JP2005284248A - Optical waveguide having micromirror formed by laser beam machining - Google Patents

Optical waveguide having micromirror formed by laser beam machining Download PDF

Info

Publication number
JP2005284248A
JP2005284248A JP2004288073A JP2004288073A JP2005284248A JP 2005284248 A JP2005284248 A JP 2005284248A JP 2004288073 A JP2004288073 A JP 2004288073A JP 2004288073 A JP2004288073 A JP 2004288073A JP 2005284248 A JP2005284248 A JP 2005284248A
Authority
JP
Japan
Prior art keywords
core
optical waveguide
optical
hole
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004288073A
Other languages
Japanese (ja)
Other versions
JP4659422B2 (en
Inventor
Takashi Shioda
剛史 塩田
Kenji Suzuki
健司 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2004288073A priority Critical patent/JP4659422B2/en
Publication of JP2005284248A publication Critical patent/JP2005284248A/en
Application granted granted Critical
Publication of JP4659422B2 publication Critical patent/JP4659422B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical waveguide having means for performing optical coupling with high efficiency at an arbitrary position in an optical circuit substrate including an optical-electrical circuit board. <P>SOLUTION: A projected part 12a of the optical waveguide is irradiated with a high output laser beam 15 such as an excimer laser or a carbon dioxide gas laser through an optical waveguide film at an angle of 45° and a hole is made at an angle of 45° with respect to the waveguide face. The hole is used as a micromirror and the light beam is combined with a light receiving element or the like. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は光路変換可能な高分子光導波路に関し、特に光集積回路、光インターコネクション用光学部品、光電気混載板等を製造する方法に関する。     The present invention relates to a polymer optical waveguide capable of changing an optical path, and more particularly to a method of manufacturing an optical integrated circuit, an optical component for optical interconnection, an opto-electric hybrid board, and the like.

光部品、あるいは光ファイバの基材としては、光伝搬損失が小さく、伝送帯域が広いという特徴を有する石英ガラスや多成分ガラス等の無機系の材料が広く使用されているが、最近では高分子系の材料も開発され、無機系材料に比べて加工性や価格の点で優れていることから、光導波路用材料として注目されている。例えば、ポリメチルメタクリレート(PMMA)、あるいは、ポリスチレンのような透明性に優れた高分子をコアとし、そのコア材料よりも屈折率の低い高分子をクラッド材料としたコア-クラッド構造からなる平板型光導波路が作製されている(特許文献1)。これに対して耐熱性の高い透明性高分子であるポリイミドを用い低損失の平板型光導波路が実現されている(特許文献2)。   As base materials for optical components or optical fibers, inorganic materials such as quartz glass and multicomponent glass, which have the characteristics of low light propagation loss and wide transmission band, are widely used. System materials have also been developed and are attracting attention as materials for optical waveguides because they are superior in processability and price compared to inorganic materials. For example, a flat plate type having a core-clad structure in which a polymer having excellent transparency such as polymethyl methacrylate (PMMA) or polystyrene is used as a core and a polymer having a refractive index lower than that of the core material is used as a cladding material. An optical waveguide is produced (Patent Document 1). On the other hand, a low-loss flat optical waveguide is realized using polyimide, which is a transparent polymer with high heat resistance (Patent Document 2).

低コスト化などの要求から光インターコネクション分野において、面発光型レーザ(VCSEL)が搭載されようとしているが、基板に対して垂直に出射するレーザ光を基板に対して水平な光導波路に入射するとき、約90°の光路変換が必要となる。高分子光導波路では、ダイシングソーによって約45°に切削し、90°光路変換を可能にしている(特許文献3)。しかしながら、ダイシングソーを用いた場合、不必要な箇所までも45°に切り出してしまう。そのためダイシングソーを用いると基板内の任意な場所に光路変換のための光結合を形成することは不可能といえる。   Surface emitting lasers (VCSEL) are being mounted in the field of optical interconnection due to demands for cost reduction, etc., but laser light emitted perpendicular to the substrate is incident on an optical waveguide that is horizontal to the substrate. Sometimes, an optical path change of about 90 ° is required. The polymer optical waveguide is cut at about 45 ° by a dicing saw to enable 90 ° optical path conversion (Patent Document 3). However, when a dicing saw is used, unnecessary portions are cut out at 45 °. Therefore, it can be said that if a dicing saw is used, it is impossible to form an optical coupling for optical path conversion at an arbitrary location in the substrate.

一方、光プリント基板にエキシマレーザを用いて円形なホールを形成する手法も報告されている(非特許文献1)。ホールが円形の場合、微小レンズが形成されているのと等価であり、通常、光が発散してしまい、大きく結合効率が劣化してしまう。結合効率を向上させようとした場合、複雑な非対称な結合光学系が必要になり、それらをミクロン以下のオーダで配置する必要がある。これは光電気混載基板において非現実的である。   On the other hand, a technique for forming a circular hole using an excimer laser on an optical printed circuit board has also been reported (Non-patent Document 1). When the hole is circular, it is equivalent to the formation of a microlens. Normally, light diverges and coupling efficiency is greatly deteriorated. In order to improve the coupling efficiency, complicated asymmetric coupling optical systems are required, and they must be arranged on the order of a micron or less. This is unrealistic in an opto-electric hybrid board.

また近年、光導波路を用いた光部品の小型化がますます要求されている。そのために、短距離で光を曲げたり、分岐、合波したりする必要がある。また、光電気混載基板においては、様々な箇所に最短距離で光を配線する必要がある。しかしながら、従来の曲がり光導波路や合分波光導波路の場合、比屈折率差の制限から作製できる光導波路はある大きさあるいは長さ以下にはできない。よって、このような回路を小さくできる光導波路が求められていた。
特開平3-188402号 特開平04−9807 特開平10-300961号 電子情報通信学会論文誌 2001/9 Vol.J84-C No.9 724頁〜725頁
In recent years, there has been an increasing demand for miniaturization of optical components using optical waveguides. Therefore, it is necessary to bend, branch, and multiplex light at a short distance. Further, in the opto-electric hybrid board, it is necessary to wire light at various points in the shortest distance. However, in the case of the conventional bent optical waveguide and the multiplexed / demultiplexed optical waveguide, the optical waveguide that can be manufactured due to the limitation of the relative refractive index difference cannot be less than a certain size or length. Therefore, an optical waveguide that can make such a circuit small has been demanded.
JP-A-3-188402 JP 04-9807 Japanese Patent Laid-Open No. 10-300961 IEICE Transactions 2001/9 Vol.J84-C No.9 724-725

本発明の目的は、上記の問題を回避すべく、光電気混載基板を含む光回路基板の中の任意の場所で、高効率で光結合できる手段を備えた光導波路を提供することにある。さらに、光回路の中で、光導波路の急峻な光路変換や、合分波を行う光導波路を小型で実現する光導波路を提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to provide an optical waveguide provided with means capable of optically coupling at an arbitrary position in an optical circuit board including an opto-electric hybrid board in order to avoid the above-described problems. It is another object of the present invention to provide an optical waveguide that realizes a small optical waveguide that performs steep optical path conversion and multiplexing / demultiplexing in an optical circuit.

