium titanate and a sintered body of metal powder in an insulating base made of a glass-ceramic sintered body containing glass and filler. A capacitor-embedded glass-ceramic multilayer wiring board in which a capacitor portion composed of an electrode layer is formed, wherein the dielectric layer is composed of a plurality of dielectric layer portions having different Curie temperatures.

また、本発明のコンデンサ内蔵ガラスセラミック多層配線基板は好ましくは、前記コンデンサ部の上下面のそれぞれに誘電体拡散防止層とメタライズ拡散防止層が順次積層されていることを特徴とする。   The capacitor-embedded glass ceramic multilayer wiring board of the present invention is preferably characterized in that a dielectric diffusion prevention layer and a metallization diffusion prevention layer are sequentially laminated on the upper and lower surfaces of the capacitor portion.

また、本発明のコンデンサ内蔵ガラスセラミック多層配線基板は好ましくは、前記コンデンサ部が、チタン酸バリウム粉末95〜100質量部とチタン酸ストロンチウム粉末5質量部以下とを含む第1の強誘電体粉末に、B,SiO,CaO,BaOおよびZnOを含むガラス粉末とCuO粉末とをそれぞれ前記第1の強誘電体粉末100質量部に対して2〜10質量部添加した焼結体から成る第1の誘電体層部と、チタン酸バリウム粉末85〜90質量部とチタン酸ストロンチウム粉末10〜15質量部とを含む第2の強誘電体粉末に、B,SiO,CaO,BaOおよびZnOを含むガラス粉末とCuO粉末とをそれぞれ前記第2の強誘電体粉末100質量部に対して2〜10質量部添加した焼結体から成る第2の誘電体層部と、チタン酸バリウム粉末65〜80質量部とチタン酸ストロンチウム粉末20〜35質量部とを含む第3の強誘電体粉末に、B,SiO,CaO,BaOおよびZnOを含むガラス粉末とCuO粉末とをそれぞれ前記第3の強誘電体粉末100質量部に対して2〜10質量部添加した焼結体から成る第3の誘電体層部とから成ることを特徴とする。 Moreover, in the glass-ceramic multilayer wiring board with a built-in capacitor according to the present invention, preferably, the capacitor portion is a first ferroelectric powder containing 95 to 100 parts by mass of barium titanate powder and 5 parts by mass or less of strontium titanate powder. , B 2 O 3 , SiO 2 , CaO, BaO and ZnO, and a sintered body obtained by adding 2 to 10 parts by mass of CuO powder to 100 parts by mass of the first ferroelectric powder. B 2 O 3 , SiO 2 , CaO, B 2 O 3 , SiO 2 , CaO, second dielectric powder containing 85 to 90 parts by mass of barium titanate powder and 10 to 15 parts by mass of strontium titanate powder. A sintered body in which 2 to 10 parts by mass of a glass powder containing BaO and ZnO and a CuO powder are added to 100 parts by mass of the second ferroelectric powder, respectively. Of a dielectric layer portion, the third ferroelectric powder comprising barium powder 65-80 parts by weight titanate and strontium titanate powder 20 to 35 parts by weight, B 2 O 3, SiO 2 , CaO, BaO and It comprises a third dielectric layer portion made of a sintered body obtained by adding 2 to 10 parts by mass of glass powder containing ZnO and CuO powder to 100 parts by mass of the third ferroelectric powder. And

本発明のコンデンサ内蔵ガラスセラミック多層配線基板によれば、コンデンサ部を成すチタン酸バリウムを主成分とする誘電体層は互いにキュリー温度が異なる複数の誘電体層部から成ることから、コンデンサ部の温度に対する容量変化は、複数のキュリー温度を持つ各誘電体層部によって相互補完され均等化することから、誘電体層が単一の誘電体材料で成る場合に比べ、所望の温度領域におけるコンデンサ部の容量変化量を小さく抑えることができる。その結果、温度に対する容量変化率の小さいコンデンサ部を内蔵したコンデンサ内蔵基板とすることができる。   According to the glass-ceramic multilayer wiring board with a built-in capacitor of the present invention, the dielectric layer mainly composed of barium titanate constituting the capacitor portion is composed of a plurality of dielectric layer portions having different Curie temperatures. The capacitance change with respect to each other is complemented and equalized by each dielectric layer portion having a plurality of Curie temperatures, so that compared to the case where the dielectric layer is made of a single dielectric material, The amount of change in capacity can be kept small. As a result, a capacitor-embedded substrate having a capacitor portion with a small capacitance change rate with respect to temperature can be obtained.

例えば、コンデンサ部の誘電体層が125℃にキュリー温度をもつ単一の誘電体材料で形成されている場合、室温(25℃)に対する−40℃〜120℃の温度領域におけるコンデンサ部の容量変化は−18%〜40%となるのに対して、コンデンサ部の誘電体層が80℃,15℃にそれぞれキュリー温度を有するように調整された2種の誘電体層部から誘電体層を形成した場合、室温に対する−40℃〜125℃の温度領域におけるコンデンサ部の容量変化は−10%〜15%とすることができる。   For example, when the dielectric layer of the capacitor portion is formed of a single dielectric material having a Curie temperature at 125 ° C., the capacitance change of the capacitor portion in the temperature range of −40 ° C. to 120 ° C. with respect to room temperature (25 ° C.) The dielectric layer is formed from two types of dielectric layer portions adjusted so that the dielectric layer of the capacitor portion has a Curie temperature of 80 ° C. and 15 ° C. In this case, the capacitance change of the capacitor portion in the temperature range of −40 ° C. to 125 ° C. with respect to room temperature can be −10% to 15%.

また、本発明のコンデンサ内蔵基板において好ましくは、コンデンサ部の上下面に誘電体拡散防止層とメタライズ拡散防止層とを順次積層している場合、同時焼成時に発生していた絶縁体層と誘電体層との間の相互拡散現象を、絶縁層と誘電体拡散防止層との間の相互拡散現象に置き換えることができる。従って、コンデンサ部の誘電体層の誘電体成分(ガラス成分)が絶縁層および電極層に流出して誘電体層の焼結不足が発生したり、絶縁体層のガラス成分が誘電体層中に侵入して誘電体層のガラス成分が過剰となることを抑制することができる。その結果、コンデンサ内蔵基板内に形成したコンデンサ部の容量低下やその容量値のバラツキを大幅に抑制することができる。   In the capacitor-embedded substrate of the present invention, preferably, when the dielectric diffusion prevention layer and the metallization diffusion prevention layer are sequentially laminated on the upper and lower surfaces of the capacitor portion, the insulator layer and the dielectric that are generated at the time of simultaneous firing The interdiffusion phenomenon between the layers can be replaced with the interdiffusion phenomenon between the insulating layer and the dielectric diffusion prevention layer. Therefore, the dielectric component (glass component) of the dielectric layer of the capacitor part flows out to the insulating layer and the electrode layer, resulting in insufficient sintering of the dielectric layer, or the glass component of the insulating layer is contained in the dielectric layer. It is possible to prevent the glass component of the dielectric layer from entering due to intrusion. As a result, it is possible to greatly suppress the capacitance drop of the capacitor portion formed in the capacitor built-in substrate and the variation in the capacitance value.

