JP2006215289A - Substrate for optical circuit, and manufacturing method of optical circuit substrate using the same - Google Patents

Substrate for optical circuit, and manufacturing method of optical circuit substrate using the same Download PDF

Info

Publication number
JP2006215289A
JP2006215289A JP2005028253A JP2005028253A JP2006215289A JP 2006215289 A JP2006215289 A JP 2006215289A JP 2005028253 A JP2005028253 A JP 2005028253A JP 2005028253 A JP2005028253 A JP 2005028253A JP 2006215289 A JP2006215289 A JP 2006215289A
Authority
JP
Japan
Prior art keywords
core
optical
light
substrate
optical waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005028253A
Other languages
Japanese (ja)
Inventor
Takashi Shioda
剛史 塩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2005028253A priority Critical patent/JP2006215289A/en
Publication of JP2006215289A publication Critical patent/JP2006215289A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)
  • Structure Of Printed Boards (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an opto-electric hybrid substrate that facilitates mutual positioning between electric circuit wiring and an optical waveguide, that mitigates load for designing an optical waveguide in designing the electric circuit wiring, and that increases latitude of design for the electric circuit wiring, in manufacturing the opto-electric hybrid substrate. <P>SOLUTION: The substrate for the optical circuit is characterized in that a plurality of cores are arranged side by side through a clad at least on a part of a face parallel to the substrate face, and that an identification code for specifying a core is formed near each core. The manufacturing method of the optical circuit substrate includes a process of forming an incidence/emission part of light in this substrate for the optical circuit. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は高分子光導波路に関し、特に光集積回路、光インターコネクション用光学部品、光電気混載板等を製造する方法に関する。   The present invention relates to a polymer optical waveguide, and more particularly to a method of manufacturing an optical integrated circuit, an optical component for optical interconnection, an opto-electric hybrid board, and the like.

光部品、あるいは光ファイバの基材としては、光伝搬損失が小さく、伝送帯域が広いという特徴を有する石英ガラスや多成分ガラス等の無機系の材料が広く使用されているが、最近では高分子系の材料も開発され、無機系材料に比べて加工性や価格の点で優れていることから、光導波路用材料として注目されている。例えば、ポリメチルメタクリレート(PMMA)、あるいは、ポリスチレンのような透明性に優れた高分子をコアとし、そのコア材料よりも屈折率の低い高分子をクラッド材料としたコア−クラッド構造からなる平板型光導波路が作製されている(特許文献1)。これに対して耐熱性の高い透明性高分子であるポリイミドを用い低損失の平板型光導波路が実現されている(特許文献2)。   As base materials for optical components or optical fibers, inorganic materials such as quartz glass and multicomponent glass, which have the characteristics of low light propagation loss and wide transmission band, are widely used. System materials have also been developed and are attracting attention as materials for optical waveguides because they are superior in processability and price compared to inorganic materials. For example, a flat plate type having a core-clad structure in which a polymer having excellent transparency such as polymethyl methacrylate (PMMA) or polystyrene is used as a core and a polymer having a refractive index lower than that of the core material is used as a cladding material. An optical waveguide is produced (Patent Document 1). On the other hand, a low-loss flat optical waveguide is realized using polyimide, which is a transparent polymer with high heat resistance (Patent Document 2).

高分子光導波路の用途の一つとして、光電気混載基板が考えられている。この光電気混載基板とは、高分子光導波路と電気のプリント配線板との積層構造や、高分子光導波路に直接電気配線したものが考えられている。これらの光電気混載基板では電気回路を形成する面と光導波路を形成する面とが異なる。そのため電気回路配線パターンと光導波路を構成するコアパターンを別々に作製する時の相互の位置あわせが困難である。さらには光電気混載基板の用途や設計によって光入出力の場所が異なるために、都度、光電気混載板の設計に合わせた光回路設計を行って、それに添ったコアパターンを作製する必要がある。
特開平03-188402号 特開平04−9807 号
As one of uses of the polymer optical waveguide, an opto-electric hybrid board is considered. As the opto-electric hybrid board, a laminated structure of a polymer optical waveguide and an electric printed wiring board, or a substrate in which electrical wiring is directly performed on the polymer optical waveguide is considered. In these opto-electric hybrid boards, the surface on which the electric circuit is formed differs from the surface on which the optical waveguide is formed. For this reason, it is difficult to align the electrical circuit wiring pattern and the core pattern constituting the optical waveguide separately. Furthermore, because the location of light input / output differs depending on the use and design of the opto-electric hybrid board, it is necessary to design the optical circuit according to the design of the opto-electric hybrid board and to produce a core pattern according to it. .
Japanese Patent Laid-Open No. 03-188402 Japanese Patent Laid-Open No. 04-9807

本発明の目的は、上記の課題を回避すべく、光電気混載基板の製造において電気回路配線と光導波路の相互の位置あわせを容易にし、また電気回路配線を設計するさいに光銅波路の設計の負担を軽減し、電気回路配線の設計自由度を高める光電気混載用基板を提供することにある。 The object of the present invention is to facilitate the mutual alignment of the electric circuit wiring and the optical waveguide in the manufacture of the opto-electric hybrid board, and to design the optical copper waveguide when designing the electric circuit wiring in order to avoid the above-mentioned problems. It is an object of the present invention to provide an opto-electric hybrid board that reduces the burden on the circuit board and increases the degree of freedom in designing electrical circuit wiring.

本発明者は、鋭意検討した結果、コアの位置情報が付与された光導波路を形成しておくことにより、前記課題を解決することを見出し、本発明を完成させた。すなわち本発明は、基板面に平行な面内の少なくとも一部に、複数のコアがクラッドを介して並列に配置されていて、各コア近傍にはコアを特定するための識別符号が形成されていることを特徴とする光回路用基板である。 As a result of intensive studies, the present inventor has found that the above-mentioned problems can be solved by forming an optical waveguide to which core position information is given, and has completed the present invention. That is, in the present invention, a plurality of cores are arranged in parallel via a clad on at least a part of a plane parallel to the substrate surface, and an identification code for identifying the core is formed in the vicinity of each core. It is the board | substrate for optical circuits characterized by having.