本発明者は、鋭意検討した結果、光導波路の任意の場所にレーザを用いて穴あけ加工を施すことにより、前記課題を解決することを見出し、本発明を完成させた。すなわち本発明は、コアとクラッド層を備えた光導波路であって、レーザ照射によりコアの厚さ方向の少なくとも一部が切断されて形成されたコアの少なくとも一部を横切る壁面が鏡面である光導波路である。 As a result of intensive studies, the present inventor has found that the above-mentioned problems can be solved by performing drilling using a laser at an arbitrary position of the optical waveguide, and has completed the present invention. That is, the present invention is an optical waveguide having a core and a cladding layer, and an optical waveguide in which at least a part of the core formed by cutting at least a part in the thickness direction of the core by laser irradiation is a mirror surface. It is a waveguide.

ここで前記レーザ照射が光導波路面に対して垂直方向であり、前記鏡面が光導波路面に対して垂直かつコアの延伸方向に対して傾斜していることが1つの好ましい態様である。これにより別に微小ミラーなどを設けなくとも光導波路面内での光路変換が可能となる。   Here, in one preferable aspect, the laser irradiation is in a direction perpendicular to the optical waveguide surface, and the mirror surface is perpendicular to the optical waveguide surface and inclined with respect to the core extending direction. This makes it possible to change the optical path in the optical waveguide plane without providing a separate micromirror or the like.

また前記レーザ照射が光導波路面に対して斜め方向であり、前記鏡面がコアの延伸方向に対して傾斜していることが別の好ましい態様である。これにより、微小ミラーなどを設けなくとも光導波路の面外方向、例えば面に対して垂直方向への光路変換が可能となる。   In another preferred embodiment, the laser irradiation is oblique with respect to the optical waveguide surface, and the mirror surface is inclined with respect to the extending direction of the core. This makes it possible to change the optical path in the out-of-plane direction of the optical waveguide, for example, in the direction perpendicular to the plane, without providing a micromirror or the like.

また、本発明においてクラッド層の上面にコアの形状を反映した突起が形成されており、前記レーザ照射による切断方向が前記突起を通りコアに斜め方向であり、前記鏡面が曲面であることが好ましい。これにより面内以外に光路変換時に、さらにレンズ効果を得ることができる。   Further, in the present invention, a projection reflecting the shape of the core is formed on the upper surface of the clad layer, the cutting direction by the laser irradiation is oblique to the core passing through the projection, and the mirror surface is preferably a curved surface. . As a result, a lens effect can be further obtained when changing the optical path in addition to the in-plane.

また本発明は、コアとクラッド層を備えた光導波路であって、コアの端面が光路変換を行うための曲面状の鏡面である光導波路である。これによりレンズ効果を備えた光路変換が可能となる。   The present invention is also an optical waveguide having a core and a clad layer, wherein the end surface of the core is a curved mirror surface for performing optical path conversion. This enables optical path conversion with a lens effect.

またこれらの光導波路は、電気回路が搭載された回路基板の一面に設けられて光・電気混載基板を構成することが好ましい。   These optical waveguides are preferably provided on one surface of a circuit board on which an electric circuit is mounted to constitute a mixed optical / electric board.

さらに本発明は、コアに対応した突起部を有する転写型で第1のクラッド層を形成する工程、第1のクラッド層を転写型から剥離する工程、第1のクラッド層の転写型に接していた第1の面に形成された凹部にコアとなる材料を埋める工程、第1のクラッド層の第1の面に第2のクラッド層を形成する工程、第1のクラッド層の外表面に形成されているコアに沿った突起の一部にコアに対して斜めからレーザを照射してコアの厚さ方向の少なくとも一部を切断する工程とを含むことを特徴とする光導波路の製造方法である。   The present invention further includes a step of forming the first cladding layer with a transfer mold having a protrusion corresponding to the core, a step of peeling the first cladding layer from the transfer mold, and a contact with the transfer mold of the first cladding layer. A step of filling a core material in a recess formed on the first surface, a step of forming a second cladding layer on the first surface of the first cladding layer, and forming on the outer surface of the first cladding layer And a step of irradiating a part of the protrusion along the core with a laser obliquely to the core to cut at least a part in the thickness direction of the core. is there.

任意の場所に光結合用の穴をあける方法として、フォトリソグラフィとドライエッチングを組み合わせた方法も考えられる。しかしながら、数十ミクロンの厚みをドライエッチングしなければならず、生産性、コストの面で実際的でない。   A method combining photolithography and dry etching is also conceivable as a method for forming a hole for optical coupling at an arbitrary position. However, a thickness of several tens of microns must be dry etched, which is impractical in terms of productivity and cost.

光導波路面内の任意の箇所に穴をあけ、コアの途中の切断面に鏡面を形成することだけでなく、図8に示すように、コア42を備えた光導波路41のコアの端にかかるようにレーザ照射し、光導波路の最端部を切り欠いて形成されたコアの壁面43を鏡面とすることも可能である。またレーザでコアの厚さ方向全体を切断して得られる壁面を鏡面として利用でき、この場合はコアを伝播する光全部を光路変換できる。一方コアの厚さの途中までを切断して得られる壁面を鏡面として利用すれば、コアを伝播する光の一部を光路変換し他の一部をそのまま直進させることもできる。   A hole is formed at an arbitrary position in the surface of the optical waveguide, and a mirror surface is formed on the cut surface in the middle of the core, and as shown in FIG. 8, the end of the optical waveguide 41 provided with the core 42 is applied to the end of the core. As described above, it is possible to make the mirror wall surface 43 of the core formed by irradiating the laser and cutting the outermost end portion of the optical waveguide. Further, the wall surface obtained by cutting the entire core in the thickness direction with a laser can be used as a mirror surface, and in this case, all the light propagating through the core can be converted into an optical path. On the other hand, if a wall surface obtained by cutting halfway through the thickness of the core is used as a mirror surface, a part of the light propagating through the core can be converted into an optical path and the other part can be moved straight.

本発明においてレーザ照射中、レーザビームは光導波路に対して相対的に静止していることはいうまでもない。   In the present invention, it goes without saying that the laser beam is stationary relative to the optical waveguide during laser irradiation.

本発明により、任意の場所でまた多種多様なコアパターンで光結合を簡便に行えるので、光回路の設計の自由度が著しく増す。さらにレーザを用いることにより、レーザ照射により穴を形成するのと同時に、穴の壁面を容易に平滑な鏡面とすることができる。また、任意の角度で光路変換や分岐が可能となり、光導波路サイズを大幅に低減することができる。この効果は、特に光電気混載基板に好適である。 特にコアの壁面が曲面状の鏡面とすることにより、小さい受光径の受光素子あるいは、広がり角(開口数)の大きいに発光素子に対しても結合効率が高くかつ簡便に光結合が行える。      According to the present invention, since optical coupling can be easily performed at an arbitrary place and with various core patterns, the degree of freedom in designing an optical circuit is remarkably increased. Further, by using a laser, the hole wall can be easily formed into a smooth mirror surface at the same time as the hole is formed by laser irradiation. Further, the optical path can be changed or branched at an arbitrary angle, and the optical waveguide size can be greatly reduced. This effect is particularly suitable for an opto-electric hybrid board. In particular, when the core wall surface is a curved mirror surface, coupling efficiency is high and light coupling can be easily performed with respect to a light receiving element having a small light receiving diameter or a light emitting element having a large spread angle (numerical aperture).

以下、本発明を詳細に説明する。ここでは、ポリイミド光導波路を例に挙げて説明するが、光導波路の材料としてポリイミド以外の光学用材料の樹脂を用いて、光路変換のための構造を形成することももちろん可能である。また本発明の光導波路が形成された基板の表面や内部に電気回路や他の光回路が形成されていてもよい。   Hereinafter, the present invention will be described in detail. Here, a polyimide optical waveguide will be described as an example, but it is of course possible to form a structure for optical path conversion by using an optical material resin other than polyimide as the material of the optical waveguide. Further, an electric circuit or another optical circuit may be formed on the surface or inside of the substrate on which the optical waveguide of the present invention is formed.