また、誘電体拡散防止層とガラスセラミック焼結体からなる絶縁層間にメタライズ拡散防止層を介在させることにより、誘電体拡散防止層と絶縁層との間の誘電体成分(ガラス成分)の過剰な相互拡散を抑制することができる。その結果、誘電体拡散防止層と絶縁層とに発生するボイドを無くし、また誘電体拡散防止層と絶縁層との間の熱膨張係数の差による残留応力を緩和して、誘電体拡散防止層と絶縁層とにクラックが発生するのを防止し、信頼性の高いコンデンサ内蔵基板とすることができる。   Further, by interposing the metallized diffusion prevention layer between the dielectric diffusion prevention layer and the insulating layer composed of the glass ceramic sintered body, an excessive amount of dielectric component (glass component) between the dielectric diffusion prevention layer and the insulation layer is present. Interdiffusion can be suppressed. As a result, voids generated in the dielectric diffusion prevention layer and the insulating layer are eliminated, and the residual stress due to the difference in thermal expansion coefficient between the dielectric diffusion prevention layer and the insulation layer is alleviated. It is possible to prevent the occurrence of cracks in the insulating layer and to provide a highly reliable capacitor built-in substrate.

また、本発明のコンデンサ内蔵基板において好ましくは、コンデンサ部を、チタン酸バリウム粉末95〜100質量部とチタン酸ストロンチウム粉末を5質量部以下添加してなる第1の強誘電体粉末にB,SiO,CaO,BaOおよびZnOを含むガラス粉末とCuO粉末とをそれぞれ第1の強誘電体粉末100質量部に対して2〜10質量部添加した焼結体と、チタン酸バリウム粉末85〜90質量部とチタン酸ストロンチウム粉末を10〜15質量部とを含む第2の強誘電体粉末にB,SiO,CaO,BaOおよびZnOを含むガラス粉末とCuO粉末とをそれぞれ強誘電体粉末100質量部に対して2〜10質量部添加した焼結体と、チタン酸バリウム粉末65〜80質量部とチタン酸ストロンチウム粉末を20〜35質量部とを含む第3の強誘電体粉末にB,SiO,CaO,BaOおよびZnOを含むガラス粉末とCuO粉末とをそれぞれ強誘電体粉末100質量部に対して2〜10質量部添加した焼結体との3つの異なる誘電体材料から成るものとした場合、各誘電体材料はそれぞれ100℃〜125℃、60〜85℃、10℃〜45℃にキュリー温度をもつため、−40℃〜120℃の幅広く実用的な使用温度領域において、誘電率が高く、温度変化による誘電率の変化量も小さいコンデンサ内蔵基板とすることができる。 In the capacitor-embedded substrate of the present invention, preferably, the capacitor portion is formed by adding B 2 O to the first ferroelectric powder obtained by adding 95 to 100 parts by mass of barium titanate powder and 5 parts by mass or less of strontium titanate powder. 3 , a sintered body obtained by adding 2 to 10 parts by mass of glass powder containing Cu 2 , CaO, BaO and ZnO and CuO powder to 100 parts by mass of the first ferroelectric powder, and barium titanate powder 85 A second ferroelectric powder containing ~ 90 parts by mass and 10-15 parts by mass of strontium titanate powder is strongly strengthened with glass powder and CuO powder containing B 2 O 3 , SiO 2 , CaO, BaO and ZnO, respectively. Sintered body added with 2 to 10 parts by mass with respect to 100 parts by mass of dielectric powder, 65 to 80 parts by mass of barium titanate powder and strontium titanate powder Against third ferroelectric powder B 2 O 3, SiO 2, CaO, respectively ferroelectric powder 100 parts by weight of glass powder and CuO powder and the containing BaO and ZnO containing a 20 to 35 parts by weight When the dielectric material is composed of three different dielectric materials with 2 to 10 parts by mass added, each dielectric material has a Curie temperature of 100 ° C to 125 ° C, 60 ° C to 85 ° C, and 10 ° C to 45 ° C, respectively. Therefore, a substrate with a built-in capacitor having a high dielectric constant and a small amount of change in dielectric constant due to a temperature change can be obtained in a wide practical temperature range of −40 ° C. to 120 ° C.

本発明のコンデンサ内蔵基板を以下に詳細に説明する。図1は、本発明のコンデンサ内蔵基板の実施の形態の一例を示す断面図である。本発明のコンデンサ内蔵基板10は、複数の絶縁層11a,11b,11cを積層して成る絶縁基体11と、誘電体層部12a,12b,12cおよびその上下に配設されたメタライズ層から成る一対の電極層13a〜13dからなるコンデンサ部14と貫通導体15a〜15dと、配線層16a,16bとを有している。   The capacitor built-in substrate of the present invention will be described in detail below. FIG. 1 is a sectional view showing an example of an embodiment of a substrate with a built-in capacitor according to the present invention. A capacitor-embedded substrate 10 according to the present invention includes a pair of insulating base 11 formed by laminating a plurality of insulating layers 11a, 11b, and 11c, dielectric layer portions 12a, 12b, and 12c, and metallized layers disposed above and below them. Capacitor portion 14 composed of electrode layers 13a to 13d, through conductors 15a to 15d, and wiring layers 16a and 16b.

本発明のセラミック配線基板10における絶縁層11a〜11cは、ガラス成分とセラミック粉末(セラミックフィラー)との焼結体から成る。このガラス成分としては、例えばSiO−B系,SiO−B−Al系,SiO−B−Al−MO系(但し、MはCa,Sr,Mg,BaまたはZnを示す),SiO−Al−MO−MO系(但し、MおよびMは同じかまたは異なっていて、Ca,Sr,Mg,BaまたはZnを示す),SiO−B−Al−MO−MO系(但し、MおよびMは上記と同じである),SiO−B−M O系(但し、MはLi,NaまたはKを示す),SiO−B−Al−M O系(但し、Mは上記と同じである),Pb系ガラス,Bi系ガラス等が挙げられる。 The insulating layers 11a to 11c in the ceramic wiring substrate 10 of the present invention are made of a sintered body of a glass component and ceramic powder (ceramic filler). Examples of the glass component include SiO 2 —B 2 O 3 system, SiO 2 —B 2 O 3 —Al 2 O 3 system, SiO 2 —B 2 O 3 —Al 2 O 3 —MO system (where M is Ca, Sr, Mg, Ba or Zn), SiO 2 —Al 2 O 3 —M 1 O—M 2 O system (where M 1 and M 2 are the same or different, and Ca, Sr, Mg , Ba or Zn), SiO 2 —B 2 O 3 —Al 2 O 3 —M 1 O—M 2 O system (where M 1 and M 2 are the same as above), SiO 2 —B 2 O 3 —M 3 2 O system (where M 3 represents Li, Na or K), SiO 2 —B 2 O 3 —Al 2 O 3 —M 3 2 O system (where M 3 is the same as above) Pb glass, Bi glass and the like.

また、セラミック粉末としては、例えばAl,SiO,ZrOとアルカリ土類金属酸化物との複合酸化物,TiOとアルカリ土類金属酸化物との複合酸化物,AlおよびSiOから選ばれる少なくとも1種を含む複合酸化物(例えばスピネル,ムライト,コージェライト)等が挙げられる。 Examples of the ceramic powder include Al 2 O 3 , SiO 2 , composite oxide of ZrO 2 and alkaline earth metal oxide, composite oxide of TiO 2 and alkaline earth metal oxide, Al 2 O 3. And composite oxides containing at least one selected from SiO 2 (for example, spinel, mullite, cordierite) and the like.

