JP5110419B2 - Ag powder, conductor paste, multilayer ceramic substrate and manufacturing method thereof - Google Patents

Ag powder, conductor paste, multilayer ceramic substrate and manufacturing method thereof Download PDF

Info

Publication number
JP5110419B2
JP5110419B2 JP2007072164A JP2007072164A JP5110419B2 JP 5110419 B2 JP5110419 B2 JP 5110419B2 JP 2007072164 A JP2007072164 A JP 2007072164A JP 2007072164 A JP2007072164 A JP 2007072164A JP 5110419 B2 JP5110419 B2 JP 5110419B2
Authority
JP
Japan
Prior art keywords
powder
conductor
temperature
ceramic substrate
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007072164A
Other languages
Japanese (ja)
Other versions
JP2007294906A (en
Inventor
平吉 種井
初男 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2007072164A priority Critical patent/JP5110419B2/en
Publication of JP2007294906A publication Critical patent/JP2007294906A/en
Application granted granted Critical
Publication of JP5110419B2 publication Critical patent/JP5110419B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Non-Insulated Conductors (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Devices For Post-Treatments, Processing, Supply, Discharge, And Other Processes (AREA)
  • Powder Metallurgy (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Conductive Materials (AREA)

Description

本発明は、多層セラミック基板とその製造方法に関し、その多層セラミック基板の製造に用いるのに適したAg粉末並びに導体ペーストに関するものである。特に、低温焼成が可能な無収縮プロセスによって製造される多層セラミック基板に関するものである。   The present invention relates to a multilayer ceramic substrate and a manufacturing method thereof, and relates to an Ag powder and a conductor paste suitable for use in manufacturing the multilayer ceramic substrate. In particular, the present invention relates to a multilayer ceramic substrate manufactured by a non-shrink process capable of low-temperature firing.

今日、多層セラミック基板は、携帯電話等の移動体通信端末機器の分野などにおいて、アンテナスイッチモジュール、PAモジュール基板、フィルタ、チップアンテナ、各種パッケージ部品等の種々の電子部品を構成するために広く用いられている。
多層セラミック基板は、複数の積層されたセラミック層を備えており、基板内部にはセラミック層に形成した内部電極と、内部電極間を接続するようにセラミック層を貫通させたビアホール電極と、基板の外表面上に形成した外部電極が形成されている。通常、多層セラミック基板は、半導体チップやその他のチップ部品を基板上に搭載し、これをマザー基板上に表面実装して用いられる。このとき、より多機能化、高密度化、高性能化するためには、上記した配線電極を高密度に配置することが有効である。
しかしながら、多層セラミック基板を得るためには、必ず焼結工程を経なければならず、この焼結工程においてセラミックスは焼結による収縮が約10〜25%程度生じる。このような大きな収縮があると集合基板に作りこむことが出来る製品基板の取れ数が少なくなり、効率的ではない。また、収縮は多層セラミック基板全体において均一に生じるものではなく反りや歪みがもたらされる。このような反りや歪みは、特性上、また実装作業上に支障をきたすばかりでなく、電極の高密度化を阻害してしまう。従って、焼結による収縮率を1%以下として、収縮ばらつきを小さくし、反りを抑えることが求められている。
Today, multilayer ceramic substrates are widely used to configure various electronic components such as antenna switch modules, PA module substrates, filters, chip antennas, and various package components in the field of mobile communication terminal equipment such as cellular phones. It has been.
The multilayer ceramic substrate includes a plurality of laminated ceramic layers. Inside the substrate, an internal electrode formed in the ceramic layer, a via-hole electrode penetrating the ceramic layer so as to connect the internal electrodes, and the substrate An external electrode formed on the outer surface is formed. Usually, a multilayer ceramic substrate is used by mounting a semiconductor chip or other chip component on a substrate and mounting it on a mother substrate. At this time, in order to achieve more functions, higher density, and higher performance, it is effective to arrange the wiring electrodes described above at a high density.
However, in order to obtain a multilayer ceramic substrate, a sintering process must be performed. In this sintering process, ceramic shrinkage occurs by about 10 to 25% due to sintering. If there is such a large shrinkage, the number of product substrates that can be formed on the collective substrate is reduced, which is not efficient. Further, the shrinkage does not occur uniformly in the entire multilayer ceramic substrate but causes warping and distortion. Such warpage and distortion not only interfere with the characteristics and mounting work but also hinder the density of the electrodes. Therefore, it is required to reduce the shrinkage variation by suppressing the shrinkage due to sintering to 1% or less and to suppress warpage.

そこで、多層セラミック基板を製造するにあたって、焼成工程において多層セラミック基板のX-Y面方向での収縮を実質的に生じさせないことを意図した、いわゆる無収縮プロセスが提案されている。特に、近年では電極ペースト材料としてAg系の低抵抗材を用いることから800〜1000℃程度の低温で焼成することが行われる。そのため、専ら1000℃以下の温度で同時焼成が可能なLTCC(Low Temperature Co-fired Ceramics)材、とりわけガラスとアルミナ、ムライト、コージェライト等のセラミックス粉末と有機バインダ及び可塑剤からなるガラスセラミックグリーンシートを用いて、これを無収縮で一体焼成するプロセス、いわゆる無収縮プロセスが提案されている。例えば、特許文献1(特許第2554415号公報)、特許文献2(特許第3335970号公報)に無収縮プロセスに関する記載がある。   Therefore, when manufacturing a multilayer ceramic substrate, a so-called non-shrink process has been proposed which is intended to prevent the multilayer ceramic substrate from substantially shrinking in the X-Y plane direction in the firing step. In particular, since an Ag-based low-resistance material is used as an electrode paste material in recent years, firing is performed at a low temperature of about 800 to 1000 ° C. Therefore, LTCC (Low Temperature Co-fired Ceramics) materials that can be co-fired exclusively at temperatures below 1000 ° C, especially glass ceramic green sheets made of ceramic powder such as glass and alumina, mullite, cordierite, organic binder and plasticizer. There has been proposed a so-called non-shrinkage process in which this is integrally fired without shrinkage. For example, Patent Document 1 (Patent No. 2554415) and Patent Document 2 (Patent No. 3335970) describe a non-shrink process.

上記無収縮プロセスに関し、用いるAg導体材料として、特許文献3(特開2000-285731)には平均粒径3〜10μmのAg粉末が導体粉末全体の95重量%以上からなる導体粉末と有機ビヒクルとを含みガラスフリットを含まない導体ペーストが提示されている。
また、特許文献4(特開平9-69687)には、ビア形成用の導電ペーストとして、Ag粉末と共にフレーク状フィラーを用いることが提示されている。
また、特許文献5(特開2002-26528)では、収縮工法において製造される多層セラミック基板に用いる内部電極および/または表面電極用の導電性ペーストに関し、その導電性ペーストの収縮カーブをシート積層体の収縮カーブと一致させることにより、多層セラミック基板の反りや変形を抑制することが開示されている。
また、特許文献6(特開2004-319706)では、セラミックグリーンシートと導体ペーストとの焼成収縮開始温度及び/又は焼成収縮率の差を特定の範囲とすることにより、焼成後、ビア導体と焼結体との間に隙間が生じること、及びビア導体の周縁において焼結体にクラックが生じること、が抑制される導体ペースト、並びに特定の構成の基板用未焼成セラミックシートを積層し、焼成してなる多層基板、及び収縮抑制用未焼成セラミックシートを用いる多層基板の製造方法が開示されている。
Regarding the above-described non-shrinking process, as an Ag conductor material to be used, Patent Document 3 (Japanese Patent Laid-Open No. 2000-285731) discloses that an Ag powder having an average particle size of 3 to 10 μm comprises 95% by weight or more of the entire conductor powder and an organic vehicle. A conductor paste containing no glass frit is proposed.
Patent Document 4 (Japanese Patent Laid-Open No. 9-69687) proposes to use a flaky filler together with Ag powder as a conductive paste for forming vias.
Patent Document 5 (Japanese Patent Laid-Open No. 2002-26528) relates to a conductive paste for an internal electrode and / or a surface electrode used for a multilayer ceramic substrate manufactured by a shrinkage method, and shows a shrinkage curve of the conductive paste as a sheet laminate. It is disclosed that the warpage and deformation of the multilayer ceramic substrate are suppressed by matching the shrinkage curve.
Further, in Patent Document 6 (Japanese Patent Application Laid-Open No. 2004-319706), by setting the difference in firing shrinkage start temperature and / or firing shrinkage ratio between the ceramic green sheet and the conductor paste within a specific range, after firing, Laminate and fire a conductor paste that suppresses the formation of a gap with the bonded body and cracks in the sintered body at the periphery of the via conductor, and an unfired ceramic sheet for a substrate with a specific configuration. And a method for producing a multilayer substrate using an unfired ceramic sheet for suppressing shrinkage is disclosed.

特許第2554415号公報Japanese Patent No. 2554415 特許第3335970号公報Japanese Patent No. 3335970 特開2000−285731号公報JP 2000-285731 A 特開平9−69687号公報JP-A-9-69687 特開2002−26528号公報JP 2002-26528 A 特開2004−319706号公報JP 2004-319706 A

上記特許文献3と特許文献4及び特許文献6の導体ペーストによれば、ビア導体と基板との間に空隙・隙間・クラックが見当たらないとされているが、多層セラミック基板の高温高湿度雰囲気下で配線間に電圧を負荷した信頼性試験までは考慮されておらず、高温高湿度雰囲気下、負荷試験での信頼性が確保されてはいない。高温高湿試験としては85℃、85%RHの雰囲気下で3〜100Vを負荷することが一般的である。高温高湿負荷試験では、導体や基板に水蒸気が入る隙間が問題となる。とりわけ導体と基板間の微細な隙間が問題となる。ビア導体や配線導体と基板との間に微細な隙間があると水蒸気が入り込み、電界の下でAg等の金属成分がマイグレーションし、配線間の絶縁不良を引き起こす問題を生じる。多層セラミック基板の高温高湿負荷試験での信頼性が確保できない場合は、多層セラミック基板あるいはそれを用いたモジュール等を樹脂でモールドする、金属ケース等で気密封止するなどの対策手段があるが材料・工程が増大するという問題がある。   According to the conductor pastes of Patent Document 3, Patent Document 4, and Patent Document 6, it is said that there are no voids, gaps, or cracks between the via conductor and the substrate. However, the reliability test in which a voltage is applied between the wirings is not considered, and the reliability in the load test is not ensured in a high-temperature and high-humidity atmosphere. As a high-temperature and high-humidity test, it is common to apply 3 to 100 V under an atmosphere of 85 ° C. and 85% RH. In the high-temperature and high-humidity load test, a gap in which water vapor enters the conductor or the substrate becomes a problem. In particular, a fine gap between the conductor and the substrate becomes a problem. If there is a fine gap between the via conductor or the wiring conductor and the substrate, water vapor enters and a metal component such as Ag migrates under an electric field, causing a problem of causing an insulation failure between the wirings. If the reliability of the multilayer ceramic substrate in the high-temperature and high-humidity load test cannot be ensured, there are countermeasures such as molding the multilayer ceramic substrate or a module using the same with resin, or hermetically sealing with a metal case, etc. There is a problem that materials and processes increase.

本発明の課題は、反りが小さく、しかも高温高湿負荷試験において不良の発生しない高信頼の多層セラミック基板を提供するものであり、またその多層セラミック基板の製造に適した導体ペースト、並びにそれに適したAg粉末を提供することにある。とりわけ、無収縮で焼結する方法に適した多層セラミック基板用導体ペースト、並びにそれに適したAg粉末を提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to provide a highly reliable multilayer ceramic substrate that has low warpage and does not cause defects in a high-temperature and high-humidity load test. It is to provide an Ag powder. In particular, it is to provide a conductor paste for a multilayer ceramic substrate suitable for a method of sintering without shrinkage, and an Ag powder suitable for it.

上記課題の解決のため、本発明者は、多層セラミック基板を構成するセラミック材料と導体材料の焼結収縮挙動に注目し、種々のセラミック材料と導体材料の焼結収縮挙動とそれらの材料を用いた多層セラミック基板の微細構造・高温高湿負荷信頼性試験を行った。その結果、導体材料とセラミック材料の焼結挙動を近づけることが従来の考え方であったが、それらの焼結挙動が多少ずれていても問題がなく、重要なのは焼成工程の最高温度で保持する時の挙動であることが分かった。すなわち、焼成工程の最高温度で保持する時、
ビア導体材料が収縮挙動から膨張挙動に転じることが、高温高湿負荷試験で高い信頼性を得るのに効果的であることを見出したものである。
In order to solve the above problems, the present inventor paid attention to the sintering shrinkage behavior of the ceramic material and the conductor material constituting the multilayer ceramic substrate, and used the sintering shrinkage behavior of various ceramic materials and the conductor material and those materials. The reliability test was conducted on the microstructure and high temperature and high humidity load of the multilayer ceramic substrate. As a result, the conventional approach was to bring the sintering behavior of the conductor material and the ceramic material closer, but there is no problem even if the sintering behavior is slightly deviated, and what is important is to keep it at the maximum temperature of the firing process. It was found that this is the behavior. That is, when holding at the highest temperature of the firing process,
It has been found that it is effective to obtain high reliability in a high-temperature and high-humidity load test when the via conductor material changes from shrinkage behavior to expansion behavior.

本発明は、平均粒径が1.5μm以上、3.0μm未満のAg粉末であり、前記Ag粉末を大気中で850℃から1000℃までの間の温度に加熱し、2時間保持した後の前記Ag粉末中の酸素含有量が100ppm以上であることを特徴とする多層セラミック基板に用いる導体ペースト用のAg粉末である。   The present invention is an Ag powder having an average particle size of 1.5 μm or more and less than 3.0 μm. The Ag powder is heated to a temperature between 850 ° C. and 1000 ° C. in the atmosphere and held for 2 hours. An Ag powder for a conductor paste used for a multilayer ceramic substrate, wherein the oxygen content in the powder is 100 ppm or more.

本発明のAg粉末は導体ペーストに用いて、セラミック材料と同時焼成されるが、その時の最高温度は、ほぼ850℃から1000℃の間である。この焼成工程の最高温度で保持する時、収縮挙動から膨張挙動に転じることに、本発明のAg粉末は有効に作用することを見出した。特に、Ag粉末を大気中で850℃から1000℃までの間の温度に加熱し、2時間保持した後の前記Ag粉末中の酸素含有量が100ppm以上であることにより、セラミック材料と同時焼成されたとき、その最高温度の保持の間にも、Ag導体中に酸素が所定量含有されており、この酸素を所定量含有することが、下記するビア導体材料(Agを主体とし、Pdを含有する導電材料)を焼成工程の最高温度で保持する時、収縮挙動から膨張挙動に転じることに有効に作用しているものと考えられる。尚、熱処理後の酸素含有量が100ppmより小さい場合は、収縮挙動を抑制する効果が薄れるため好ましくない。また、この酸素含有量は多すぎると導体の抵抗値を増大させる原因となるので、1000ppm以下くらいが好ましいと考えられる。また、Ag粉末の加熱前の酸素含有量は300ppm〜2000ppmであることが好ましい。300ppmより少ない場合は収縮から膨張に変化する挙動が起こり難く、2000ppmより多い場合は導体の抵抗値が増大し易い。
一方、平均粒径が3.0μmより大きい場合には微細印刷に難が生じる。
The Ag powder of the present invention is used as a conductor paste and co-fired with a ceramic material, and the maximum temperature at that time is approximately between 850 ° C. and 1000 ° C. It has been found that the Ag powder of the present invention works effectively in changing from shrinkage behavior to expansion behavior when held at the maximum temperature of the firing step. In particular, when the Ag powder is heated to a temperature between 850 ° C. and 1000 ° C. in the atmosphere and kept for 2 hours, the Ag powder is co-fired with the ceramic material by having an oxygen content of 100 ppm or more. When the maximum temperature is maintained, a predetermined amount of oxygen is contained in the Ag conductor, and this predetermined amount of oxygen is contained in the following via conductor material (mainly composed of Ag and containing Pd). It is considered that when the conductive material is kept at the maximum temperature of the firing step, it effectively acts to shift from the shrinkage behavior to the expansion behavior. In addition, when the oxygen content after heat treatment is less than 100 ppm, the effect of suppressing the shrinkage behavior is reduced, which is not preferable. Further, if this oxygen content is too large, it will cause an increase in the resistance value of the conductor, so it is considered that about 1000 ppm or less is preferable. Moreover, it is preferable that the oxygen content before a heating of Ag powder is 300 ppm-2000 ppm. When it is less than 300 ppm, the behavior of changing from shrinkage to expansion hardly occurs, and when it is more than 2000 ppm, the resistance value of the conductor tends to increase.
On the other hand, when the average particle size is larger than 3.0 μm, difficulty in fine printing occurs.

また、本発明の導体ペーストは、平均粒径が1.5μm以上、3.0μm未満のAg粉末であり、前記Ag粉末を大気中で850℃から1000℃までの間の温度に加熱し、2時間保持した後の前記Ag粉末中の酸素含有量が100ppm以上であるAg粉末を用いた導体ペーストであり、導体材料中の含有量として、前記Ag粉末が88〜94質量%、Pd粉末が0.1質量%以上3質量%未満含有されており、前記Ag粉末及びPd粉末の総量が88.1〜95質量%であることを特徴とする。
この導体ペーストによれば、上記したAg粉末中の酸素含有量による収縮抑制効果と共に、さらにPd粉末の作用を複合的に得ることができる。即ち、Pdの添加により、焼成工程の最高温度で保持する時、収縮挙動から膨張挙動に転じ、ビアの壁面となっているセラミック材料とビアの内部の導体材料が隙間なく密着し、水蒸気の入り込まない構造とすることができる。ここで、Ag粉末が88質量%よりも少ないと、導体ペーストの収縮量が大きく、また、94質量%より多いと粘度が高くなりペースト化が困難となる。Pd粉末が0.1質量%より少ない場合、添加効果はなく、3質量%以上の場合、導体材料の良好な導電性を損なうので、好ましくない。
The conductor paste of the present invention is an Ag powder having an average particle size of 1.5 μm or more and less than 3.0 μm, and the Ag powder is heated to a temperature between 850 ° C. and 1000 ° C. in the atmosphere, 2 A conductor paste using an Ag powder having an oxygen content of 100 ppm or more after being held for a period of time. The content in the conductor material is 88 to 94% by mass of the Ag powder and 0% of the Pd powder. The total content of the Ag powder and the Pd powder is 88.1 to 95% by mass.
According to this conductor paste, the effect of the Pd powder can be obtained in combination with the shrinkage suppressing effect due to the oxygen content in the Ag powder. That is, when Pd is added, when the temperature is maintained at the maximum temperature in the firing process, the shrinkage behavior is changed to the expansion behavior, and the ceramic material serving as the via wall and the conductor material inside the via adhere closely to each other, and water vapor enters. There can be no structure. Here, if the Ag powder is less than 88% by mass, the amount of shrinkage of the conductor paste is large, and if it is more than 94% by mass, the viscosity becomes high and pasting becomes difficult. When the amount of Pd powder is less than 0.1% by mass, there is no effect of addition, and when it is 3% by mass or more, good conductivity of the conductor material is impaired, which is not preferable.

また、本発明の多層セラミック基板用の導体ペーストは、ガラス成分を含まないことが好ましい。ガラス成分は、導体の抵抗率を大きくするため、多層セラミック基板として用いる際の製品特性において好ましくない場合がある。特に、高周波での用途においては、所望の製品特性を得ることが難しくなる。   Moreover, it is preferable that the conductor paste for multilayer ceramic substrates of this invention does not contain a glass component. Since the glass component increases the resistivity of the conductor, it may not be preferable in terms of product characteristics when used as a multilayer ceramic substrate. In particular, in high frequency applications, it is difficult to obtain desired product characteristics.

本発明の導体ペーストは、最高温度を850℃から1000℃までの間の温度とし、最高温度保持時間を20分から60分までの間の時間とし、昇温速度を10℃/分とした条件で、導体ペーストの焼結収縮挙動を熱機械分析装置(TMA:Thermo−Mechanical Analysis)で評価したとき、前記最高温度での保持時間の間において、前記導体ペーストの寸法変化が、収縮傾向から膨張傾向に変わることを特徴とする多層セラミック基板用の導体ペーストである。
前記Ag粉末が88〜94質量%、Pd粉末が0.1質量%以上、3質量%未満含有されており、前記Ag粉末及びPd粉末の総量が88.1〜95質量%であることが好ましい。さらに、前記Ag粉末中の酸素含有量が100ppm以上であることが好ましい。
The conductor paste of the present invention has a maximum temperature of 850 ° C. to 1000 ° C., a maximum temperature holding time of 20 minutes to 60 minutes, and a temperature rising rate of 10 ° C./min. When the sintering shrinkage behavior of the conductor paste was evaluated with a thermo-mechanical analyzer (TMA), the dimensional change of the conductor paste during the holding time at the maximum temperature showed an expansion tendency from the shrinkage tendency. A conductive paste for a multilayer ceramic substrate, characterized in that
The Ag powder is contained in an amount of 88 to 94% by mass, the Pd powder is contained in an amount of 0.1 to 3% by mass, and the total amount of the Ag powder and the Pd powder is preferably 88.1 to 95% by mass. . Furthermore, the oxygen content in the Ag powder is preferably 100 ppm or more.

本発明の導体ペーストによれば、セラミック材料と同時焼成されるが、その時の最高温度はほぼ850℃から1000℃の間であり、この焼成工程の最高温度で保持する時、導体ペーストが収縮挙動から膨張挙動に転じることでビアの壁面となっているセラミック材料とビアの内部の導体材料が隙間なく密着し、水蒸気の入り込まない構造とすることができる。
これらの導体材料の焼結収縮挙動は熱機械分析装置(TMA)で測定できる。そして、収縮挙動から膨張挙動に転じるとは、図1に示すようにTMA測定で焼成前寸法を基準としたときに、焼結温度に到達した点aから焼結温度保持完了の点bまでの間に収縮から膨張に転じる変化点cを有していることである。そして、この変化点cから焼結温度保持完了の点bまでの寸法の変化量を膨張量と言っている。なお、ここでは、TMA測定をした際の焼成前寸法として、導体ペーストの溶剤がほぼ除去され、導体の収縮も開始していない、200℃での寸法を用いた。
According to the conductor paste of the present invention, the ceramic paste is co-fired with the ceramic material, and the maximum temperature at that time is between about 850 ° C. and 1000 ° C., and the conductor paste shrinks when held at the maximum temperature of this baking step. By changing to the expansion behavior, the ceramic material serving as the wall surface of the via and the conductor material inside the via are in close contact with each other without any gap, and a structure in which water vapor does not enter can be obtained.
The sintering shrinkage behavior of these conductor materials can be measured with a thermomechanical analyzer (TMA). Then, the change from the shrinkage behavior to the expansion behavior means that, as shown in FIG. 1, from the point a at which the sintering temperature is reached to the point b at which the sintering temperature holding is completed when the pre-firing dimensions are measured in the TMA measurement. It has a change point c that turns from contraction to expansion in between. The amount of change in dimension from the change point c to the point b at which the sintering temperature holding is completed is called the expansion amount. Here, as the dimensions before firing at the time of TMA measurement, the dimensions at 200 ° C. were used, in which the solvent of the conductor paste was almost removed and the contraction of the conductor was not started.

また、本発明は、内部に回路用の導体パターン及びビア導体を適宜形成した多層セラミック基板において、前記ビア導体はAgを主体とし、Pdを含有する金属導電体であり、前記金属導電体中の酸素含有量が100ppm以上である多層セラミック基板である。   Further, the present invention provides a multilayer ceramic substrate in which a conductor pattern for a circuit and a via conductor are appropriately formed therein, wherein the via conductor is a metal conductor mainly composed of Ag and containing Pd, A multilayer ceramic substrate having an oxygen content of 100 ppm or more.

本発明によれば、ビア導体として、Agを主体とする金属導電体であり、前記金属導電体中の酸素含有量が100ppm以上であることおよびPd粉末の作用により、多層セラミック基板の焼成工程の最高温度で保持する時、ビア導体材料が、収縮挙動から膨張挙動に転じることにより、ビアの壁面となっているセラミック材料とビアの内部の導体材料が隙間なく密着し、水蒸気の入り込まない構造とすることができる。また、ビア導体の金属導電体中の酸素含有量は、多すぎると導体の抵抗値を増大させる原因となるので、1000ppm以下くらいが好ましいと考えられる。   According to the present invention, the via conductor is a metal conductor mainly composed of Ag, the oxygen content in the metal conductor being 100 ppm or more, and the action of the Pd powder, the firing process of the multilayer ceramic substrate. When holding at the maximum temperature, the via conductor material changes from shrinkage behavior to expansion behavior, so that the ceramic material that forms the wall of the via and the conductor material inside the via closely adhere to each other, and water vapor does not enter. can do. Further, if the oxygen content in the metal conductor of the via conductor is too large, the resistance value of the conductor is increased, so it is considered that about 1000 ppm or less is preferable.

また、本発明の多層セラミック基板において、前記ビア導体用の導体ペーストとして、上記した本発明の導体ペーストを用いることが好ましい。また本発明の多層セラミック基板において、前記ビア導体の直径が、焼成後の大きさで150μm以下であることが好ましい。   In the multilayer ceramic substrate of the present invention, it is preferable to use the above-described conductor paste of the present invention as the conductor paste for the via conductor. In the multilayer ceramic substrate of the present invention, the via conductor preferably has a diameter after firing of 150 μm or less.

本発明の多層セラミック基板の製造方法は、セラミックグリーンシートを複数枚積層し焼成して得られ、内部に回路用の導体パターン及びビア導体が形成されている多層セラミック基板の製造方法において、ビア導体として、前記の導体ペーストを用いたことを特徴とする。
さらに別の本発明の多層セラミック基板の製造方法は、セラミックグリーンシートに適宜内部回路用の導体パターン及び/又はビア導体を形成し、これらセラミックグリーンシートを複数枚積層し、前記セラミックグリーンシートの積層体の焼結温度では焼結しない無機粒子と有機物とを含有する難焼結性拘束層を、前記セラミックグリーンシートの積層体の上面及び/又は下面に密着するように設けた後、焼成し、その後前記難焼結性拘束層を除去して多層セラミック基板を製造する方法において、前記ビア導体用として、上記した本発明の導体ペーストを用いたものである。
前記焼成の温度が950℃以下であることが好ましい。
The method for producing a multilayer ceramic substrate of the present invention is obtained by laminating and firing a plurality of ceramic green sheets, and in the method for producing a multilayer ceramic substrate in which a conductor pattern for a circuit and a via conductor are formed, via conductors The above-mentioned conductor paste is used.
Still another method for producing a multilayer ceramic substrate of the present invention is to form a conductor pattern and / or via conductor for an internal circuit as appropriate on a ceramic green sheet, laminate a plurality of these ceramic green sheets, and laminate the ceramic green sheets. After providing a hard-to-sinter constraining layer containing inorganic particles and organic matter that are not sintered at the body sintering temperature so as to be in close contact with the upper surface and / or the lower surface of the laminate of the ceramic green sheets, firing, Thereafter, in the method for producing a multilayer ceramic substrate by removing the hardly sinterable constraining layer, the above-described conductor paste of the present invention is used for the via conductor.
The firing temperature is preferably 950 ° C. or lower.

無収縮プロセスにおいては、焼結時、X-Y面方向での収縮を抑制しているので、Z方向には、大きく収縮する。一方、ビアの径方向は、セラミックグリーンシートに形成したビア孔の大きさ(直径)よりも、焼結後のセラミック材におけるビア孔の大きさ(直径)が拡大する場合がある。このように、収縮プロセスとは異なる動きがビア孔部分で起きている。このような無収縮プロセスにおいて、本発明のビア導体は、非常に好ましいものである。つまり、焼成後の大きさで150μm以下であっても、X-Y面方向に拡大するビア孔に対して、本発明のビア導体は、焼成工程の最高温度で保持する時、収縮挙動から膨張挙動に転じるものであり、ビアの壁面となっているセラミック材料とビアの内部の導体材料が隙間なく密着し、水蒸気の入り込まない構造とすることができ、ビア導体の充填性を向上させることができる。   In the non-shrink process, since shrinkage in the XY plane direction is suppressed during sintering, the shrinkage greatly occurs in the Z direction. On the other hand, in the radial direction of the via, the size (diameter) of the via hole in the sintered ceramic material may be larger than the size (diameter) of the via hole formed in the ceramic green sheet. Thus, a movement different from the shrinkage process occurs in the via hole portion. In such a non-shrink process, the via conductor of the present invention is highly preferred. In other words, even if the size after firing is 150 μm or less, the via conductor of the present invention changes from shrinkage behavior to expansion behavior when held at the highest temperature of the firing process for via holes that expand in the XY plane direction. The ceramic material that forms the wall surface of the via and the conductor material inside the via are in close contact with each other without a gap, and a structure in which water vapor does not enter can be obtained, and the filling property of the via conductor can be improved.

本発明の導体ペーストを用いると、ビア導体材料が焼成工程における最高温度保持中に、収縮挙動から膨張挙動に転じることでビア導体のビア孔への充填性が向上し、セラミック材料とビア導体との間に水蒸気の侵入を妨げることが可能となり、高温高湿負荷試験において不良の発生しない高品質の多層セラミック基板を得ることができる。また、その導体ペーストに適したAg粉末を提供することができる。
また、無収縮プロセスを用い、X-Y面方向の高い寸法精度と反りの小さな多層セラミック基板を得ることができる。
When the conductor paste of the present invention is used, the via conductor material changes from the shrinkage behavior to the expansion behavior while maintaining the maximum temperature in the firing process, thereby improving the filling property of the via conductor to the via hole, and the ceramic material and the via conductor. During this time, it is possible to prevent the intrusion of water vapor, and it is possible to obtain a high-quality multilayer ceramic substrate in which no defect occurs in the high temperature and high humidity load test. Moreover, Ag powder suitable for the conductor paste can be provided.
In addition, a multilayer ceramic substrate with high dimensional accuracy in the XY plane direction and small warpage can be obtained by using a non-shrink process.

本発明では、多層セラミック基板を構成するセラミック材料と導体材料の焼結収縮挙動に注目した。焼結収縮挙動は熱機械分析装置(TMA:Thermo-Mechanical Analysis)で測定できる。これはセラミック材料、導体材料の昇温・降温過程における伸び縮みを検出棒の変位から測定する方法である。セラミック材料の測定試料には圧粉体やシート積層・圧着体、導体材料の測定試料には圧粉体やペースト乾燥体が用いられる。TMA装置に対応した試料形状とされる。   In the present invention, attention is paid to the sintering shrinkage behavior of the ceramic material and the conductor material constituting the multilayer ceramic substrate. The sintering shrinkage behavior can be measured with a thermo-mechanical analyzer (TMA). This is a method of measuring the expansion / contraction of the ceramic material and the conductor material during the temperature rise / fall process from the displacement of the detection rod. A green compact or a sheet laminate / compressed body is used for the measurement sample of the ceramic material, and a green compact or a dried paste is used for the measurement sample of the conductor material. The sample shape corresponds to the TMA device.

本発明者は種々のセラミック材料と導体材料のTMAによる焼結収縮挙動とそれらの材料を用いた多層セラミック基板の微細構造・高温高湿負荷信頼性試験を行った。導体材料とセラミック材料の焼結挙動を近づけることが従来技術ではあるが、それらの焼結挙動が多少ずれていても問題がなく、重要なのは焼成工程の最高温度で保持する時の挙動であることが分かった。すなわち、焼成工程の最高温度で保持する時、セラミック材は収縮の継続ないし停止の挙動を示すが、ビア導体材料がセラミック材料の挙動とは異なり、収縮挙動から膨張挙動に転じることが、高温高湿負荷試験で高い信頼性を得るのに効果的であることを見出した。   The present inventor conducted sintering shrinkage behavior of various ceramic materials and conductor materials by TMA and the microstructure, high temperature and high humidity load reliability test of multilayer ceramic substrates using these materials. Although it is conventional technology to make the sintering behavior of the conductor material and ceramic material closer, there is no problem even if the sintering behavior is slightly deviated, and the important thing is the behavior when holding at the highest temperature of the firing process I understood. In other words, when the ceramic material is held at the maximum temperature of the firing process, the ceramic material shows a behavior of continuation or stop of the shrinkage, but unlike the behavior of the ceramic material, the via conductor material changes from the shrinkage behavior to the expansion behavior. It was found to be effective in obtaining high reliability in the wet load test.

セラミック材料と導体材料単独の焼結収縮挙動は上記したTMAの測定データで把握できる。セラミック材料と導体材料を同時焼成したときの挙動を調べるには、多層基板サンプルを種々の焼成温度で取り出し、セラミック材料と導体材料の同時焼成断面を観察することが一法である。導体材料の焼結開始温度がセラミック材料の焼結開始温度より約200℃低い場合でも、セラミック材料の収縮開始温度の700℃で取り出した多層セラミック基板サンプルの断面観察では、セラミック材料と導体材料の間に焼結挙動のミスマッチに起因すると見なされる顕著なボイドは見られなかった。TMAの測定データでセラミック材料と導体材料単独の焼結収縮挙動が類似しているものを用いた多層セラミック基板の焼成終了後のセラミック材料と導体材料の同時焼成サンプル断面を観察した結果、導体材料とセラミック材料との間に隙間のあるもの、ないもの様々であった。とりわけ、焼成工程の最高温度で保持した時、収縮挙動から膨張挙動に転じる導体材料を用いた多層セラミック基板では、導体材料とセラミック体との間が隙間なく密着していた。この高い密着性が高温高湿負荷試験においても水蒸気の浸入を阻止し、高い信頼性が得られる原因と考えられる。   The sintering shrinkage behavior of ceramic material and conductor material alone can be grasped from the above TMA measurement data. In order to examine the behavior when the ceramic material and the conductor material are simultaneously fired, it is one method to take out the multilayer substrate sample at various firing temperatures and observe the simultaneous firing cross section of the ceramic material and the conductor material. Even when the sintering start temperature of the conductor material is approximately 200 ° C lower than the sintering start temperature of the ceramic material, the cross-sectional observation of the multilayer ceramic substrate sample taken at the ceramic material shrinkage start temperature of 700 ° C shows that There were no noticeable voids that were attributed to a mismatch in sintering behavior. As a result of observing the cross-section of the co-fired sample of the ceramic material and the conductor material after the firing of the multilayer ceramic substrate using the TMA measurement data with similar sintering shrinkage behavior of the ceramic material and the conductor material alone, the conductor material There were various things with and without a gap between the ceramic material. In particular, in a multilayer ceramic substrate using a conductor material that changes from shrinkage behavior to expansion behavior when held at the highest temperature in the firing step, the conductor material and the ceramic body are in close contact with each other without any gap. It is considered that this high adhesion prevents water vapor from entering even in a high-temperature and high-humidity load test, and that high reliability can be obtained.

本発明の多層セラミック基板は、低温焼結セラミック材料を用いた基体用グリーンシートを積層した未焼成多層セラミック基板の上面及び/又は下面に密着するように前記低温焼結セラミック材料の焼結温度では焼結しない無機材料を主成分とする無機組成物を塗布または重ね合わせて拘束層となし、当該拘束層を備えた未焼成多層セラミック基板を焼結した後、前記拘束層を除去してなる多層セラミック基板、いわゆる無収縮多層セラミック基板の製法において、ビア導体材料に前記未焼成多層セラミック基板の焼結工程における焼結温度保持中に収縮から膨張に変化する挙動を有する導体材料を用い、得ることができる。
ビア導体材料の膨張量はTMA測定で焼成前の寸法の10%以内であることが好ましい。ここで、膨張量とは、図1に示すように、TMA測定で焼成前寸法を基準としたときに、焼結温度中に導体材料が収縮から膨張に転じた点cから焼結温度保持完了までの間に膨張した量のことをいう。
The multilayer ceramic substrate of the present invention has a sintering temperature of the low-temperature sintered ceramic material so as to be in close contact with the upper surface and / or the lower surface of the unfired multilayer ceramic substrate in which the green sheets for the substrate using the low-temperature sintered ceramic material are laminated. A multilayer formed by applying or stacking an inorganic composition mainly composed of an inorganic material that is not sintered to form a constraining layer, sintering an unfired multilayer ceramic substrate having the constraining layer, and then removing the constraining layer In a method of manufacturing a ceramic substrate, so-called non-shrinkable multilayer ceramic substrate, using a conductive material having a behavior that changes from shrinkage to expansion while maintaining a sintering temperature in the sintering process of the unfired multilayer ceramic substrate in the via conductor material Can do.
The expansion amount of the via conductor material is preferably within 10% of the dimension before firing according to TMA measurement. Here, as shown in FIG. 1, the amount of expansion is the completion of holding the sintering temperature from the point c at which the conductor material changed from shrinkage to expansion during the sintering temperature when the pre-firing dimensions were measured by TMA measurement. It means the amount of expansion during the period.

多層セラミック基板に用いる導体材料としては電気抵抗の小さいAg、Cuが好ましい。特にAgは大気中で焼成できるので、より好ましい。未焼成多層セラミック基板の焼成工程は、バインダ除去とセラミック材の緻密化(焼結)の2つの目的がある。バインダはポリビニルブチラール樹脂、アクリル樹脂などが使用され、それらの分解温度は300℃から500℃である。セラミックスはAgやCuとの同時焼結のためそれらの金属の融点以下で緻密化することが必要である。特にAgを導体材料とする場合には950℃以下、好ましくは900℃以下の焼成で緻密化(焼結)することが好ましい。   As a conductive material used for the multilayer ceramic substrate, Ag and Cu having a low electric resistance are preferable. In particular, Ag is more preferable because it can be fired in the air. The firing process of the unfired multilayer ceramic substrate has two purposes: binder removal and densification (sintering) of the ceramic material. As the binder, polyvinyl butyral resin, acrylic resin or the like is used, and the decomposition temperature thereof is 300 ° C. to 500 ° C. Ceramics must be densified below the melting point of their metals for simultaneous sintering with Ag and Cu. In particular, when Ag is used as a conductor material, it is preferable to densify (sinter) by firing at 950 ° C. or lower, preferably 900 ° C. or lower.

上述したように、セラミックスの焼結収縮挙動はTMA測定で把握できる。TMA測定ではサンプルが小であること、セラミック材料か導体のいずれか単体であること、昇温速度を便宜上例えば10℃/分のように設定するので、実際の多層基板とサイズ・構成が全く異なることと昇温も通常前記よりも小さな速度で行うのでTMA焼結挙動と多層基板の焼結挙動の相違は起こり得る。ここでは、単純化のため昇温速度を10℃/分としたTMAの焼結収縮カーブに基づいて考える。   As described above, the sintering shrinkage behavior of ceramics can be grasped by TMA measurement. In TMA measurement, the sample is small, the ceramic material or the conductor is simple, and the heating rate is set to 10 ° C / min for convenience, so the size and configuration are completely different from the actual multilayer board. Therefore, the difference between the TMA sintering behavior and the multilayer substrate sintering behavior can occur. Here, for the sake of simplification, the TMA sintering shrinkage curve with a heating rate of 10 ° C./min is considered.

一般に、TMAの焼結収縮カーブにおいて、セラミックス材料は700℃以上で収縮開始することが好ましい。温度に対して収縮率が最も変化する温度(以下、収縮最大速度温度と称す。)が800℃から900℃であることが好ましい。効率的な多層セラミック基板の緻密化(焼結)のためには、上記収縮最大速度温度付近の温度で、一定時間保持され、その後冷却される焼成工程が施される。ここでは緻密化のための温度で保持する熱処理を、焼結工程と称す。焼結工程の温度を高めに設定すれば、保持時間は比較的短く設定でき、焼結工程の温度を低めに設定すれば、保持時間は比較的長く設定する。焼結工程の保持時間は30分以上が好ましい。保持時間をより長くすることは、多層セラミック基板の焼結後の均一性を良くすることに効果がある。焼結工程の保持の間にセラミック材料は焼結収縮を続けるあるいは焼結収縮が停止する。図2に示すように、この焼結工程の保持の間に、導体材料が膨張挙動をとることが本発明の要点である。   In general, it is preferable that the ceramic material starts shrinking at 700 ° C. or higher in the sintering shrinkage curve of TMA. The temperature at which the shrinkage rate changes most with respect to the temperature (hereinafter referred to as the maximum shrinkage speed temperature) is preferably 800 ° C to 900 ° C. For efficient densification (sintering) of the multilayer ceramic substrate, a firing step is performed in which the temperature is maintained for a certain period of time at a temperature near the maximum contraction speed temperature and then cooled. Here, the heat treatment held at a temperature for densification is referred to as a sintering step. If the temperature of the sintering process is set high, the holding time can be set relatively short, and if the temperature of the sintering process is set low, the holding time is set relatively long. The holding time in the sintering step is preferably 30 minutes or longer. Increasing the holding time is effective in improving the uniformity of the multilayer ceramic substrate after sintering. During the holding of the sintering process, the ceramic material continues to shrink or ceases to shrink. As shown in FIG. 2, it is the main point of the present invention that the conductor material takes an expansion behavior during the holding of the sintering process.

すなわち、ビア導体材料が膨張挙動をとることによってビアの壁面となっているセラミック材料とビアの内部の導体材料が隙間なく密着し、水蒸気の入り込まない構造となる。膨張量が0.1%より小さい場合には、ビア導体とセラミック体との密着性が水蒸気の通過を抑止するには不十分となり、膨張量が10%より大きい場合には、セラミック体にクラックを生じさせる問題がある。また、これらの導体材料の焼結収縮挙動はTMA測定で把握される。   That is, when the via conductor material takes an expansion behavior, the ceramic material which is the wall surface of the via and the conductor material inside the via closely adhere to each other without a gap, and a structure in which water vapor does not enter is obtained. When the expansion amount is smaller than 0.1%, the adhesion between the via conductor and the ceramic body is insufficient to prevent the passage of water vapor, and when the expansion amount is larger than 10%, the ceramic body is cracked. There is a problem to make. Moreover, the sintering shrinkage behavior of these conductor materials can be grasped by TMA measurement.

セラミックグリーンシートへのビア導体の印刷では、Agを主成分とし、Pd粉末を含有する導体粉末とバインダと溶剤からなるペーストを用いる。導体粉末に、平均粒径が1.5μm以上、3.0μm未満のAg粉末であり、前記Ag粉末を大気中で850℃から1000℃までの間の温度に加熱し、2時間保持した後の前記Ag粉末中の酸素含有量が100ppm以上であるAg粉末を用いる。平均粒径が1.5μmより小さい場合には、粒径が微細なため、Ag粉自身の収縮作用が大きく、焼結温度保持中に収縮から膨張に変化する挙動をとり難い。酸素含有量が100ppmより少ない場合は、収縮から膨張に変化する挙動が起こり難い。尚、酸素含有量が1000ppmより多い場合は導体の抵抗値が大きくなり易いので、1000ppm以下が好ましい。また平均粒径が3.0μm以上の場合には微細印刷に難が生じる。   In the printing of via conductors on ceramic green sheets, a paste composed of a conductor powder containing Ag as a main component and containing Pd powder, a binder, and a solvent is used. The conductor powder is an Ag powder having an average particle size of 1.5 μm or more and less than 3.0 μm. The Ag powder is heated to a temperature between 850 ° C. and 1000 ° C. in the atmosphere and held for 2 hours. Ag powder whose oxygen content in the powder is 100 ppm or more is used. When the average particle size is smaller than 1.5 μm, the Ag particle itself has a large shrinkage action because the particle size is fine, and it is difficult to change from shrinkage to expansion while maintaining the sintering temperature. When the oxygen content is less than 100 ppm, a behavior that changes from shrinkage to expansion hardly occurs. Note that when the oxygen content is higher than 1000 ppm, the resistance value of the conductor tends to increase, so 1000 ppm or less is preferable. Further, when the average particle size is 3.0 μm or more, difficulty in fine printing occurs.

本発明において、Ag粉末に含まれる酸素含有量は、黒鉛坩堝を用いた化学分析法で定量される。Ag粉末の酸素分析で検出された酸素の存在状態はよくわからないが、Ag2Oとしてあるいは粒子に含有されるガス(空気)として存在すると考えられる。市販購入材のAg粉末を大気中で900℃の温度で熱処理した後、酸素含有量を測ると熱処理前に比べて酸素含有量が減少することが認められる。900℃で熱処理した場合にはAg粉末の種類によって、熱処理前の値の1/100から1/2となる。酸化銀は200℃以上の高温で分解することが知られているので、上記熱処理で減少量の多いAg粉末には酸素は酸化銀として含有されているものと推定される。種々の実験の結果、上記熱処理で酸素含有量の減少の少ない導体材料が、TMA測定で、焼結工程における焼結温度保持中に収縮から膨張に変化する挙動をとりやすいことが分かった。 In the present invention, the oxygen content contained in the Ag powder is quantified by a chemical analysis method using a graphite crucible. The presence state of oxygen detected by oxygen analysis of Ag powder is not well understood, but it is thought to exist as Ag 2 O or as gas (air) contained in the particles. After heat treatment of commercially available Ag powder at a temperature of 900 ° C. in the air, the oxygen content is observed to be lower than that before heat treatment when the oxygen content is measured. When heat-treated at 900 ° C., it becomes 1/100 to 1/2 of the value before heat treatment depending on the kind of Ag powder. Since silver oxide is known to decompose at a high temperature of 200 ° C. or higher, it is presumed that oxygen is contained as silver oxide in the Ag powder that is largely reduced by the heat treatment. As a result of various experiments, it was found by TMA measurement that the conductor material having a small decrease in oxygen content by the heat treatment tends to change from shrinkage to expansion while maintaining the sintering temperature in the sintering process.

前記ビア導体用ペーストに、導体材料中の含有量としてPd粉末を0.1〜3wt%添加した導体粉末を用いた多層セラミック基板は高温高湿負荷試験においてより高い信頼性を得ることができる。Pd粉末の添加量が0.1wt%より少ない場合、その添加効果はなく、3wt%よりも多い場合、導体材料の良好な導電性を損なうので、好ましくない。Pd粉末を0.1〜3wt%添加した場合、焼結工程における焼結温度保持中に収縮から膨張に変化する挙動をとる。   A multilayer ceramic substrate using a conductor powder obtained by adding 0.1 to 3 wt% of Pd powder as a content in the conductor material to the via conductor paste can obtain higher reliability in a high temperature and high humidity load test. If the amount of Pd powder added is less than 0.1 wt%, the effect of the addition is not present, and if it exceeds 3 wt%, the good conductivity of the conductor material is impaired, which is not preferable. When Pd powder is added in an amount of 0.1 to 3 wt%, the behavior changes from shrinkage to expansion while maintaining the sintering temperature in the sintering process.

前記導体材料はビア導体のみならず内層パターン導体にも使用される。内層パターン導体として低抵抗な導体が要求される場合にも適用できる。従って、導体ペーストの粘度特性と印刷条件を適正化することにより、ビア導体と内層パターン導体を同時に印刷することができ、工程の削減となる。   The conductor material is used not only for the via conductor but also for the inner layer pattern conductor. The present invention is also applicable when a low resistance conductor is required as the inner layer pattern conductor. Therefore, by optimizing the viscosity characteristics and printing conditions of the conductor paste, the via conductor and the inner layer pattern conductor can be printed at the same time, which reduces the number of processes.

前記低温焼結セラミック材料は高周波部品用途には、誘電特性の優れた材料が用いられる。高周波誘電特性の優れた材料として、主成分がAl,Si,Sr,Tiの酸化物で構成され、Al,Si,Sr,TiをそれぞれAl、SiO、SrO、TiOに換算し合計100質量%としたとき、Al換算で10〜60質量%、SiO換算で25〜60質量%、SrO換算で7.5〜50質量%、TiO換算で20質量%以下のAl,Si,Sr,Tiを含有し、前記合計100質量%に対し副成分として、Bi換算で0.1〜10質量%のBiを含有した組成物が好ましい。
上記セラミック材料のグリーンシートは原料の酸化物、炭酸塩等の混合物を仮焼きし、仮焼後に微粉砕粒子となし、当該微粉砕粒子に有機バインダ、可塑剤、溶剤を加えた仮焼複合物の微粉砕粒子を含むスラリーから製造される。
As the low-temperature sintered ceramic material, a material having excellent dielectric characteristics is used for high-frequency parts. As a material having excellent high frequency dielectric characteristics, the main component is composed of oxides of Al, Si, Sr, and Ti, and Al, Si, Sr, and Ti are converted into Al 2 O 3 , SiO 2 , SrO, and TiO 2 , respectively. When the total is 100% by mass, it is 10 to 60% by mass in terms of Al 2 O 3 , 25 to 60% by mass in terms of SiO 2 , 7.5 to 50% by mass in terms of SrO, and 20% by mass or less in terms of TiO 2 . A composition containing Al, Si, Sr, Ti and containing 0.1 to 10% by mass of Bi in terms of Bi 2 O 3 as an accessory component with respect to the total of 100% by mass is preferable.
The green sheet of the ceramic material is obtained by calcining a mixture of raw material oxides, carbonates, etc., and after calcining, finely pulverized particles, and a calcined composite in which an organic binder, a plasticizer, and a solvent are added to the finely pulverized particles. From a slurry containing finely pulverized particles.

以下、図面を参照して本発明の実施態様を説明する。
図3は、本発明に係る多層セラミック基板の製造方法の各プロセスにおける断面図である。図4は、本発明に係る多層セラミック基板の製造方法における分割前の集合基板を示す斜視図である。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 3 is a cross-sectional view in each process of the method for manufacturing a multilayer ceramic substrate according to the present invention. FIG. 4 is a perspective view showing an aggregate substrate before division in the method for manufacturing a multilayer ceramic substrate according to the present invention.

以下、本発明の多層セラミック基板について製造方法を追いながら詳細に説明する。
[基体用グリーンシートの材料]
基体用グリーンシートは、低温焼結セラミック材料からなり、重要な要素であるので以下に詳細に説明する。
その組成は、主成分がAl,Si,Sr又はAl,Si,Sr,Tiの酸化物で構成され、それぞれAl換算で10〜60質量%、SiO換算で25〜60質量%、SrO換算で10〜50質量%、TiO換算で20質量%以下(0を含む)からなり、前記主成分100質量%に対し副成分として、Bi換算で0.1〜10質量%のBiを含有している。900℃以下の温度でも焼成できる材料である。これにより、銀や銅、金といった高い導電率を有する金属材料を電極用導体として用いて一体焼結を行うことができる。
Hereinafter, the multilayer ceramic substrate of the present invention will be described in detail following the manufacturing method.
[Material of green sheet for substrate]
The green sheet for the substrate is made of a low-temperature sintered ceramic material and is an important element and will be described in detail below.
Its composition, the main component is Al, Si, Sr or Al, Si, Sr, is composed of oxides of Ti, 10 to 60 wt% in terms of Al 2 O 3, respectively, 25 to 60 wt% in terms of SiO 2, It consists of 10 to 50% by mass in terms of SrO and 20% by mass or less (including 0) in terms of TiO 2 , and 0.1 to 10% by mass in terms of Bi 2 O 3 as a subcomponent with respect to 100% by mass of the main component. Of Bi. It is a material that can be fired even at a temperature of 900 ° C. or lower. Thereby, integral sintering can be performed using a metal material having a high conductivity such as silver, copper, or gold as the electrode conductor.

[基体用グリーンシートの作製]
以上の主成分及び副成分から出発原料を選択し、原材料となる酸化物粉あるいは炭酸塩化合物粉をそれぞれ秤量する。
これらの粉末をポリエチレン製のボールミルに投入し、更に酸化ジルコニウム製のメディアボールと純水を投入して20時間湿式混合を行う。混合スラリーを加熱乾燥し水分を蒸発させた後ライカイ機で解砕し、アルミナ製のるつぼに入れて、700〜850℃、例えば800℃で2時間仮焼する。仮焼粉末を前述のボールミルに投入し20〜40時間湿式粉砕を行い、乾燥させ平均粒径0.6〜2μm、例えば1μmの微粉砕粒子とする。
[Preparation of green sheet for substrate]
Starting materials are selected from the above main components and subcomponents, and oxide powders or carbonate compound powders as raw materials are weighed.
These powders are put into a polyethylene ball mill, and media balls made of zirconium oxide and pure water are put into it and wet mixed for 20 hours. The mixed slurry is dried by heating to evaporate moisture, and then crushed by a lycra machine, placed in an alumina crucible, and calcined at 700 to 850 ° C., for example, 800 ° C. for 2 hours. The calcined powder is put into the aforementioned ball mill, wet pulverized for 20 to 40 hours, and dried to obtain finely pulverized particles having an average particle diameter of 0.6 to 2 μm, for example, 1 μm.

仮焼物を微粉砕化した粒子はセラミックス粒子にガラスが部分的あるいは全体的に被覆された粒子となっている。得られた仮焼粉末に、エタノール、ブタノール、有機バインダとしてポリビニルブチラール樹脂(添加量は仮焼粉重量100部に対して15重量部)、可塑剤としてブチルフタリルグリコール酸ブチル(略称:BPBG、添加量は仮焼粉重量100部に対して7.5重量部)をボールミルで混合してスラリーを作製した。尚、有機バインダとしては、例えばポリメタクリル樹脂等を、可塑剤としては、例えばジ−n−ブチルフタレートを、溶剤としては、例えばトルエン、イソプロピルアルコールのようなアルコール類を用いることもできる。   Particles obtained by pulverizing the calcined product are particles in which ceramic particles are partially or wholly coated with glass. To the obtained calcined powder, ethanol, butanol, polyvinyl butyral resin (addition amount is 15 parts by weight with respect to 100 parts by weight of calcined powder) as an organic binder, and butyl butyl phthalyl glycolate (abbreviation: BPBG, The amount added was 7.5 parts by weight with respect to 100 parts by weight of the calcined powder), and a slurry was prepared by mixing with a ball mill. For example, polymethacrylic resin can be used as the organic binder, di-n-butyl phthalate can be used as the plasticizer, and alcohols such as toluene and isopropyl alcohol can be used as the solvent.

次いで、このスラリーを減圧下で脱泡及び一部の溶剤の蒸発を行い、約10Pa・sの粘度になるように調整した。粘度調整後、ドクターブレード法によって有機フィルム(ポリエチレンテレフタレートPET)上でシート状に成形し、乾燥させて、0.15mm厚みのセラミックグリーンシートを得た。セラミックグリーンシートは有機フィルムごと180mm角に切断した。   Next, this slurry was defoamed under reduced pressure and part of the solvent was evaporated to adjust the viscosity to about 10 Pa · s. After adjusting the viscosity, it was formed into a sheet on an organic film (polyethylene terephthalate PET) by the doctor blade method and dried to obtain a ceramic green sheet having a thickness of 0.15 mm. The ceramic green sheet was cut into 180 mm square together with the organic film.

[未焼成多層セラミック基板の作製]
上記のセラミックグリーンシート1a、1b、1cを乾燥雰囲気中で保存したり、適当な加熱や温風によって十分に乾燥処理を行った後に直径60μmのビアホールを設け、このビアホールにAgを主体とする導体ペーストを充填しビア導体3を形成し、さらにAgを主体とする導体ペーストを用いて内部電極パターン2を印刷形成し、乾燥させて回路を構成する電極パターンを形成する。この際、ビア穴埋めと内部電極パターンを同時に印刷することも可能である。
[Production of unfired multilayer ceramic substrate]
The above ceramic green sheets 1a, 1b, 1c are stored in a dry atmosphere, or after being sufficiently dried by appropriate heating or warm air, a via hole having a diameter of 60 μm is provided, and a conductor mainly composed of Ag is provided in the via hole. The via conductor 3 is formed by filling the paste, and the internal electrode pattern 2 is printed by using a conductor paste mainly composed of Ag, and dried to form an electrode pattern constituting the circuit. At this time, the via hole filling and the internal electrode pattern can be simultaneously printed.

また上面、下面に位置するグリーンシート1a、1cには外部電極4の電極パターン又は外部端子電極6の電極パターンを形成する。また、適宜オーバーコート材5を形成する。これらのグリーンシートを1枚ずつ仮圧着しながら複数枚、例えば10枚重ねた。仮圧着条件は、温度が60℃、圧力は2.9MPaで行い、さらにこの後、熱圧着して未焼成多層セラミック基板7を得た。このときの熱圧着条件は、温度が85℃、圧力は11MPaで行った。なお、上記した外部電極4の電極パターンは熱圧着の後に形成しても良い。その後、製品の個片サイズである10×15mm角に分割溝12を入れた。分割溝入れはグリーン体にナイフ刃を押し当て、深さを0.1mmとした。なお、ナイフ刃の厚さは0.15mmを用いた。分割溝の断面形状は底辺約0.15mm、深さ約0.1mmのほぼ二等辺三角形となっていた。   Further, an electrode pattern of the external electrode 4 or an electrode pattern of the external terminal electrode 6 is formed on the green sheets 1a and 1c located on the upper surface and the lower surface. Further, an overcoat material 5 is appropriately formed. A plurality of these green sheets, for example 10 sheets, were stacked while being temporarily pressed one by one. Temporary pressure bonding conditions were a temperature of 60 ° C. and a pressure of 2.9 MPa. Thereafter, thermocompression bonding was performed to obtain an unfired multilayer ceramic substrate 7. The thermocompression bonding conditions at this time were a temperature of 85 ° C. and a pressure of 11 MPa. The electrode pattern of the external electrode 4 described above may be formed after thermocompression bonding. Then, the dividing groove 12 was put into a 10 × 15 mm square which is the size of individual product. In the division grooving, a knife blade was pressed against the green body to a depth of 0.1 mm. The thickness of the knife blade was 0.15 mm. The cross-sectional shape of the dividing groove was a substantially isosceles triangle having a base of about 0.15 mm and a depth of about 0.1 mm.

[拘束層材料]
拘束層8,9は、上述した低温焼結セラミック材料の焼結温度では焼結しない無機材料からなるものである。この無機材料としては、例えばアルミナ粉末またはジルコニア粉末等が用いられる。
[Constrained layer material]
The constraining layers 8 and 9 are made of an inorganic material that does not sinter at the sintering temperature of the low-temperature sintered ceramic material described above. As this inorganic material, for example, alumina powder or zirconia powder is used.

[未焼成多層セラミック基板への拘束層の形成]
拘束材料から拘束用グリーンシートを予め作製し、基体用グリーンシートの上に所望厚さになるまで拘束用グリーンシートを重ね合わせる。
ここで、拘束層8,9の厚みは片面で50μm以上であることが必要である。この理由は、厚みにより拘束力を制御できるもので、50μm未満の場合は、拘束力が不足し、ガラスセラミックス材料のX-Y収縮を抑制しがたい。50μm以上ある場合はガラスセラミックス材料のX-Y収縮を1%以下に抑制できる。拘束層の最大厚さの制限は拘束効果に関しては特にないが、除去する際に過大な厚さの場合、工程上の障害となる。より適当な厚さ範囲は100μm〜300μmである。
拘束用グリーンシートを重ね合わせた後は熱圧着を行う。熱圧着条件は、温度が85℃、圧力は11MPaで行った。
[Formation of constraining layer on unfired multilayer ceramic substrate]
A constraining green sheet is prepared in advance from the constraining material, and the constraining green sheet is overlaid on the base green sheet until a desired thickness is obtained.
Here, the thickness of the constraining layers 8 and 9 needs to be 50 μm or more on one side. The reason is that the restraining force can be controlled by the thickness. When the thickness is less than 50 μm, the restraining force is insufficient and it is difficult to suppress the XY shrinkage of the glass ceramic material. When it is 50 μm or more, XY shrinkage of the glass ceramic material can be suppressed to 1% or less. The restriction on the maximum thickness of the constraining layer is not particularly limited with respect to the constraining effect. A more suitable thickness range is 100 μm to 300 μm.
After superposing the restraining green sheets, thermocompression bonding is performed. The thermocompression bonding conditions were a temperature of 85 ° C. and a pressure of 11 MPa.

[拘束層を備えた未焼成多層セラミック基板の本焼結]
拘束層8,9を上面、下面に設けた未焼成多層セラミック基板10の焼結はバッチ炉において大気中で行い、500℃で4時間保持して脱バインダを行った後、850〜900℃で2時間保持し、焼結を行う。昇温速度は3℃/分で、冷却は炉内自然冷却とする。
[Main sintering of unfired multilayer ceramic substrate with constraining layer]
Sintering of the unfired multilayer ceramic substrate 10 provided with the constraining layers 8 and 9 on the upper surface and the lower surface is performed in the air in a batch furnace, held at 500 ° C. for 4 hours to perform binder removal, and then at 850 to 900 ° C. Hold for 2 hours and sinter. The rate of temperature rise is 3 ° C / min, and the cooling is natural cooling in the furnace.

[拘束層の除去]
焼結後、表面に付着している拘束層のアルミナ粒子を除去する。これは焼成後の基板を超音波洗浄槽の水の中に入れて超音波を駆動することにより行う。それによりAgパッドの上にNiめっき、Auめっき等のメタライズが形成できる。メタライズは公知の無電解めっきが適用できる。
[Removal of constrained layer]
After sintering, the alumina particles in the constraining layer adhering to the surface are removed. This is performed by driving the ultrasonic wave by placing the fired substrate in the water of an ultrasonic cleaning tank. Thereby, metallization such as Ni plating or Au plating can be formed on the Ag pad. A known electroless plating can be applied to the metallization.

[多層セラミック基板の分割]
基板上面のメタライズ電極の上にスクリーン印刷ではんだパターンを形成する。そして、個々の半導体素子、チッブ素子等の部品を搭載し、リフローにより接続する。ワイヤボンディング用半導体素子はその後ワイヤボンディング接続を行う。その後、集合基板から分割溝12に沿って破断することにより小片の多層セラミック基板11が得られる。
[Division of multilayer ceramic substrate]
A solder pattern is formed by screen printing on the metallized electrode on the upper surface of the substrate. Then, components such as individual semiconductor elements and chip elements are mounted and connected by reflow. Thereafter, the wire bonding semiconductor element performs wire bonding connection. Thereafter, the multi-layer ceramic substrate 11 is obtained by breaking along the dividing grooves 12 from the aggregate substrate.

低温焼結セラミック材料の代表組成として主成分がAl,Si,Sr、Tiの酸化物で構成され、それぞれAl換算で48質量%、SiO換算で38質量%、SrO換算で10質量%、TiO換算で4質量%であり、さらに主成分100質量%に対して、副成分として、Bi、Na、K、がBi換算で2.5質量%、NaO換算で2質量%、KO換算で0.5質量%、更に、CuがCuO換算で0.3質量%、MnがMnO換算で0.5質量%となる組成に出発原料を秤量した。この際、純度99.9%、平均粒径0.5μmのAl粉末、純度99.9%以上、平均粒径0.5μm以下のSiO粉末、純度99.9%、平均粒径0.5μmのSrCO粉末、純度99.9%、平均粒径0.5〜5μmのBi粉末、NaCO粉末、KCO粉末、CuO粉末、MnO粉末を用いた。 As a representative composition of the low-temperature sintered ceramic material, the main component is composed of oxides of Al, Si, Sr, and Ti, each 48 mass% in terms of Al 2 O 3 , 38 mass% in terms of SiO 2 , and 10 mass in terms of SrO. %, 4% by mass in terms of TiO 2 , and Bi, Na, K as subcomponents are 2.5% by mass in terms of Bi 2 O 3, and in terms of Na 2 O with respect to 100% by mass of the main component. The starting material was weighed to a composition of 2 % by mass, 0.5% by mass in terms of K 2 O, Cu of 0.3% by mass in terms of CuO, and Mn of 0.5% by mass in terms of MnO 2 . At this time, an Al 2 O 3 powder having a purity of 99.9% and an average particle diameter of 0.5 μm, an SiO 2 powder having a purity of 99.9% or more and an average particle diameter of 0.5 μm or less, a purity of 99.9% and an average particle diameter 0.5 μm SrCO 3 powder, purity 99.9%, Bi 2 O 3 powder having an average particle size of 0.5 to 5 μm, Na 2 CO 3 powder, K 2 CO 3 powder, CuO powder, MnO 2 powder were used. .

次に、上記した多層セラミック基板の製造方法に沿って製造を行った。ビア導体材料について表1に示すペーストを用いた。ペーストは導体粉末とビヒクルとの混錬物で、導体粉末であるAg粉末の特性とPd粉末の添加については表1に記載した。尚、表1のPd含有量は、導体材料中のPdの含有量である。ビヒクルは有機バインダとしてのエチルセルロースを有機溶剤としてのαテルピネオールに溶かしたもので、エチルセルロース量を5〜10質量%溶解したものを用いた。導体粉末とビヒクルを乳鉢と乳棒で予備混合した後、3本ロールで混錬することによりペーストを作製した。導体粉末量は85〜94質量%未満とし、ペーストの粘度が印刷に適した200〜300Pa・s(10rpm)となるように適当なエチルセルロース含有量のビヒクルを用いた。
ここで、仮焼きの温度は800℃×2時間、微粉砕粒子の平均粒径は1μmとし、拘束層用のアルミナ粒子の平均粒径は0.5μm、拘束層の厚みは約200μm、低温焼結材シートの積層数は10、本焼結は900℃×2時間とした。その他の条件は上記した例に沿って行った。また、分割溝は上記と同様に形成した。焼結後、表面の拘束層のアルミナ層を超音波洗浄によって除去し、最上層に形成されている電極パターンの特定の位置間距離を3次元座標測定器により測定したX-Y座標から算出し、拘束層印刷前に測定した同じ位置間の距離から収縮率とそのばらつきを評価した。1基板試料につき16方向の収縮率を評価した。またZ座標の高低差を反りとし、小個片当たりの反り量を評価した。
本発明による多層セラミック基板は、X-Y方向収縮率が1%以下、収縮率ばらつき3σが0.07%以下、反りは30μmに収めることが出来ている。
Next, it manufactured along the manufacturing method of the above-mentioned multilayer ceramic substrate. The paste shown in Table 1 was used for the via conductor material. The paste is a kneaded product of conductor powder and vehicle. The characteristics of Ag powder, which is a conductor powder, and the addition of Pd powder are described in Table 1. The Pd content in Table 1 is the content of Pd in the conductor material. The vehicle was prepared by dissolving ethyl cellulose as an organic binder in α-terpineol as an organic solvent and dissolving 5 to 10% by mass of ethyl cellulose. The conductor powder and the vehicle were premixed with a mortar and pestle and then kneaded with a three-roll to prepare a paste. The amount of the conductor powder was 85 to less than 94% by mass, and a vehicle having an appropriate ethylcellulose content was used so that the viscosity of the paste was 200 to 300 Pa · s (10 rpm) suitable for printing.
Here, the calcining temperature is 800 ° C. × 2 hours, the average particle size of the finely pulverized particles is 1 μm, the average particle size of the alumina particles for the constraining layer is 0.5 μm, the thickness of the constraining layer is about 200 μm, and the low temperature firing is performed. The number of laminated binder sheets was 10, and the main sintering was 900 ° C. × 2 hours. Other conditions were performed according to the above-described example. Further, the dividing grooves were formed in the same manner as described above. After sintering, the alumina layer of the constrained layer on the surface is removed by ultrasonic cleaning, and the distance between specific positions of the electrode pattern formed on the uppermost layer is calculated from the XY coordinates measured by a three-dimensional coordinate measuring instrument. The shrinkage rate and its variation were evaluated from the distance between the same positions measured before layer printing. The shrinkage in 16 directions was evaluated per substrate sample. Also, the amount of warpage per small piece was evaluated with the difference in height of the Z coordinate as the warp.
The multilayer ceramic substrate according to the present invention has a shrinkage rate in the XY direction of 1% or less, a shrinkage rate variation 3σ of 0.07% or less, and a warp of 30 μm.

別途、上記拘束層が形成されていない未焼成セラミック多層基板の導体ペースト形成のない低温焼結セラミック材料だけからなる部分を4mm角の大きさで切り出し、セラミック材のTMA試料とした。一方、導体ペーストのTMA試料は次のように作製した。導体ペーストをポリエチレンテレフタレート(PET)フィルム上に載せ、0.5mmのスペーサを介してローラで引き伸ばし、80℃で1時間乾燥させ、厚さ0.3〜0.5mmのAg導体膜を作製した。Ag導体膜を4mm角の大きさで切り出し、導体材料のTMA試料とした。
市販の厚さ約0.7mmのアルミナ基板を準備し、それを5mm角に切断した。セラミック材料と導体材料の焼結収縮カーブは、上記試料を5mm角のアルミナ基板で挟み、熱機械特性分析(TMA)装置のサンプル位置に置いた。標準試料にはアルミナ棒を使用した。
TMAの温度プロファイルは室温から900℃まで10℃/分の速度で昇温し、900℃で30分保持し、その後ヒータ電源を切断し、自然冷却とした。
TMA測定カーブの代表例を図2に、評価結果を表1に記した。図2では、表1のNo.5の導体の焼結収縮挙動と、実施例1の低温焼結セラミック材料の焼結収縮挙動を示す。表1では、900℃でも保持温度中での膨張挙動の有無と膨張量を示している。この膨張量は200℃における寸法に対する比率で、膨張率と同意である。
Separately, a portion made only of a low-temperature sintered ceramic material without conductor paste formation on the unfired ceramic multilayer substrate on which the constraining layer was not formed was cut out to a size of 4 mm square to obtain a TMA sample of a ceramic material. On the other hand, a TMA sample of conductor paste was prepared as follows. The conductor paste was placed on a polyethylene terephthalate (PET) film, stretched with a roller through a 0.5 mm spacer, and dried at 80 ° C. for 1 hour to produce an Ag conductor film having a thickness of 0.3 to 0.5 mm. The Ag conductor film was cut out to a size of 4 mm square to obtain a TMA sample of the conductor material.
A commercially available alumina substrate having a thickness of about 0.7 mm was prepared and cut into 5 mm squares. For the sintering shrinkage curves of the ceramic material and the conductor material, the sample was sandwiched between 5 mm square alumina substrates and placed at the sample position of the thermomechanical property analysis (TMA) apparatus. An alumina rod was used as a standard sample.
The temperature profile of TMA was raised from room temperature to 900 ° C. at a rate of 10 ° C./min, held at 900 ° C. for 30 minutes, and then the heater power supply was cut off for natural cooling.
A representative example of a TMA measurement curve is shown in FIG. FIG. 2 shows the sintering shrinkage behavior of the No. 5 conductor in Table 1 and the sintering shrinkage behavior of the low-temperature sintered ceramic material of Example 1. Table 1 shows the presence / absence of expansion behavior and the expansion amount at the holding temperature even at 900 ° C. This amount of expansion is a ratio to the dimension at 200 ° C. and is in agreement with the expansion rate.

導体ペーストに使用したAg粉末については、アルミナ基板の上にAg粉末を盛り、石英管を用いた管状式電気炉により空気雰囲気下で熱処理を行った。室温から5℃/分の速度で昇温し、900℃で2時間保持し、自然冷却した。
熱処理前、熱処理後Ag粉末中に含まれる酸素量を化学分析法により測定し、熱処理前の酸素含有量と、熱処理後の酸素含有量を表1に記載した。また、このAg粉末の平均粒径も表1に記載した。
As for the Ag powder used for the conductor paste, the Ag powder was put on an alumina substrate and heat-treated in an air atmosphere by a tubular electric furnace using a quartz tube. The temperature was raised from room temperature at a rate of 5 ° C / min, kept at 900 ° C for 2 hours, and then naturally cooled.
The amount of oxygen contained in the Ag powder before and after the heat treatment was measured by chemical analysis, and the oxygen content before the heat treatment and the oxygen content after the heat treatment are shown in Table 1. The average particle diameter of this Ag powder is also shown in Table 1.

作製した多層セラミック基板についてはコンデンサの対極となる端子間に4V印加し、85℃、85%相対湿度の高温高湿槽に500〜1000時間入れて、端子間のリーク電流を測定した。正常電流値は0.01μA以下であり、電流値が0.01μAを超えた場合をリーク発生、すなわち不良とした。この多層セラミック基板の負荷試験判定の評価結果を表1に併記する。サンプル数は各50個とした。
尚、試料番号に*印のないものが本発明の実施例であり、試料番号に*の付記したものは本発明の範囲外の比較例である。
About the produced multilayer ceramic substrate, 4V was applied between the terminals used as the counter electrode of a capacitor | condenser, and it put into the high temperature / humidity tank of 85 degreeC and 85% relative humidity for 500 to 1000 hours, and measured the leakage current between terminals. The normal current value was 0.01 μA or less, and when the current value exceeded 0.01 μA, a leak occurred, that is, a failure. The evaluation results of the load test determination of this multilayer ceramic substrate are also shown in Table 1. The number of samples was 50 each.
Samples having no * in the sample number are examples of the present invention, and samples having a sample number appended with * are comparative examples outside the scope of the present invention.

Figure 0005110419
Figure 0005110419

表1の結果より、ペースト8のように熱処理後の酸素含有量が100ppmよりも少ないAg粉を用いた場合、高温高湿負荷試験で著しい劣化がみられた。このペーストを用いた多層セラミック基板の断面観察では、導体材料とセラミック体の間に非常に大きな空隙が発生しており、導体材料にはNiの析出がみられ、めっき液が侵入したものと確認された。また、Pdを添加したペースト9でも酸素含有量が100ppmよりも少なく高温高湿負荷試験での結果は悪かった。一方、ペースト1のように、熱処理後の酸素含有量が100ppmよりも多いが、Ag粉のみを用いた場合でも、高温高湿負荷試験の1000時間において、絶縁不良が発生した。
一方、ペースト2〜7、10、11のようにビア導体材料がセラミック材料の挙動とは異なり、収縮挙動から膨張挙動に転じることが、高温高湿負荷試験で高い信頼性を得るのに効果的であることが認められる。その膨張量はTMA測定で焼成前の寸法の0.1%から10%以内であり、この膨張量が好ましいものと考えられる。
これらの導体材料を用いた多層セラミック基板の断面観察では、導体材料とセラミック体との間が隙間なく密着していることが認められた。この高い密着性が、表1に示す多層セラミック基板の負荷試験不良率に表されているように、高温高湿負荷試験においても水蒸気の浸入を阻止し、高い信頼性が得られる原因と考えられる。
また、表1より、導体粉末に平均粒径:1.5〜3.0μm未満で酸素含有量が大気中900℃、2時間保持の熱処理後100ppm以上であるAg粉を用いて、さらにPd粉末を導体材料中の含有量として0.1〜3wt%添加した導体材料を用いた多層セラミック基板は、焼成工程の最高温度で保持した時、収縮挙動から膨張挙動に転じる挙動を示しやすく、高温高湿負荷試験1000時間においてもリーク不良がなく、高い信頼性を得ることができる。この高い密着性が高温高湿負荷試験においても水蒸気の浸入を阻止し、高い信頼性が得られる原因と考えられる。
From the results shown in Table 1, when Ag powder having an oxygen content after heat treatment of less than 100 ppm was used as in Paste 8, significant deterioration was observed in the high temperature and high humidity load test. In the cross-sectional observation of the multilayer ceramic substrate using this paste, it was confirmed that a very large gap was generated between the conductor material and the ceramic body, Ni was precipitated in the conductor material, and the plating solution had invaded. It was done. Further, even in the paste 9 to which Pd was added, the oxygen content was less than 100 ppm, and the result in the high temperature and high humidity load test was bad. On the other hand, as in paste 1, the oxygen content after heat treatment was higher than 100 ppm, but even when only Ag powder was used, insulation failure occurred in 1000 hours of the high temperature and high humidity load test.
On the other hand, unlike the behavior of ceramic materials, as in pastes 2-7, 10, and 11, it is effective for high reliability to be obtained in a high-temperature and high-humidity load test by switching from shrinkage behavior to expansion behavior. It is recognized that The expansion amount is within 0.1% to 10% of the dimension before firing according to TMA measurement, and this expansion amount is considered preferable.
In cross-sectional observation of the multilayer ceramic substrate using these conductive materials, it was confirmed that the conductive material and the ceramic body were in close contact with each other without any gap. As shown in the load test failure rate of the multilayer ceramic substrate shown in Table 1, this high adhesion is considered to be a cause of preventing water vapor from entering even in a high temperature and high humidity load test and obtaining high reliability. .
Also, from Table 1, using Ag powder with an average particle size of less than 1.5 to 3.0 μm and oxygen content of at least 100 ppm after heat treatment at 900 ° C. for 2 hours in the atmosphere, and further using Pd powder as the conductor material Multi-layer ceramic substrate using conductive material with 0.1 to 3 wt% added as the content in it tends to show a behavior that shifts from shrinkage behavior to expansion behavior when held at the highest temperature in the firing process, and high temperature and high humidity load test 1000 hours In this case, there is no leakage defect and high reliability can be obtained. It is considered that this high adhesion prevents water vapor from entering even in a high-temperature and high-humidity load test, and that high reliability can be obtained.

本発明により、基板の反りも小さく、しかも高温高湿負荷試験において不良の発生しない高信頼の多層セラミック基板が得られる。また、多層セラミック基板のX-Y方向の収縮ばらつきが抑制され、高寸法精度の多層セラミック基板が得られる。そして本発明の多層セラミック基板は携帯電話等の移動体通信端末機器の分野などにおいて、アンテナスイッチモジュール、PAモジュール基板、フィルタ、チップアンテナ、各種パッケージ部品等の種々の電子部品に利用することができる。   According to the present invention, it is possible to obtain a highly reliable multilayer ceramic substrate in which the warpage of the substrate is small and no defect occurs in the high temperature and high humidity load test. Further, the shrinkage variation in the X-Y direction of the multilayer ceramic substrate is suppressed, and a multilayer ceramic substrate with high dimensional accuracy can be obtained. The multilayer ceramic substrate of the present invention can be used for various electronic components such as an antenna switch module, a PA module substrate, a filter, a chip antenna, and various package components in the field of mobile communication terminal devices such as mobile phones. .

本発明に係る導体ペーストの焼結収縮挙動の例を示すグラフである。It is a graph which shows the example of the sintering shrinkage | contraction behavior of the conductor paste which concerns on this invention. 本発明に係る導体ペーストと低温焼結セラミック材料の焼結収縮挙動を示すグラフである。It is a graph which shows the sintering shrinkage | contraction behavior of the conductor paste which concerns on this invention, and a low-temperature sintering ceramic material. 本発明に係る多層セラミック基板の製造方法の各プロセスにおける断面図である。It is sectional drawing in each process of the manufacturing method of the multilayer ceramic substrate which concerns on this invention. 本発明に係る多層セラミック基板の製造方法における分割前の集合基板を示す斜視図である。It is a perspective view which shows the assembly board | substrate before the division | segmentation in the manufacturing method of the multilayer ceramic substrate which concerns on this invention.

符号の説明Explanation of symbols

1a,1b,1c:セラミックグリーンシート
2:導体パターン
3:ビア導体
4:外部電極
5:オーバーコート材
6:外部端子電極
7:未焼結多層セラミック体
8,9:拘束層(拘束用グリーンシート)
11:多層セラミック基板
12:分割溝
1a, 1b, 1c: Ceramic green sheet 2: Conductor pattern 3: Via conductor 4: External electrode 5: Overcoat material 6: External terminal electrode 7: Unsintered multilayer ceramic body 8, 9: Restraint layer (constraint green sheet )
11: Multilayer ceramic substrate
12: Dividing groove

Claims (5)

Ag粉末が88〜94質量%、Pd粉末が0.1質量%以上、3質量%未満含有されており、前記Ag粉末及びPd粉末の総量が88.1〜95質量%であり、Ag powder is contained in 88 to 94% by mass, Pd powder is contained in 0.1% by mass or more and less than 3% by mass, and the total amount of Ag powder and Pd powder is 88.1 to 95% by mass,
最高温度を850℃から1000℃までの間の温度とし、最高温度保持時間を20分から60分までの間の時間とし、昇温速度を10℃/分とした条件で、導体ペーストの焼結収縮挙動を熱機械分析装置で評価したとき、前記最高温度での保持時間の間において、前記導体ペーストの寸法変化が、収縮傾向から膨張傾向に変わる、Sintering shrinkage of conductor paste under conditions where the maximum temperature is between 850 ° C. and 1000 ° C., the maximum temperature holding time is between 20 minutes and 60 minutes, and the rate of temperature increase is 10 ° C./min. When the behavior is evaluated by a thermomechanical analyzer, the dimensional change of the conductor paste changes from a shrinkage tendency to an expansion tendency during the holding time at the maximum temperature.
850℃〜1000℃の間で焼成される多層セラミック基板用の導体ペースト。A conductive paste for a multilayer ceramic substrate that is fired between 850 ° C. and 1000 ° C.
Ag粉末が88〜94質量%、Pd粉末が0.1質量%以上、3質量%未満含有されており、前記Ag粉末及びPd粉末の総量が88.1〜95質量%であり、Ag powder is contained in 88 to 94% by mass, Pd powder is contained in 0.1% by mass or more and less than 3% by mass, and the total amount of Ag powder and Pd powder is 88.1 to 95% by mass,
前記Ag粉末中の酸素含有量が100ppm以上であり、The oxygen content in the Ag powder is 100 ppm or more,
前記Ag粉末の平均粒径が1.5μm以上、3.0μm未満であり、The average particle diameter of the Ag powder is 1.5 μm or more and less than 3.0 μm,
最高温度を850℃から1000℃までの間の温度とし、最高温度保持時間を20分から60分までの間の時間とし、昇温速度を10℃/分とした条件で、導体ペーストの焼結収縮挙動を熱機械分析装置で評価したとき、前記最高温度での保持時間の間において、前記導体ペーストの寸法変化が、収縮傾向から膨張傾向に変わる、Sintering shrinkage of conductor paste under conditions where the maximum temperature is between 850 ° C. and 1000 ° C., the maximum temperature holding time is between 20 minutes and 60 minutes, and the rate of temperature increase is 10 ° C./min. When the behavior is evaluated by a thermomechanical analyzer, the dimensional change of the conductor paste changes from a shrinkage tendency to an expansion tendency during the holding time at the maximum temperature.
850℃〜1000℃の間で焼成される多層セラミック基板用の導体ペースト。A conductive paste for a multilayer ceramic substrate that is fired between 850 ° C. and 1000 ° C.
セラミックグリーンシートを複数枚積層し焼成して得られ、内部に回路用の導体パターン及びビア導体が形成されている多層セラミック基板の製造方法において、In a method for producing a multilayer ceramic substrate obtained by laminating and firing a plurality of ceramic green sheets and having a circuit conductor pattern and a via conductor formed therein,
ビア導体として、請求項1または2に記載の導体ペーストを用いたことを特徴とする多層セラミック基板の製造方法。A method for producing a multilayer ceramic substrate, wherein the conductor paste according to claim 1 or 2 is used as a via conductor.
セラミックグリーンシートに適宜内部回路用の導体パターン及び/又はビア導体を形成し、これらセラミックグリーンシートを複数枚積層し、前記セラミックグリーンシートの積層体の焼結温度では焼結しない無機粒子と有機物とを含有する難焼結性拘束層を、前記セラミックグリーンシートの積層体の上面及び/又は下面に密着するように設けた後、焼成を行い、その後前記難焼結性拘束層を除去して多層セラミック基板を製造する方法において、ビア導体として、請求項1または2に記載の導体ペーストを用いたことを特徴とする多層セラミック基板の製造方法。A conductive pattern and / or via conductor for an internal circuit is appropriately formed on the ceramic green sheet, a plurality of these ceramic green sheets are laminated, and inorganic particles and organic matter that are not sintered at the sintering temperature of the ceramic green sheet laminate. A hard-sintering constraining layer containing the ceramic green sheet so as to be in close contact with the upper surface and / or lower surface of the laminate of the ceramic green sheets, followed by firing, and then removing the hard-sintering constraining layer to form a multilayer A method for manufacturing a ceramic substrate, wherein the conductor paste according to claim 1 or 2 is used as a via conductor. 前記焼成の温度が950℃以下であることを特徴とする請求項3または4に記載の多層セラミック基板の製造方法。The method for producing a multilayer ceramic substrate according to claim 3 or 4, wherein the firing temperature is 950 ° C or lower.
JP2007072164A 2006-03-31 2007-03-20 Ag powder, conductor paste, multilayer ceramic substrate and manufacturing method thereof Active JP5110419B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007072164A JP5110419B2 (en) 2006-03-31 2007-03-20 Ag powder, conductor paste, multilayer ceramic substrate and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006097684 2006-03-31
JP2006097684 2006-03-31
JP2007072164A JP5110419B2 (en) 2006-03-31 2007-03-20 Ag powder, conductor paste, multilayer ceramic substrate and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2007294906A JP2007294906A (en) 2007-11-08
JP5110419B2 true JP5110419B2 (en) 2012-12-26

Family

ID=38765159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007072164A Active JP5110419B2 (en) 2006-03-31 2007-03-20 Ag powder, conductor paste, multilayer ceramic substrate and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5110419B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5313526B2 (en) * 2008-03-17 2013-10-09 京都エレックス株式会社 Conductive paste for low-temperature fired multilayer substrates

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08274470A (en) * 1995-03-29 1996-10-18 Hitachi Ltd Multilayer interconnection board
JPH09181412A (en) * 1995-12-22 1997-07-11 Tdk Corp Multilayer ceramic component
JP4789299B2 (en) * 2000-01-31 2011-10-12 京セラ株式会社 Multilayer substrate manufacturing method
JP2004319706A (en) * 2003-04-15 2004-11-11 Ngk Spark Plug Co Ltd Conductive paste, and multilayer substrate and its manufacturing method

Also Published As

Publication number Publication date
JP2007294906A (en) 2007-11-08

Similar Documents

Publication Publication Date Title
KR101076643B1 (en) Layered ceramic electronic component and manufacturing method therefor
JP2010045209A (en) Method of manufacturing laminated ceramic electronic component
JP4802039B2 (en) Ceramic composition and multilayer ceramic circuit device
JP3652196B2 (en) Manufacturing method of ceramic wiring board
JP5110420B2 (en) Ag powder, conductor paste, multilayer ceramic substrate and manufacturing method thereof
JP2020072263A (en) Multilayer ceramic electronic component and manufacturing method thereof
JP4029408B2 (en) Method for producing hard-to-sinter restraint green sheet and multilayer ceramic substrate
JP3955389B2 (en) Capacitor-embedded substrate and manufacturing method thereof
JP5110419B2 (en) Ag powder, conductor paste, multilayer ceramic substrate and manufacturing method thereof
JPH11354370A (en) Layered ceramic electronic parts
JP4578134B2 (en) Glass ceramic multilayer wiring board with built-in capacitor
JP3630372B2 (en) Multilayer ceramic substrate and manufacturing method thereof
JP4688460B2 (en) Glass ceramic multilayer wiring board with built-in capacitor
JP2013026196A (en) Conductive paste and ceramic electronic component
JP4496529B2 (en) Multilayer ceramic substrate manufacturing method and multilayer ceramic substrate
JP2006108483A (en) Multilayered ceramic board having cavity and its manufacturing method
JP2010045212A (en) Laminated ceramic electronic component and its manufacturing method
JP4470158B2 (en) Multilayer ceramic substrate manufacturing method and multilayer ceramic substrate
JP2002043759A (en) Multilayer wiring board
JP2006179844A (en) Wiring board with built-in capacitor
JP2004273426A (en) Conductive paste and ceramic multilayer substrate using the same
JP2010278117A (en) Method of manufacturing wiring board
JP2008037675A (en) Low temperature-sinterable ceramic composition, ceramic substrate, method for manufacturing the same, and electronic component
JP4658465B2 (en) Glass ceramic multilayer wiring board with built-in capacitor
JP2007284297A (en) Green sheet, multilayer substrate using the same and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120914

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120927

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5110419

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350