まず、シリコンウェハ上にポリイミドからなる下部クラッド層を形成する。その上に一部がコアとなるポリイミド層とレジスト層を順次形成する。次に、所望のコアパターンの描いてあるマスクパターンを用いて露光することにより、マスクとなるレジストパターンが形成される。このレジストパターンをマスクとして酸素プラズマで一部がコアとなる層をドライエッチングする。次に、マスクのレジストを剥離液で除去する。次にその上にポリイミドからなる上部クラッド層を形成する。そして多層の形成されたシリコンウエハごとフッ酸水溶液に浸漬させ、シリコンウェハから光導波路となる多層を剥離する。こうして光導波路が形成されたフィルム状光導波路が得られる。   First, a lower clad layer made of polyimide is formed on a silicon wafer. A polyimide layer partially having a core and a resist layer are sequentially formed thereon. Next, the resist pattern used as a mask is formed by exposing using the mask pattern in which the desired core pattern was drawn. Using this resist pattern as a mask, a layer whose core is partly dry is etched with oxygen plasma. Next, the resist of the mask is removed with a stripping solution. Next, an upper clad layer made of polyimide is formed thereon. Then, the multi-layered silicon wafer is immersed in a hydrofluoric acid aqueous solution, and the multi-layer that becomes the optical waveguide is peeled from the silicon wafer. Thus, a film-like optical waveguide having an optical waveguide formed is obtained.

この光導波路面に垂直でかつコアの延伸方向を含む面内で、レーザを光導波路面から45度の角度で照射することにより、光導波路のコアには、コアの延伸方向に対して45度傾斜した反射面が形成できる。この45度反射面を介して光路を光導波路面に垂直方向に変換することができる。この45度反射面には必要に応じて反射率の高い金属層を設けてもよい。この反射面を用いた場合、個別部品としての微小ミラーを別途設ける必要がない。   By irradiating the laser at an angle of 45 degrees from the optical waveguide plane within a plane perpendicular to the optical waveguide plane and including the extending direction of the core, the core of the optical waveguide is 45 degrees with respect to the extending direction of the core. An inclined reflecting surface can be formed. The optical path can be converted in the direction perpendicular to the surface of the optical waveguide through the 45-degree reflecting surface. A metal layer having a high reflectivity may be provided on the 45 ° reflective surface as necessary. When this reflecting surface is used, it is not necessary to separately provide a micromirror as an individual component.

このようにして、この光導波路に電気回路や光素子や光回路を形成するか、電気回路基板に貼り合わせることで、任意の場所で光結合が可能な光電気混載基板を製造できる。   In this manner, an opto-electric hybrid board that can be optically coupled at an arbitrary place can be manufactured by forming an electric circuit, an optical element, or an optical circuit in the optical waveguide, or by attaching the optical circuit to the electric circuit board.

本発明の光導波路はクラッド層、コア層とも樹脂からなることが好ましく、なかでもポリイミド樹脂、またはエポキシ樹脂からなることが特に好ましい。樹脂を用いることにより、レーザ照射で形成される穴の壁面が平滑な鏡面として容易に得られる。   In the optical waveguide of the present invention, both the clad layer and the core layer are preferably made of resin, and particularly preferably made of polyimide resin or epoxy resin. By using the resin, the wall surface of the hole formed by laser irradiation can be easily obtained as a smooth mirror surface.

次に反射面が曲面となる形成方法を図2、図3を用いて説明する。まず、所望のコアパターンが形成されている転写型11を用意する(図2(a))。その上にクラッド層12となるポリイミドの前駆体であるポリアミド酸溶液をスピンコートなどにより塗布する。次に、熱処理によってイミド化させる。このとき、ポリアミド酸溶液の樹脂濃度を適宜調整することにより、コアパターンの上部のクラッド層表面にコアパターンを反映して盛り上がった形の突起12aが形成される(図2(b))。次に、このポリイミドフィルムを転写型から剥離する(図2(c))。剥離したポリイミドフィルムを上下反転して、コア13となるポリイミドの前駆体であるポリアミド酸溶液をその溝部に埋め込む形で塗布し、加熱イミド化させる(図2(d))。次に、その上から下部クラッド層14となるポリイミドの前駆体であるポリアミド酸溶液を塗布、加熱イミド化させる。このようにして、コア13のある場所にクラッド層が盛り上がって形成された突起12aを有する光導波路が作成できる(図2(e))。   Next, a forming method in which the reflecting surface becomes a curved surface will be described with reference to FIGS. First, a transfer mold 11 on which a desired core pattern is formed is prepared (FIG. 2 (a)). On top of that, a polyamic acid solution, which is a precursor of polyimide to be the clad layer 12, is applied by spin coating or the like. Next, imidization is performed by heat treatment. At this time, by appropriately adjusting the resin concentration of the polyamic acid solution, a raised protrusion 12a reflecting the core pattern is formed on the surface of the clad layer above the core pattern (FIG. 2B). Next, the polyimide film is peeled from the transfer mold (FIG. 2 (c)). The peeled polyimide film is turned upside down, and a polyamic acid solution, which is a polyimide precursor to be the core 13, is applied so as to be embedded in the groove, and is heated and imidized (FIG. 2D). Next, a polyamic acid solution, which is a polyimide precursor that will become the lower clad layer 14, is applied and heated to imidize. In this way, an optical waveguide having a protrusion 12a formed by raising a clad layer at a location where the core 13 is present can be produced (FIG. 2 (e)).

このようにして得られた光導波路フィルムの上から図3(a)のように、突起12aに向けかつ光導波路面に対して45度傾けて、エキシマレーザあるいは炭酸ガスレーザなどの高出力レーザ光15を照射し、導波路面に対して約45度の角度で穴あけを行う。このとき、四角の窓が開いたマスク(図示せず)を用いる。盛り上がった突起12aのある上部クラッド層側から突起部に向けてレーザを照射することにより、コアを切断する穴16が形成される。この時、光導波路のコアを横切る穴16の壁面17には、容易に平滑な球面あるいは円筒面が得られる(図3(b))。このとき、形成した穴がコアパターン方向に対して垂直方向に若干の位置ずれが起こったとしても、クラッドの盛り上がり部に形成されるので問題ない。クラッド層の盛り上がりのない平坦な光導波路を用いる場合は、四角ではなく、所望の曲線が形成されたマスクを用いることにより、曲面の鏡面が得られる。   From the top of the optical waveguide film thus obtained, as shown in FIG. 3A, it is inclined 45 degrees toward the projection 12a and with respect to the optical waveguide surface, and the high-power laser beam 15 such as an excimer laser or a carbon dioxide gas laser is used. Is drilled at an angle of about 45 degrees with respect to the waveguide surface. At this time, a mask (not shown) having a square window opened is used. By irradiating a laser beam from the side of the upper clad layer having the raised protrusion 12a toward the protrusion, a hole 16 for cutting the core is formed. At this time, a smooth spherical surface or cylindrical surface can be easily obtained on the wall surface 17 of the hole 16 that crosses the core of the optical waveguide (FIG. 3B). At this time, even if the formed hole is slightly displaced in the direction perpendicular to the core pattern direction, there is no problem because it is formed in the raised portion of the cladding. When a flat optical waveguide without a raised cladding layer is used, a curved mirror surface can be obtained by using a mask in which a desired curve is formed instead of a square.

