JP7413426B2 - Light projecting equipment, ranging equipment, and electronic equipment - Google Patents

Light projecting equipment, ranging equipment, and electronic equipment Download PDF

Info

Publication number
JP7413426B2
JP7413426B2 JP2022044466A JP2022044466A JP7413426B2 JP 7413426 B2 JP7413426 B2 JP 7413426B2 JP 2022044466 A JP2022044466 A JP 2022044466A JP 2022044466 A JP2022044466 A JP 2022044466A JP 7413426 B2 JP7413426 B2 JP 7413426B2
Authority
JP
Japan
Prior art keywords
light
variable focus
lens
optical system
focus lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022044466A
Other languages
Japanese (ja)
Other versions
JP2023137994A (en
Inventor
英希 野田
剛 柿本
篤 大畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vivo Mobile Communication Co Ltd
Original Assignee
Vivo Mobile Communication Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vivo Mobile Communication Co Ltd filed Critical Vivo Mobile Communication Co Ltd
Priority to JP2022044466A priority Critical patent/JP7413426B2/en
Priority to PCT/CN2023/081838 priority patent/WO2023174368A1/en
Publication of JP2023137994A publication Critical patent/JP2023137994A/en
Application granted granted Critical
Publication of JP7413426B2 publication Critical patent/JP7413426B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details
    • G01C3/06Use of electric means to obtain final indication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/484Transmitters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification

Description

本開示は、光学素子分野に係り、具体的に、投光装置、測距装置及び電子機器に係る。 The present disclosure relates to the field of optical elements, and specifically relates to a light projector, a distance measuring device, and an electronic device.

近年、物体までの距離を測定する測距モジュールの小型が進んでおり、スマートフォンにも測距モジュールが搭載されている。上述した通り、ToF(Time of Flight)方式の測距モジュールでは、光を物体に向かって照射して物体の表面で反射してくる光を検出し、その光の飛行時間を測定した測定値に基づいて物体までの距離が算出される。 In recent years, distance measurement modules that measure the distance to objects have become smaller and smaller, and even smartphones are equipped with distance measurement modules. As mentioned above, a ToF (Time of Flight) distance measurement module irradiates light toward an object, detects the light reflected from the object's surface, and calculates the flight time of that light. Based on this, the distance to the object is calculated.

照射方法としては、投光光学系内の発光素子から回折光学素子(Diffractive Optical Element ,DOE)を透過してマトリックス状に配置された複数のドット照射として照射する方法と、発光素子から拡散光学素子を透過して連続的な拡散光を照射する、面照射方法がある。 The irradiation methods include a method in which irradiation is performed as a plurality of dots arranged in a matrix through a diffractive optical element (DOE) from a light emitting element in the projection optical system, and a method in which irradiation is performed as a plurality of dots arranged in a matrix. There is a surface irradiation method that transmits continuous diffused light.

ドット照射の場合、光が点に絞られ遠距離でも光の強度が維持されるため、限られた光源の電力で比較的遠方対象物の距離を計測することが可能である。一方、面照射の場合、照射面内において均一に光が照射されるため高い分解能で照射できる。 In the case of dot irradiation, the light is focused to a point and the intensity of the light is maintained even at a long distance, so it is possible to measure the distance of a relatively distant object with limited light source power. On the other hand, in the case of surface irradiation, the light is uniformly irradiated within the irradiation surface, so it can be irradiated with high resolution.

ドット照射のデメリットとしては、隣接するドット間距離によって面内の分解能は制限される。また、面照射のデメリットは、対象物の距離が離れると単位面内に照射される光量が低下するため、測定距離は近距離に限定される。 A disadvantage of dot irradiation is that in-plane resolution is limited by the distance between adjacent dots. Further, a disadvantage of surface irradiation is that the amount of light irradiated within a unit plane decreases as the distance between objects increases, so the measurement distance is limited to short distances.

光源とDOEの間にコリメータレンズを挿入して、光源から出た光を平行光に補正しているが、大気減衰によって測定対象までの距離が遠くなるにつれ、照射は減衰していく。これに対し従来技術における方法では、被写体距離毎に投光光学系の焦点距離を可変式にしてドット照射と面照射を切り替える対策をしている。しかしながら前記光学系では投光光学系内に光軸方向に駆動させるレンズを使用しており、厚みの制限のあるスマートフォンなどでは不向きである。 A collimator lens is inserted between the light source and the DOE to correct the light emitted from the light source into parallel light, but the irradiation attenuates as the distance to the measurement target increases due to atmospheric attenuation. On the other hand, in the conventional method, the focal length of the projection optical system is made variable for each subject distance to switch between dot irradiation and surface irradiation. However, the optical system uses a lens that is driven in the optical axis direction within the projection optical system, and is not suitable for smartphones and the like that have limited thickness.

従来技術における別の方法では、ドット照明と拡散光の二つの照射モジュールを使用して一定の厚みの制限内で両方の利点を得ている。しかしながら、こちらの手法では厚み方向の課題は解決されるものの、二つの照射モジュールによるコストアップと幅方向のサイズが非常に大きくなってしまう。 Another method in the prior art uses two illumination modules, dot illumination and diffused illumination, to obtain the benefits of both within certain thickness limitations. However, although this method solves the problem in the thickness direction, the cost increases due to the two irradiation modules and the size in the width direction becomes extremely large.

本開示の少なくとも一つの実施例において、投光装置、測距装置及び電子機器を提供する。測距モジュールに用いられる投光光学系のサイズを維持し、測距距離に応じてドット照射または面照射に切り替えることができる。 In at least one embodiment of the present disclosure, a light projector, a distance measuring device, and an electronic device are provided. It is possible to maintain the size of the light projection optical system used in the distance measurement module and switch to dot irradiation or surface irradiation depending on the distance to be measured.

上記の技術課題を解決するために、本開示は、以下のように実現される。 In order to solve the above technical problem, the present disclosure is realized as follows.

第一態様において、本開示実施例は、投光装置であって,発光光源と、光軸に焦点可変レンズが配置される投光光学系を含み、前記焦点可変レンズが光軸方向に移動しない場合に、前記焦点可変レンズが駆動信号に応じて焦点位置を変化させる。 In a first aspect, an embodiment of the present disclosure is a light projecting device including a light emitting light source and a light projecting optical system in which a variable focus lens is arranged on an optical axis, and the variable focus lens does not move in the optical axis direction. In this case, the variable focus lens changes its focal position in response to a drive signal.

第二態様において、本開示実施例は、測距装置であって受光素子と受光光学系を含み、さらに前記投光装置を含む。 In a second aspect, an embodiment of the present disclosure is a distance measuring device that includes a light receiving element and a light receiving optical system, and further includes the light projecting device.

第三態様において、本開示実施例は、電子機器であって、前記測距装置を含む。 In a third aspect, an embodiment of the present disclosure is an electronic device including the distance measuring device.

従来技術と比べ、本開示実施例が、投光装置、測距装置及び電子機器を提供し、焦点可変レンズを利用することによって、投光光学系において切り替えることによりドット照射または面照射を実現し、装置構造の小型化に役立つ。 Compared with the prior art, the disclosed embodiment provides a light projecting device, a distance measuring device, and an electronic device, and by using a variable focus lens, dot illumination or surface illumination can be realized by switching in the light projection optical system. , which is useful for downsizing the device structure.

従来技術に起きるドット照射技術案の概念図である。FIG. 2 is a conceptual diagram of a dot irradiation technique proposed in the prior art. 本開示実施例における投光装置の一つの構造の概念図である。FIG. 2 is a conceptual diagram of one structure of a light projecting device in an embodiment of the present disclosure. 本開示実施例における投光装置によるドット照射の概念図である。FIG. 2 is a conceptual diagram of dot irradiation by a light projection device in an embodiment of the present disclosure. 本開示実施例における投光装置による面照射の概念図である。FIG. 3 is a conceptual diagram of surface illumination by a light projection device in an embodiment of the present disclosure. 本開示の別の実施例における投光装置の一つの構造の概念図である。FIG. 7 is a conceptual diagram of one structure of a light projecting device in another embodiment of the present disclosure. 本開示の別の実施例における投光装置よるドット直径を縮小する概念図である。FIG. 7 is a conceptual diagram of reducing the dot diameter by a light projection device in another embodiment of the present disclosure. 本開示の別の実施例における通常のドット照射の概念図である。FIG. 7 is a conceptual diagram of normal dot irradiation in another embodiment of the present disclosure. 本開示の別の実施例におけるドット直径を縮小した後のドット照射の概念図である。FIG. 7 is a conceptual diagram of dot irradiation after reducing the dot diameter in another example of the present disclosure. 本開示の別の実施例における投光装置の一つの構造の概念図である。FIG. 7 is a conceptual diagram of one structure of a light projecting device in another embodiment of the present disclosure. 本開示の別の実施例における投光装置の照射の概念図である。FIG. 7 is a conceptual diagram of irradiation by a light projecting device in another embodiment of the present disclosure.

以下、本開示の実施例の図面とともに、本開示の実施例の技術手段を明確且つ完全的に記載する。明らかに、記載する実施例は、本開示の実施例の一部であり、全てではない。本開示の実施例に基づき、当業者が創造性のある作業をしなくても為しえる全ての他の実施例は、いずれも本開示の保護範囲に属するものである。 In the following, the technical means of the embodiments of the present disclosure will be clearly and completely described together with the drawings of the embodiments of the present disclosure. Obviously, the described embodiments are some, but not all, of the embodiments of the present disclosure. All other embodiments that can be made by those skilled in the art based on the embodiments of the present disclosure without any creative work shall fall within the protection scope of the present disclosure.

本開示の明細書及び特許請求の範囲における用語「第1」、「第2」などは、類似した対象を区別するためのものであり、必ずしも特定の順序又は優先順位を説明するためのものではない。ここで説明した本開示の実施例が、例えばここでの図示又は説明以外の順序でも実施できるように、このように使用されたデータは、適宜入れ替えてもよいと理解すべきである。尚且つ、用語「第1」、「第2」などにより区別される対象は、通常同種なものであり、対象な数を限定しない。例えば、第一対象は、一つでもよく、複数でもよい。なお、明細書及び特許請求の範囲における「及び/又は」は、接続対象の少なくとも1つを表す。文字「/」は、一般に、前後関連な対象が「或いは」の関係となることを示す。 The terms "first", "second", etc. in the specification and claims of the present disclosure are used to distinguish between similar objects and are not necessarily used to describe a particular order or priority. do not have. It is to be understood that the data so used may be interchanged where appropriate, such that the embodiments of the disclosure described herein may be practiced, for example, in an order other than as illustrated or described herein. In addition, the objects distinguished by the terms "first", "second", etc. are usually of the same type, and the number of objects is not limited. For example, there may be one or more first objects. Note that "and/or" in the specification and claims represents at least one connection target. The character "/" generally indicates that context-related objects have an "or" relationship.

本開示に係る技術案を理解するために、以下、本開示に係る関連する概念を説明する。 In order to understand the technical solution according to the present disclosure, related concepts according to the present disclosure will be explained below.

本開示実施例に記載の焦点可変レンズは、光軸方向に移動させることなく、電圧を印加して焦点位置を変化させる素子を前提としており、液体レンズや膜レンズ、液晶レンズなど複数の候補がある。 The variable focus lens described in the embodiments of the present disclosure is based on an element that changes the focal position by applying a voltage without moving in the optical axis direction, and there are several candidates such as a liquid lens, a film lens, and a liquid crystal lens. be.

また、本開示に記載の測距装置とは、発光素子と、投光光学系と、受光素子と受光光学系等を含む。この測距装置は、発光素子からの発光体が対象物で反射して受光素子に戻って結像した光の情報から距離を算出する。結像した光の情報から距離を算出するとは、結像点の間隔から距離を算出するタイプや、発光から受光までの時間から対象物との距離を算出するもので、前記時間により距離を算出するものは、直接的な時間計測から算出されるタイプと発光光と受光光の位相差から時間算出する2種に大別される。 Further, the distance measuring device described in the present disclosure includes a light emitting element, a light projecting optical system, a light receiving element, a light receiving optical system, and the like. This distance measuring device calculates a distance from information about light that is reflected by a light emitter from a light emitting element on an object, returns to a light receiving element, and forms an image. Calculating the distance from the information of the imaged light refers to a type that calculates the distance from the interval between the imaged points, or a type that calculates the distance to the object from the time from emission to reception, and calculates the distance from the time. There are two types: those that calculate time from direct time measurement and those that calculate time from the phase difference between emitted light and received light.

本開示実施例は、投光装置であって、特に、投光光学系の高性能化に役立つ。この投光装置は、発光光源と、光軸に焦点可変レンズが配置される投光光学系を含む。ここで、前記焦点可変レンズが光軸方向に移動しない場合に、前記前記焦点可変レンズが駆動信号に応じて、焦点位置を変えさせる。 Embodiments of the present disclosure are particularly useful for improving the performance of a light projecting optical system in a light projecting device. This light projecting device includes a light emitting source and a light projecting optical system in which a variable focus lens is arranged on an optical axis. Here, when the variable focus lens does not move in the optical axis direction, the variable focus lens changes its focal position in accordance with the drive signal.

具体的に、前記焦点可変レンズが第一駆動状態と第二駆動状態を含ませてもよい。ここで、前記第一駆動状態で前記発光光源から出た光が投光光学系を通過した後、ドット照射に設定され、前記第二駆動状態で前記発光光源から出た光が投光光学系を通過した後、面照射に設定される。前記焦点可変レンズは、液体レンズ、薄膜レンズまたは、液晶レンズを含むが、これに限られない。 Specifically, the variable focus lens may include a first drive state and a second drive state. Here, after the light emitted from the light emitting light source in the first driving state passes through the light projection optical system, dot irradiation is set, and the light emitted from the light emitting light source in the second driving state passes through the light projection optical system. After passing through, it is set to surface illumination. The variable focus lens includes, but is not limited to, a liquid lens, a thin film lens, or a liquid crystal lens.

このように、本開示実施例における投光装置は、投光光学系レンズ内の適切な位置に光軸方向に焦点可変レンズを配置し、測距距離に応じて、焦点可変レンズを駆動させ、適切な照射方法、例えばドット照射または面照射に切り替えることができる。そのため、本開示実施形態の投光装置は、測距距離に従って前記焦点可変レンズを駆動するための駆動モジュールをさらに含むことができ、前記投光装置が点照明または表面照明に切り替えられる。 In this way, the light projection device in the embodiment of the present disclosure disposes the variable focus lens in the optical axis direction at an appropriate position within the lens of the light projection optical system, drives the variable focus lens according to the distance measurement, It is possible to switch to a suitable illumination method, for example dot illumination or area illumination. Therefore, the light projection device of the embodiment of the present disclosure may further include a drive module for driving the variable focus lens according to the measured distance, and the light projection device is switched to point illumination or surface illumination.

図1に示すように、従来技術における測距装置のドット照射方法では、この測距装置が、発光光源11と投光光学系12を含む投光装置と、受光素子13と受光光学系14を含む受光装置を含む。前記投光光学系12は、コリメータレンズ102と、DOE 101を含む。ここで、発光素子から照射されるレーザー光がコリメータレンズ102を経由してDOE 101へ透過して、マトリックス状に配置される複数ドットが計測領域に照射される。 As shown in FIG. 1, in the conventional dot irradiation method for a distance measuring device, this distance measuring device includes a light projecting device including a light emitting light source 11 and a light projecting optical system 12, a light receiving element 13, and a light receiving optical system 14. including a light receiving device. The light projection optical system 12 includes a collimator lens 102 and a DOE 101. Here, laser light emitted from the light emitting element is transmitted to the DOE 101 via the collimator lens 102, and a plurality of dots arranged in a matrix are irradiated onto the measurement area.

本開示の一つの実施例において、前記投光装置は、投光光学系のレンズ内に光軸方向に移動しない焦点可変レンズを効果的に配置し、DOEと併用することでドット照射と面照射を切り替える。具体的に、図2に示すように、前記投光光学系はさらに、DOE 201を含む。前記焦点可変レンズ202は、前記DOE 201と発光光源との間に位置する。この実施例は、発光素子とDOE 201との間に、光軸方向に移動しない焦点可変レンズ202を配置する。つまり、前記焦点可変レンズ202が光軸方向に固定される。 In one embodiment of the present disclosure, the light projecting device effectively arranges a variable focus lens that does not move in the optical axis direction within the lens of the light projecting optical system, and uses it together with a DOE to perform dot irradiation and surface irradiation. Switch. Specifically, as shown in FIG. 2, the light projection optical system further includes a DOE 201. The variable focus lens 202 is located between the DOE 201 and the light emitting source. In this embodiment, a variable focus lens 202 that does not move in the optical axis direction is placed between the light emitting element and the DOE 201. In other words, the variable focus lens 202 is fixed in the optical axis direction.

焦点可変レンズの屈折率を変更することで、ドット照射と面照射を切り替えることができる。その屈折率の駆動範囲はピーク強度に対するレーザー強度が45%以上とする。 By changing the refractive index of the variable focus lens, it is possible to switch between dot irradiation and surface irradiation. The driving range of the refractive index is such that the laser intensity is 45% or more with respect to the peak intensity.

図2に示される投光装置は、以下のメリットがある。前記実施例における投光装置が適用された測距装置において、特に、発光光学系でドット照射と面照射を切り替えることで実現しつつ、小型化に貢献できる。これにより、物体に向かって照射する照射光として、図3のようにドット照射する場合は、光の密度を高くでき、測定距離を延ばすことができる。一方、近距離に対してはドットが照射されていない箇所の距離測定を改善するため、図4のように焦点可変レンズの屈折率を変更して、面照射に切り替えて高い分解能で測定することができる。 The light projection device shown in FIG. 2 has the following advantages. In a distance measuring device to which the light projecting device in the embodiment is applied, it is possible to contribute to miniaturization, in particular, by switching between dot irradiation and surface irradiation in the light emitting optical system. As a result, when dot irradiation is performed as irradiation light toward an object as shown in FIG. 3, the density of light can be increased and the measurement distance can be extended. On the other hand, for short distances, in order to improve the distance measurement in areas where the dots are not illuminated, it is necessary to change the refractive index of the variable focus lens and switch to surface illumination, as shown in Figure 4, to measure with high resolution. I can do it.

従来の方法として、ボイスコイルモータ(Voice Coil Motor,VCM)を使用した方法やドット照射と面照射の二種類の投光光学系を測距モジュールに設置する方法があるが、大型化が懸念される。本開示の以上の実施例では光軸方向に移動しない焦点可変レンズを使用することでサイズアップさせることなく、前記メリットを実現することができる。 Conventional methods include using a voice coil motor (VCM) and installing two types of projection optical systems, dot irradiation and surface irradiation, on the ranging module, but there are concerns about increasing the size. Ru. In the above embodiments of the present disclosure, the above merits can be achieved without increasing the size by using a variable focus lens that does not move in the optical axis direction.

本開示の実施例において、前記投光光学系が、さらにDOEとコリメータレンズを含ませてもよい。ここで、前記光軸に前記発光光源から離れる方向に、順に、前記コリメータレンズと、前記焦点可変レンズと、前記回折光学素子が設置される、または、前記光軸に前記発光光源から離れる方向に、順に、前記コリメータレンズと、前記回折光学素子と、前記焦点可変レンズが設置される。 In embodiments of the present disclosure, the light projection optical system may further include a DOE and a collimator lens. Here, the collimator lens, the variable focus lens, and the diffractive optical element are installed in order on the optical axis in a direction away from the light emitting source, or , the collimator lens, the diffractive optical element, and the variable focus lens are installed in this order.

例えば、投光装置の光軸方向のスペースに余裕があれば、図5のようにDOE502よりも物体側に焦点可変レンズ501を配置することで設計を簡略化できる。図2と同様、この実施例では、投光光学系内に光軸方向に移動しない焦点可変レンズ501を用いる。焦点可変レンズ501の位置は、DOEよりも物体側でも発光素子側でもよい。 For example, if there is sufficient space in the optical axis direction of the projector, the design can be simplified by arranging the variable focus lens 501 closer to the object than the DOE 502 as shown in FIG. Similar to FIG. 2, this embodiment uses a variable focus lens 501 that does not move in the optical axis direction within the projection optical system. The variable focus lens 501 may be positioned on the object side or on the light emitting element side with respect to the DOE.

このとき、図6に示すように、ドット照射法を採用する際に、焦点可変レンズ501により、物体に照射されるそれぞれのドット径を絞る。図7と図8は通常のドット照射とドット径を絞ったハイパワーのドット照射の概念図である。 At this time, as shown in FIG. 6, when employing the dot irradiation method, the diameter of each dot irradiated onto the object is narrowed down using a variable focus lens 501. 7 and 8 are conceptual diagrams of normal dot irradiation and high power dot irradiation with a reduced dot diameter.

図5に示す投光装置は、以下のメリットがある。ドット照射のドット径を絞ることによってドットの解像度を向上させ、遠方に照射される物体の測距エラーを防ぐ効果が得られる。ただし、ドット径を絞った影響により、ドット間の距離が広くなるため、照射されない面積が大きくなるため注意したい。 The light projection device shown in FIG. 5 has the following advantages. By narrowing down the dot diameter of dot irradiation, it is possible to improve dot resolution and prevent distance measurement errors for objects illuminated far away. However, care must be taken because the distance between the dots increases due to the effect of narrowing down the dot diameter, which increases the area that is not illuminated.

本開示の別の実施例では、焦点可変レンズの光学パワーを利用してドット照射における柔軟な画角操作を実現する。ただし、焦点可変レンズの光学パワーが画角操作に対して十分でない場合は、複数枚の焦点可変レンズを使用してもよい。つまり、本開示の別の実施例における投光装置において、前記焦点可変レンズが少なくとも二つある。 Another embodiment of the present disclosure utilizes the optical power of a variable focus lens to achieve flexible field angle manipulation in dot irradiation. However, if the optical power of the variable focus lens is not sufficient for controlling the angle of view, a plurality of variable focus lenses may be used. That is, in the light projection device according to another embodiment of the present disclosure, there are at least two variable focus lenses.

図9に示すように、本開示の別の実施例による投光装置において、前記投光光学系は、さらに、DOE 802とコリメータレンズ801とを含み、ここで、前記光軸に前記発光光源(例えばレーザー)から離れる方向に、順に前記コリメータレンズ801と、DOE 802と、少なくとも二つの焦点可変レンズ803が設置される。オプションとして、焦点可変レンズが、コリメータレンズと、DOEとの間に設置されてもよい。このとき、前記光軸に前記発光光源から離れる方向に、順に前記コリメータレンズと、少なくとも二つの焦点可変レンズとDOE 802が設置される。 As shown in FIG. 9, in the light projection device according to another embodiment of the present disclosure, the light projection optical system further includes a DOE 802 and a collimator lens 801, where the light emitting light source ( For example, the collimator lens 801, the DOE 802, and at least two variable focus lenses 803 are installed in order in the direction away from the laser. Optionally, a variable focus lens may be placed between the collimator lens and the DOE. At this time, the collimator lens, at least two variable focus lenses, and a DOE 802 are installed in order on the optical axis in a direction away from the light emitting source.

基本的な動作として、比較的近距離の対象物804に対しては図9のように画角を広めに調整して測定し、遠方の対象物に対しては図10のように画角を絞って測定する。 As a basic operation, the angle of view is adjusted to a wider angle as shown in Fig. 9 for relatively close objects 804, and the angle of view is adjusted as shown in Fig. 10 for distant objects. Squeeze and measure.

図9と図10に示す投光装置は、以下のメリットがある。画角を絞ることでドット照射におけるドット間の距離を短くすることができ、分解能を向上させることができる。撮像画角内に対するドット照射の範囲は狭くなることに注意したい。しかしながら、遠方に存在する対象の測距時に対しては撮像画角の中央を測定するシーンが多いため、撮像画角の中央のみにドット照射を集中させ、分解能を上げることは有益である。 The light projecting devices shown in FIGS. 9 and 10 have the following advantages. By narrowing down the angle of view, the distance between dots in dot irradiation can be shortened, and resolution can be improved. It should be noted that the range of dot irradiation within the imaging field of view is narrow. However, when measuring a distance to a distant object, there are many scenes in which the center of the imaging angle of view is measured, so it is beneficial to concentrate dot irradiation only on the center of the imaging angle of view to increase resolution.

前記のいくつかの実施例によって提供される投光装置をもとに、本開示実施例は、さらに、測距装置を提供する。図2,図5と図9に示す投光装置を含む以外、さらに受光装置を含む。前記受光装置は、受光素子と受光光学系を含み、具体的構造について、図1を参考する。 Based on the light projecting device provided by the several embodiments described above, the disclosed embodiment further provides a distance measuring device. In addition to including the light projecting devices shown in FIGS. 2, 5, and 9, the device further includes a light receiving device. The light receiving device includes a light receiving element and a light receiving optical system, and FIG. 1 is referred to for the specific structure.

さらに、本開示実施例は、前記測距装置を含む電子機器、例えばスマートフォンなどを提供する。 Further, the embodiments of the present disclosure provide an electronic device, such as a smartphone, including the distance measuring device.

なお、本開示の実施例は、ToFに適用される投影光学系を例として取り上げて、焦点可変レンズを使用するという考えが提案されているが、本開示の実施例は、ToFの投光光学系だけに適用することではなく、一般的な投光装置にも適用できる。 Note that the embodiment of the present disclosure takes a projection optical system applied to ToF as an example and proposes the idea of using a variable focus lens; It can be applied not only to systems but also to general light projectors.

以上、本開示の実施例を図面に基づいて記載したが、本発明は、前記の具体的な実施形態に限定されるものではない。前記の具体的な実施形態は、例示的なものであり、限定的なものではない。本開示の示唆を受け、当業者が本開示の趣旨および特許請求の範囲から逸脱することなくなしえる多くの形態は、すべて本開示の保護範囲に含まれる。 Although the embodiments of the present disclosure have been described above based on the drawings, the present invention is not limited to the specific embodiments described above. The specific embodiments described above are illustrative and not restrictive. Many forms that a person skilled in the art can make upon the suggestion of this disclosure without departing from the spirit of this disclosure and the scope of the claims are all included within the protection scope of this disclosure.

Claims (10)

投光装置であって、
発光光源と、光軸に焦点可変レンズが配置される投光光学系を含み、前記焦点可変レンズが光軸方向に移動しない場合に、前記焦点可変レンズが駆動信号に応じて焦点位置を変化させ、
前記焦点可変レンズが第一駆動状態と第二駆動状態を含み、前記第一駆動状態で前記発光光源から出た光が投光光学系を通過した後、ドット照射に設定され、前記第二駆動状態で前記発光光源から出た光が投光光学系を通過した後、面照射に設定され、
前記投光装置は、
測距距離に従って前記焦点可変レンズを駆動して、前記投光装置に前記ドット照射または前記面照射に切り替えさせるための駆動モジュールをさらに含むことを特徴とする投光装置。
A light projecting device,
The projecting optical system includes a light emitting light source and a variable focus lens arranged on an optical axis, and when the variable focus lens does not move in the optical axis direction, the variable focus lens changes the focal position according to a drive signal. ,
The variable focus lens includes a first driving state and a second driving state, and after the light emitted from the light emitting light source passes through the light projection optical system in the first driving state, it is set to dot irradiation, and the second driving state After the light emitted from the light emitting light source passes through the projection optical system in the state, the light is set to surface illumination,
The light projecting device includes:
The light projecting device further includes a drive module for driving the variable focus lens according to the measured distance to cause the light projecting device to switch to the dot irradiation or the surface irradiation .
前記焦点可変レンズは、液体レンズ、薄膜レンズまたは、液晶レンズであることを特徴とする請求項1に記載の投光装置。 The light projection device according to claim 1, wherein the variable focus lens is a liquid lens, a thin film lens, or a liquid crystal lens. 前記焦点可変レンズは、光軸方向に固定されることを特徴とする請求項1に記載の投光装置。 The light projection device according to claim 1, wherein the variable focus lens is fixed in the optical axis direction. 前記投光光学系は、さらに回折光学素子を含み、前記焦点可変レンズが前記回折光学素子と発光光源の間に位置することを特徴とする請求項1~3のいずれか一項に記載の投光装置。 The projection optical system according to any one of claims 1 to 3, wherein the projection optical system further includes a diffractive optical element, and the variable focus lens is located between the diffractive optical element and the light emitting source. light device. 前記投光光学系は、さらに回折光学素子とコリメータレンズを含み、
前記光軸に前記発光光源から離れる方向に、順に前記コリメータレンズと、前記焦点可変レンズと、前記回折光学素子が設置されること、
または、
前記光軸に前記発光光源から離れる方向に、順に前記コリメータレンズと、前記回折光学素子と前記焦点可変レンズが設置されることを特徴とする請求項1~3のいずれか一項に記載の投光装置。
The projection optical system further includes a diffractive optical element and a collimator lens,
The collimator lens, the variable focus lens, and the diffractive optical element are installed in order on the optical axis in a direction away from the light emission source;
or
4. The projection according to claim 1, wherein the collimator lens, the diffractive optical element, and the variable focus lens are installed in order on the optical axis in a direction away from the light emitting source. light device.
前記焦点可変レンズは、少なくとも二つがあることを特徴とする請求項1又は2に記載の投光装置。 3. The light projecting device according to claim 1, wherein there are at least two variable focus lenses. 前記投光光学系は、さらに回折光学素子とコリメータレンズを含み、
前記光軸に前記発光光源から離れる方向に、順に前記コリメータレンズと、前記回折光学素子と、少なくとも二つの前記焦点可変レンズが設置されることを特徴とする請求項6に記載の投光装置。
The projection optical system further includes a diffractive optical element and a collimator lens,
7. The light projecting device according to claim 6, wherein the collimator lens, the diffractive optical element, and at least two variable focus lenses are installed in order on the optical axis in a direction away from the light emitting source.
前記投光光学系は、さらに回折光学素子とコリメータレンズを含み、
前記光軸に前記発光光源から離れる方向に、順に前記コリメータレンズと、少なくとも二つの前記焦点可変レンズと、前記回折光学素子が設置されることを特徴とする請求項6に記載の投光装置。
The projection optical system further includes a diffractive optical element and a collimator lens,
7. The light projecting device according to claim 6, wherein the collimator lens, at least two variable focus lenses, and the diffractive optical element are installed in order on the optical axis in a direction away from the light emitting source.
受光素子と受光光学系を含み、さらに、前記請求項1~8のいずれか一項に記載の投光装置を含むことを特徴とする測距装置。 A distance measuring device comprising a light receiving element and a light receiving optical system, and further comprising a light projecting device according to any one of claims 1 to 8. 請求項9に記載の測距装置を含むことを特徴とする電子機器。 An electronic device comprising the distance measuring device according to claim 9.
JP2022044466A 2022-03-18 2022-03-18 Light projecting equipment, ranging equipment, and electronic equipment Active JP7413426B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022044466A JP7413426B2 (en) 2022-03-18 2022-03-18 Light projecting equipment, ranging equipment, and electronic equipment
PCT/CN2023/081838 WO2023174368A1 (en) 2022-03-18 2023-03-16 Light projection apparatus, ranging apparatus and electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022044466A JP7413426B2 (en) 2022-03-18 2022-03-18 Light projecting equipment, ranging equipment, and electronic equipment

Publications (2)

Publication Number Publication Date
JP2023137994A JP2023137994A (en) 2023-09-29
JP7413426B2 true JP7413426B2 (en) 2024-01-15

Family

ID=88022396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022044466A Active JP7413426B2 (en) 2022-03-18 2022-03-18 Light projecting equipment, ranging equipment, and electronic equipment

Country Status (2)

Country Link
JP (1) JP7413426B2 (en)
WO (1) WO2023174368A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009204691A (en) 2008-02-26 2009-09-10 Toyota Central R&D Labs Inc Optical scanner, laser radar device and optical scanning method
JP2015078941A (en) 2013-10-18 2015-04-23 増田 麻言 Distance measuring apparatus using laser beam
JP2016048237A (en) 2014-08-26 2016-04-07 株式会社トプコン Laser measuring device
US20190018137A1 (en) 2017-07-14 2019-01-17 Microsoft Technology Licensing, Llc Optical projector having switchable light emission patterns
US20190101791A1 (en) 2017-10-02 2019-04-04 Liqxtal Technology Inc. Optical sensing device and structured light projector
JP2019113530A (en) 2017-12-22 2019-07-11 株式会社デンソー Distance measuring device, recognition device, and distance measuring method
US10564521B1 (en) 2019-01-15 2020-02-18 Shenzhen Guangjian Technology Co., Ltd. Switchable diffuser projection systems and methods
JP2020531856A (en) 2017-09-01 2020-11-05 トルンプ フォトニック コンポーネンツ ゲゼルシャフト ミット ベシュレンクテル ハフツング Flight time depth camera with low resolution pixel imaging
WO2021040476A1 (en) 2019-08-30 2021-03-04 엘지이노텍 주식회사 Tof camera

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102799042A (en) * 2012-09-06 2012-11-28 江西理工大学 Method for producing novel electronic control zooming liquid crystal lens
JP6075644B2 (en) * 2014-01-14 2017-02-08 ソニー株式会社 Information processing apparatus and method
TWI775904B (en) * 2018-07-24 2022-09-01 德商馬克專利公司 Liquid-crystal lens
JP7021647B2 (en) * 2019-02-14 2022-02-17 株式会社デンソー Optical range measuring device
JP7321834B2 (en) * 2019-08-26 2023-08-07 ソニーセミコンダクタソリューションズ株式会社 Lighting device and ranging module
CN111025317B (en) * 2019-12-28 2022-04-26 奥比中光科技集团股份有限公司 Adjustable depth measuring device and measuring method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009204691A (en) 2008-02-26 2009-09-10 Toyota Central R&D Labs Inc Optical scanner, laser radar device and optical scanning method
JP2015078941A (en) 2013-10-18 2015-04-23 増田 麻言 Distance measuring apparatus using laser beam
JP2016048237A (en) 2014-08-26 2016-04-07 株式会社トプコン Laser measuring device
US20190018137A1 (en) 2017-07-14 2019-01-17 Microsoft Technology Licensing, Llc Optical projector having switchable light emission patterns
JP2020531856A (en) 2017-09-01 2020-11-05 トルンプ フォトニック コンポーネンツ ゲゼルシャフト ミット ベシュレンクテル ハフツング Flight time depth camera with low resolution pixel imaging
US20190101791A1 (en) 2017-10-02 2019-04-04 Liqxtal Technology Inc. Optical sensing device and structured light projector
JP2019113530A (en) 2017-12-22 2019-07-11 株式会社デンソー Distance measuring device, recognition device, and distance measuring method
US10564521B1 (en) 2019-01-15 2020-02-18 Shenzhen Guangjian Technology Co., Ltd. Switchable diffuser projection systems and methods
WO2021040476A1 (en) 2019-08-30 2021-03-04 엘지이노텍 주식회사 Tof camera

Also Published As

Publication number Publication date
JP2023137994A (en) 2023-09-29
WO2023174368A1 (en) 2023-09-21

Similar Documents

Publication Publication Date Title
US10739607B2 (en) Light source module, sensing device and method for generating superposition structured patterns
US5078474A (en) Exposure apparatus having a magnifying lens system
JP2006261155A (en) Aligner and exposure method
US8740394B2 (en) Illumination optical system for a projector apparatus
JP2007003861A (en) Exposure method and apparatus
KR101743810B1 (en) Light irradiation apparatus and drawing apparatus
JP2013502703A (en) Polarization conversion unit, illumination optical system, exposure apparatus, and device manufacturing method
US11868050B2 (en) Non-telecentric light guide elements
JP2008292916A (en) Image exposure device, microlens unit, and its manufacturing method
JP2010204328A (en) Projection optical system and image projector
JP7413426B2 (en) Light projecting equipment, ranging equipment, and electronic equipment
JP2009237321A (en) Image exposure device
JP4979462B2 (en) Image exposure device
US20220317345A1 (en) Prism apparatus and projection device
JP2008204570A (en) Information recording device and its light source device
CN111736438A (en) Direct imaging optical apparatus
WO2020088057A1 (en) Projection module, imaging device, and electronic device
JP2005031280A (en) Exposure apparatus
JP2011114041A (en) Luminous flux splitting apparatus, spatial optical modulation unit, lighting optical system, exposure apparatus, and device manufacturing method
CN111711749A (en) Laser ranging device, camera module, electronic equipment and control method
JP3088148B2 (en) Scanning drawing equipment
JP5058935B2 (en) Optical modulator and image recording apparatus
JP2024041379A (en) drawing device
JP5327715B2 (en) Illumination optical system, exposure apparatus, and device manufacturing method
CN110045582B (en) Digital micromirror LDI-based device and tilt scanning method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231227

R150 Certificate of patent or registration of utility model

Ref document number: 7413426

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150