前記コアにさらにこれと交差する複数の第2のコアが並列に形成されていてもよい。
本発明において前記コアが形成されていない面に導体層が形成されていることは好ましい態様である。この導体層はパターニングされてないものでもよく、電気配線がパターニングされていてもよい。
A plurality of second cores that further intersect with the core may be formed in parallel.
In the present invention, it is a preferred embodiment that a conductor layer is formed on the surface where the core is not formed. This conductor layer may be unpatterned, and the electrical wiring may be patterned.

また本発明は、上記光回路用基板で光導波をすべきコアを特定し、そのコアに導波すべき光を入射または出射する箇所にコアを切断する穴を設けて反射面を形成する工程を含む光回路基板の製造方法である。   According to another aspect of the invention, there is provided a step of identifying a core to be guided by the optical circuit substrate and forming a reflecting surface by providing a hole for cutting the core at a position where the light to be guided enters or exits the core. The manufacturing method of the optical circuit board containing this.

さらに本発明は、基板面に平行な面内の少なくとも一部に、複数のコアがクラッドを介して並列に配置されている光回路用基板に、コアに焦点をあわせた検出光をコアを横切る方向に走査させ反射光または透過光強度の変化をカウントすることによりコアを特定し、特定したコアに導波すべき光を入射または出射する箇所にコアを切断する穴を設けて反射面を形成する工程を含む光回路基板の製造方法である。   Furthermore, the present invention is directed to an optical circuit substrate in which a plurality of cores are arranged in parallel via a cladding on at least a part of a plane parallel to the substrate surface, and the detection light focused on the core crosses the core. Specify the core by scanning in the direction and counting the change in reflected or transmitted light intensity, and form a reflecting surface by providing a hole to cut the core at the location where the light to be guided to or output from the specified core The manufacturing method of the optical circuit board | substrate including the process to do.

この複数のコアが形成された面と対向した面に、複数のコアの少なくとも1つを利用する光回路または電気回路が形成される。例えば発光素子をその回路の1要素とすると、発光素子およびそれを駆動するための電気回路配線の設計において、発光素子の設置位置を複数のコアの形成された範囲に投影される位置に決めさえすれば、その設置位置に一番近いコアを選択して発光素子からの光をコアに導く穴をあけると同時にコアを切断する反射面を形成することにより、発光素子からコアに至る光路を形成することができる。   An optical circuit or an electric circuit using at least one of the plurality of cores is formed on a surface opposite to the surface on which the plurality of cores are formed. For example, when the light-emitting element is an element of the circuit, in the design of the light-emitting element and the electric circuit wiring for driving the light-emitting element, the installation position of the light-emitting element is even determined as the position projected on the range where the plurality of cores are formed. Then, the optical path from the light emitting element to the core is formed by selecting the core closest to the installation position and making a hole that guides the light from the light emitting element to the core and at the same time forming a reflective surface that cuts the core. can do.

並列して配置されるコアのピッチは小さいほど電気回路に接続される受発光素子や光素子を設置する場所の自由度は大きくなる。一方コアのピッチが小さすぎると隣接するコアへの光の漏洩が生じ、損失が大きくなる。コアのピッチはコア間の間隔として、5μm以上1mm以下が好ましい。より好ましくは10μm以上500μm以下である。また少なくとも10mm幅を埋めるように20本〜300本のコアがクラッドを介して並列に形成されていることが望ましい。   The smaller the pitch of the cores arranged in parallel, the greater the degree of freedom in the place where the light emitting / receiving elements and optical elements connected to the electric circuit are installed. On the other hand, if the core pitch is too small, light leaks to the adjacent core, and loss increases. The pitch between the cores is preferably 5 μm or more and 1 mm or less as an interval between the cores. More preferably, it is 10 μm or more and 500 μm or less. Further, it is desirable that 20 to 300 cores are formed in parallel via a clad so as to fill at least a width of 10 mm.

コアが交差する場合は、並列するコアのピッチはコア幅の2倍以上が適当である。これにより交差するコア同士の干渉を小さくすることができ、かつ光入出部の位置設定が行いやすくなる。   When the cores intersect, the pitch of the parallel cores is suitably at least twice the core width. As a result, interference between the intersecting cores can be reduced, and the position of the light input / output portion can be easily set.

本発明において、クラッドを介して並列に配置された複数のコアのうち、実際に利用されるのは一部であり、その他のコアは利用されない、いわゆるダミーである。複数のコアの形成は光リソグラフィにより一括で行えるため、例えば予め電気回路にあわせてコアパターンを形成する場合に比べてコア形成の工程数を変えずにできる。   In the present invention, among the plurality of cores arranged in parallel via the clad, some are actually used, and other cores are not used, so-called dummy. Since a plurality of cores can be collectively formed by photolithography, for example, the number of core forming steps can be changed without changing the number of core forming steps as compared with a case where a core pattern is previously formed in accordance with an electric circuit.

ここで光回路用基板とは、少なくともコアとクラッドを備えた光導波路を含む基板で、コアへの光の入出力部が形成されていないものをいう。この光回路用基板をさらに加工して電気配線が形成されて必要により各種電子素子や光電素子が搭載され、コアへの光の入出力部が形成されて光電気混載基板となったり、あるいは電気配線や必要により各種電子素子や光電素子が搭載される電気配線基板と積層され、さらにコアへの光の入出力部が形成されて光電気混載基板となる。   Here, the optical circuit substrate is a substrate including an optical waveguide provided with at least a core and a clad, and does not have an input / output unit for light to the core. This optical circuit board is further processed to form electrical wiring, and if necessary, various electronic elements and photoelectric elements are mounted, and an input / output unit for light to the core is formed to become an opto-electric hybrid board, or electrical It is laminated with an electric wiring board on which various electronic elements and photoelectric elements are mounted as necessary, and an optical input / output unit to the core is formed to form an opto-electric hybrid board.