この絶縁層11a〜11cの焼成前の生シートであるグリーンシートは、ガラス粉末およびセラミック粉末と、有機バインダ,有機溶剤,可塑剤等とを添加混合してスラリーとするとともに、そのスラリーにドクターブレード法やカレンダロール法を採用することによって成形する。   A green sheet, which is a green sheet before firing of the insulating layers 11a to 11c, is made by adding and mixing glass powder and ceramic powder, an organic binder, an organic solvent, a plasticizer, and the like into a slurry. Molding is performed by adopting the method or calendar roll method.

このガラス粉末およびセラミック粉末に添加混合される有機バインダとしては、従来からセラミックグリーンシートに使用されているものが使用可能であり、例えばアクリル系(アクリル酸,メタクリル酸またはそれらのエステルの単独重合体または共重合体、具体的にはアクリル酸エステル共重合体,メタクリル酸エステル共重合体,アクリル酸エステル−メタクリル酸エステル共重合体等),ポリビニルブチラール系,ポリビニルアルコール系,アクリル−スチレン系,ポリプロピレンカーボネート系,セルロース系等の単独重合体または共重合体が挙げられる。   As the organic binder added to and mixed with the glass powder and the ceramic powder, those conventionally used for ceramic green sheets can be used. For example, acrylic (acrylic acid, methacrylic acid or ester homopolymers thereof) Or a copolymer, specifically, an acrylic ester copolymer, a methacrylic ester copolymer, an acrylic ester-methacrylic ester copolymer, etc.), polyvinyl butyral, polyvinyl alcohol, acrylic-styrene, polypropylene Examples include carbonate-based and cellulose-based homopolymers or copolymers.

グリーンシートを成形するためのスラリーに用いられる有機溶剤としては、その有機溶剤とガラス粉末とセラミック粉末と有機バインダとを混練してグリーンシート成形に適した粘度のスラリーが得られるように、例えば炭化水素類,エーテル類,エステル類,ケトン類,アルコール類等から成るものが挙げられる。   As an organic solvent used in a slurry for forming a green sheet, the organic solvent, glass powder, ceramic powder, and an organic binder are kneaded to obtain a slurry having a viscosity suitable for green sheet forming, for example, carbonization. Examples thereof include hydrogen, ethers, esters, ketones, alcohols and the like.

以上のようにして作製したグリーンシートに、必要に応じて金型加工やレーザ加工,マイクロドリルやパンチング等の機械的加工により貫通孔を形成する。この貫通孔に、Ag,Cu,Ag−Pt,Ag−Pd等の金属粉末とガラス粉末とに適当な有機バインダ,溶剤を添加混合した貫通導体用ペーストを、スクリーン印刷等により充填して、貫通導体17を形成する。   A through hole is formed in the green sheet produced as described above by mechanical processing such as die processing, laser processing, micro drilling, punching, or the like as necessary. This through hole is filled with a paste for penetrating conductor obtained by adding an appropriate organic binder and solvent to a metal powder such as Ag, Cu, Ag-Pt, Ag-Pd, and glass powder, and then mixed with the screen through printing. A conductor 17 is formed.

また、これらのグリーンシートの表面に、Ag,Cu,Ag−Pt,Ag−Pd等の金属粉末とガラス粉末に適当な有機バインダ,溶剤を添加混合した配線導体用ペーストを、スクリーン印刷等により塗布し、配線層16a,16bを形成してもよい。   In addition, a paste for wiring conductor in which a metal powder such as Ag, Cu, Ag-Pt, or Ag-Pd and a glass powder is mixed with a suitable organic binder and solvent is applied to the surface of these green sheets by screen printing or the like. The wiring layers 16a and 16b may be formed.

電極層13a〜13dは、グリーンシート上あるいは誘電体層部12a〜12c上にAg、Cu,Ag−Pt,Ag−Pd等のAg−Pd等の金属粉末とガラス粉末に適当な有機バインダ,溶剤を添加混合した電極用ペーストを、スクリーン印刷法等によって塗布して形成することができる。この電極層13a〜13dに含まれるガラス添加量は10質量部以下とするのが良い。これにより、電極層13a〜13dを緻密な金属焼結体とすることができる。その結果、誘電体層部12a〜12cと絶縁層11との間の相互拡散を小さくすることができる。   The electrode layers 13a to 13d are made of a metal powder such as Ag, Cu, Ag-Pt, Ag-Pd, or the like, or a glass powder or an organic binder or solvent suitable for the green sheet or the dielectric layer portions 12a to 12c. The electrode paste to which is added and mixed can be applied and formed by a screen printing method or the like. The amount of glass added to the electrode layers 13a to 13d is preferably 10 parts by mass or less. Thereby, electrode layer 13a-13d can be made into a precise | minute metal sintered compact. As a result, mutual diffusion between the dielectric layers 12a to 12c and the insulating layer 11 can be reduced.

誘電体層部12a〜12cは電極層13a〜13d上に、チタン酸バリウム粉末とチタン酸ストロンチウム粉末を適量添加した強誘電体粉末にガラス粉末と適当な有機バインダ,溶剤を添加混合した誘電体ペーストをスクリーン印刷法等で塗布して形成することができる。誘電体層部12a〜12cは、それぞれ異なるキュリー温度を持つよう調整されたチタン酸バリウムを主成分とする複数の誘電体材料をコンデンサ内蔵基板10の厚み方向に3層積層されて形成されている。   The dielectric layer portions 12a to 12c are dielectric pastes obtained by adding glass powder, an appropriate organic binder, and a solvent to a ferroelectric powder obtained by adding appropriate amounts of barium titanate powder and strontium titanate powder on the electrode layers 13a to 13d. Can be applied by screen printing or the like. The dielectric layer portions 12a to 12c are formed by laminating a plurality of dielectric materials mainly composed of barium titanate adjusted to have different Curie temperatures in the thickness direction of the substrate 10 with a built-in capacitor. .

そして、誘電体層は、チタン酸バリウム粉末95〜100質量部とチタン酸ストロンチウム粉末を5質量部以下添加してなる第1の強誘電体粉末にB,SiO,CaO,BaOおよびZnOを含むガラス粉末とCuO粉末とをそれぞれ第1の強誘電体粉末100質量部に対して2〜10質量部添加した焼結体から成る第1の誘電体層部12aと、チタン酸バリウム粉末85〜90質量部とチタン酸ストロンチウム粉末を10〜15質量部添加してなる第2の強誘電体粉末にB,SiO,CaO,BaOおよびZnOを含むガラス粉末とCuO粉末とをそれぞれ第2の強誘電体粉末100質量部に対して2〜10質量部添加した焼結体から成る第2の誘電体層部12bと、チタン酸バリウム粉末65〜80質量部とチタン酸ストロンチウム粉末を20〜35質量部添加してなる第3の強誘電体粉末にB,SiO,CaO,BaOおよびZnOを含むガラス粉末とCuO粉末とをそれぞれの第3の強誘電体粉末100質量部に対して2〜10質量部添加した焼結体3から成る第3の誘電体層部12cとからなることが好ましい。 The dielectric layer is composed of B 2 O 3 , SiO 2 , CaO, BaO and a first ferroelectric powder obtained by adding 95 to 100 parts by mass of barium titanate powder and 5 parts by mass or less of strontium titanate powder. A first dielectric layer portion 12a made of a sintered body obtained by adding 2 to 10 parts by mass of glass powder containing ZnO and CuO powder to 100 parts by mass of the first ferroelectric powder, and barium titanate powder; A second ferroelectric powder obtained by adding 85 to 90 parts by mass and 10 to 15 parts by mass of strontium titanate powder, and glass powder and CuO powder containing B 2 O 3 , SiO 2 , CaO, BaO and ZnO. Each of the second dielectric layer portion 12b made of a sintered body added with 2 to 10 parts by mass with respect to 100 parts by mass of the second ferroelectric powder, 65 to 80 parts by mass of barium titanate powder, B and phosphate strontium powder third ferroelectric powder obtained by adding 20 to 35 parts by mass 2 O 3, SiO 2, CaO , third intensity of each glass powder and CuO powder and the containing BaO and ZnO It is preferable to comprise the third dielectric layer portion 12c made of the sintered body 3 added with 2 to 10 parts by mass with respect to 100 parts by mass of the dielectric powder.

第1の誘電体層部12a〜12cは、それぞれ100℃〜125℃、60〜85℃、10℃〜45℃にキュリー温度をもつことから、−40℃〜120℃の幅広い温度領域において誘電率が高くかつ温度による容量変化量も小さいコンデンサ内蔵基板10とすることができる。   Since the first dielectric layer portions 12a to 12c have Curie temperatures of 100 ° C. to 125 ° C., 60 ° C. to 85 ° C., and 10 ° C. to 45 ° C., respectively, the dielectric constant in a wide temperature range of −40 ° C. to 120 ° C. Therefore, the capacitor-embedded substrate 10 having a high capacitance and a small change in capacitance due to temperature can be obtained.

また、コンデンサ部14の上下面にはそれぞれに順次積層された誘電体拡散防止層およびメタライズ拡散防止層を設けても良い。誘電体拡散防止層、メタライズ拡散防止層を設けることにより、より好適に誘電体層と絶縁層11との間の相互拡散を抑え、誘電体層を緻密な焼結体とすることができる。   In addition, a dielectric diffusion prevention layer and a metallization diffusion prevention layer may be provided on the upper and lower surfaces of the capacitor portion 14 in order. By providing the dielectric diffusion preventing layer and the metallized diffusion preventing layer, the interdiffusion between the dielectric layer and the insulating layer 11 can be more preferably suppressed, and the dielectric layer can be a dense sintered body.

さらに、絶縁層11a,11b,11cとなる各グリーンシートを3〜20MPaの圧力と50〜80℃の温度で加熱圧着して積層体を作製する。   Furthermore, each green sheet used as insulating layer 11a, 11b, 11c is thermocompression-bonded by the pressure of 3-20 MPa and the temperature of 50-80 degreeC, and a laminated body is produced.

その後、例えば配線層16a,16b等の金属粉末がAg粉末である場合は大気中で900〜1000℃の温度で、配線層16a,16b等の金属粉末がCu粉末である場合は窒素雰囲気下で積層体を焼成することにより、本発明のコンデンサ内蔵基板10が得られる。   Thereafter, for example, when the metal powder such as the wiring layers 16a and 16b is Ag powder, the temperature is 900 to 1000 ° C. in the atmosphere, and when the metal powder such as the wiring layers 16a and 16b is Cu powder, the atmosphere is a nitrogen atmosphere. By firing the laminate, the capacitor built-in substrate 10 of the present invention is obtained.

また、積層体を焼成する際に、グリーンシートが焼結する温度では実質的に焼結収縮しない無機成分、例えばアルミナから成る拘束グリーンシートを積層体の両面に積層して焼成すると、この拘束グリーンシートによって積層体の主面方向の焼成時の収縮が拘束されて抑制されるために、グリーンシートとチタン酸バリウムを主成分とする誘電体層となる誘電体ペーストの塗布層等との焼結収縮挙動の差によるコンデンサ内蔵基板10の反り等を抑制することができる。   In addition, when the laminate is fired, a constrained green sheet made of an inorganic component that does not substantially shrink and shrink at the temperature at which the green sheet sinters, such as alumina, is laminated on both sides of the laminate and fired. Sintering between the green sheet and a dielectric paste coating layer, which is a dielectric layer mainly composed of barium titanate, because the sheet restrains shrinkage during firing in the main surface direction of the laminate. Warpage or the like of the capacitor built-in substrate 10 due to the difference in shrinkage behavior can be suppressed.

さらに、コンデンサ内蔵基板10の表面に位置する配線層16a,16bには、その表面に電子部品を実装する際の半田濡れ性の向上や配線層16a,16bの腐食防止のために、ニッケル,銅,金等のめっき層を施してもよい。   Furthermore, the wiring layers 16a and 16b located on the surface of the capacitor-embedded substrate 10 are made of nickel, copper for improving solder wettability when mounting electronic components on the surface and preventing corrosion of the wiring layers 16a and 16b. A plating layer of gold or the like may be applied.

なお、以上の実施の形態においては、それぞれ異なるキュリー温度を持つよう調整されたチタン酸バリウムを主成分とする複数の誘電体材料からなる誘電体層部12a〜12cがコンデンサ内蔵基板10の厚み方向に3層積層されたものについて説明したが、本発明はこの形態に限定されるものではなく、例えば、誘電体層部12a〜12cは面方向に並んで形成されていたり、または誘電体層部12aを誘電体層部12bが取り囲み、さらに誘電体層部12cが誘電体層部12bを取り囲んだような形態であっても構わない。   In the above embodiment, the dielectric layer portions 12a to 12c made of a plurality of dielectric materials mainly composed of barium titanate adjusted to have different Curie temperatures are provided in the thickness direction of the capacitor built-in substrate 10. However, the present invention is not limited to this embodiment. For example, the dielectric layer portions 12a to 12c are formed side by side in the plane direction, or the dielectric layer portion. 12a may be surrounded by the dielectric layer portion 12b, and the dielectric layer portion 12c may be surrounded by the dielectric layer portion 12b.

本発明のコンデンサ内蔵基板の実施例について以下に説明する。   Examples of the substrate with built-in capacitor according to the present invention will be described below.

コンデンサ内蔵基板の絶縁体層となるグリーンシートを得るために、ガラスとしてSiO−CaO−MgO系ガラス粉末50質量部と、セラミックフィラーとしてAl粉末50質量部とを混合し、このガラス粉末およびセラミックフィラーから成る無機粉末100質量部に、有機バインダとしてアクリル系樹脂12質量部,フタル酸系可塑剤6質量部および溶剤としてトルエン30質量部を加え、ボールミル法により混合しスラリーとした。このスラリーを用いて、ドクターブレード法により厚さ200μmのガラスセラミックグリーンシートを成形した。 In order to obtain a green sheet serving as an insulator layer of a substrate with a built-in capacitor, 50 parts by mass of SiO 2 —CaO—MgO-based glass powder as glass and 50 parts by mass of Al 2 O 3 powder as ceramic filler are mixed. To 100 parts by mass of inorganic powder composed of powder and ceramic filler, 12 parts by mass of an acrylic resin as an organic binder, 6 parts by mass of a phthalic acid plasticizer and 30 parts by mass of toluene as a solvent were added and mixed by a ball mill method to obtain a slurry. Using this slurry, a glass ceramic green sheet having a thickness of 200 μm was formed by a doctor blade method.

また、コンデンサ内蔵基板の第1の誘電体層部となるグリーンシートを得るために、チタン酸バリウム粉末100質量部から成る第1の強誘電体粉末に、B,SiO,CaO,BaOおよびZnOを含むガラス粉末とCuO粉末とをそれぞれ第1の強誘電体粉末100質量部に対して5質量部添加した第1の無機粉末100質量部に、有機バインダとしてアクリル系樹脂12質量部、フタル酸系可塑剤6質量部および溶剤としてトルエン30質量部を加え、ボールミル法により混合し第1のスラリーを作製した。第1のスラリーを用いて、ドクターブレード法により厚さ30μmの第1のグリーンシートを成形した。 In addition, in order to obtain a green sheet to be a first dielectric layer portion of the capacitor built-in substrate, B 2 O 3 , SiO 2 , CaO, 12 parts by mass of an acrylic resin as an organic binder is added to 100 parts by mass of the first inorganic powder obtained by adding 5 parts by mass of glass powder containing BaO and ZnO and CuO powder to 100 parts by mass of the first ferroelectric powder. Then, 6 parts by mass of a phthalic acid plasticizer and 30 parts by mass of toluene as a solvent were added and mixed by a ball mill method to prepare a first slurry. Using the first slurry, a first green sheet having a thickness of 30 μm was formed by a doctor blade method.

また、第2の誘電体層部となるグリーンシートを得るために、チタン酸バリウム粉末87.5質量部とチタン酸ストロンチウム粉末を12.5質量部添加した第2の強誘電体粉末に、B,SiO,CaO,BaOおよびZnOを含むガラス粉末とCuO粉末とをそれぞれ第2の強誘電体粉末100質量部に対して5質量部添加した第2の無機粉末100質量部に、有機バインダとしてアクリル系樹脂12質量部、フタル酸系可塑剤6質量部および溶剤としてトルエン30質量部を加え、ボールミル法により混合し第2のスラリーを作製した。第2のスラリーを用いて、ドクターブレード法により厚さ30μmの第2のグリーンシートを成形した。 Further, in order to obtain a green sheet serving as the second dielectric layer portion, 87.5 parts by mass of barium titanate powder and 12.5 parts by mass of strontium titanate powder were added to the second ferroelectric powder. To 100 parts by mass of the second inorganic powder obtained by adding 5 parts by mass of glass powder containing 2 O 3 , SiO 2 , CaO, BaO and ZnO and CuO powder to 100 parts by mass of the second ferroelectric powder, 12 parts by mass of an acrylic resin as an organic binder, 6 parts by mass of a phthalic acid plasticizer, and 30 parts by mass of toluene as a solvent were added and mixed by a ball mill method to prepare a second slurry. Using the second slurry, a second green sheet having a thickness of 30 μm was formed by a doctor blade method.

また、第3の誘電体層部となるグリーンシートを得るために、チタン酸バリウム粉末70質量部とチタン酸ストロンチウム粉末を30質量部を含む第3の強誘電体粉末に、B,SiO,CaO,BaOおよびZnOを含むガラス粉末とCuO粉末とをそれぞれ第3の強誘電体粉末100質量部に対して5質量部添加した第3の無機粉末100質量部に、有機バインダとしてアクリル系樹脂12質量部、フタル酸系可塑剤6質量部および溶剤としてトルエン30質量部を加え、ボールミル法により混合し第3のスラリーとした。第3のスラリーを用いて、ドクターブレード法により厚さ30μmの第3のグリーンシートを成形した。 Further, in order to obtain a green sheet serving as a third dielectric layer portion, a third ferroelectric powder containing 70 parts by mass of barium titanate powder and 30 parts by mass of strontium titanate powder is added to B 2 O 3 , A glass powder containing SiO 2 , CaO, BaO and ZnO and a CuO powder are added as acrylic binder as an organic binder to 100 parts by mass of the third inorganic powder obtained by adding 5 parts by mass to 100 parts by mass of the third ferroelectric powder. 12 parts by mass of a resin, 6 parts by mass of a phthalic acid plasticizer and 30 parts by mass of toluene as a solvent were added and mixed by a ball mill method to obtain a third slurry. A third green sheet having a thickness of 30 μm was formed by the doctor blade method using the third slurry.

絶縁層となるガラスセラミックグリーンシートに、メタライズ拡散防止層用ペーストをスクリーン印刷法で塗布し、70℃で30分乾燥して、メタライズ拡散防止層用ペーストのパターンを形成した。なお、上記のメタライズ拡散防止層用ペーストは、Ag粉末とガラス粉末との混合物からなり、Ag粉末とガラス粉末とを100質量部としたとき、これにアクリル樹脂12質量部と有機溶剤としてα−テルピネオール6質量部とを加え、攪拌脱泡機により十分に混合したものを用いた。   A paste for metallization diffusion prevention layer was applied to a glass ceramic green sheet to be an insulating layer by a screen printing method and dried at 70 ° C. for 30 minutes to form a pattern of the paste for metallization diffusion prevention layer. In addition, said paste for metallization diffusion prevention layers consists of a mixture of Ag powder and glass powder, and when Ag powder and glass powder are 100 mass parts, to this, 12 mass parts of acrylic resins and α- 6 parts by mass of terpineol was added, and the mixture was thoroughly mixed with a stirring deaerator.

また、メタライズ拡散防止層用ペースト層上に、誘電体拡散防止層用ペーストをスクリーン印刷法で塗布し、70℃で30分乾燥して、誘電体焼拡散防止層用ペーストのパターンを形成した。誘電体拡散防止層用ペーストは、チタン酸バリウム粉末とガラス粉末との混合物からなり、チタン酸バリウム粉末とガラス粉末とを100質量部としたとき、これにアクリル樹脂12質量部と有機溶剤としてα−テルピネオール8質量部とを加え、攪拌脱泡機により十分に混合した後に3本ロールで十分に混練したものを用いた。   Further, the dielectric diffusion prevention layer paste was applied on the metallized diffusion prevention layer paste layer by a screen printing method and dried at 70 ° C. for 30 minutes to form a dielectric baking diffusion prevention layer paste pattern. The dielectric diffusion preventing layer paste is composed of a mixture of barium titanate powder and glass powder. When the barium titanate powder and glass powder are 100 parts by mass, 12 parts by mass of acrylic resin and α as an organic solvent are added thereto. -Terpineol 8 parts by mass was added, and after sufficiently mixing with a stirring defoamer, a mixture kneaded sufficiently with three rolls was used.

次に、メタライズ拡散防止層用ペースト層と誘電体拡散防止層用ペースト層のパターンを形成したガラスセラミックグリーンシートに、パンチングマシーンを用いて所定位置に貫通孔を形成し、この貫通孔にスクリーン印刷法で貫通導体用ペーストを充填した。貫通導体用ペーストとしては、Ag粉末(平均粒径3μm)100質量部に対してガラス粉末10質量部を加え、さらにバインダ成分として所定量のアクリル系樹脂およびテルピネオールを加えて、攪拌脱泡機により十分に混合したものを用いた。   Next, a through hole is formed at a predetermined position in a glass ceramic green sheet on which a pattern of the paste layer for the metallized diffusion prevention layer and the paste layer for the dielectric diffusion prevention layer is formed using a punching machine, and screen printing is performed on the through hole. The paste for through conductors was filled by this method. As a paste for penetrating conductors, 10 parts by mass of glass powder is added to 100 parts by mass of Ag powder (average particle size 3 μm), and a predetermined amount of acrylic resin and terpineol are added as binder components. A well-mixed one was used.

次に、第1〜第3のグリーンシートに、パンチングマシーンを用いて所定位置に貫通孔を形成し、この貫通孔にスクリーン印刷法で貫通導体用ペーストを充填した。さらに第1〜第3のグリーンシート上に電極層用ペーストをスクリーン印刷法で塗布し、70℃で30分乾燥して、電極層用ペースト層のパターンを形成した。電極層用ペーストとしては、メタライズ拡散防止層用ペーストと同じものを用いた。   Next, through holes were formed at predetermined positions in the first to third green sheets using a punching machine, and the through-conductor paste was filled into the through holes by a screen printing method. Furthermore, the electrode layer paste was applied on the first to third green sheets by a screen printing method and dried at 70 ° C. for 30 minutes to form a pattern of the electrode layer paste layer. As the electrode layer paste, the same paste as the metallized diffusion preventing layer paste was used.

さらに、電極層用ペースト層のパターンを形成した第1〜第3のグリーンシートを積層したグリーンシート積層体を形成した。このとき、第2のグリーンシートを3層積層したグリーンシート積層体をグリーンシート積層体Aとし、第1〜第3のグリーンシートを積層したグリーンシート積層体をグリーンシート積層体Bとした。   Furthermore, the green sheet laminated body which laminated | stacked the 1st-3rd green sheet in which the pattern of the paste layer for electrode layers was formed was formed. At this time, a green sheet laminate in which three layers of the second green sheets were laminated was referred to as a green sheet laminate A, and a green sheet laminate in which the first to third green sheets were laminated was referred to as a green sheet laminate B.

次に、コンデンサ部となるグリーンシート積層体A,Bをそれぞれ所定の大きさ(3mm角)にカットし、これらを絶縁層となるガラスセラミックグリーンシート上の誘電体拡散防止層上にセットし、5MPaの圧力と50℃の温度で真空加圧して、コンデンサ部となるグリーンシート積層体A,Bが部分的に積層されたガラスセラミックグリーンシートを得た。さらに、コンデンサ部となるグリーンシート積層体A,Bを部分的に積層したことによる生じる厚みを吸収するために、コンデンサ部となるグリーンシート積層体A,Bを覆うようにガラスセラミックグリーンシートと同じ材料から成り焼結後に絶縁層となるガラスセラミックペーストをスクリーン印刷法で塗布した。このガラスセラミックペーストは、ガラスとしてSiO−CaO−MgO系ガラス粉末を50質量部、セラミックフィラーとしてAl粉末を50質量部混合し、この無機粉末100質量部に有機バインダとしてアクリル樹脂12質量部と有機溶剤としてα−テルピネオール8質量部とを加え、攪拌脱泡機により十分に混合した後に3本ロールで十分に混練したものを用いた。 Next, the green sheet laminates A and B to be the capacitor parts are each cut to a predetermined size (3 mm square), and these are set on the dielectric diffusion prevention layer on the glass ceramic green sheet to be the insulating layer, A vacuum was applied at a pressure of 5 MPa and a temperature of 50 ° C. to obtain a glass ceramic green sheet in which the green sheet laminates A and B to be the capacitor part were partially laminated. Further, in order to absorb the thickness caused by partially laminating the green sheet laminates A and B that become the capacitor portions, the same as the glass ceramic green sheet so as to cover the green sheet laminates A and B that become the capacitor portions. A glass ceramic paste made of a material and serving as an insulating layer after sintering was applied by screen printing. In this glass ceramic paste, 50 parts by mass of SiO 2 —CaO—MgO-based glass powder as glass and 50 parts by mass of Al 2 O 3 powder as ceramic filler are mixed, and acrylic resin 12 as an organic binder is added to 100 parts by mass of this inorganic powder. A mass part and 8 parts by mass of α-terpineol as an organic solvent were added, and the mixture was sufficiently mixed with a stirring defoamer and then sufficiently kneaded with three rolls.

次に、コンデンサ部となるグリーンシート積層体A,Bが積層されたガラスセラミックグリーンシートと、表面に測定用パッドを形成し、裏面にコンデンサ部の上方の拡散を抑制するメタライズ拡散防止層のパターンおよび誘電体拡散防止層のパターンを形成したガラスセラミックグリーンシートとを5MPaの圧力と50℃の温度で真空加熱圧着してコンデンサ内蔵基板用のグリーンシート積層体を作製した。このグリーンシート積層体を、500℃で3時間のバインダの燃焼行程と、900℃で1時間のセラミックスの焼結工程とからなる焼成工程で焼成し、緻密なガラスセラミックス焼結体から成る絶縁層の内部に同時焼成により誘電体層を配設して成るコンデンサ内蔵基板を得た。ここで、グリーンシート積層体Aの焼結体を内蔵したコンデンサ内蔵基板をサンプル1、グリーンシート積層体Bの焼結体を内蔵したコンデンサ内蔵基板をサンプル2とした。   Next, a glass ceramic green sheet in which green sheet laminates A and B to be a capacitor portion are laminated, a measurement pad on the surface, and a metallized diffusion prevention layer pattern that suppresses diffusion above the capacitor portion on the back surface And the glass ceramic green sheet in which the pattern of the dielectric diffusion preventing layer was formed was vacuum-heat-pressed at a pressure of 5 MPa and a temperature of 50 ° C. to produce a green sheet laminate for a capacitor built-in substrate. This green sheet laminate is fired in a firing process consisting of a binder combustion process at 500 ° C. for 3 hours and a ceramic sintering process at 900 ° C. for 1 hour, and an insulating layer comprising a dense glass ceramic sintered body A capacitor built-in substrate having a dielectric layer disposed therein by simultaneous firing was obtained. Here, the substrate with a built-in capacitor in which the sintered body of the green sheet laminate A was incorporated was Sample 1, and the substrate with a capacitor in which the sintered body of the green sheet laminate B was incorporated was Sample 2.

得られたコンデンサ内蔵基板について、そのコンデンサ部(容量素子)の電気的な容量を−40℃〜130℃の温度領域で測定した。容量の測定は、測定周波数1MHz、測定温度25℃の条件で、インピーダンス測定器(「4294Aプレシジョン インピーダンス アナライザ」アジレントテクノロジー(株)製、測定精度±0.08%)を用いて測定した。測定結果を表1に示す。なお、表1は室温(25℃)に対する各温度での容量比率を示したものである。

Figure 2005285968
About the obtained board | substrate with a built-in capacitor | condenser, the electric capacity of the capacitor | condenser part (capacitance element) was measured in the temperature range of -40 degreeC-130 degreeC. The capacitance was measured using an impedance measuring instrument (“4294A Precision Impedance Analyzer” manufactured by Agilent Technologies, Inc., measurement accuracy ± 0.08%) under the conditions of a measurement frequency of 1 MHz and a measurement temperature of 25 ° C. The measurement results are shown in Table 1. Table 1 shows the capacity ratio at each temperature with respect to room temperature (25 ° C.).
Figure 2005285968

表1より、−40℃〜120℃の温度領域で、サンプル2はサンプル1に比べて、温度に関する容量変化率が小さいことが判明した。   From Table 1, it was found that in the temperature range of −40 ° C. to 120 ° C., Sample 2 had a smaller capacity change rate with respect to temperature than Sample 1.

なお、本発明は上記の実施の形態および実施例に限定されず、本発明の要旨を逸脱しない範囲内で種々の変更を施すことは何ら差し支えない。   The present invention is not limited to the above-described embodiments and examples, and various modifications may be made without departing from the scope of the present invention.

本発明のコンデンサ内蔵ガラスセラミック多層配線基板の実施の形態の1例を示す断面図である。It is sectional drawing which shows one example of embodiment of the glass ceramic multilayer wiring board with a built-in capacitor | condenser of this invention. 従来のコンデンサ内蔵ガラスセラミック多層配線基板の1例を示す断面図である。It is sectional drawing which shows one example of the conventional glass ceramic multilayer wiring board with a built-in capacitor | condenser.

符号の説明Explanation of symbols

10:コンデンサ内蔵ガラスセラミック多層配線基板
11:絶縁基体
11a,11b,11c:絶縁層
12a,12b,12c:第1,第2,第3の誘電体層部
13a,13b,13c,13d:電極層
14:コンデンサ部
15a,15b,15c,15d:貫通導体
16a,16b:配線層
10: Glass ceramic multilayer wiring board with built-in capacitor 11: Insulating bases 11a, 11b, 11c: Insulating layers 12a, 12b, 12c: First, second and third dielectric layer portions 13a, 13b, 13c, 13d: Electrode layers 14: Capacitors 15a, 15b, 15c, 15d: Through conductors 16a, 16b: Wiring layer

Claims (3)

ガラスおよびフィラーを含有するガラスセラミックス焼結体から成る絶縁基体の内部に、チタン酸バリウムを主成分とする誘電体層および金属粉末の焼結体からなる電極層から構成されるコンデンサ部が形成されたコンデンサ内蔵ガラスセラミック多層配線基板であって、前記誘電体層は互いにキュリー温度が異なる複数の誘電体層部から成ることを特徴とするコンデンサ内蔵ガラスセラミック多層配線基板。 A capacitor portion composed of a dielectric layer composed mainly of barium titanate and an electrode layer composed of a sintered body of metal powder is formed inside an insulating base composed of a glass ceramic sintered body containing glass and filler. A glass-ceramic multilayer wiring board with a built-in capacitor, wherein the dielectric layer is composed of a plurality of dielectric layer portions having different Curie temperatures. 前記コンデンサ部の上下面のそれぞれに誘電体拡散防止層とメタライズ拡散防止層が順次積層されていることを特徴とする請求項1記載のコンデンサ内蔵ガラスセラミック多層配線基板。 2. The glass-ceramic multilayer wiring board with a built-in capacitor according to claim 1, wherein a dielectric diffusion preventing layer and a metallized diffusion preventing layer are sequentially laminated on the upper and lower surfaces of the capacitor part. 前記コンデンサ部は、チタン酸バリウム粉末95〜100質量部とチタン酸ストロンチウム粉末5質量部以下とを含む第1の強誘電体粉末に、B,SiO,CaO,BaOおよびZnOを含むガラス粉末とCuO粉末とをそれぞれ前記第1の強誘電体粉末100質量部に対して2〜10質量部添加した焼結体から成る第1の誘電体層部と、チタン酸バリウム粉末85〜90質量部とチタン酸ストロンチウム粉末10〜15質量部とを含む第2の強誘電体粉末に、B,SiO,CaO,BaOおよびZnOを含むガラス粉末とCuO粉末とをそれぞれ前記第2の強誘電体粉末100質量部に対して2〜10質量部添加した焼結体から成る第2の誘電体層部と、チタン酸バリウム粉末65〜80質量部とチタン酸ストロンチウム粉末20〜35質量部とを含む第3の強誘電体粉末に、B,SiO,CaO,BaOおよびZnOを含むガラス粉末とCuO粉末とをそれぞれ前記第3の強誘電体粉末100質量部に対して2〜10質量部添加した焼結体から成る第3の誘電体層部とから成ることを特徴とする請求項1または請求項2記載のコンデンサ内蔵ガラスセラミック多層配線基板。 The capacitor portion includes B 2 O 3 , SiO 2 , CaO, BaO, and ZnO in a first ferroelectric powder that includes 95 to 100 parts by mass of barium titanate powder and 5 parts by mass or less of strontium titanate powder. A first dielectric layer portion made of a sintered body obtained by adding 2 to 10 parts by mass of glass powder and CuO powder to 100 parts by mass of the first ferroelectric powder, and barium titanate powders 85 to 90, respectively. parts by weight of the second ferroelectric powder and a strontium titanate powder 10 to 15 parts by weight, B 2 O 3, SiO 2 , CaO, respectively the second and the glass powder and CuO powder containing BaO and ZnO 2 to 10 parts by mass of a second dielectric layer composed of a sintered body added to 100 parts by mass of the ferroelectric powder, 65 to 80 parts by mass of barium titanate powder, and titanium titanate A third ferroelectric powder comprising a lithium powder 20 to 35 parts by weight, B 2 O 3, SiO 2 , CaO, each of the third ferroelectric powder glass powder and CuO powder and the containing BaO and ZnO 3. The glass-ceramic multilayer wiring board with a built-in capacitor according to claim 1, further comprising a third dielectric layer portion made of a sintered body added with 2 to 10 parts by mass with respect to 100 parts by mass.
JP2004095515A 2004-03-29 2004-03-29 Glass ceramic multilayer wiring board with built-in capacitor Expired - Fee Related JP4578134B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004095515A JP4578134B2 (en) 2004-03-29 2004-03-29 Glass ceramic multilayer wiring board with built-in capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004095515A JP4578134B2 (en) 2004-03-29 2004-03-29 Glass ceramic multilayer wiring board with built-in capacitor

Publications (2)

Publication Number Publication Date
JP2005285968A true JP2005285968A (en) 2005-10-13
JP4578134B2 JP4578134B2 (en) 2010-11-10

Family

ID=35184046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004095515A Expired - Fee Related JP4578134B2 (en) 2004-03-29 2004-03-29 Glass ceramic multilayer wiring board with built-in capacitor

Country Status (1)

Country Link
JP (1) JP4578134B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007299777A (en) * 2006-04-27 2007-11-15 Tdk Corp Laminated semiconductor ceramic
JP2009196885A (en) * 2008-02-25 2009-09-03 Samsung Electro-Mechanics Co Ltd Low temperature co-fired ceramic substrate having diffusion barrier layer and method of manufacturing the same
WO2013074577A1 (en) * 2011-11-16 2013-05-23 Stuart Martin A High energy density storage device
US9396880B2 (en) 2011-11-16 2016-07-19 Martin A. Stuart High energy density storage device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104445048B (en) * 2013-09-17 2016-04-20 原相科技股份有限公司 There is the microcomputer electric component of symmetric difference electric capacity

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5917229A (en) * 1982-07-20 1984-01-28 松下電器産業株式会社 Laminated condenser element
JPS6260023U (en) * 1985-10-01 1987-04-14
JPS62177906A (en) * 1986-01-30 1987-08-04 日本電気株式会社 Composite laminated ceramic parts
JPS62183106A (en) * 1986-02-06 1987-08-11 日本電気株式会社 Composite laminated ceramic parts
JPS62265795A (en) * 1986-05-14 1987-11-18 株式会社住友金属セラミックス Ceramic board with built-in capacitor
JPS6313318A (en) * 1986-07-03 1988-01-20 日本電気株式会社 Composite laminated ceramic parts
JPS6464209A (en) * 1987-09-02 1989-03-10 Nec Corp Laminated ceramic-capacitor
JPH01243409A (en) * 1988-03-24 1989-09-28 Nec Corp Compound lamination ceramic parts
JPH03500475A (en) * 1988-08-01 1991-01-31 サーキット・コンポーネンツ・インコーポレイテッド temperature stable multilayer capacitor
JPH03104261A (en) * 1989-09-19 1991-05-01 Hitachi Ltd Carrier board with built-in capacitor
JPH0529771A (en) * 1991-07-23 1993-02-05 Fujitsu Ltd Ceramic circuit substrate and its manufacture
JPH0766563A (en) * 1993-08-31 1995-03-10 Kyocera Corp Multi-layer circuit substrate with built-in capacitor
JPH0817674A (en) * 1994-06-24 1996-01-19 Murata Mfg Co Ltd Laminated ceramic component
JPH08298365A (en) * 1995-04-26 1996-11-12 Ngk Spark Plug Co Ltd Ceramic board with capacitor
JPH11330705A (en) * 1998-05-12 1999-11-30 Matsushita Electric Ind Co Ltd Substrate containing capacitor and manufacture thereof
JP2003002682A (en) * 2001-06-21 2003-01-08 Kyocera Corp Low-softening-point glass and method for producing the same, and low-temperature-sintering ceramic composition
JP2003342064A (en) * 2002-05-28 2003-12-03 Kyocera Corp Glass ceramic sintered compact and multilayer wiring board
JP2004083373A (en) * 2002-08-28 2004-03-18 Kyocera Corp High thermal expansion porcelain formulation, high thermal expansion porcelain, its manufacturing method, multilayered wiring board, and its mounting structure

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5917229A (en) * 1982-07-20 1984-01-28 松下電器産業株式会社 Laminated condenser element
JPS6260023U (en) * 1985-10-01 1987-04-14
JPS62177906A (en) * 1986-01-30 1987-08-04 日本電気株式会社 Composite laminated ceramic parts
JPS62183106A (en) * 1986-02-06 1987-08-11 日本電気株式会社 Composite laminated ceramic parts
JPS62265795A (en) * 1986-05-14 1987-11-18 株式会社住友金属セラミックス Ceramic board with built-in capacitor
JPS6313318A (en) * 1986-07-03 1988-01-20 日本電気株式会社 Composite laminated ceramic parts
JPS6464209A (en) * 1987-09-02 1989-03-10 Nec Corp Laminated ceramic-capacitor
JPH01243409A (en) * 1988-03-24 1989-09-28 Nec Corp Compound lamination ceramic parts
JPH03500475A (en) * 1988-08-01 1991-01-31 サーキット・コンポーネンツ・インコーポレイテッド temperature stable multilayer capacitor
JPH03104261A (en) * 1989-09-19 1991-05-01 Hitachi Ltd Carrier board with built-in capacitor
JPH0529771A (en) * 1991-07-23 1993-02-05 Fujitsu Ltd Ceramic circuit substrate and its manufacture
JPH0766563A (en) * 1993-08-31 1995-03-10 Kyocera Corp Multi-layer circuit substrate with built-in capacitor
JPH0817674A (en) * 1994-06-24 1996-01-19 Murata Mfg Co Ltd Laminated ceramic component
JPH08298365A (en) * 1995-04-26 1996-11-12 Ngk Spark Plug Co Ltd Ceramic board with capacitor
JPH11330705A (en) * 1998-05-12 1999-11-30 Matsushita Electric Ind Co Ltd Substrate containing capacitor and manufacture thereof
JP2003002682A (en) * 2001-06-21 2003-01-08 Kyocera Corp Low-softening-point glass and method for producing the same, and low-temperature-sintering ceramic composition
JP2003342064A (en) * 2002-05-28 2003-12-03 Kyocera Corp Glass ceramic sintered compact and multilayer wiring board
JP2004083373A (en) * 2002-08-28 2004-03-18 Kyocera Corp High thermal expansion porcelain formulation, high thermal expansion porcelain, its manufacturing method, multilayered wiring board, and its mounting structure

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007299777A (en) * 2006-04-27 2007-11-15 Tdk Corp Laminated semiconductor ceramic
JP2009196885A (en) * 2008-02-25 2009-09-03 Samsung Electro-Mechanics Co Ltd Low temperature co-fired ceramic substrate having diffusion barrier layer and method of manufacturing the same
WO2013074577A1 (en) * 2011-11-16 2013-05-23 Stuart Martin A High energy density storage device
CN103946937A (en) * 2011-11-16 2014-07-23 M·A·斯图尔特 High energy density storage device
US9230741B2 (en) 2011-11-16 2016-01-05 Martin A. Stuart High energy density storage device
US9396880B2 (en) 2011-11-16 2016-07-19 Martin A. Stuart High energy density storage device
US10026555B2 (en) 2011-11-16 2018-07-17 Martin A. Stuart High energy density storage device
US10636573B2 (en) 2011-11-16 2020-04-28 Barbara Stuart High energy density storage device

Also Published As

Publication number Publication date
JP4578134B2 (en) 2010-11-10

Similar Documents

Publication Publication Date Title
JP4578134B2 (en) Glass ceramic multilayer wiring board with built-in capacitor
JP4688460B2 (en) Glass ceramic multilayer wiring board with built-in capacitor
JP2945529B2 (en) Multilayer ceramic capacitor and method of manufacturing the same
JP3805173B2 (en) Glass ceramic sintered body and multilayer wiring board using the same
JP4077625B2 (en) Low temperature fired porcelain composition and method for producing low temperature fired porcelain
JP4658465B2 (en) Glass ceramic multilayer wiring board with built-in capacitor
JP2006179844A (en) Wiring board with built-in capacitor
JP2002043759A (en) Multilayer wiring board
JP3793557B2 (en) Glass ceramic sintered body and multilayer wiring board using the same
JP4817855B2 (en) Capacitor built-in wiring board and manufacturing method thereof
JP2003026472A (en) Method for producing multilayer ceramic electronic parts, multilayer ceramic electronic parts and raw composite multilayer body for producing multilayer ceramic electronic parts
JP5110419B2 (en) Ag powder, conductor paste, multilayer ceramic substrate and manufacturing method thereof
JP2010278117A (en) Method of manufacturing wiring board
JP2007201276A (en) Wiring board
JP4416342B2 (en) Circuit board and manufacturing method thereof
JP4214039B2 (en) Glass ceramic multilayer wiring board with built-in capacitor
JP4623851B2 (en) Multilayer wiring board
JP4514301B2 (en) Manufacturing method of multilayer wiring board
JP2005136147A (en) Glass ceramic multilayer circuit board with built-in capacitor
JP4530864B2 (en) Wiring board with built-in capacitor
JP4761647B2 (en) Ceramic composition and multilayer wiring board using the same
JP2006278759A (en) Wiring board
JP4831492B2 (en) Manufacturing method of ceramic substrate
JP2002068832A (en) Glass ceramic sintered compact and multi-layered wiring board using the same
JP2006066743A (en) Glass ceramics multi-layer wiring board with capacitor built-in and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100727

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100824

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees