JPH04255805A - Sensor body type liquid injecting and discharging mechanism - Google Patents

Sensor body type liquid injecting and discharging mechanism

Info

Publication number
JPH04255805A
JPH04255805A JP1811091A JP1811091A JPH04255805A JP H04255805 A JPH04255805 A JP H04255805A JP 1811091 A JP1811091 A JP 1811091A JP 1811091 A JP1811091 A JP 1811091A JP H04255805 A JPH04255805 A JP H04255805A
Authority
JP
Japan
Prior art keywords
liquid
refractive index
groove
objective lens
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1811091A
Other languages
Japanese (ja)
Inventor
Akira Nagayama
昭 永山
Kunihiko Sasakura
久仁彦 笹倉
Mitsuhiro Makihara
光宏 牧原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP1811091A priority Critical patent/JPH04255805A/en
Publication of JPH04255805A publication Critical patent/JPH04255805A/en
Pending legal-status Critical Current

Links

Landscapes

  • Use Of Switch Circuits For Exchanges And Methods Of Control Of Multiplex Exchanges (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To decrease the capacity of a sensor body type liquid injecting and discharging mechanism which injects or discharges refractive index matching liquid into and from a matrix optical switch and to secure the reliability for a long time. CONSTITUTION:Light to irradiate a reflection pattern 38 provided to the matrix optical switch 34 is guided to a light absorber 55 which constitutes part of a liquid tank 58 for the refractive index matching liquid and the light absorber is expanded to decrease the internal capacity of the liquid tank 58, thereby injecting refractive index matching liquid which becomes excessive into a liquid reservoir 39 through an extremely thin pipe 29.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、光通信システムに用い
られるマトリクス光スイッチの微小間隙に光導波路コア
の屈折率にほぼ等しい屈折率を有する屈折率整合液を注
入し又は排出するセンサ一体形液注入排出機構に関する
ものである。
[Industrial Application Field] The present invention relates to a sensor-integrated type that injects or discharges a refractive index matching liquid having a refractive index approximately equal to the refractive index of an optical waveguide core into a minute gap in a matrix optical switch used in an optical communication system. This relates to a liquid injection and discharge mechanism.

【0002】0002

【従来の技術】図2は従来のこの種のマトリクス光スイ
ッチの一例、例えば「光路切替装置」(特願昭62−2
04845号)に開示されたものである。図中、1はマ
トリクス光スイッチであり、互いにマトリクス状に交差
する複数の光導波路2及び3の各交差部にこれらを横断
する微小間隙(以下、差点溝と称す。)4を設けてなっ
ている。該マトリクス光スイッチ1における光路の切替
は前記差点溝4に光導波路コアの屈折率にほぼ等しい屈
折率を有する屈折率整合液(以下、液と称す。)を注入
又は除去することにより行われる。
2. Description of the Related Art FIG. 2 shows an example of a conventional matrix optical switch of this kind, for example, an "optical path switching device" (Japanese Patent Application No. 62-2
No. 04845). In the figure, reference numeral 1 denotes a matrix optical switch, which has a plurality of optical waveguides 2 and 3 that intersect with each other in a matrix, and a minute gap (hereinafter referred to as a difference groove) 4 is provided at each intersection of the optical waveguides to cross them. There is. Switching of the optical path in the matrix optical switch 1 is performed by injecting or removing a refractive index matching liquid (hereinafter referred to as liquid) having a refractive index approximately equal to the refractive index of the optical waveguide core into the difference point groove 4.

【0003】前記マトリクス光スイッチ1の差点溝4は
透過損失を低減する観点からその幅が数10μm以下と
なる如く形成されており、また、各差点溝4同士の間隔
(ピッチ)も数 100μm程度となる如く高密度に配
置されている。従って、このようなマトリクス光スイッ
チ1の差点溝4に液を注入し又は排出する液注入排出機
構には、目的とする差点溝4を検出する機能及び差点溝
4に微小量の液を精度良く注入し又は排出する機能が要
求される。しかしながら、現時点ではこのような2つの
機能を単体の機構もしくは装置で実現した例はなかった
[0003] The difference point grooves 4 of the matrix optical switch 1 are formed so that their width is several tens of micrometers or less from the viewpoint of reducing transmission loss, and the interval (pitch) between each difference point groove 4 is about several hundred μm. They are arranged in high density. Therefore, the liquid injection/discharge mechanism for injecting or discharging liquid into the difference point groove 4 of such a matrix optical switch 1 has a function of detecting the target difference point groove 4 and a function to accurately inject a minute amount of liquid into the difference point groove 4. The ability to inject or drain is required. However, at present, there has been no example of realizing these two functions with a single mechanism or device.

【0004】図3は現時点の技術の組合せで考えられた
従来のセンサ一体形液注入排出機構の一例を示すもので
、ここでは半田やエポキシ樹脂の注入を行うディスペン
サと差点溝検出用のCCDカメラとを組合せたものを示
す。図中、5はディスペンサ、6はz方向移動ステージ
、7はxy方向移動ステージ、8はCCDカメラ、8´
はCCDカメラ8の光軸、9はCRT、10はノズル、
10´はノズル10の軸、11は配管、12はポンプ、
13は液である。
FIG. 3 shows an example of a conventional sensor-integrated liquid injection/discharge mechanism devised by combining current technologies. Here, a dispenser for injecting solder or epoxy resin and a CCD camera for detecting the difference groove Indicates a combination of In the figure, 5 is a dispenser, 6 is a z-direction moving stage, 7 is an xy-direction moving stage, 8 is a CCD camera, and 8'
is the optical axis of the CCD camera 8, 9 is the CRT, 10 is the nozzle,
10' is the axis of the nozzle 10, 11 is the piping, 12 is the pump,
13 is a liquid.

【0005】マトリクス光スイッチ1の目的とする差点
溝4への位置決めは、まず、z方向移動ステージ6によ
り該差点溝4にCCDカメラ8の焦点を合せた後、CR
T9上に捕えた画像情報からxy移送量を計算し、この
計算結果を使ってxy方向移動ステージ7によりマトリ
クス光スイッチ1を移送し、目的とする差点溝4をCC
Dカメラ8の光軸8´直下に位置決めする。なお、画像
情報処理技術及び各ステージの移送技術に関しては周知
であるから詳述しない。
To position the matrix optical switch 1 to the target difference groove 4, first, the CCD camera 8 is focused on the difference groove 4 by the z-direction moving stage 6, and then the CR
The xy transfer amount is calculated from the image information captured on T9, and using this calculation result, the matrix optical switch 1 is transferred by the xy direction moving stage 7, and the target difference point groove 4 is moved to the CC.
Position it directly below the optical axis 8' of the D camera 8. Note that the image information processing technology and the transfer technology of each stage are well known, and therefore will not be described in detail.

【0006】次に、この目的とする差点溝4へ液13を
注入し又は排出するため、CCDカメラ8の光軸8´と
ノズル10の軸10´とのオフセット量δだけxy方向
移動ステージ7を移送して、軸10´を差点溝4の中心
に位置決めした後、配管11を介してポンプ12でディ
スペンサ5内を加圧し、ノズル10から液13を差点溝
4へ注入する。液を排出する時も注入する時と同様、C
CDカメラ8で目的とする差点溝4を検出し、位置決め
した後、オフセット量δだけxy方向移動ステージ7を
移送して、軸10´を差点溝4の中心に位置決めし、そ
の後、配管11を介してポンプ12でディスペンサ5内
を減圧し、ノズル10で液13を差点溝4から排出する
Next, in order to inject or discharge the liquid 13 into the target difference point groove 4, the stage 7 is moved in the x and y directions by an offset amount δ between the optical axis 8' of the CCD camera 8 and the axis 10' of the nozzle 10. After the shaft 10' is positioned at the center of the difference groove 4, the inside of the dispenser 5 is pressurized by the pump 12 via the piping 11, and the liquid 13 is injected into the difference groove 4 from the nozzle 10. When draining the liquid, as well as when injecting it, press C.
After detecting and positioning the target difference point groove 4 with the CD camera 8, move the xy direction moving stage 7 by the offset amount δ to position the shaft 10' at the center of the difference point groove 4, and then move the piping 11. Through the pump 12, the pressure inside the dispenser 5 is reduced, and the nozzle 10 discharges the liquid 13 from the difference groove 4.

【0007】しかしながら、前記センサ一体形液注入排
出機構では目的とする差点溝4を検出するCCDカメラ
8の光軸8´と、液13を注入し又は排出するディスペ
ンサ5のノズル10の軸10´とが一致しないため、目
的とする差点溝4を検出した後、オフセット量δだけマ
トリクス光スイッチ1又はディスペンサ5を移送させる
必要がある。一般に、工業製品において製造誤差や組立
て誤差は避け難く、これらに起因する取付け誤差がCC
Dカメラ8の光軸8´とノズル10の軸10´との間に
発生するので、前記移送時にはこれらの取付け誤差によ
り、差点溝4とノズル10との間に相対的な位置ずれが
発生するという問題があった。また、前記装置では目的
とする差点溝4への液の注入又は排出をポンプ12によ
るディスペンサ5の加圧又は減圧により行うので、ポン
プ12の動作遅れにより正確な液の注入又は排出が困難
であるという問題があった。
However, in the sensor-integrated liquid injection and discharge mechanism, the optical axis 8' of the CCD camera 8 that detects the target difference point groove 4 and the axis 10' of the nozzle 10 of the dispenser 5 that injects or discharges the liquid 13 are separated. Therefore, it is necessary to move the matrix optical switch 1 or the dispenser 5 by the offset amount δ after detecting the target difference point groove 4. In general, manufacturing errors and assembly errors are difficult to avoid in industrial products, and installation errors caused by these are CC
Since this occurs between the optical axis 8' of the D camera 8 and the axis 10' of the nozzle 10, a relative positional deviation occurs between the difference point groove 4 and the nozzle 10 due to these installation errors during the transfer. There was a problem. In addition, in the above device, since the liquid is injected or discharged into the target difference point groove 4 by pressurizing or depressurizing the dispenser 5 by the pump 12, it is difficult to accurately inject or discharge the liquid due to the delay in the operation of the pump 12. There was a problem.

【0008】図4は前記問題点の解決を目指した従来の
センサ一体形液注入排出機構の他の例を示すもので、こ
こでは顕微鏡と微動機構付ノズルを組合せたものを示す
。図中、図3と同一構成部分は同一符号をもって表し、
8はCCDカメラ、8´はCCDカメラ8の光軸、9は
CRT、11は配管、12はポンプ、14は顕微鏡、1
5はxy方向試料ステージ、16は対物レンズ、17は
z方向移動機構、18はノズル用3次元微動台、19は
ノズルである。
FIG. 4 shows another example of a conventional sensor-integrated liquid injection/discharge mechanism aimed at solving the above-mentioned problems, and here shows one in which a microscope and a nozzle with a fine movement mechanism are combined. In the figure, the same components as in FIG. 3 are represented by the same symbols,
8 is a CCD camera, 8' is an optical axis of the CCD camera 8, 9 is a CRT, 11 is a pipe, 12 is a pump, 14 is a microscope, 1
5 is a sample stage in the x and y directions, 16 is an objective lens, 17 is a z direction moving mechanism, 18 is a three-dimensional fine movement stage for a nozzle, and 19 is a nozzle.

【0009】マトリクス光スイッチ1の目的とする差点
溝4への位置決めは、まず、z方向移動機構17により
該差点溝4に顕微鏡14の対物レンズ16の焦点近傍を
合せた後、CCDカメラ8で捕えたCRT9上の画像に
基いてxy方向試料ステージ15を移動させ、目的とす
る差点溝4を検出する。次に、ノズル用3次元微動台1
8を用いて、顕微鏡14の対物レンズ16の焦点にノズ
ル19を位置決めする。その後、ポンプ12により加圧
し、ノズル19より液を注入する。また、液の排出は注
入時と同様に目的とする差点溝4に顕微鏡14の対物レ
ンズ16の焦点を合せ、目的とする差点溝4を検出した
後、対物レンズ16の焦点近傍にノズル19を位置決め
し、ポンプ12により減圧して行う。
To position the matrix optical switch 1 to the target difference groove 4, first, the z-direction moving mechanism 17 focuses the objective lens 16 of the microscope 14 on the difference groove 4, and then the CCD camera 8 Based on the captured image on the CRT 9, the sample stage 15 is moved in the x and y directions to detect the target difference point groove 4. Next, the three-dimensional fine movement table 1 for the nozzle
8 to position the nozzle 19 at the focus of the objective lens 16 of the microscope 14. Thereafter, the pressure is increased by the pump 12, and the liquid is injected from the nozzle 19. To discharge the liquid, the objective lens 16 of the microscope 14 is focused on the target difference groove 4, and after detecting the target difference groove 4, the nozzle 19 is placed near the focus of the objective lens 16. This is done by positioning and reducing the pressure using the pump 12.

【0010】このように前記センサ一体形液注入排出機
構によれば、顕微鏡14により液の注入状態及び排出状
態を監視できるという利点がある。
As described above, the sensor-integrated liquid injection/discharge mechanism has the advantage that the liquid injection state and discharge state can be monitored using the microscope 14.

【0011】しかしながら、CCDカメラ8の光軸8´
とノズル19の先端の注入排出口とを一致させて取付け
ることが困難なので、差点溝用位置決め機構であるxy
方向試料ステージ15と、ノズル用位置決め機構である
ノズル用3次元微動台18を別個に設けて、これらの機
構を対物レンズ16、CCDカメラ8の監視下のもとで
別々に操作して差点溝4へノズル19を位置決めしなけ
ればならず、操作が複雑で時間がかかるという問題があ
った。
However, the optical axis 8' of the CCD camera 8
Since it is difficult to install the nozzle 19 in such a way that it matches the inlet and outlet at the tip of the nozzle 19, the
A directional sample stage 15 and a nozzle three-dimensional fine movement table 18, which is a nozzle positioning mechanism, are separately provided, and these mechanisms are operated separately under the supervision of an objective lens 16 and a CCD camera 8 to form a difference point groove. 4, the nozzle 19 must be positioned, which poses a problem in that the operation is complicated and time consuming.

【0012】また、前述した図3及び図4の装置はいず
れも小形化が困難であり、また、位置決め操作が複雑で
自動化が困難であるので、マニュアル操作でマトリクス
状に配置された多数の差点溝から目的とする差点溝を検
出しなければならない等、目的とする差点溝への位置決
めの高速化、高精度化及び液の注入又は排出の高信頼化
が図れないという問題があった。また、これらの装置で
はポンプの加圧・減圧により差点溝へ液を注入し又は排
出するので、ポンプの動作遅れにより正確な液の注入及
び排出が困難であるという問題があった。
Furthermore, it is difficult to miniaturize the devices shown in FIGS. 3 and 4 described above, and the positioning operation is complicated and difficult to automate. There is a problem in that the target difference groove must be detected from the groove, and it is not possible to increase the speed and precision of positioning to the target difference groove and to increase the reliability of liquid injection or discharge. Furthermore, in these devices, liquid is injected into or discharged from the differential groove by pressurization or depressurization of the pump, so there is a problem in that it is difficult to accurately inject and discharge liquid due to the delay in pump operation.

【0013】図5は前述した問題点の解決を目指した従
来のセンサ一体形液注入排出機構のさらに他の例を示す
もので、ここでは微細管をレンズ中心に有する対物レン
ズを用いて差点溝近傍に設けた差点溝位置を示す反射パ
ターンをCCD上に結像させ、該CCDによる画像信号
から目的とする差点溝を検出し位置決めし、同一位置で
前記微細管を通じて液を注入及び排出するようになした
ものを示す。図中、図3と同一構成部分は同一符号をも
って表し、11は配管、12はポンプ、13は液、20
は半導体レーザ、21はコリメータレンズ、22はビー
ム整形プリズム、23は全反射プリズム、24は偏光ビ
ームスプリッタ、25はλ/4板、26は透明ガラス板
、27はレンズホルダ、28は対物レンズ、29は微細
管、30は結像レンズ、31はCCD、32は透明配管
、33は液槽である。
FIG. 5 shows still another example of a conventional sensor-integrated liquid injection/discharge mechanism aimed at solving the above-mentioned problems. A reflection pattern indicating the position of the difference groove provided nearby is imaged on a CCD, the target difference groove is detected and positioned from the image signal by the CCD, and the liquid is injected and discharged through the fine tube at the same position. Show what you have done. In the figure, the same components as in FIG.
is a semiconductor laser, 21 is a collimator lens, 22 is a beam shaping prism, 23 is a total reflection prism, 24 is a polarizing beam splitter, 25 is a λ/4 plate, 26 is a transparent glass plate, 27 is a lens holder, 28 is an objective lens, 29 is a fine tube, 30 is an imaging lens, 31 is a CCD, 32 is a transparent pipe, and 33 is a liquid tank.

【0014】図6は前記センサ一体形液注入排出機構に
対応した反射パターン付きのマトリクス光スイッチの一
例を示すものである。図中、34はマトリクス光スイッ
チであり、互いにマトリクス状に交差する複数の光導波
路35及び36の各交差部にこれらを横断する差点溝3
7を設け、また、該差点溝37に連続し、且つその底面
に差点溝のアドレスを示す反射パターン(図面ではアル
ファベットの「A」、「B」、「C」、「D」)38を
備えた液溜39を設けてなっている。
FIG. 6 shows an example of a matrix optical switch with a reflective pattern compatible with the sensor-integrated liquid injection/discharge mechanism. In the figure, reference numeral 34 denotes a matrix optical switch, in which a plurality of optical waveguides 35 and 36 intersect with each other in a matrix, and at each intersection point grooves 3 extending across the optical waveguides 35 and 36 cross each other.
7, and is also provided with a reflective pattern 38 (alphabets "A", "B", "C", and "D" in the drawing) continuous with the difference point groove 37 and indicating the address of the difference point groove on the bottom surface thereof. A liquid reservoir 39 is provided.

【0015】図5のセンサ一体形液注入排出機構におい
ては位置決めの緩和化による構成の簡素化、経済化を図
り、且つ、液の注入及び排出の信頼性を向上させるため
、差点溝近傍に設けた液溜に位置決めし、この液溜を通
じて差点溝へ液を注入し又は排出する。
In the sensor-integrated liquid injection and discharge mechanism shown in FIG. 5, in order to simplify the configuration and make it more economical by easing positioning, and to improve the reliability of liquid injection and discharge, a sensor is provided near the difference point groove. The liquid is injected into or discharged from the point groove through this liquid reservoir.

【0016】まず、前記センサ一体形液注入排出機構に
おける液溜への位置決めについて説明する。
First, positioning to the liquid reservoir in the sensor-integrated liquid injection/discharge mechanism will be explained.

【0017】半導体レーザ20からの出射光はコリメー
タレンズ21、ビーム整形プリズム22を通過後、円形
に整形された直線偏光平行ビーム40に変換された後、
全反射プリズム23により光路を90度曲げられ、偏光
ビームスプリッタ24に入射する。偏光ビームスプリッ
タ24に入射した直線偏光平行ビーム40は該偏光ビー
ムスプリッタ24で全反射され、さらにλ/4板25で
直線偏光平行ビーム40から円偏光ビーム41に変換さ
れる。その後、前記円偏光ビーム41は透明ガラス板2
6を通過してレンズホルダ27に保持された対物レンズ
28により集光され、マトリクス光スイッチ34の液溜
39に設けた反射パターン38を照射する。この円偏光
ビーム41は図6に示すようにそのビームスポット42
の径が反射パターン38より若干大きくなる如く設定さ
れている。
The light emitted from the semiconductor laser 20 passes through a collimator lens 21 and a beam shaping prism 22, and is converted into a linearly polarized parallel beam 40 shaped into a circular shape.
The optical path is bent by 90 degrees by the total reflection prism 23 and enters the polarizing beam splitter 24 . The linearly polarized parallel beam 40 incident on the polarizing beam splitter 24 is totally reflected by the polarizing beam splitter 24, and is further converted from the linearly polarized parallel beam 40 into a circularly polarized beam 41 by the λ/4 plate 25. After that, the circularly polarized beam 41 is transmitted to the transparent glass plate 2.
6 and is focused by an objective lens 28 held by a lens holder 27, and illuminates a reflection pattern 38 provided in a liquid reservoir 39 of a matrix optical switch 34. This circularly polarized beam 41 has a beam spot 42 as shown in FIG.
The diameter of the reflection pattern 38 is set to be slightly larger than that of the reflection pattern 38.

【0018】前記反射パターン38から反射した円偏光
反射ビーム43は、λ/4板25と偏光ビームスプリッ
タ24を通過後、先の往路の直線偏光平行ビーム40と
90度位相の異なる直線偏光反射ビーム44に変換され
、偏光ビームスプリッタ24を透過する。この偏光ビー
ムスプリッタ24を透過した直線偏光反射ビーム44は
結像レンズ30によりCCD31上に結像され、該CC
D31上には図7に示すように前記反射パターン38に
対応するパターン45が拡大結像される。前記CCD3
1上に結像されたパターン45(図示例ではアルファベ
ットの「A」)の画像情報から該当差点溝37のアドレ
ス位置を検出し、また、パターン45の重心位置を計算
し、該パターン45の重心位置がCCD31の中心位置
と一致するために必要な移送量を計算し、該計算結果に
基いてセンサ一体形液注入排出機構を移送することによ
り目的とする液溜39に位置決めを行う。
After passing through the λ/4 plate 25 and the polarizing beam splitter 24, the circularly polarized reflected beam 43 reflected from the reflection pattern 38 is transformed into a linearly polarized reflected beam having a phase difference of 90 degrees from the previously forward linearly polarized parallel beam 40. 44 and is transmitted through the polarizing beam splitter 24. The linearly polarized reflected beam 44 that has passed through the polarized beam splitter 24 is imaged onto the CCD 31 by the imaging lens 30.
As shown in FIG. 7, a pattern 45 corresponding to the reflection pattern 38 is formed as an enlarged image on D31. Said CCD3
The address position of the corresponding difference point groove 37 is detected from the image information of the pattern 45 (letter "A" in the illustrated example) imaged on the pattern 1, and the center of gravity of the pattern 45 is calculated. The transfer amount necessary for the position to match the center position of the CCD 31 is calculated, and the sensor-integrated liquid injection/discharge mechanism is moved to position the liquid in the target liquid reservoir 39 based on the calculation result.

【0019】次に、目的とする差点溝への液の注入及び
排出について説明する。
Next, the injection and discharge of liquid into the target difference point groove will be explained.

【0020】目的とする差点溝37への液の注入は該差
点溝37に連続した液溜39へ位置決めした後、液槽3
3内の液13をポンプ12で透明配管32、微細管29
を介して吐出し、液溜39に液13を注入する。液溜3
9に注入された液は液溜39の側壁面もしくは底面の表
面張力と、差点溝37の表面張力とにより差点溝37内
に自然注入される。この時、液溜39への液の注入は微
細管29の先端で球状になった液を注入先である液溜3
9の側壁面もしくは底面に接触させて行う。また、差点
溝37からの液の排出は液溜39へ位置決めした後、微
細管29を液溜39の液中に挿入し、ポンプ12により
透明配管32、微細管29内を減圧し、微細管29を通
じて差点溝37から液を吸引、排出する。
In order to inject the liquid into the target difference groove 37, after positioning it in the liquid reservoir 39 which is continuous with the difference groove 37, the liquid tank 3
The liquid 13 in 3 is pumped through the transparent pipe 32 and the fine pipe 29 using the pump 12.
and injects the liquid 13 into the liquid reservoir 39. Liquid reservoir 3
The liquid injected into the groove 9 is naturally injected into the groove 37 due to the surface tension of the side wall or bottom of the liquid reservoir 39 and the surface tension of the groove 37 . At this time, the liquid is injected into the liquid reservoir 39 by injecting the liquid that has become spherical at the tip of the fine tube 29 into the liquid reservoir 39, which is the injection destination.
This is done by contacting the side wall surface or bottom surface of No.9. In addition, to discharge the liquid from the difference groove 37, after positioning it to the liquid reservoir 39, insert the fine tube 29 into the liquid in the liquid reservoir 39, reduce the pressure inside the transparent pipe 32 and the fine tube 29 with the pump 12, and then The liquid is sucked in and discharged from the difference groove 37 through the point 29.

【0021】このように前記センサ一体形液注入排出機
構によれば、製造誤差や組立て誤差に起因するノズルと
差点溝との間の相対的な位置ずれの問題をほぼ解決でき
るという利点がある。
[0021] As described above, the sensor-integrated liquid injection and discharge mechanism has the advantage that it can almost solve the problem of relative positional deviation between the nozzle and the point groove caused by manufacturing errors and assembly errors.

【0022】[0022]

【発明が解決しようとする課題】しかしながら、前記図
5のセンサ一体形液注入排出機構においても図3又は図
4の装置と同様に液の注入又は排出に正又は負の気圧を
使用しているので、ポンプや配管等が必要となり、従っ
て、装置全体の体積が大きくなり、また、長期に亘って
ポンプの性能を安定して維持するのが困難であるという
問題があった。
[Problems to be Solved by the Invention] However, the sensor-integrated liquid injection and discharge mechanism shown in FIG. 5 also uses positive or negative air pressure for liquid injection or discharge, similar to the device shown in FIGS. 3 or 4. Therefore, a pump, piping, etc. are required, which increases the volume of the entire device, and there is also the problem that it is difficult to maintain stable performance of the pump over a long period of time.

【0023】本発明は前記従来の問題点に鑑み、装置全
体の体積を小さくでき、且つ、長期間に亘って高い信頼
性をもって液を注入し又は排出できるセンサ一体形液注
入排出機構を提供することを目的とする。
In view of the above-mentioned conventional problems, the present invention provides a sensor-integrated liquid injection/drainage mechanism that can reduce the volume of the entire device and can inject or discharge liquid with high reliability over a long period of time. The purpose is to

【0024】[0024]

【課題を解決するための手段】本発明では前記目的を達
成するため、請求項1として、複数の光導波路を互いに
マトリクス状に交差する如く配置するとともに各交差部
に光導波路と所定の角度をなす溝を設け、さらに該各溝
に連続し且つその底面に所定の反射パターンを有する液
溜を設けてなるマトリクス光スイッチに対して、光源よ
り出射した光を照射しその反射光を対物レンズにより受
光素子に結像させ、得られた画像情報に基いて該対物レ
ンズの中心が前記反射パターンの中心とほぼ一致する如
く位置決めし、さらに該対物レンズの中心近傍に設けた
微細管より光導波路コアの屈折率にほぼ等しい屈折率を
有する屈折率整合液を吐出し又は吸引するセンサ一体形
液注入排出機構において、屈折率整合液を貯蔵する液槽
の一部を光を吸収して膨脹する部材で構成するとともに
、光源より出射した光を前記部材又はマトリクス光スイ
ッチのいずれか一方に任意に切替えて導光する手段を設
けたセンサ一体形液注入排出機構、また、請求項2とし
て、複数の光導波路を互いにマトリクス状に交差する如
く配置するとともに各交差部に光導波路と所定の角度を
なす溝を設け、さらに該各溝に連続し且つその底面に所
定の反射パターンを有する液溜を設けてなるマトリクス
光スイッチに対して、光源より出射した光を照射しその
反射光を対物レンズにより受光素子に結像させ、得られ
た画像情報に基いて該対物レンズの中心が前記反射パタ
ーンの中心とほぼ一致する如く位置決めし、さらに該対
物レンズの中心近傍に設けた微細管より光導波路コアの
屈折率にほぼ等しい屈折率を有する屈折率整合液を吐出
し又は吸引するセンサ一体形液注入排出機構において、
屈折率整合液を貯蔵する液槽の一部を電気−温度変換素
子で構成し或いは該液槽の内部に電気−温度変換素子を
配置するとともに、該電気−温度変換素子に電気を供給
する手段を設けたセンサ一体形液注入排出機構を提案す
る。
Means for Solving the Problems In order to achieve the above-mentioned object, the present invention provides a first aspect in which a plurality of optical waveguides are arranged so as to intersect with each other in a matrix, and each intersection is formed at a predetermined angle with the optical waveguide. Light emitted from a light source is irradiated onto a matrix optical switch, which is formed by providing grooves and a liquid reservoir that is continuous with each groove and has a predetermined reflection pattern on the bottom surface, and the reflected light is reflected by an objective lens. An image is formed on a light receiving element, and based on the obtained image information, the center of the objective lens is positioned so that it almost coincides with the center of the reflection pattern, and the optical waveguide core is then In a sensor-integrated liquid injection/discharge mechanism that discharges or sucks a refractive index matching liquid having a refractive index substantially equal to the refractive index of and a sensor-integrated liquid injection/discharge mechanism comprising means for arbitrarily switching and guiding the light emitted from the light source to either the member or the matrix optical switch; The optical waveguides are arranged so as to intersect with each other in a matrix, and grooves are provided at each intersection to form a predetermined angle with the optical waveguide, and a liquid reservoir is provided continuous to each groove and having a predetermined reflection pattern on the bottom surface thereof. A matrix optical switch consisting of a light source is irradiated with light emitted from a light source, the reflected light is imaged on a light receiving element by an objective lens, and based on the image information obtained, the center of the objective lens is the center of the reflection pattern. and a sensor-integrated liquid injection/discharge system that discharges or suctions a refractive index matching liquid having a refractive index approximately equal to the refractive index of the optical waveguide core from a fine tube provided near the center of the objective lens. In the mechanism,
A means for configuring a part of a liquid tank storing a refractive index matching liquid with an electricity-temperature conversion element, or arranging an electricity-temperature conversion element inside the liquid tank, and supplying electricity to the electricity-temperature conversion element. We propose a liquid injection and discharge mechanism with an integrated sensor.

【0025】[0025]

【作用】本発明の請求項1によれば、光を吸収して膨脹
する部材に光源より出射した光を導光することにより該
部材が膨脹し、これによって屈折率整合液を貯蔵する液
槽の内容積が小さくなり、その分、該液槽より屈折率整
合液が微細管を通じて外部へ吐出する。
[Operation] According to claim 1 of the present invention, the light emitted from the light source is guided to the member that absorbs light and expands, so that the member expands, thereby forming a liquid tank for storing the refractive index matching liquid. The internal volume of the liquid tank becomes smaller, and the refractive index matching liquid is discharged from the liquid tank to the outside through the microtube.

【0026】また、請求項2によれば、電気−温度変換
素子に電気を供給することにより該素子が発熱し、これ
によって液槽内の屈折率整合液が膨脹し、その分、該液
槽より屈折率整合液が微細管を通じて外部へ吐出する。
Further, according to claim 2, by supplying electricity to the electricity-temperature conversion element, the element generates heat, which causes the refractive index matching liquid in the liquid tank to expand, and the liquid tank to expand by that amount. The refractive index matching liquid is discharged to the outside through the microtube.

【0027】[0027]

【実施例】図1は本発明のセンサ一体形液注入排出機構
の一実施例を示すもので、図中、従来例と同一構成部分
は同一符号をもって表す。即ち、20は半導体レーザ、
21はコリメータレンズ、22はビーム整形プリズム、
23は全反射プリズム、24は偏光ビームスプリッタ、
25はλ/4板、27はレンズホルダ、28は対物レン
ズ、29は微細管、30は結像レンズ、31はCCD、
50は全反射プリズム搭載台、51は直線ガイド、52
はボールネジ、53は全反射プリズム用モータ、54は
加熱レンズ、55は光吸収体、56は光シャッタ、57
はLD駆動電流切替器、58は液槽である。なお、本実
施例が対象とするマトリクス光スイッチは前記図6に示
したものと同様であり、また、差点溝への位置決めにつ
いても図5の従来例とほぼ同様である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an embodiment of the sensor-integrated liquid injection and discharge mechanism of the present invention. In the figure, the same components as those of the conventional example are designated by the same reference numerals. That is, 20 is a semiconductor laser,
21 is a collimator lens, 22 is a beam shaping prism,
23 is a total reflection prism, 24 is a polarizing beam splitter,
25 is a λ/4 plate, 27 is a lens holder, 28 is an objective lens, 29 is a microtube, 30 is an imaging lens, 31 is a CCD,
50 is a total reflection prism mounting stand, 51 is a linear guide, 52
is a ball screw, 53 is a total reflection prism motor, 54 is a heating lens, 55 is a light absorber, 56 is a light shutter, 57
58 is an LD drive current switch and a liquid tank. The matrix optical switch to which this embodiment is applied is the same as that shown in FIG. 6, and the positioning in the difference point groove is also substantially the same as the conventional example shown in FIG.

【0028】まず、目的とする差点溝近傍の液溜への位
置決めについて説明する。
First, positioning to the liquid reservoir near the target difference point groove will be explained.

【0029】位置決め時において全反射プリズム搭載台
50は図1に示す位置にある。低出力側に切替えられた
LD駆動電流切替器57により駆動された半導体レーザ
20からの出射光はコリメータレンズ21、ビーム整形
プリズム22を通過後、円形に整形された直線偏光平行
ビーム40に変換された後、全反射プリズム23により
光路を90度曲げられ、偏光ビームスプリッタ24に入
射する。偏光ビームスプリッタ24に入射した直線偏光
平行ビーム40は該偏光ビームスプリッタ24で全反射
され、さらにλ/4板25で直線偏光平行ビーム40か
ら円偏光ビーム41に変換される。その後、前記円偏光
ビーム41は液(図示せず)で満たされた液槽58を通
してレンズホルダ27に保持された対物レンズ28によ
り集光され、マトリクス光スイッチ34の液溜39に設
けた反射パターン38を照射する。この円偏光ビーム4
1は前記同様にそのビームスポットの径が反射パターン
38より若干大きくなる如く設定されている。
At the time of positioning, the total reflection prism mounting base 50 is in the position shown in FIG. The emitted light from the semiconductor laser 20 driven by the LD drive current switch 57 switched to the low output side passes through the collimator lens 21 and the beam shaping prism 22, and then is converted into a circularly shaped linearly polarized parallel beam 40. After that, the optical path is bent by 90 degrees by the total reflection prism 23 and enters the polarizing beam splitter 24. The linearly polarized parallel beam 40 incident on the polarizing beam splitter 24 is totally reflected by the polarizing beam splitter 24, and is further converted from the linearly polarized parallel beam 40 into a circularly polarized beam 41 by the λ/4 plate 25. Thereafter, the circularly polarized beam 41 passes through a liquid tank 58 filled with a liquid (not shown) and is focused by the objective lens 28 held in the lens holder 27, and is focused on a reflection pattern provided in the liquid reservoir 39 of the matrix optical switch 34. 38 irradiation. This circularly polarized beam 4
1 is set so that the diameter of the beam spot is slightly larger than the reflection pattern 38, as described above.

【0030】前記反射パターン38から反射した円偏光
反射ビーム43は、λ/4板25と偏光ビームスプリッ
タ24を通過後、先の往路の直線偏光平行ビーム40と
90度位相の異なる直線偏光反射ビーム44に変換され
、偏光ビームスプリッタ24を透過する。この偏光ビー
ムスプリッタ24を透過した直線偏光反射ビーム44は
結像レンズ30、光シャッタ56を介してCCD31上
に結像され、該CCD31上には前述したように反射パ
ターン38に対応するパターンが拡大結像される。前記
CCD31上に結像されたパターンの画像情報から該当
差点溝37のアドレス位置を検出し、また、該パターン
の重心位置を計算し、その重心位置がCCD31の中心
位置と一致するために必要な移送量を計算し、該計算結
果に基いて移送することにより目的とする液溜39に位
置決めを行う。
After passing through the λ/4 plate 25 and the polarizing beam splitter 24, the circularly polarized reflected beam 43 reflected from the reflection pattern 38 becomes a linearly polarized reflected beam having a phase difference of 90 degrees from the linearly polarized parallel beam 40 on the previous outgoing path. 44 and is transmitted through the polarizing beam splitter 24. The linearly polarized reflected beam 44 transmitted through the polarized beam splitter 24 is imaged on the CCD 31 via the imaging lens 30 and the optical shutter 56, and a pattern corresponding to the reflection pattern 38 is enlarged on the CCD 31 as described above. imaged. The address position of the corresponding difference point groove 37 is detected from the image information of the pattern imaged on the CCD 31, and the position of the center of gravity of the pattern is calculated, and the necessary steps are performed in order for the center of gravity position to match the center position of the CCD 31. By calculating the transfer amount and transferring based on the calculated result, the liquid is positioned at the target liquid reservoir 39.

【0031】次に、目的とする差点溝への液の注入及び
排出について説明する。
Next, the injection and discharge of liquid into the target difference point groove will be explained.

【0032】目的とする差点溝37への液の注入は該差
点溝37に連続した液溜39へ位置決めした後、ボール
ネジ52に直結した全反射プリズム用モータ53を駆動
して、反射プリズム搭載台50を図8に示した位置に位
置決めする。次に、高出力側に切替えられたLD駆動電
流切替器57により駆動された半導体レーザ20からの
高出力の出射光46は加熱用レンズ54で集光されて光
吸収体55を照射する。光吸収体55は黒染め加工され
た銅片のような物体であり、レーザ光の照射により加熱
され、その体積は膨張する。この光吸収体55の体積が
膨張すると、液槽58中の液は微細管29を介して吐出
され、液溜39に注入される。液溜39に注入された液
は液溜39の側壁面もしくは底面の表面張力と、差点溝
37の表面張力とにより差点溝37内に自然注入される
。より厳密に説明すれば、液溜39への液の注入は微細
管29の先端で球状になった液を注入先である液溜39
の側壁面もしくは底面に接触させて行う。
In order to inject the liquid into the target difference groove 37, after positioning the liquid in the liquid reservoir 39 which is continuous with the difference groove 37, drive the total reflection prism motor 53 directly connected to the ball screw 52, and move the reflection prism mounting base. 50 is positioned in the position shown in FIG. Next, the high output light 46 from the semiconductor laser 20 driven by the LD drive current switch 57 switched to the high output side is focused by the heating lens 54 and irradiates the light absorber 55 . The light absorber 55 is a black-dyed copper piece-like object, and is heated by laser beam irradiation and its volume expands. When the volume of the light absorber 55 expands, the liquid in the liquid tank 58 is discharged through the microtube 29 and injected into the liquid reservoir 39. The liquid injected into the liquid reservoir 39 is naturally injected into the difference groove 37 due to the surface tension of the side wall surface or bottom of the liquid reservoir 39 and the surface tension of the difference groove 37 . To explain more precisely, the injection of liquid into the liquid reservoir 39 involves transferring the liquid that has become spherical at the tip of the microtube 29 to the liquid reservoir 39 which is the injection destination.
Do this by contacting the side wall or bottom of the

【0033】一方、差点溝37からの液の排出は液溜3
9へ位置決めした後、ボールネジ52に直結した全反射
プリズム用モータ53を駆動して反射プリズム搭載台5
0を図1に示した位置に位置決めする。次に、高出力側
に切替えられたLD駆動電流切替器57により駆動され
た半導体レーザ20からの高出力の出射光はマトリクス
光スイッチ34上の液溜39を照射加熱する。この加熱
によりシリコンオイルを主成分とする液は沸点の低い低
分子に分解され、やがて蒸発して液溜め39及びこれに
連続している差点溝37内の液が除去される。なお、こ
の際、マトリクス光スイッチ34からの強い反射光がC
CD31を損傷させる危険性があるが、本実施例では液
晶等からなる光シャッタ56を閉じることにより、この
危険を回避する如くなっている。
On the other hand, the liquid from the difference groove 37 is discharged from the liquid reservoir 3.
9, the total reflection prism motor 53 directly connected to the ball screw 52 is driven to move the reflection prism to the reflection prism mounting base 5.
0 to the position shown in FIG. Next, the high output light emitted from the semiconductor laser 20 driven by the LD drive current switch 57 switched to the high output side irradiates and heats the liquid reservoir 39 on the matrix optical switch 34 . By this heating, the liquid mainly composed of silicone oil is decomposed into low molecules with a low boiling point, and eventually evaporates to remove the liquid in the liquid reservoir 39 and the difference point groove 37 continuous thereto. Note that at this time, the strong reflected light from the matrix optical switch 34 is
Although there is a risk of damaging the CD 31, in this embodiment, this risk is avoided by closing the optical shutter 56 made of liquid crystal or the like.

【0034】図9は本発明の他の実施例を示すもので、
ここではペルチェ素子等の通電方向を切替えることによ
り加熱又は冷却の両方を行うことができる電気−温度変
換素子41を用いて、液槽58内の液を加熱するように
なしたものである。即ち、図中、60は電気−温度変換
素子、61は放熱器、62は電源回路である。本構成で
は目的とする液溜39に位置決めした後、電源回路62
より電気−温度変換素子61に電気を供給して液を加熱
し、その体積を膨張させる。該液の体積が膨張すると、
液槽58中の液は微細管29を介して吐出され、液溜3
9に注入される。液溜39に注入された液は液溜39の
側壁面もしくは底面の表面張力と、差点溝37の表面張
力とにより差点溝37内に自然注入される。より厳密に
説明すれば、液溜39への液の注入は微細管29の先端
で球状になった液を注入先である液溜39の側壁面もし
くは底面に接触させて行う。また、液注入後は過熱によ
って液が過剰に注入されるのを防止するため、電源回路
62より電気−温度変換素子61に注入時とは逆方向に
電気を供給する。この逆方向通電により、電気−温度変
換素子61は前記とは逆の冷却モードになり、液槽58
内の液は冷却され、その体積が縮小し、微細管29内の
液は直ちに液槽58内に還流し、液の過剰注入を防止す
る。なお、液の排出については図1の実施例と同様に行
う。
FIG. 9 shows another embodiment of the present invention.
Here, the liquid in the liquid tank 58 is heated using an electric-temperature converting element 41 that can perform both heating and cooling by switching the direction of energization of a Peltier element or the like. That is, in the figure, 60 is an electric-temperature conversion element, 61 is a heat sink, and 62 is a power supply circuit. In this configuration, after positioning the target liquid reservoir 39, the power supply circuit 62
Electricity is then supplied to the electricity-temperature conversion element 61 to heat the liquid and expand its volume. When the volume of the liquid expands,
The liquid in the liquid tank 58 is discharged through the fine tube 29 and is transferred to the liquid reservoir 3.
Injected into 9. The liquid injected into the liquid reservoir 39 is naturally injected into the difference groove 37 due to the surface tension of the side wall surface or bottom of the liquid reservoir 39 and the surface tension of the difference groove 37 . More precisely, the liquid is injected into the liquid reservoir 39 by bringing the spherical liquid at the tip of the microtube 29 into contact with the side wall or bottom of the liquid reservoir 39, which is the injection destination. Further, after the liquid is injected, in order to prevent excessive injecting of the liquid due to overheating, electricity is supplied from the power supply circuit 62 to the electricity-temperature conversion element 61 in the opposite direction to that at the time of injection. Due to this reverse direction energization, the electricity-temperature conversion element 61 enters the cooling mode opposite to that described above, and the liquid tank 58
The liquid inside is cooled and its volume is reduced, and the liquid inside the fine tube 29 immediately flows back into the liquid tank 58 to prevent excessive injection of liquid. Note that the liquid is discharged in the same manner as in the embodiment shown in FIG.

【0035】この実施例によれば、加熱時の機構的な動
作が不要になり、そのための部品が不要となるので、よ
り小形化でき、且つ高信頼化が図れる。
[0035] According to this embodiment, mechanical operation during heating is not required, and no parts for that purpose are required, so that the device can be made more compact and highly reliable.

【0036】[0036]

【発明の効果】以上説明したように本発明の請求項1に
よれば、本来、マトリクス光スイッチの反射パターンを
照射するための光を利用して屈折率整合液の液槽の内容
積を変え、これによって、屈折率整合液を液溜へ注入し
又は排出するので、従来のポンプや配管等が不要となり
、装置全体の体積を小さくできるとともに長期間に亘っ
て高い信頼性を維持することができる。
As explained above, according to claim 1 of the present invention, the internal volume of the refractive index matching liquid tank is changed by using the light originally intended to illuminate the reflection pattern of the matrix optical switch. As a result, the refractive index matching liquid is injected into and discharged from the liquid reservoir, eliminating the need for conventional pumps and piping, making it possible to reduce the overall volume of the device and maintain high reliability over a long period of time. can.

【0037】また、本発明の請求項2によれば、電気−
温度変換素子の熱によって液槽内の屈折率整合液を膨脹
させ、これによって、屈折率整合液を液溜へ注入し又は
排出するので、請求項1の場合と同様に従来のポンプや
配管等が不要となり、装置全体の体積を小さくできると
ともに長期間に亘って高い信頼性を維持することができ
る。
According to claim 2 of the present invention, the electric
The refractive index matching liquid in the liquid tank is expanded by the heat of the temperature conversion element, and thereby the refractive index matching liquid is injected into or discharged from the liquid reservoir. is not required, the volume of the entire device can be reduced, and high reliability can be maintained over a long period of time.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】  本発明のセンサ一体形液注入排出機構の一
実施例を示す構成図
[Fig. 1] A configuration diagram showing an embodiment of the sensor-integrated liquid injection and discharge mechanism of the present invention.

【図2】  マトリクス光スイッチの一例を示す説明図
[Figure 2] Explanatory diagram showing an example of a matrix optical switch

【図3】  従来のセンサ一体形液注入排出機構の一例
を示す構成図
[Figure 3] Configuration diagram showing an example of a conventional sensor-integrated liquid injection and discharge mechanism

【図4】  従来のセンサ一体形液注入排出機構の他の
例を示す構成図
[Figure 4] A configuration diagram showing another example of a conventional sensor-integrated liquid injection and discharge mechanism.

【図5】  従来のセンサ一体形液注入排出機構のさら
に他の例を示す構成図
[Fig. 5] A configuration diagram showing still another example of the conventional sensor-integrated liquid injection and discharge mechanism.

【図6】  マトリクス光スイッチの他の例を示す説明
[Figure 6] Explanatory diagram showing another example of a matrix optical switch

【図7】  センサ上に結像したパターンの説明図[Figure 7] Explanatory diagram of the pattern imaged on the sensor


図8】  図1のセンサ一体形液注入排出機構における
液注入動作の説明図
[
Figure 8: Explanatory diagram of liquid injection operation in the sensor-integrated liquid injection and discharge mechanism in Figure 1

【図9】  本発明のセンサ一体形液注入排出機構の他
の実施例を示す構成図
[Fig. 9] A configuration diagram showing another embodiment of the sensor-integrated liquid injection and discharge mechanism of the present invention.

【符号の説明】[Explanation of symbols]

20…半導体レーザ、21…コリメータレンズ、22…
ビーム整形プリズム、23…全反射プリズム、24…偏
光ビームスプリッタ、25…λ/4板、27…レンズホ
ルダ、28…対物レンズ、29…微細管、30…結像レ
ンズ、31…CCD、50…全反射プリズム搭載台、5
1…直線ガイド、52…ボールネジ、53…全反射プリ
ズム用モータ、54…加熱レンズ、55…光吸収体、5
6…光シャッタ、57…LD駆動電流切変器、58…液
槽、60…電気−温度変換素子、61…放熱器、62…
電源回路。
20... Semiconductor laser, 21... Collimator lens, 22...
Beam shaping prism, 23... Total reflection prism, 24... Polarizing beam splitter, 25... λ/4 plate, 27... Lens holder, 28... Objective lens, 29... Fine tube, 30... Imaging lens, 31... CCD, 50... Total reflection prism mounting stand, 5
DESCRIPTION OF SYMBOLS 1...Linear guide, 52...Ball screw, 53...Motor for total reflection prism, 54...Heating lens, 55...Light absorber, 5
6... Optical shutter, 57... LD drive current switching converter, 58... Liquid tank, 60... Electricity-temperature conversion element, 61... Heat sink, 62...
power circuit.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  複数の光導波路を互いにマトリクス状
に交差する如く配置するとともに各交差部に光導波路と
所定の角度をなす溝を設け、さらに該各溝に連続し且つ
その底面に所定の反射パターンを有する液溜を設けてな
るマトリクス光スイッチに対して、光源より出射した光
を照射しその反射光を対物レンズにより受光素子に結像
させ、得られた画像情報に基いて該対物レンズの中心が
前記反射パターンの中心とほぼ一致する如く位置決めし
、さらに該対物レンズの中心近傍に設けた微細管より光
導波路コアの屈折率にほぼ等しい屈折率を有する屈折率
整合液を吐出し又は吸引するセンサ一体形液注入排出機
構において、屈折率整合液を貯蔵する液槽の一部を光を
吸収して膨脹する部材で構成するとともに、光源より出
射した光を前記部材又はマトリクス光スイッチのいずれ
か一方に任意に切替えて導光する手段を設けたことを特
徴とするセンサ一体形液注入排出機構。
Claim 1: A plurality of optical waveguides are arranged so as to intersect with each other in a matrix, and each intersection is provided with a groove that forms a predetermined angle with the optical waveguide, and furthermore, a groove that is continuous with each groove and has a predetermined reflective surface on the bottom surface thereof is provided. A matrix optical switch comprising a liquid reservoir with a pattern is irradiated with light emitted from a light source, the reflected light is imaged on a light receiving element by an objective lens, and the objective lens is imaged based on the obtained image information. Positioning the objective lens so that its center substantially coincides with the center of the reflection pattern, and discharging or suctioning a refractive index matching liquid having a refractive index substantially equal to the refractive index of the optical waveguide core from a fine tube provided near the center of the objective lens. In the sensor-integrated liquid injection/drainage mechanism, a part of the liquid tank that stores the refractive index matching liquid is made up of a member that absorbs light and expands, and the light emitted from the light source is transmitted to either the member or the matrix optical switch. 1. A sensor-integrated liquid injection and discharge mechanism, characterized in that it is provided with a means for guiding light by arbitrarily switching between the two directions.
【請求項2】  複数の光導波路を互いにマトリクス状
に交差する如く配置するとともに各交差部に光導波路と
所定の角度をなす溝を設け、さらに該各溝に連続し且つ
その底面に所定の反射パターンを有する液溜を設けてな
るマトリクス光スイッチに対して、光源より出射した光
を照射しその反射光を対物レンズにより受光素子に結像
させ、得られた画像情報に基いて該対物レンズの中心が
前記反射パターンの中心とほぼ一致する如く位置決めし
、さらに該対物レンズの中心近傍に設けた微細管より光
導波路コアの屈折率にほぼ等しい屈折率を有する屈折率
整合液を吐出し又は吸引するセンサ一体形液注入排出機
構において、屈折率整合液を貯蔵する液槽の一部を電気
−温度変換素子で構成し或いは該液槽の内部に電気−温
度変換素子を配置するとともに、該電気−温度変換素子
に電気を供給する手段を設けたことを特徴とするセンサ
一体形液注入排出機構。
2. A plurality of optical waveguides are arranged so as to intersect with each other in a matrix, and grooves are provided at each intersection part to form a predetermined angle with the optical waveguides, and a predetermined reflective groove is provided on the bottom surface of each of the grooves and is continuous with each groove. A matrix optical switch comprising a liquid reservoir with a pattern is irradiated with light emitted from a light source, the reflected light is imaged on a light receiving element by an objective lens, and the objective lens is imaged based on the obtained image information. Positioning the objective lens so that its center substantially coincides with the center of the reflection pattern, and discharging or suctioning a refractive index matching liquid having a refractive index substantially equal to the refractive index of the optical waveguide core from a fine tube provided near the center of the objective lens. In the sensor-integrated liquid injection/discharge mechanism, a part of the liquid tank storing the refractive index matching liquid is configured with an electric-temperature conversion element, or the electric-temperature conversion element is disposed inside the liquid tank, and the electric - A sensor-integrated liquid injection/discharge mechanism characterized by providing a means for supplying electricity to a temperature conversion element.
JP1811091A 1991-02-08 1991-02-08 Sensor body type liquid injecting and discharging mechanism Pending JPH04255805A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1811091A JPH04255805A (en) 1991-02-08 1991-02-08 Sensor body type liquid injecting and discharging mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1811091A JPH04255805A (en) 1991-02-08 1991-02-08 Sensor body type liquid injecting and discharging mechanism

Publications (1)

Publication Number Publication Date
JPH04255805A true JPH04255805A (en) 1992-09-10

Family

ID=11962477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1811091A Pending JPH04255805A (en) 1991-02-08 1991-02-08 Sensor body type liquid injecting and discharging mechanism

Country Status (1)

Country Link
JP (1) JPH04255805A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006215289A (en) * 2005-02-03 2006-08-17 Mitsui Chemicals Inc Substrate for optical circuit, and manufacturing method of optical circuit substrate using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006215289A (en) * 2005-02-03 2006-08-17 Mitsui Chemicals Inc Substrate for optical circuit, and manufacturing method of optical circuit substrate using the same

Similar Documents

Publication Publication Date Title
US20220011677A1 (en) Method for producing an optical system and optical system
US9568679B2 (en) Lens array optical coupling to photonic chip
JP3840287B2 (en) Optical fiber switch
US6172997B1 (en) Integrated semiconductor diode laser pumped solid state laser
JP6459296B2 (en) Light emitting module and multi-channel light emitting module
KR20150024431A (en) Optical assembly with diffractive optical element
US11520236B2 (en) Non-telecentric light guide elements
JP2008221237A (en) Laser beam machining apparatus
JPH04255805A (en) Sensor body type liquid injecting and discharging mechanism
US6853505B2 (en) Optical module apparatus, projection television and method of fabricating optical module apparatus
JP2014018800A (en) Laser joining method and laser joining system
CN110524875A (en) A kind of photocuring 3D printing device
WO2001031369A1 (en) Optical component and method of manufacturing thick polyimide film
KR100723252B1 (en) Apparatus for actuating a lens module
US6136411A (en) Angularly self-aligned optical subassembly
CN112260044A (en) Laser device with uniform energy
JPH04237002A (en) Liquid injecting and discharging mechanism integrated with sensor
CN110315202A (en) A kind of optics module for laser cutting
JP6280069B2 (en) Optical waveguide circuit and optical device
JP7413426B2 (en) Light projecting equipment, ranging equipment, and electronic equipment
CN220001965U (en) Digital micromirror device chip fixing structure and oral digital impression instrument
JP2007316628A (en) Optical switch
CN220399725U (en) Continuously adjustable pinhole device
CN219350932U (en) Unidirectional aspheric double-light path light-combining laser
JP2006023579A (en) Optical semiconductor device, its connecting method, optical interconnection, and optical wiring module