光電気混載基板は光導波路と電気回路をともに備えたものをいい、電気回路としては例えば受発光素子を駆動する電気回路、光導波路を導波する光が該光導波路あるいは光導波路外で電気光学効果を発現するための電界付与のための回路が挙げられる。また、光回路基板とは光導波路を備え必要なコアに光の入出力部が形成されたものをいう。ここでは電気配線を含まない光回路だけを備えた基板だけでなく、光電気混載基板も含めて光回路基板という。   An opto-electric hybrid board is a board having both an optical waveguide and an electric circuit. Examples of the electric circuit include an electric circuit for driving a light receiving and emitting element, and light guided through the optical waveguide is electro-optics outside the optical waveguide or outside the optical waveguide. A circuit for applying an electric field for producing an effect can be mentioned. An optical circuit board is an optical circuit board having an optical waveguide and a light input / output section formed in a necessary core. Here, not only a substrate having only an optical circuit that does not include electrical wiring but also an optical / electrical hybrid substrate is referred to as an optical circuit substrate.

本発明による光回路用基板は種々の信号伝送経路に対応できるため、光電気混載基板を含む光回路基板ごとに光導波路のコアパターンの設計を変更する必要が無く、その製作に用いられるフォトマスクは同一のものが使える。また光電気混載板の電気回路配線を設計する際にも、電気回路配線にとって最適な配線を設計し、光結合の必要な箇所は近くにあるコアを選択することができるので最適な回路設計のための自由度も増し、かつ全体で基板コストを低減することが出来る。   Since the optical circuit board according to the present invention can cope with various signal transmission paths, it is not necessary to change the design of the core pattern of the optical waveguide for each optical circuit board including the opto-electric hybrid board, and the photomask used for the production thereof. Can use the same thing. Also, when designing the electrical circuit wiring of the opto-electric hybrid board, it is possible to design the optimal wiring for the electrical circuit wiring and select the core that is close to the place where optical coupling is necessary, so that the optimal circuit design Therefore, the degree of freedom can be increased and the substrate cost can be reduced as a whole.

以下、本発明を図を用いて詳細に説明する。ここでは、光導波路層としてポリイミド光導波路を例に挙げて説明するが、光導波路および電気配線板の材料としてポリイミド以外の樹脂を用いることももちろん可能である。また、光電気混載基板として光導波路層と電気配線板層とが積層している構造だけでなく、光導波路に直接電気配線が施されている場合や、更には、光導波路単体の場合も可能である。なお、コアとクラッドは樹脂からなることが、加工が容易になるので好ましい。   Hereinafter, the present invention will be described in detail with reference to the drawings. Here, a polyimide optical waveguide will be described as an example of the optical waveguide layer, but it is of course possible to use a resin other than polyimide as a material for the optical waveguide and the electric wiring board. In addition to a structure in which an optical waveguide layer and an electrical wiring board layer are laminated as an opto-electric hybrid board, it is possible to have direct electrical wiring on the optical waveguide, or even a single optical waveguide It is. In addition, it is preferable that the core and the clad are made of resin because processing becomes easy.

図1に本発明の光導波路の一例を示す。クラッド1とコア2からなる光導波路において、コアが直線であり、あるピッチで数多く配線されている。ここでは、コアは直線のパターンを描いたが、直線以外のパターンを用いても構わない。回路設計する際にはこれら並列に並んだ複数のコアのうちのいずれかのコアを選ぶことになる。
光導波路に利用するコアを特定する方法は、次のような方法がある。
FIG. 1 shows an example of the optical waveguide of the present invention. In the optical waveguide composed of the clad 1 and the core 2, the core is a straight line and many wires are arranged at a certain pitch. Here, the core has drawn a straight line pattern, but a pattern other than a straight line may be used. When designing a circuit, one of the plurality of cores arranged in parallel is selected.
There are the following methods for specifying the core used in the optical waveguide.

1つの方法は、図2に示すように、各コアの近傍でコア2に沿って、コアを特定する識別符号4となる数字または文字などを付しておく。この識別符号には、数字やローマ字など様々なものを用いることが出来る。この識別符号は、コアの延びる方向に沿ってある周期で繰り返し形成しておくと識別符号を見つけやすくなる。この識別符号は光リソグラフィでコアを形成する時に同時に刻印しておけばよい。   In one method, as shown in FIG. 2, numbers or letters that are identification codes 4 for identifying the cores are attached along the cores 2 in the vicinity of each core. Various identification codes such as numerals and Roman letters can be used for this identification code. If this identification code is repeatedly formed in a certain cycle along the direction in which the core extends, the identification code can be easily found. This identification code may be engraved at the same time when the core is formed by photolithography.

コア特定のための別の方法として、適度な大きさのビームに絞りかつコア位置に焦点を合わせた検出用の光をコアを横切る方向に走査して、コアを横切る時の反射光の強度変化の回数をカウントすることにより、コアの数を求めることにより、コアを特定することもできる。反射光でなく透過光の強度変化を求めてもよい。そして必要であれば、特定したコアの近傍に目印となるマーカを形成してもよい。このマーカは、レーザ光を照射することによっても形成できる。これらの方法により、光接続すべき箇所、例えば光のコアへの入力部、コアからの出力部あるいはコア内での反射部を形成すべきコアを特定することができる。   Another method for identifying the core is to change the intensity of the reflected light when crossing the core by scanning the detection light focused on the core position with a beam of moderate size and focused on the core position. By counting the number of times, the core can be specified by obtaining the number of cores. You may obtain | require the intensity change of transmitted light instead of reflected light. If necessary, a marker serving as a mark may be formed in the vicinity of the identified core. This marker can also be formed by irradiating a laser beam. By these methods, it is possible to specify a location where an optical connection is to be made, for example, a core where an optical input portion to the core, an output portion from the core, or a reflection portion within the core is to be formed.