こうして得られた、コアの切断面が曲面である微小ミラーを用いた光の伝搬の様子を図4に示す。ここではコア部とミラー部のみ示す。光導波路21を伝搬してきた伝搬光22は、約45度の角度で加工された微小ミラー24で反射する。この場合反射光25は、球面の曲率半径の半分の距離で焦点を結ぶように光は収束する。このように光を絞ることができ、例えば上方に受光素子を配置すると効率的に受光できる。   FIG. 4 shows a state of light propagation using a micromirror having a curved core cut surface. Only the core part and the mirror part are shown here. The propagating light 22 propagating through the optical waveguide 21 is reflected by a micro mirror 24 processed at an angle of about 45 degrees. In this case, the light converges so that the reflected light 25 is focused at a distance half the radius of curvature of the spherical surface. In this way, the light can be narrowed down. For example, if a light receiving element is arranged above, light can be received efficiently.

次に、光路を光導波路面内で光路変換したり、分岐する機能を備えた光導波路について説明する。コアのパターンを目的に応じて、T字状、L字状あるいはY字状にパターニングした光導波路をもちいる。   Next, an optical waveguide having a function of changing the optical path within the plane of the optical waveguide or branching the optical path will be described. An optical waveguide is used in which the core pattern is patterned in a T-shape, L-shape or Y-shape, depending on the purpose.

この光導波路の上から、エキシマレーザを光導波路面に垂直方向に、かつコアの折れ曲る箇所に照射して、そこに貫通穴を形成する。すなわち穴の形状のマスクを用いてエキシマレーザを光導波路のコアにかかる部分に照射させるとコアの一部が切断され穴が形成される。穴により形成されたコアの切断面は、空気とコアの界面である反射面となり、光はこの反射面で反射され急峻な光路変換あるいは分岐が可能になる。コアの切断面を高反射率の材料で被覆したり、あるいは穴をクラッドよりも低屈折の材料で埋めることも可能である。   From above the optical waveguide, an excimer laser is irradiated in a direction perpendicular to the surface of the optical waveguide and at a portion where the core is bent, and a through hole is formed therein. That is, when the excimer laser is irradiated onto the core portion of the optical waveguide using a hole-shaped mask, a part of the core is cut to form a hole. The cut surface of the core formed by the hole becomes a reflection surface that is an interface between air and the core, and light is reflected by this reflection surface, so that steep optical path conversion or branching is possible. It is also possible to cover the cut surface of the core with a highly reflective material, or to fill the hole with a material having a lower refractive index than the cladding.

図5は作成したコア31の形状がT字状のものであり、図中上から来た1本の光33を左右に分岐するための穴の各形状を示す。図5(a)は光軸に対して45度の面で反射分岐させるように穴32が形成されたものである。図5(b)は光学界面が二段に折れた面で反射分岐させるための貫通穴34をあけたもの、また図5(c)は光学界面が曲面状となるように反射分岐させるための貫通穴35をあけたものである。図5の場合、貫通穴の横方向の位置により、分岐比を変えることができる。また光の進行方向を逆にして、合波させることもできる。   FIG. 5 shows the shape of the hole 31 for branching the single light 33 coming from the top to the left and right in the shape of the core 31 that is created. In FIG. 5A, a hole 32 is formed so as to be reflected and branched at a plane of 45 degrees with respect to the optical axis. FIG. 5B shows a through hole 34 for reflecting and branching the optical interface at the two-folded surface, and FIG. 5C shows reflecting and branching so that the optical interface has a curved surface. A through hole 35 is formed. In the case of FIG. 5, the branching ratio can be changed depending on the position of the through hole in the lateral direction. Further, the light can be multiplexed by reversing the traveling direction of the light.

図6にはL字に光路変換させるための穴の各形状を示す。図6(a)は直角に光路変換するためにコアの直角に折れ曲がった箇所に、光軸に対して45度に傾いた反射面が出るように穴36をあけたものである。図6(b)は、二段に折れた面で光路変換させるための穴37をあけたもの、図6(c)は曲面状で光路変換するための穴38を明けたものである。このように穴の形状を変えるだけで様々な小型光導波路が作製可能である。   FIG. 6 shows each shape of the hole for changing the optical path to the L-shape. In FIG. 6A, a hole 36 is formed in a portion bent at a right angle of the core so as to change the optical path at a right angle so that a reflecting surface inclined at 45 degrees with respect to the optical axis appears. FIG. 6 (b) shows a hole 37 for changing the optical path in a two-fold plane, and FIG. 6 (c) shows a curved hole 38 for changing the optical path. In this way, various small optical waveguides can be produced simply by changing the shape of the hole.

図7はT字の手前でY分岐した形状を有すコアのY分岐39のすぐ側に光路変換をするための貫通穴40を形成したものである。分岐はY分岐部で行うことができるため、貫通穴の横方向の位置誤差が大きくとも、より正確に1:1の分岐が可能となる。   In FIG. 7, a through hole 40 for changing the optical path is formed immediately on the Y branch 39 of the core having a Y branch shape before the T-shape. Since the branching can be performed at the Y branching portion, even if the lateral position error of the through hole is large, the 1: 1 branching can be performed more accurately.

(実施例1)
5インチシリコンウェハ上に2,2-ビス(3,4-ジカルボキシフェニル)ヘキサフルオロプロパン二無水物(6FDA)と2,2-ビス(トリフルオロメチル)-4, 4' -ジアミノビフェニル(TFDB)から形成されるポリイミドを上下のクラッド層として、6FDAと4, 4' -オキシジアニリン(ODA)から形成されるポリイミドを上下のクラッド層に挟まれたコア層とする。公知のフォトリソグラフィとドライエッチング技術により下部クラッド層上のコアをパターニングしその後上部クラッド層を形成してフィルム状光導波路を形成する。ここで長さ方向が互いに平行な複数のコア層が形成されておりマルチアレイの光導波路となっている。その後、この光導波路が形成されたシリコンウエハを5wt%のフッ酸水溶液中に浸漬させ、シリコンウェハから光導波路を剥し、フィルム状光導波路を作製した。フィルム状光導波路の厚みは80μmとした。
(Example 1)
2,2-bis (3,4-dicarboxyphenyl) hexafluoropropane dianhydride (6FDA) and 2,2-bis (trifluoromethyl) -4,4'-diaminobiphenyl (TFDB) on a 5-inch silicon wafer ) Is used as the upper and lower cladding layers, and polyimide formed from 6FDA and 4,4′-oxydianiline (ODA) is used as the core layer sandwiched between the upper and lower cladding layers. The core on the lower clad layer is patterned by known photolithography and dry etching techniques, and then the upper clad layer is formed to form a film-like optical waveguide. Here, a plurality of core layers whose length directions are parallel to each other are formed to form a multi-array optical waveguide. Thereafter, the silicon wafer on which the optical waveguide was formed was immersed in a 5 wt% hydrofluoric acid aqueous solution, and the optical waveguide was peeled off from the silicon wafer to produce a film-shaped optical waveguide. The thickness of the film-shaped optical waveguide was 80 μm.

図1において、このフッ素化ポリイミドを用いてコア層3を備えたフィルム状光導波路を作製した。フィルム状光導波路1をエキシマレーザの光軸に対して45度傾かせてエキシマレーザ2を照射して穴あけを実施した(図1(a))。このとき、形成された穴のコアを横切る壁面4は、フィルム状光導波路面に対して45度の角度になっていた(図1(b))。照射条件は、総照射エネルギー0.4J/パルス、光導波路への照射エネルギー密度は1J/(cm2・パルス)、繰り返し周波数200パルス/秒で2秒間とした。光導波路面に垂直方向から面発光レーザ(図示しないが図面ではフィルム状光導波路の下方から)で45度の反射面にレーザ光を照射したところ、光軸5に沿った光導波路のコアの他端面から光出力を観測できた(図1(c))。45度反射面には金属膜を形成しても、しなくてもよい。金属膜を形成した場合、形成された穴に屈折率を考慮しないで任意の樹脂を埋め込むことができる。 In FIG. 1, a film-like optical waveguide provided with a core layer 3 was produced using this fluorinated polyimide. Drilling was performed by irradiating the excimer laser 2 while tilting the film-shaped optical waveguide 1 by 45 degrees with respect to the optical axis of the excimer laser (FIG. 1 (a)). At this time, the wall surface 4 crossing the core of the formed hole was at an angle of 45 degrees with respect to the film-shaped optical waveguide surface (FIG. 1 (b)). The irradiation conditions were a total irradiation energy of 0.4 J / pulse, an irradiation energy density to the optical waveguide of 1 J / (cm 2 · pulse), and a repetition frequency of 200 pulses / second for 2 seconds. When a laser beam is irradiated onto the reflection surface at 45 degrees from a surface emitting laser (not shown in the drawing, from below the film-shaped optical waveguide) from the direction perpendicular to the optical waveguide surface, the core of the optical waveguide along the optical axis 5 is irradiated. The light output could be observed from the end face (Fig. 1 (c)). A metal film may or may not be formed on the 45 ° reflective surface. When the metal film is formed, an arbitrary resin can be embedded in the formed hole without considering the refractive index.

壁面が45度傾いた穴は任意の場所に何箇所でも形成することができ、光回路の設計の自由度が高い。また個別部品としての微小ミラーを穴の中に設けなくてもよいので、光軸あわせが容易である。   A hole whose wall surface is inclined by 45 degrees can be formed in any number of places, and the degree of freedom in designing an optical circuit is high. Further, since it is not necessary to provide a micromirror as an individual part in the hole, it is easy to align the optical axis.

(実施例2)5インチシリコンウェハをドライエッチングにより、幅50μm、高さ40μmのリッジ上のコアパターンを形成する。これが転写型となる。この上に2,2-ビス(3,4-ジカルボキシフェニル)ヘキサフルオロプロパン二無水物(6FDA)と2,2-ビス(トリフルオロメチル)-4, 4' -ジアミノビフェニル(TFDB)から形成されるポリアミド酸溶液をスピンコートし、加熱してイミド化させる。このときポリアミド酸溶液の濃度を25%とした。コアパターン上部のクラッド層上面にはコアパターンに沿って盛り上がった突起が形成される。次に、ポリイミドのクラッド層を蒸留水に浸漬することによりシリコンウエハから剥離する。次に6FDAと4, 4' -オキシジアニリン(ODA)および6FDA/TFDBからなる共重合ポリイミドを成形した溝にスピンコートと熱処理により埋め込む。さらにその上に6FDA/TFDBからなるクラッド層を形成する。このようにして、フィルム光導波路を作製した。フィルム導波路の厚みは90μmとした。   (Example 2) A core pattern on a ridge having a width of 50 μm and a height of 40 μm is formed on a 5-inch silicon wafer by dry etching. This is a transfer mold. Formed thereon from 2,2-bis (3,4-dicarboxyphenyl) hexafluoropropane dianhydride (6FDA) and 2,2-bis (trifluoromethyl) -4,4'-diaminobiphenyl (TFDB) The resulting polyamic acid solution is spin coated and heated to imidize. At this time, the concentration of the polyamic acid solution was set to 25%. On the upper surface of the clad layer above the core pattern, a raised protrusion is formed along the core pattern. Next, the clad layer of polyimide is detached from the silicon wafer by immersing it in distilled water. Next, the groove is formed by spin-coating and heat-treating into a groove formed with a copolymerized polyimide composed of 6FDA, 4,4′-oxydianiline (ODA) and 6FDA / TFDB. Further, a cladding layer made of 6FDA / TFDB is formed thereon. In this way, a film optical waveguide was produced. The thickness of the film waveguide was 90 μm.

次に、エキシマレーザと、その光軸に銅合金板からなり一辺0.15mm四角の窓があいたマスクとフィルム光導波路とを配置した。そして光導波路をレーザの光軸に対して45度傾斜させた。フィルム導波路の突起に向けてエキシマレーザを照射し、貫通穴を光導波路に対して斜めに形成した。照射条件は、総照射エネルギー0.4J/パルス、エネルギー密度は1J/(cm2・パルス)、繰り返し周波数200パルス/秒で2秒間とした。このとき、コアが横切る加工面は光導波路面内方向、厚み方向共に曲率半径約0.8mmの球面であった。 Next, an excimer laser, a mask made of a copper alloy plate on its optical axis and having a 0.15 mm square window on one side, and a film optical waveguide were disposed. The optical waveguide was inclined 45 degrees with respect to the optical axis of the laser. Excimer laser was irradiated toward the projection of the film waveguide, and the through hole was formed obliquely with respect to the optical waveguide. The irradiation conditions were a total irradiation energy of 0.4 J / pulse, an energy density of 1 J / (cm 2 · pulse), and a repetition frequency of 200 pulses / second for 2 seconds. At this time, the processed surface crossed by the core was a spherical surface having a curvature radius of about 0.8 mm in both the in-plane direction and the thickness direction of the optical waveguide.

フィルム光導波路の一端面から光導波路へ波長850nmの光を挿入したところ、微小ミラー面での反射光が観察できた。100μmφの光ファイバで反射光を受光したところ、受光強度は約70%であることが分かった。   When light having a wavelength of 850 nm was inserted into the optical waveguide from one end surface of the film optical waveguide, reflected light on the micromirror surface could be observed. When reflected light was received with an optical fiber of 100 μmφ, it was found that the received light intensity was about 70%.

(実施例3)
5インチシリコンウェハ上に2,2-ビス(3,4-ジカルボキシフェニル)ヘキサフルオロプロパン二無水物(6FDA)と2,2-ビス(トリフルオロメチル)-4, 4' -ジアミノビフェニル(TFDB)から形成されるポリイミドを上下のクラッド層として、6FDAと4, 4' -オキシジアニリン(ODA)から形成されるポリイミドをコア層として、公知のフォトリソグラフィとドライエッチング技術によりマルチモード光導波路フィルムを形成する。このとき、T字状にパターニングした。その後、この光導波路が形成されたシリコンウエハを5wt%のフッ酸水溶液中に浸漬させ、シリコンウェハから光導波路を剥し、フィルム光導波路を作製した。フィルム導波路の厚みは80μmとした。
(Example 3)
2,2-bis (3,4-dicarboxyphenyl) hexafluoropropane dianhydride (6FDA) and 2,2-bis (trifluoromethyl) -4,4'-diaminobiphenyl (TFDB) on a 5-inch silicon wafer Multi-mode optical waveguide film using known photolithography and dry etching techniques with polyimide formed from) as the upper and lower cladding layers and polyimide formed from 6FDA and 4,4′-oxydianiline (ODA) as the core layer Form. At this time, patterning was performed in a T shape. Thereafter, the silicon wafer on which the optical waveguide was formed was immersed in a 5 wt% hydrofluoric acid aqueous solution, and the optical waveguide was peeled off from the silicon wafer to produce a film optical waveguide. The thickness of the film waveguide was 80 μm.