特定したコアの必要箇所に光入出部を形成する方法を、次に説明する。
図7に示した光導波路の断面において、コア2はクラッド1に上下を挟まれている(図7(a))。この光導波路の入出力部に斜めからレーザを照射して斜めの穴33を形成してコアを切断する(図7(b))。コアの切断面がミラーとなる。ミラーの傾斜角度を45度にすればコアとコアに対して垂直な方向への光路34を得ることができる(図7(c))。レーザを斜めに照射するのではなく、垂直に照射して穴をあけて、その穴に光ピンとなるミラー付の短い光導波路あるいは光ファイバを挿入することにより、光入出部を形成することもできる。
Next, a method for forming the light input / output portion at the necessary portion of the identified core will be described.
In the cross section of the optical waveguide shown in FIG. 7, the core 2 is sandwiched between the top and bottom of the clad 1 (FIG. 7 (a)). The input / output portion of the optical waveguide is irradiated with laser from an oblique direction to form an oblique hole 33 and cut the core (FIG. 7B). The cut surface of the core becomes a mirror. If the angle of inclination of the mirror is 45 degrees, the optical path 34 in the direction perpendicular to the core can be obtained (FIG. 7 (c)). Rather than irradiating the laser obliquely, a light input / output portion can be formed by puncturing a hole vertically and inserting a short optical waveguide or optical fiber with a mirror to be an optical pin into the hole. .

図8は光導波路埋め込み型の光電気混載基板に対してのミラー形成方法である。ここではコア2とクラッド1からなる光導波路の両面に電気配線層35が形成されているために(図8(a))、上からではコア2が見えない場合がある。その場合、光の入出力部に電気配線板のない基板を用いるか、あるいはエキシマレーザを照射するなどにより電気配線層にコアまで達しない穴36を形成する(図8(b))。この穴をとおして識別符号を認識する。その後、斜めからエキシマレーザを照射することにより、ミラー(図8(c))を形成する。不透明な層で光導波路が囲まれたために、光導波路のコアが観察できない場合も、同様に穴明けや予め穴のあいた層を用いることによって位置情報を取得し、光路34となる光の入出力部は形成できる(図8(d))。   FIG. 8 shows a mirror forming method for an optical waveguide embedded type opto-electric hybrid board. Here, since the electric wiring layers 35 are formed on both surfaces of the optical waveguide composed of the core 2 and the clad 1 (FIG. 8A), the core 2 may not be seen from above. In that case, a hole 36 that does not reach the core is formed in the electric wiring layer by using a substrate without an electric wiring board in the light input / output unit or by irradiating an excimer laser (FIG. 8B). The identification code is recognized through this hole. Thereafter, an excimer laser is irradiated obliquely to form a mirror (FIG. 8C). Even when the core of the optical waveguide cannot be observed because the optical waveguide is surrounded by an opaque layer, the position information is obtained by using a layer with a hole or a hole in advance, and the input / output of light to be the optical path 34 The part can be formed (FIG. 8D).

基板全体あるいは1つの領域だけに並列した複数のコアを備えるだけではなく、基板を複数の領域に分け、その内のいくつかの領域内で並列した複数のコアを備えることもできる。その場合異なる領域ではコアのパターンは異なってもよい。図4では4つの領域11に分け、それぞれの領域内で光伝送を行う例を示す。図示してないが、コア12とコアの間にコアを特定する番号を表示しておけばよい。   In addition to providing a plurality of cores arranged in parallel in the entire substrate or only in one region, the substrate can be divided into a plurality of regions, and a plurality of cores arranged in parallel in some of the regions can be provided. In that case, the core pattern may be different in different regions. FIG. 4 shows an example of dividing into four areas 11 and performing optical transmission in each area. Although not shown, a number for identifying the core may be displayed between the core 12 and the core.

次に、図5にはクラッド21を介して並列した複数のコア22とこれに直交する複数の並列したコアが形成されていて、コアパターンが網目状になっている例を示す。これにより、一方向だけでなく、別の方向への光導波が可能となる。なおコアが交差する箇所で多少の損失が生じるが、設計により許容可能な損失にすることができる。回路設計に応じて、光入出力の必要な箇所に穴をあけて90°変換用ミラーを形成すればよい。   Next, FIG. 5 shows an example in which a plurality of cores 22 arranged in parallel via the clad 21 and a plurality of parallel cores orthogonal to the cores 22 are formed, and the core pattern has a mesh shape. As a result, it is possible to guide light in another direction as well as in one direction. Although some loss occurs at the location where the cores intersect, the loss can be made acceptable by design. According to the circuit design, a 90 ° conversion mirror may be formed by drilling a hole where light input / output is necessary.

さらにこのようなパターンを用いることにより、基板内の任意の場所で光の入出力が可能となる。図6には、図5と同様にクラッド21とコア22からなる光導波路において網目状にコア22が形成されている。ここではコアの交差点にミラーが形成される。ミラーの形成方法の一例としてレーザ加工がある。ミラーを形成する箇所にレーザを垂直に照射して、コアの一部を垂直に切断する穴31を形成することにより、コアの切断面がミラーとなる。このミラーを介して光路変換を行うことにより、所望の場所まで伝送させる。光入出力部32は所望の箇所に穴を形成し、90°変換用の微小ミラーを挿入するか、あるいは、直接光導波路に90°変換用の斜めの穴をあけてコア断面をミラーとして用いればよい。このようにして、点線で示した光路23を得ることができる。このとき、各直線の導波路には識別符号として番号を割り当てておくことにより、用いるコアを特定することができる。ミラーを形成する交差部は二つの番号の組み合わせとなる。   Further, by using such a pattern, light can be input / output at an arbitrary location in the substrate. In FIG. 6, as in FIG. 5, the core 22 is formed in a mesh shape in the optical waveguide composed of the clad 21 and the core 22. Here, a mirror is formed at the intersection of the cores. An example of a method for forming a mirror is laser processing. By irradiating the part where the mirror is formed vertically with a laser to form a hole 31 for vertically cutting a part of the core, the cut surface of the core becomes a mirror. By performing optical path conversion through this mirror, it is transmitted to a desired location. The optical input / output unit 32 can be used by forming a hole at a desired location and inserting a 90 ° conversion micro mirror, or by directly forming a 90 ° conversion oblique hole in the optical waveguide and using the core cross section as a mirror. That's fine. In this way, the optical path 23 indicated by the dotted line can be obtained. At this time, a core to be used can be specified by assigning a number as an identification code to each straight waveguide. The intersection forming the mirror is a combination of two numbers.

また、図9に示すように、レーザ加工により交差部の中央に頂点を有する横断面が矩形状の穴41を形成することにより、単純な光路変換だけでなく、1対2の光分岐が可能となる。交差部の矩形状の穴は同形状のフォトマスクを通してエキシマレーザを照射して垂直に穴をあける。穴41の壁の一部として形成されるコア端面に向かう光路42で伝搬してきた光はコア端面で分波され、分岐光はそれぞれが90度光路変換された二方向の光路43、43‘へ進んでいく。この手法を用いることにより、1対1だけでなく、1対多の光伝送が基板内の自由な場所で可能になる。   Further, as shown in FIG. 9, by forming a hole 41 having a rectangular cross section having a vertex at the center of the intersection by laser processing, not only simple optical path conversion but also one-to-two optical branching is possible. It becomes. The rectangular holes at the intersections are punctured vertically by irradiating an excimer laser through a photomask of the same shape. The light propagating in the optical path 42 that is formed as a part of the wall of the hole 41 toward the core end surface is demultiplexed at the core end surface, and the branched light is respectively transmitted to the two-way optical paths 43 and 43 ′ in which the optical paths are changed by 90 degrees. Go ahead. By using this method, not only one-to-one but one-to-many optical transmission can be performed at any place in the substrate.

図3(a)には基板全体を四つの領域に分け、1つの領域11から他の3つの領域へ無数のコア12で結ぶ形態を示した。ここで、コアが交差する交差部13は、図3(b)に示すようになるべく90度に近い角度で交差させるようにする。交差部が多く、損失が問題となる場合は、光回路層を二層以上の構造にすることが好ましい。そのとき、光入出力の場所を調整すればよい。更に、必要であれば、全てのパターンは等長配線とする。また、この場合も、図2のようにコアパターンにはそれぞれ位置情報として番号を付与すればよい。   FIG. 3A shows a form in which the entire substrate is divided into four regions and an infinite number of cores 12 are connected from one region 11 to the other three regions. Here, the intersection 13 where the cores intersect is made to intersect at an angle as close to 90 degrees as possible as shown in FIG. In the case where there are many intersections and loss is a problem, it is preferable that the optical circuit layer has a structure of two or more layers. At that time, the place of light input / output may be adjusted. Furthermore, if necessary, all patterns are made of equal length wiring. Also in this case, a number may be given to each core pattern as position information as shown in FIG.

光導波路層が多層構造であって、図1、図3、図4、図5のパターンいずれかあるいはそれぞれを各層構成に用いることにより、許容損失値、用途に合わせた経路を選択することができ、ユーザにとって使いやすい光導波路および光電気混載基板となる。光入出力用ミラーの位置を調整することだけで実現できる。このとき、光の入出力部はそれぞれのパターンが重ならない場所とすればよい。   The optical waveguide layer has a multi-layer structure, and by using any one or each of the patterns shown in FIGS. 1, 3, 4, and 5 for each layer configuration, it is possible to select an allowable loss value and a route according to the application. Therefore, the optical waveguide and the opto-electric hybrid board are easy to use for the user. This can be achieved simply by adjusting the position of the light input / output mirror. At this time, the light input / output unit may be a place where the patterns do not overlap.

引き続いて、いくつかの実施例を用いて本発明を更に詳しく説明する。なお、分子構造の異なる種々の高分子を用いることにより数限りない本発明の光導波路および光電気混載基板が得られることは明らかである。したがって、本発明はこれらの実施例のみに限定されるものではない。   Subsequently, the present invention will be described in more detail using several examples. It is obvious that an unlimited number of optical waveguides and opto-electric hybrid substrates can be obtained by using various polymers having different molecular structures. Therefore, the present invention is not limited only to these examples.

(実施例1)
5インチシリコンウェハ上に2,2−ビス(3,4−ジカルボキシフェニル)ヘキサフルオロプロパン二無水物(6FDA)と2,2−ビス(トリフルオロメチル)−4, 4' −ジアミノビフェニル(TFDB)から形成されるポリイミドをクラッドとして、6FDAとTFDBおよび6FDAと4, 4' −オキシジアニリン(ODA)の共重合ポリアミド酸溶液から形成されるポリイミドをコアとして、フォトリソグラフィとドライエッチング技術により埋め込み型光導波路フィルムを作製した。このとき、コアパターンは、7cm角の中に一方向に250μmピッチで並列するコアとこれと交差するコアからなる網の目状のコアパターンを形成した。各コア幅35μm、高さは、30μmとした。また、コアの左側40μmの位置に、1mm周期で、端からそれぞれ1から140までパターンに沿って識別のための番号付けをしておいた。これは、コア形成時のマスクパターンにこの番号を付与しておくことでコアのパターニングと同時に形成された。
Example 1
2,2-bis (3,4-dicarboxyphenyl) hexafluoropropane dianhydride (6FDA) and 2,2-bis (trifluoromethyl) -4,4'-diaminobiphenyl (TFDB) on a 5-inch silicon wafer ) And a polyimide formed from a copolymerized polyamic acid solution of 6FDA and TFDB and 6FDA and 4,4′-oxydianiline (ODA) as a core, and embedded by photolithography and dry etching technology. Type optical waveguide film was prepared. At this time, as the core pattern, a net-like core pattern composed of a core parallel to each other at a pitch of 250 μm in one direction in a 7 cm square and a core crossing the core was formed. Each core width was 35 μm and the height was 30 μm. Further, numbering for identification was made at a position of 40 μm on the left side of the core in a 1 mm cycle from the end to 1 to 140 from the end. This was formed simultaneously with the patterning of the core by assigning this number to the mask pattern at the time of core formation.

次に、光入出力用の微小鏡を形成した。番号50のコアに対して、微小鏡形成を行った。光導波路を51度に傾け、KrFエキシマレーザ加工により微小鏡を形成した。エキシマレーザ加工には、マスク投影法を用いた。光導波路上で1辺200μmの正方形となるようなマスクを用いた。これで、1辺200μmの穴を明けることができる。200パルス/秒で3秒間、光導波路に対して照射した。照射強度は、光導波路上で約0.4mJ/パルスであった。この照射を二箇所行い、それぞれ光の入力側、出力側とした。外部からの光を90度光路変換し、光の入出力を行った。光入力部から、光ファイバで波長850nmの光を挿入し、光出力部において90度光路変換用微小鏡で反射した光をCCDカメラで観測したところ、反射スポットが観測され、光伝搬が確認できた。   Next, an optical input / output micromirror was formed. Micromirror formation was performed on the core of No. 50. The optical waveguide was tilted at 51 degrees, and a micromirror was formed by KrF excimer laser processing. A mask projection method was used for excimer laser processing. A mask having a square shape with a side of 200 μm was used on the optical waveguide. With this, a hole having a side of 200 μm can be formed. The optical waveguide was irradiated at 200 pulses / second for 3 seconds. The irradiation intensity was about 0.4 mJ / pulse on the optical waveguide. This irradiation was performed at two locations, which were the light input side and the output side, respectively. The light from the outside was converted by 90 degrees to input / output light. When light with a wavelength of 850 nm is inserted from the optical input section with an optical fiber and the light reflected by the 90-degree optical path changing micromirror is observed with the CCD camera at the optical output section, a reflected spot is observed and light propagation can be confirmed. It was.

(実施例2)
実施例1と全く同様の光導波路パターンを形成した。
次に、フレキシブル配線板である片面銅箔付きポリイミドフィルムを二枚用意し、光電気混載基板を作成した。フッ素化ポリイミド光導波路の両面に接着層として、熱可塑性ポリイミドをそれぞれ熱処理後10μmの厚みになるようにスピンコートし、熱処理をした。この熱可塑性ポリイミドはオキシジフタル酸ニ無水物(ODPA)とアミノフェノキシベンゼン(APB)からなるポリイミドを用いた。
次に、二枚の片面銅箔付ポリイミドフィルムを熱可塑性ポリイミド膜がコートされた光導波路フィルムのポリイミドフィルム面両側に加熱プレスにより接着固定した。加熱プレスは、プレス温度250℃、プレス圧力2MPa、プレス時間4時間で行った。
(Example 2)
An optical waveguide pattern exactly the same as in Example 1 was formed.
Next, two polyimide films with a single-sided copper foil as a flexible wiring board were prepared, and an opto-electric hybrid board was prepared. Thermoplastic polyimide was spin-coated on both sides of the fluorinated polyimide optical waveguide as a bonding layer so as to have a thickness of 10 μm after the heat treatment, followed by heat treatment. As the thermoplastic polyimide, a polyimide made of oxydiphthalic dianhydride (ODPA) and aminophenoxybenzene (APB) was used.
Next, two polyimide films with single-sided copper foil were bonded and fixed to both sides of the polyimide film surface of the optical waveguide film coated with the thermoplastic polyimide film by a hot press. The hot press was performed at a press temperature of 250 ° C., a press pressure of 2 MPa, and a press time of 4 hours.

次に、光入出力用の微小鏡を形成した。番号50のコアに対して、微小鏡形成を行った。銅層を塩化第二鉄水溶液によって、ウェットエッチングした。基板の材料によってコアが見にくい場合は、光電気混載基板上で1辺が1mmの照射径になるようなマスクを用いて、番号50付近にKrFエキシマレーザを照射した。200パルス/秒で0.6秒間、光導波路に対して照射した。照射強度は、光導波路上で約0.4mJ/パルスであった。この照射を光の入力側、出力側となる二箇所に行ってその箇所の表層を除去した。次に、実施例1と同様に、基板を51度に傾け、光の入力側と出力側にそれぞれ前後してエキシマレーザを照射して穴を形成した。照射条件は、光電気混載基板上で1辺が200μmの照射径となるようなマスクを用い、200パルス/秒で3秒間照射した。このようにして入力側と出力側の二箇所にコア切断面からなる微小鏡を形成した。基板の光入力部から、光ファイバで波長850nmの光を挿入し、基板の光出力部において90度光路変換用微小鏡で反射した光をCCDカメラで観測したところ、反射スポットが観測され、光伝搬が確認できた。   Next, an optical input / output micromirror was formed. Micromirror formation was performed on the core of No. 50. The copper layer was wet etched with an aqueous ferric chloride solution. When it was difficult to see the core due to the material of the substrate, a KrF excimer laser was irradiated in the vicinity of No. 50 using a mask having an irradiation diameter of 1 mm on one side on the opto-electric hybrid substrate. The optical waveguide was irradiated at 200 pulses / second for 0.6 seconds. The irradiation intensity was about 0.4 mJ / pulse on the optical waveguide. This irradiation was performed at two locations on the light input side and output side, and the surface layer at that location was removed. Next, in the same manner as in Example 1, the substrate was tilted by 51 degrees, and excimer laser was irradiated back and forth on the light input side and output side to form holes. Irradiation was performed for 3 seconds at 200 pulses / second using a mask having an irradiation diameter of 200 μm on one side on the opto-electric hybrid board. In this manner, micromirrors having core cut surfaces were formed at two locations, the input side and the output side. When light having a wavelength of 850 nm is inserted from the light input portion of the substrate through an optical fiber and the light reflected by the 90 ° optical path changing micromirror is observed at the light output portion of the substrate with a CCD camera, a reflected spot is observed, Propagation was confirmed.

(実施例3)
実施例1と全く同様の光導波路パターンを形成した。
次に、この光導波路パターンを用いて、光伝送経路の形成を行った。縦1コアにおいて横1コアとの交差部と横2コアとの交差部の中間に光を入射部を設け、横140コアにおける縦140コアとの交差部と縦139コアとの交差部の中間に光の出射部を設けることを設計した。つまり、縦1のコアを伝搬し、縦1コアと横140コアの交差部で面内で90°光路変換し、横140のコアを伝搬させる光路である。まず、KrFエキシマレーザ加工により、縦1コアと横140コアの交差部に図6に示すようにコアを貫通する穴31をKrFエキシマレーザ加工により垂直にあけた。このとき形成されたコア切断面により面内に90度光路変換できる。穴あけの条件は、光導波路上に1辺が200μmの照射径となるようなマスクを用いた。これで1辺が200μmの穴を明けることができる。200パルス/秒で2秒間、光導波路に対して照射した。照射強度は、光導波路上で約0.4mJ/パルスであった。
(Example 3)
An optical waveguide pattern exactly the same as in Example 1 was formed.
Next, an optical transmission path was formed using this optical waveguide pattern. In the vertical 1 core, a light incident portion is provided in the middle of the intersection between the horizontal 1 core and the horizontal 2 core, and in the horizontal 140 core, the middle of the intersection between the vertical 140 core and the vertical 139 core. It was designed to provide a light emitting part. In other words, this is an optical path that propagates through the core of the length 140, changes the optical path by 90 ° in the plane at the intersection of the length 1 core and the width 140 core, and propagates the core of the width 140. First, by KrF excimer laser processing, a hole 31 penetrating the core was vertically drilled by KrF excimer laser processing at the intersection of one vertical core and 140 horizontal core as shown in FIG. The optical path can be changed 90 degrees in the plane by the core cut surface formed at this time. As a condition for drilling, a mask having an irradiation diameter of 200 μm on one side was used on the optical waveguide. With this, a hole having a side of 200 μm can be formed. The optical waveguide was irradiated at 200 pulses / second for 2 seconds. The irradiation intensity was about 0.4 mJ / pulse on the optical waveguide.

次に、光入出力用のミラーを形成した。光の入射部と出射部にそれぞれレーザで斜めの穴をあけて形成されたコアの切断面がミラーとなる。その形成法は、光導波路を51度に傾け、先ほどと同じマスクを用いて、光入出力部にKrFエキシマレーザを先ほどと同じ照射光量で3秒間照射した。これにより、外部から基板面に垂直に入射する光を90度光路変換し、縦1コアへの光の入力を行った。光入力部から、光ファイバで波長850nmの光を挿入し、横140コアの光出力部において90度光路変換用ミラーで反射した光をCCDカメラで観測したところ、反射スポットが観測され、光伝搬が確認できた。この光導波路に入出力や光路変換のための穴をあける前に電気配線基板と貼り合わせておき、電気配線基板を通してこれらの穴をあけることにより、電気混載基板となる。   Next, a light input / output mirror was formed. The cut surface of the core formed by making an oblique hole with a laser at each of the light incident portion and the light emitting portion is a mirror. In the formation method, the optical waveguide was tilted at 51 degrees, and the same input mask was used to irradiate the light input / output part with a KrF excimer laser for 3 seconds with the same amount of irradiation as before. As a result, the light perpendicularly incident on the substrate surface from the outside was subjected to an optical path change by 90 degrees, and the light was input to one vertical core. When light with a wavelength of 850 nm is inserted from the optical input section with an optical fiber and the light reflected by the 90-degree optical path conversion mirror is observed with a CCD camera in the optical output section of the horizontal 140 core, a reflected spot is observed, and light propagation Was confirmed. Before making holes for input / output and optical path conversion in this optical waveguide, it is bonded to an electric wiring board, and these holes are made through the electric wiring board to form an electric mixed board.

本発明の光導波路の一例を示す図The figure which shows an example of the optical waveguide of this invention 本発明の光導波路の識別符号の一例を示す図The figure which shows an example of the identification code | symbol of the optical waveguide of this invention 本発明の光導波路の一例を示す図The figure which shows an example of the optical waveguide of this invention 本発明の光導波路の一例を示す図The figure which shows an example of the optical waveguide of this invention 本発明の光導波路の一例を示す図The figure which shows an example of the optical waveguide of this invention 本発明の光導波路における面内光路変換の一例を示す図The figure which shows an example of the in-plane optical path conversion in the optical waveguide of this invention 本発明の光導波路における光入出力部の形成方法の一例を示す図The figure which shows an example of the formation method of the light input / output part in the optical waveguide of this invention 本発明の光電気混載基板における光入出力部の形成方法の一例を示す図The figure which shows an example of the formation method of the optical input / output part in the opto-electric hybrid board of this invention 本発明の光導波路を用いた2分岐の一例を示す図The figure which shows an example of 2 branches using the optical waveguide of this invention

符号の説明Explanation of symbols

1:クラッド、 2:コア、 4:識別符号、
11:領域、 12:コア、 13:コアの交差部、 21:クラッド、
22:コア、 31:穴、 32:光入出力部、
33:穴、 34:光路、 35:電気配線層、
36:穴、 41:穴、 42:光路、 43:光路
1: cladding, 2: core, 4: identification code,
11: Region, 12: Core, 13: Intersection of core, 21: Clad,
22: Core, 31: Hole, 32: Optical input / output unit,
33: hole, 34: optical path, 35: electrical wiring layer,
36: hole, 41: hole, 42: optical path, 43: optical path

Claims (5)

基板面に平行な面内の少なくとも一部に、複数のコアがクラッドを介して並列に配置されていて、各コア近傍にはコアを特定するための識別符号が形成されていることを特徴とする光回路用基板。 A plurality of cores are arranged in parallel through a clad in at least a part of a plane parallel to the substrate surface, and an identification code for identifying the core is formed in the vicinity of each core. Optical circuit board. 前記コアにさらにこれと交差する複数の第2のコアが並列に形成されている請求項1に記載の光回路用基板。 The optical circuit board according to claim 1, wherein a plurality of second cores that further intersect with the core are formed in parallel. 前記コアが形成されていない面に導体層が形成されていることを特徴とする請求項1または2に記載の光回路用基板。 The optical circuit board according to claim 1, wherein a conductor layer is formed on a surface on which the core is not formed. 請求項1乃至請求項3の光回路用基板で光導波をすべきコアを特定し、そのコアに導波すべき光を入射または出射する箇所にコアを切断する穴を設けて反射面を形成する工程を含むことを特徴とする光回路基板の製造方法。 4. A core to be guided by the optical circuit substrate according to claim 1 is specified, and a reflecting surface is formed by providing a hole for cutting the core at a position where light to be guided enters or exits the core. The manufacturing method of the optical circuit board characterized by including the process to perform. 基板面に平行な面内の少なくとも一部に、複数のコアがクラッドを介して並列に配置されている光回路用基板に、コアに焦点をあわせた検出光をコアを横切る方向に走査させ反射光または透過光強度の変化をカウントすることによりコアを特定し、特定したコアに導波すべき光を入射または出射する箇所にコアを切断する穴を設けて反射面を形成する工程を含むことを特徴とする光回路基板の製造方法。 Reflects detection light focused on a core in a direction across the core on an optical circuit board in which a plurality of cores are arranged in parallel via a clad on at least part of the plane parallel to the board surface. Including a step of identifying a core by counting a change in light or transmitted light intensity, and forming a reflecting surface by providing a hole for cutting the core at a position where light to be guided to or emitted from the identified core is incident An optical circuit board manufacturing method characterized by the above.
JP2005028253A 2005-02-03 2005-02-03 Substrate for optical circuit, and manufacturing method of optical circuit substrate using the same Pending JP2006215289A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005028253A JP2006215289A (en) 2005-02-03 2005-02-03 Substrate for optical circuit, and manufacturing method of optical circuit substrate using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005028253A JP2006215289A (en) 2005-02-03 2005-02-03 Substrate for optical circuit, and manufacturing method of optical circuit substrate using the same

Publications (1)

Publication Number Publication Date
JP2006215289A true JP2006215289A (en) 2006-08-17

Family

ID=36978574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005028253A Pending JP2006215289A (en) 2005-02-03 2005-02-03 Substrate for optical circuit, and manufacturing method of optical circuit substrate using the same

Country Status (1)

Country Link
JP (1) JP2006215289A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006251183A (en) * 2005-03-09 2006-09-21 Fuji Xerox Co Ltd Three-dimensional optical waveguide and optical communication system
JP2014130282A (en) * 2012-12-28 2014-07-10 Sumitomo Bakelite Co Ltd Optical waveguide member, optical waveguide, method for manufacturing optical waveguide, and electronic equipment

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04255805A (en) * 1991-02-08 1992-09-10 Nippon Telegr & Teleph Corp <Ntt> Sensor body type liquid injecting and discharging mechanism
JPH0596034U (en) * 1992-06-02 1993-12-27 日本板硝子株式会社 Optical element with identification mark
JPH0615010U (en) * 1992-07-20 1994-02-25 ミツミ電機株式会社 Circuit board for optical electronics
JP2000347051A (en) * 1999-03-30 2000-12-15 Toppan Printing Co Ltd Optical/electrical wiring board, its manufacturing method and package board
JP2002258081A (en) * 2001-02-28 2002-09-11 Fujitsu Ltd Optical wiring board, manufacturing method of the same, and multi-layer optical wiring
JP2004069742A (en) * 2002-08-01 2004-03-04 Fuji Xerox Co Ltd Method for manufacturing macromolecular optical waveguide with alignment mark and laminated type macromolecular optical waveguide

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04255805A (en) * 1991-02-08 1992-09-10 Nippon Telegr & Teleph Corp <Ntt> Sensor body type liquid injecting and discharging mechanism
JPH0596034U (en) * 1992-06-02 1993-12-27 日本板硝子株式会社 Optical element with identification mark
JPH0615010U (en) * 1992-07-20 1994-02-25 ミツミ電機株式会社 Circuit board for optical electronics
JP2000347051A (en) * 1999-03-30 2000-12-15 Toppan Printing Co Ltd Optical/electrical wiring board, its manufacturing method and package board
JP2002258081A (en) * 2001-02-28 2002-09-11 Fujitsu Ltd Optical wiring board, manufacturing method of the same, and multi-layer optical wiring
JP2004069742A (en) * 2002-08-01 2004-03-04 Fuji Xerox Co Ltd Method for manufacturing macromolecular optical waveguide with alignment mark and laminated type macromolecular optical waveguide

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006251183A (en) * 2005-03-09 2006-09-21 Fuji Xerox Co Ltd Three-dimensional optical waveguide and optical communication system
JP2014130282A (en) * 2012-12-28 2014-07-10 Sumitomo Bakelite Co Ltd Optical waveguide member, optical waveguide, method for manufacturing optical waveguide, and electronic equipment

Similar Documents

Publication Publication Date Title
JP2008293040A (en) Optical waveguide having micromirror formed by laser beam machining
TWI396874B (en) Optical wiring printing board manufacturing method and optical wiring printed circuit board
US7603005B2 (en) Optical circuit board and optical and electric combined board
KR100872244B1 (en) Process for producing filmy optical waveguide
JP2002258081A (en) Optical wiring board, manufacturing method of the same, and multi-layer optical wiring
JP4659422B2 (en) Manufacturing method of optical waveguide
JP2005275405A (en) Optical structure and method for connecting optical circuit board components
TW201142391A (en) Optical waveguide substrate having positioning structure, method for manufacturing same, and method for manufacturing opto-electric hybrid substrate
JP6730801B2 (en) Method of manufacturing optical waveguide
JP3903606B2 (en) Optical signal transmission system and manufacturing method thereof
JP2009069359A (en) Optical waveguide device, and light outputting module
JP5696538B2 (en) Manufacturing method of opto-electric hybrid board
JP2006215289A (en) Substrate for optical circuit, and manufacturing method of optical circuit substrate using the same
JP2006047764A (en) Projected optical waveguide, method of manufacturing the same and optoelectric hybrid substrate using the same
JP2004279789A (en) Multilayered optical wiring substrate
JP2006078606A (en) Method for manufacturing optical connection device, and optical connection device thereof
JP2006259009A (en) Optical waveguide film and electronic equipment
JP4742771B2 (en) Method for manufacturing photoelectric composite substrate
JP2005062298A (en) Optical waveguide, manufacturing method therefor, and optical information processing device
JP2007133036A (en) Optical multiplexing/demultiplexing element
JP2005062297A (en) Optical waveguide, manufacturing method therefor, and optical information processing device
JP2010061175A (en) Optical wiring board and method of manufacturing the same
JP2005062444A (en) Optical waveguide and optical information processing device
JP2004280009A (en) Optical waveguide and its manufacturing method
JP2006184758A (en) Optical waveguide and optical waveguide module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070709

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090216

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100615