次に、縮小光学系・マスク投影方式のKrFエキシマレーザ加工装置を用いて、T字の交点に四角の貫通穴を形成した。照射条件は、総照射エネルギー0.4J/パルス、エネルギー密度は1J/(cm2・パルス)、繰り返し周波数200パルス/秒で2秒間とした。波長850nmで分岐損失1dBの90度方向2分岐ができた。 Next, square through holes were formed at the intersections of the T-shapes using a reduction optical system / mask projection type KrF excimer laser processing apparatus. The irradiation conditions were a total irradiation energy of 0.4 J / pulse, an energy density of 1 J / (cm 2 · pulse), and a repetition frequency of 200 pulses / second for 2 seconds. Two branches in the 90 degree direction with a branching loss of 1 dB were achieved at a wavelength of 850 nm.

(実施例4)
これまでは、コアを厚さ方向全て切断するようにレーザ加工した例を示したが、レーザ照射をコア部を貫通する前で止めることにより、切断面をコアの厚さ方向の任意の位置までに形成することができる。これによりコアを導波する光を分配することも可能となる。レーザ照射時間をコアを貫通するのに要する時間の半分にすることにより、加工深さは半分にできる。例えば、図9において、厚さが約100μmのポリイミド光導波路フィルムに対して貫通孔を形成するのにエキシマレーザ51を200パルス/秒で2秒間照射することが必要な場合、照射時間を1秒にすることによって半分の位置まで加工された穴54を形成することができる。この場合、コア53の上部を伝搬した光55は切断面で光路変換し、コアの下部を伝搬する光56はそのまま伝搬することとなる。コア高さの半分の位置で加工を止めた場合、ほぼ1:1の割合で光の分配ができる。レーザ加工深さを変えることによって分配比は変えられる。このように、全光量を出し入れするだけでなく、全光量の内ある割合で光を出し入れすることが可能となる。
Example 4
Up to now, the example of laser processing was shown so that the core was cut in the entire thickness direction, but by cutting the laser irradiation before penetrating the core part, the cut surface could be moved to an arbitrary position in the thickness direction of the core. Can be formed. As a result, it is possible to distribute the light guided through the core. By making the laser irradiation time half of the time required to penetrate the core, the processing depth can be halved. For example, in FIG. 9, when it is necessary to irradiate the excimer laser 51 at 200 pulses / second for 2 seconds to form a through hole in a polyimide optical waveguide film having a thickness of about 100 μm, the irradiation time is 1 second. By doing so, it is possible to form the hole 54 machined to a half position. In this case, the light 55 propagating through the upper part of the core 53 undergoes optical path conversion at the cut surface, and the light 56 propagating through the lower part of the core propagates as it is. When processing is stopped at a position half the core height, light can be distributed at a ratio of approximately 1: 1. The distribution ratio can be changed by changing the laser processing depth. In this way, not only can the total light quantity be taken in and out, but light can be taken in and out at a certain ratio of the total light quantity.

また、図10に示すように、光導波路面に対して垂直な鏡面を形成する場合においても途中でレーザ加工を止めることによって、光の分配が可能である。図10(a)は上から見た平面図、図10(b)はコア61とクラッド層62からなる光導波路の横断面図である。光導波路面に対して垂直にレーザビームを照射して穴63をコアの途中まで形成する。コアの上部を伝播する光64は穴63の壁面63aで光導波路面に平行のまま直角に進路が変更される。一方コアの下部を伝播する光65はそのまま直進する。このときも、レーザ加工で穴深さを変えることによって分配比は変えられる。   Further, as shown in FIG. 10, even when a mirror surface perpendicular to the optical waveguide surface is formed, the light can be distributed by stopping the laser processing in the middle. 10A is a plan view seen from above, and FIG. 10B is a cross-sectional view of an optical waveguide composed of a core 61 and a cladding layer 62. FIG. A hole 63 is formed partway through the core by irradiating a laser beam perpendicular to the optical waveguide surface. The light 64 propagating through the upper part of the core has its path changed at a right angle while remaining parallel to the optical waveguide surface at the wall surface 63a of the hole 63. On the other hand, the light 65 propagating under the core travels straight. Also at this time, the distribution ratio can be changed by changing the hole depth by laser processing.

本発明は、特に光集積回路、光インターコネクション用光学部品、光電気混載板等に応用できる。   The present invention is particularly applicable to optical integrated circuits, optical components for optical interconnection, opto-electric hybrid boards and the like.

発明の斜め照射レーザ加工を用いた製造工程の一例を示す図。The figure which shows an example of the manufacturing process using the oblique irradiation laser processing of invention. 本発明のレンズ機能付微小ミラーを形成する光導波路の作製方法の一例を示す図。The figure which shows an example of the manufacturing method of the optical waveguide which forms the micro mirror with a lens function of this invention. 本発明のレンズ機能付微小ミラーの形成工程の一例を示す図。The figure which shows an example of the formation process of the micro mirror with a lens function of this invention. 本発明のレンズ機能付微小ミラーの一例を示す図。The figure which shows an example of the micro mirror with a lens function of this invention. 本発明の貫通穴付光導波路を用いたT字光分岐の一例を示す図。The figure which shows an example of the T-shaped light branch using the optical waveguide with a through-hole of this invention. 本発明の貫通穴付光導波路を用いたL字光路変換の一例を示す図。The figure which shows an example of the L-shaped optical path conversion using the optical waveguide with a through-hole of this invention. 本発明の貫通穴による光路変換を用いたY字光分岐の一例を示す図。The figure which shows an example of the Y-shaped light branch using the optical path conversion by the through-hole of this invention. 光導波路の端部をレーザで切欠いた図Diagram of the end of the optical waveguide cut out with a laser コアの途中までを切断した光導波路の図Illustration of an optical waveguide cut halfway through the core コアの途中までを切断した光導波路の図Illustration of an optical waveguide cut halfway through the core

符号の説明Explanation of symbols

1・・フィルム状光導波路、 2・・エキシマレーザ、 3・・コア層、
4・・壁面、 5・・光軸、 11・・転写型、 12・・クラッド層、
12a・・突起、 13・・コア、 14・・下部クラッド層、
15・・レーザ光、 16・・穴、 17・・壁面 21・・光導波路
22・・伝播光、 24・・微小ミラー、 25・・反射光
31・・コア、 32・・穴、 33・・光 34・・貫通穴
35・・貫通穴、 36、37、38、40・・穴、 39・・Y分枝、
41・・光導波路、 42・・コア、 43・・壁面
51・・エキシマレーザ、 52・・クラッド層、 53・・コア
54・・コア、 55、56・・光、 61・・コア 62・・クラッド層
63・・穴、 64、65・・光

1 .... Film optical waveguide, 2 .... Excimer laser, 3..Core layer,
4 .... Wall, 5 .... Optical axis, 11 .... Transfer type, 12 .... Clad layer,
12a ... projection, 13 ... core, 14 ... lower clad layer,
15. ・ Laser beam, 16. ・ Hole, 17. ・ Wall 21 ・ ・ Optical waveguide
22 ... Propagating light, 24 ... Micro mirror, 25 ... Reflected light
31 ・ ・ Core, 32 ・ ・ Hole, 33 ・ ・ Light 34 ・ ・ Through hole
35 ・ ・ Through hole, 36, 37, 38, 40 ・ ・ Hole, 39 ・ ・ Y branch,
41 ... Optical waveguide, 42 ... Core, 43 ... Wall
51 ・ ・ Excimer laser, 52 ・ ・ Clad layer, 53 ・ ・ Core
54 ... Core, 55, 56 ... Optical, 61 ... Core 62 ... Cladding layer
63 ... Hole, 64, 65 ... Light

Claims (7)

コアとクラッド層を備えた光導波路であって、レーザ照射によりコアの厚さ方向の少なくとも一部が切断されて形成されたコアの少なくとも一部を横切る壁面が鏡面であることを特徴とする光導波路。 An optical waveguide comprising a core and a cladding layer, wherein a wall surface crossing at least a part of the core formed by cutting at least a part of the core in the thickness direction by laser irradiation is a mirror surface Waveguide. 前記レーザ照射が光導波路面に対して垂直方向であり、前記鏡面が光導波路面に対して垂直かつコアの延伸方向に対して傾斜している請求項1に記載の光導波路。 The optical waveguide according to claim 1, wherein the laser irradiation is perpendicular to the optical waveguide surface, and the mirror surface is perpendicular to the optical waveguide surface and inclined with respect to the core extending direction. 前記レーザ照射が光導波路面に対して斜め方向であり、前記鏡面がコアの延伸方向に対して傾斜している請求項1に記載の光導波路。 The optical waveguide according to claim 1, wherein the laser irradiation is oblique with respect to the optical waveguide surface, and the mirror surface is inclined with respect to the extending direction of the core. クラッド層の上面にコアの形状を反映した突起が形成されており、前記レーザ照射による切断方向が前記突起を通りコアに斜め方向であり、前記鏡面が曲面である請求項1に記載の光導波路。 The optical waveguide according to claim 1, wherein a projection reflecting the shape of the core is formed on an upper surface of the cladding layer, a cutting direction by the laser irradiation is oblique to the core through the projection, and the mirror surface is a curved surface. . コアとクラッド層を備えた光導波路であって、コアの端面が光路変換を行うための曲面状の鏡面であることを特徴とする光導波路。 An optical waveguide comprising a core and a cladding layer, wherein an end surface of the core is a curved mirror surface for performing optical path conversion. 電気回路が搭載された回路基板の一面に請求項1ないし5の光導波路が設けられていることを特徴とする光・電気混載基板。 An optical / electrical hybrid board, wherein the optical waveguide according to claim 1 is provided on one surface of a circuit board on which an electric circuit is mounted. コアに対応した突起部を有する転写型で第1のクラッド層を形成する工程、第1のクラッド層を転写型から剥離する工程、第1のクラッド層の転写型に接していた第1の面に形成された凹部にコアとなる材料を埋める工程、第1のクラッド層の第1の面に第2のクラッド層を形成する工程、第1のクラッド層の外表面に形成されているコアに沿った突起の一部にコアに対して斜めからレーザを照射してコアの厚さ方向の少なくとも一部を切断する工程とを含むことを特徴とする光導波路の製造方法。 Forming a first clad layer with a transfer mold having a protrusion corresponding to the core, peeling the first clad layer from the transfer mold, and a first surface of the first clad layer in contact with the transfer mold A step of burying a core material in the recess formed in the step, a step of forming a second cladding layer on the first surface of the first cladding layer, and a core formed on the outer surface of the first cladding layer. And a step of irradiating a part of the projection along the core obliquely with a laser to cut at least a part in the thickness direction of the core.
JP2004288073A 2003-10-06 2004-09-30 Manufacturing method of optical waveguide Expired - Fee Related JP4659422B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004288073A JP4659422B2 (en) 2003-10-06 2004-09-30 Manufacturing method of optical waveguide

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003347357 2003-10-06
JP2003432799 2003-12-26
JP2004059114 2004-03-03
JP2004288073A JP4659422B2 (en) 2003-10-06 2004-09-30 Manufacturing method of optical waveguide

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008192767A Division JP2008293040A (en) 2003-10-06 2008-07-25 Optical waveguide having micromirror formed by laser beam machining

Publications (2)

Publication Number Publication Date
JP2005284248A true JP2005284248A (en) 2005-10-13
JP4659422B2 JP4659422B2 (en) 2011-03-30

Family

ID=35182639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004288073A Expired - Fee Related JP4659422B2 (en) 2003-10-06 2004-09-30 Manufacturing method of optical waveguide

Country Status (1)

Country Link
JP (1) JP4659422B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007133036A (en) * 2005-11-08 2007-05-31 Mitsui Chemicals Inc Optical multiplexing/demultiplexing element
JP2008015243A (en) * 2006-07-06 2008-01-24 Molex Inc Relay optical connector
JP2008020719A (en) * 2006-07-13 2008-01-31 Fuji Xerox Co Ltd Multi-core bidirectional communication waveguide array, method of manufacturing same, and bidirectional communication module
JPWO2007004575A1 (en) * 2005-06-30 2009-01-29 三井化学株式会社 Optical waveguide film and opto-electric hybrid film
JPWO2007026601A1 (en) * 2005-08-29 2009-03-05 三井化学株式会社 Optical waveguide film and method for manufacturing the same, opto-electric hybrid film including the same, and electronic device
JP2010107602A (en) * 2008-10-29 2010-05-13 Fuji Xerox Co Ltd Optical transmission apparatus and electronic device
WO2010064635A1 (en) 2008-12-04 2010-06-10 住友ベークライト株式会社 Optical waveguide and member for forming optical waveguide
JP2011118448A (en) * 2006-11-28 2011-06-16 Sumitomo Bakelite Co Ltd Optical wiring component
US8113724B2 (en) 2007-05-14 2012-02-14 Fujikura Ltd. Optical communication module, manufacturing method therefor, and optical transceiver
US8835803B2 (en) 2009-12-29 2014-09-16 Samsung Display Co., Ltd. Laser cutting method and method of manufacturing organic light-emitting device
JP2015099329A (en) * 2013-11-20 2015-05-28 住友ベークライト株式会社 Optical waveguide, opto-electric hybrid board and electronic equipment
WO2016093036A1 (en) * 2014-12-10 2016-06-16 日東電工株式会社 Photoelectric hybrid substrate
JP2016126039A (en) * 2014-12-26 2016-07-11 新光電気工業株式会社 Manufacturing method of optical waveguide device and laser processing device
JP2020016780A (en) * 2018-07-26 2020-01-30 京セラ株式会社 Light guide and optical circuit board
JPWO2019082347A1 (en) * 2017-10-26 2020-05-28 フォトンリサーチ株式会社 Light guide device, optical waveguide device, and multi-wavelength light source module

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH085850A (en) * 1994-06-20 1996-01-12 Furukawa Electric Co Ltd:The Quartz corner mirror waveguide and its production
JPH10142434A (en) * 1996-08-26 1998-05-29 Sharp Corp Optical multiplexing element
JP2000180645A (en) * 1998-12-10 2000-06-30 Nec Corp Formation of optical connection end surface of optical waveguide element
JP2000338347A (en) * 1999-05-25 2000-12-08 Nec Corp Optical module and production of optical waveguide
JP2000347051A (en) * 1999-03-30 2000-12-15 Toppan Printing Co Ltd Optical/electrical wiring board, its manufacturing method and package board
JP2001042150A (en) * 1999-07-30 2001-02-16 Canon Inc Optical waveguide, its manufacture and optical interconnecting device using it
JP2001141965A (en) * 1999-11-15 2001-05-25 Canon Inc Photo-coupler, its manufacturing method, and optical transmitter-receiver and optical interconnection device using the same
JP2001305367A (en) * 2000-04-26 2001-10-31 Sharp Corp Optical parts, optical module and method for forming optical parts
JP2002174745A (en) * 2000-12-07 2002-06-21 Kanagawa Acad Of Sci & Technol Optical integrated circuit and its manufacturing method
JP2002258081A (en) * 2001-02-28 2002-09-11 Fujitsu Ltd Optical wiring board, manufacturing method of the same, and multi-layer optical wiring

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH085850A (en) * 1994-06-20 1996-01-12 Furukawa Electric Co Ltd:The Quartz corner mirror waveguide and its production
JPH10142434A (en) * 1996-08-26 1998-05-29 Sharp Corp Optical multiplexing element
JP2000180645A (en) * 1998-12-10 2000-06-30 Nec Corp Formation of optical connection end surface of optical waveguide element
JP2000347051A (en) * 1999-03-30 2000-12-15 Toppan Printing Co Ltd Optical/electrical wiring board, its manufacturing method and package board
JP2000338347A (en) * 1999-05-25 2000-12-08 Nec Corp Optical module and production of optical waveguide
JP2001042150A (en) * 1999-07-30 2001-02-16 Canon Inc Optical waveguide, its manufacture and optical interconnecting device using it
JP2001141965A (en) * 1999-11-15 2001-05-25 Canon Inc Photo-coupler, its manufacturing method, and optical transmitter-receiver and optical interconnection device using the same
JP2001305367A (en) * 2000-04-26 2001-10-31 Sharp Corp Optical parts, optical module and method for forming optical parts
JP2002174745A (en) * 2000-12-07 2002-06-21 Kanagawa Acad Of Sci & Technol Optical integrated circuit and its manufacturing method
JP2002258081A (en) * 2001-02-28 2002-09-11 Fujitsu Ltd Optical wiring board, manufacturing method of the same, and multi-layer optical wiring

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2007004575A1 (en) * 2005-06-30 2009-01-29 三井化学株式会社 Optical waveguide film and opto-electric hybrid film
JP4679580B2 (en) * 2005-06-30 2011-04-27 三井化学株式会社 Optical waveguide film and opto-electric hybrid film
JPWO2007026601A1 (en) * 2005-08-29 2009-03-05 三井化学株式会社 Optical waveguide film and method for manufacturing the same, opto-electric hybrid film including the same, and electronic device
JP4679582B2 (en) * 2005-08-29 2011-04-27 三井化学株式会社 Optical waveguide film and method for manufacturing the same, opto-electric hybrid film including the same, and electronic device
JP2007133036A (en) * 2005-11-08 2007-05-31 Mitsui Chemicals Inc Optical multiplexing/demultiplexing element
JP2008015243A (en) * 2006-07-06 2008-01-24 Molex Inc Relay optical connector
JP2008020719A (en) * 2006-07-13 2008-01-31 Fuji Xerox Co Ltd Multi-core bidirectional communication waveguide array, method of manufacturing same, and bidirectional communication module
JP4692424B2 (en) * 2006-07-13 2011-06-01 富士ゼロックス株式会社 Waveguide array for multicore bidirectional communication, method for manufacturing the same, and bidirectional communication module
JP2011118448A (en) * 2006-11-28 2011-06-16 Sumitomo Bakelite Co Ltd Optical wiring component
US8113724B2 (en) 2007-05-14 2012-02-14 Fujikura Ltd. Optical communication module, manufacturing method therefor, and optical transceiver
JP2010107602A (en) * 2008-10-29 2010-05-13 Fuji Xerox Co Ltd Optical transmission apparatus and electronic device
US8121443B2 (en) 2008-10-29 2012-02-21 Fuji Xerox Co., Ltd. Optical transmission apparatus
WO2010064635A1 (en) 2008-12-04 2010-06-10 住友ベークライト株式会社 Optical waveguide and member for forming optical waveguide
US8774575B2 (en) 2008-12-04 2014-07-08 Sumitomo Bakelite Company Limited Optical waveguide and optical waveguide manufacturing member
US8835803B2 (en) 2009-12-29 2014-09-16 Samsung Display Co., Ltd. Laser cutting method and method of manufacturing organic light-emitting device
JP2015099329A (en) * 2013-11-20 2015-05-28 住友ベークライト株式会社 Optical waveguide, opto-electric hybrid board and electronic equipment
WO2016093036A1 (en) * 2014-12-10 2016-06-16 日東電工株式会社 Photoelectric hybrid substrate
JP2016109995A (en) * 2014-12-10 2016-06-20 日東電工株式会社 Photoelectricity hybrid substrate
US10288823B2 (en) 2014-12-10 2019-05-14 Nitto Denko Corporation Opto-electric hybrid board
JP2016126039A (en) * 2014-12-26 2016-07-11 新光電気工業株式会社 Manufacturing method of optical waveguide device and laser processing device
JPWO2019082347A1 (en) * 2017-10-26 2020-05-28 フォトンリサーチ株式会社 Light guide device, optical waveguide device, and multi-wavelength light source module
JP2020016780A (en) * 2018-07-26 2020-01-30 京セラ株式会社 Light guide and optical circuit board
JP7027276B2 (en) 2018-07-26 2022-03-01 京セラ株式会社 Optical waveguide and optical circuit board

Also Published As

Publication number Publication date
JP4659422B2 (en) 2011-03-30

Similar Documents

Publication Publication Date Title
KR100702978B1 (en) Optical waveguide having specular surface formed by laser beam machining
JP4659422B2 (en) Manufacturing method of optical waveguide
US6996303B2 (en) Flexible optical waveguides for backplane optical interconnections
JP4153007B2 (en) Optical wiring board and opto-electric hybrid board
US20040234224A1 (en) Optical waveguide and method of manufacturing the same
JP6730801B2 (en) Method of manufacturing optical waveguide
Glebov et al. Integration technologies for pluggable backplane optical interconnect systems
JP3903606B2 (en) Optical signal transmission system and manufacturing method thereof
JP2009069359A (en) Optical waveguide device, and light outputting module
JP2006154447A (en) Manufacturing method of film-like optical waveguide
JP2004054003A (en) Optoelectronic substrate
JP2004170668A (en) Optical transmitting/receiving module, its manufacturing method and optical communication system
JP2006047764A (en) Projected optical waveguide, method of manufacturing the same and optoelectric hybrid substrate using the same
JP2007183467A (en) Optical waveguide with mirror and its manufacturing method
JP2006184773A (en) Optical waveguide and opto-electric hybrid substrate having the same
JP2001281479A (en) High-polymer optical waveguide element and method for manufacturing the same
JP2006215289A (en) Substrate for optical circuit, and manufacturing method of optical circuit substrate using the same
JP2003172837A (en) Optical waveguide element with lens and method of manufacturing the same
JP2003172836A (en) Optical waveguide element with optical path alternation function
JP2007133036A (en) Optical multiplexing/demultiplexing element
JP2008083197A (en) Method of manufacturing optical waveguide
JP2005257789A (en) Light guide and connecting method of optical components
JP2004280009A (en) Optical waveguide and its manufacturing method
JP2004206015A (en) Optical and electric hybrid circuit board
Hendrickx et al. Towards flexible routing schemes for polymer optical interconnections on printed circuit boards

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080527

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081106

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090216

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090216

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091201

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100118

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20100402

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101227

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4659422

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees