JP2003172836A - Optical waveguide element with optical path alternation function - Google Patents

Optical waveguide element with optical path alternation function

Info

Publication number
JP2003172836A
JP2003172836A JP2001372056A JP2001372056A JP2003172836A JP 2003172836 A JP2003172836 A JP 2003172836A JP 2001372056 A JP2001372056 A JP 2001372056A JP 2001372056 A JP2001372056 A JP 2001372056A JP 2003172836 A JP2003172836 A JP 2003172836A
Authority
JP
Japan
Prior art keywords
optical waveguide
optical
core
optical path
face
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001372056A
Other languages
Japanese (ja)
Inventor
Takashi Shioda
剛史 塩田
Shiro Shichijo
司朗 七条
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2001372056A priority Critical patent/JP2003172836A/en
Publication of JP2003172836A publication Critical patent/JP2003172836A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical waveguide element which has a condensing function and transforms an optical path in which a problem of the contamination of an optical system is prevented without using such a means as a mechanical grinding and to provide a method of manufacturing the optical waveguide element. <P>SOLUTION: In the optical wave guide element, a resign block 5, which has the same refractive index as that of a core 2 of the optical waveguide, is formed at the light incident and emitting face of an optical waveguide and has a reflective face which alternates the optical path from the core. The resign block 5 is made contact with the end face of the core 2 which is interleaved between an upper clad 3 and a lower clad 1. The boundary face between the resign block 5 and air serves as a reflective face. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は高分子光導波路に関
し、特に光集積回路、光インターコネクション、あるい
は光合分波等の光学部品を製造する方法に関する。 【0002】 【従来の技術】光部品、あるいは光ファイバの基材とし
ては、光伝搬損失が小さく、伝送帯域が広いという特徴
を有する石英ガラスや多成分ガラス等の無機系の材料が
広く使用されているが、最近では高分子系の材料も開発
され、無機系材料に比べて加工性や価格の点で優れてい
ることから、光導波路用材料として注目されている。例
えば、ポリメチルメタクリレート(PMMA)、あるい
は、ポリスチレンのような透明性に優れた高分子をコア
とし、そのコア材料よりも屈折率の低い高分子をクラッ
ド材料としたコア−クラッド構造からなる平板型光導波
路が作製されている(特開平3−188402号)。こ
れに対して耐熱性の高い透明性高分子であるポリイミド
を用い低損失の平板型光導波路が実現されている(特開
平2−110500号)。コストなどの要求から光イン
ターコネクション分野において、面発光型レーザ(VC
SEL)が搭載されようとしているが、基板に対して垂
直に出射するレーザ光を基板に対して水平な光導波路に
入射するとき、約90°の光路変換が必要となる。高分
子光導波路では、ダイシングソーによって、約45°に
切削し、90°光路変換を可能にしている(特開平10
−300961)。しかしながら、ダイシングソーで切
削する場合、必要な場所以外も45°に切削してしまう
こと、切削時に汚染の恐れがあることや切削だけでは集
光機能が無いため光が発散してしまい損失の原因になる
などの問題がある。 【0003】 【発明が解決しようとする課題】本発明の目的は、機械
研削などの手段を用いることなく上記の問題を回避すべ
く光学系の汚染を防止し、集光機能を有して光路変換を
行える光導波路素子およびその作製方法を提供すること
にある。 【0004】 【課題を解決するための手段】本発明者は、鋭意検討し
た結果、光導波路端面に樹脂を極微量滴下することによ
り、前記課題を解決することを見出し本発明を完成させ
た。すなわち、本発明は、光導波路の光入出射端面に光
導波路のコアと同じ屈折率を有しコアからの光路を変換
させる反射面を備えた樹脂が形成されていることを特徴
とする光導波路素子である。 【0005】 【発明の実施の形態】以下、本発明を詳細に説明する。
ここでは、ポリイミドの前駆体であるポリアミド酸溶液
を用いたポリイミド光導波路を例に挙げて説明するが、
光導波路の材料としてポリアミド酸溶液以外の光学用材
料の樹脂溶液などを用いて作製することももちろん可能
である。また、光路変換のための樹脂は、UV硬化エポ
キシアクリレートを例に挙げて説明するが、UV硬化エ
ポキシアクリレート以外の樹脂溶液、熱硬化タイプの樹
脂溶液などを用いて作製することももちろん可能であ
る。 【0006】まず、シリコンウェハ上に下部クラッド層
を形成する。その上にコア層を形成する。次に、所望の
コアパターンの描いてあるマスクパターンを用いて、レ
ジストパターン形成を行う。このレジストをマスクとし
て酸素プラズマでドライエッチングする。次に、残った
レジストを剥離液で除去する。次に上から上部クラッド
層を形成する。次に、シリコンウェハから、光導波路を
剥離する。このようにして得られた光導波路フィルムを
必要であれば、所望の形状にダイシングソー等で切り出
した後、図1に示すようにレーザダイオードやフォトデ
ィテクタなどの受発光素子6を搭載し、駆動するため等
の電気回路が形成されている回路基板4に接着材を用い
て貼りつける。その後、光導波路端部にインクジェット
方式もしくは、ディスペンス方式を用いて、UV硬化樹
脂を極微量滴下する。その後、滴下した場所をUVラン
プで照射し硬化して樹脂ブロック5が得られる。この時
樹脂ブロック5は、上部クラッド3と下部クラッド1に
挟まれたコア2の端面に接触している。そして樹脂ブロ
ック5の空気との界面が反射面となる。この反射面は樹
脂が硬化する前の表面張力により、曲面が得られて集光
効果も得られる。このようにして、光路変換機能付の光
導波路が電気回路基板上に作製出来る。この構造により
光ビーム7を光路変換させると同時に、集光効果も生じ
る。 【0007】回路基板4は透明基板を用いてもよいし、
光の光路となる箇所に貫通孔を設けてもよい。透明基板
の場合は樹脂ブロック5は光路が変換される光ビームが
通過する回路基板面の該当箇所に接触するように形成さ
れる。回路基板に貫通孔が設けられている場合は、樹脂
ブロックは貫通孔のところで空気との界面を有してもよ
い。またこの貫通孔を樹脂ブロックの樹脂で埋めて受発
光素子の受発光面に樹脂が接触させることは、反射面を
減らしてロスを抑えることができるのでより好ましい。 【0008】また樹脂ブロック5の反射面である空気と
の界面に金属層などの反射層を設けてもよい。 【0009】引き続いて、いくつかの実施例を用いて本
発明を更に詳しく説明する。なお、分子構造の異なる種
々の高分子の溶液を用いることにより数限りない本発明
の高分子光導波路が得られることは明らかである。した
がって、本発明はこれらの実施例のみに限定されるもの
ではない。 【0010】(実施例1)4インチシリコンウェハ上に
2,2−ビス(3,4−ジカルボキシフェニル)ヘキサ
フルオロプロパン二無水物(6FDA)と2,2−ビス
(トリフルオロメチル)−4, 4' −ジアミノビフェニ
ル(TFDB)のポリアミド酸の15wt%DMAc溶
液を加熱後膜厚が15μmmになるようスピンコートし
た。これを380℃で1時間加熱イミド化して下部クラ
ッド層とした。この上にコア層となる6FDAと4,
4' −オキシジアニリン(ODA)のポリアミド酸約1
5wt%DMAc溶液を加熱イミド化後膜厚が50μm
になるようにスピンコートし、加熱イミド化した。その
上からSi含有のレジストを膜厚3μmになるようにス
ピンコートし90℃で仮乾燥した。50μm幅、長さ6
cmのパターンが40本描かれているガラスマスクパタ
ーンを用いて、露光、現像を行い、レジストパターンニ
ングを行った。次に反応性イオンエッチングによりコア
層を50μm分エッチングした。その後、残ったレジス
トを剥離液で剥離した。最後に上部クラッド層となる6
FDAとTFDBのポリアミド酸の15wt%DMAc
溶液をスピンコート等の方法により塗布し、これを加熱
イミド化して上部クラッド層を得た。このようにして埋
め込み型光導波路が形成される。その後、このシリコン
ウェハ上の光導波路を5wt%のフッ酸水溶液中に浸漬
させ、シリコンウェハから光導波路を剥し、フィルム光
導波路を作製した。次に幅5mm、長さ5cmにダイシ
ングソー等でフィルム光導波路を切り出した。その後、
市販のカプトン、ユーピレックス等のポリイミドフィル
ム上に銅パターンが形成されている電気回路基板にこの
光導波路フィルムをエポキシ接着材で貼りつけた。これ
らのポリイミドフィルムは薄くすることにより実質的に
光が透過できる。次に、UV硬化エポキシアクリレート
をインクジェット方式で5ナノリットル光導波路の端面
に滴下し、UVランプで200mJ照射し硬化させた。
そのとき、電気回路基板と滴下樹脂との接触角は44°
であった。このようにして、光路変換付光導波路素子が
形成出来る。このときの、光導波路とレーザダイオード
および光導波路とフォトディテクタとの結合効率はそれ
ぞれ約80%および約90%であった。 【0011】(比較例1)4インチシリコンウェハ上に
6FDAとTFDBのポリアミド酸の15wt%DMA
c溶液を加熱後膜厚が15μmmになるようスピンコー
トした。加熱イミド化して下部クラッド層を形成した
後、この上にコア層となる6FDAとODAのポリアミ
ド酸約15wt%DMAc溶液を加熱イミド化後膜厚が
50μmになるようにスピンコートし、加熱イミド化し
た。その上からSi含有のレジストを膜厚3μmになる
ようにスピンコートし90℃で仮乾燥した。50μm
幅、長さ6cmのパターンが40本描かれているガラス
マスクパターンを用いて、露光、現像を行い、レジスト
パターンニングを行った。次に反応性イオンエッチング
によりコア層を50μm分エッチングした。その後、残
ったレジストを剥離液で剥離した。最後に上部クラッド
層となる6FDAとTFDBのポリアミド酸の15wt
%DMAc溶液をスピンコート等の方法により塗布し、
これを加熱イミド化して15μm厚の上部クラッド層を
得た。このようにして埋め込み型光導波路が形成され
る。その後、このシリコンウェハ上の光導波路を5wt
%のフッ酸水溶液中に浸漬させ、シリコンウェハから光
導波路を剥し、フィルム光導波路を作製した。次に幅5
mm、長さ5cmにダイシングソー等でフィルム光導波
路を切り出した。その後、市販のカプトン、ユーピレッ
クス等のポリイミドフィルム上に銅パターンが形成され
ている電気回路基板にこの光導波路フィルムをエポキシ
接着材で貼りつけた。次に、光導波路の端面をダイシン
グソーによって45°カットを行った。このときの、光
導波路とレーザダイオードおよび光導波路とフォトディ
テクタとの結合効率はそれぞれ約50%および約60%
であった。 【0012】 【本発明の効果】本発明による光路変換付高分子光導波
路素子により、受発光素子との結合効率が良好でかつ量
産性の優れた光導波路、光部品が製造できる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polymer optical waveguide, and more particularly, to a method for manufacturing an optical component such as an optical integrated circuit, an optical interconnection, or an optical multiplexer / demultiplexer. 2. Description of the Related Art As a base material of an optical component or an optical fiber, inorganic materials such as quartz glass and multi-component glass, which are characterized by a small light propagation loss and a wide transmission band, are widely used. However, recently, a polymer-based material has been developed, and has been attracting attention as a material for an optical waveguide since it is superior in workability and price as compared with an inorganic material. For example, a flat plate type having a core-cladding structure in which a polymer having excellent transparency such as polymethyl methacrylate (PMMA) or polystyrene is used as a core and a polymer having a lower refractive index than the core material is used as a cladding material. An optical waveguide has been manufactured (JP-A-3-188402). On the other hand, a flat optical waveguide with low loss has been realized using polyimide which is a transparent polymer having high heat resistance (Japanese Patent Laid-Open No. 2-110500). Due to demands such as cost, in the field of optical interconnection, surface emitting lasers (VC
SEL) is about to be mounted, but when laser light emitted perpendicular to the substrate enters an optical waveguide horizontal to the substrate, an optical path conversion of about 90 ° is required. The polymer optical waveguide is cut to about 45 ° by a dicing saw to enable 90 ° optical path conversion.
-300961). However, when cutting with a dicing saw, it cuts at 45 ° other than where it is needed, there is a risk of contamination at the time of cutting, and light does diverge because there is no condensing function by cutting alone, causing loss Problem. An object of the present invention is to prevent the optical system from being contaminated in order to avoid the above-mentioned problems without using a means such as mechanical grinding or the like, and to provide an optical path having a light collecting function. An object of the present invention is to provide an optical waveguide device capable of conversion and a method for manufacturing the same. As a result of intensive studies, the present inventor has found that the above-mentioned problems can be solved by dripping a very small amount of resin onto the end face of an optical waveguide, and has completed the present invention. That is, the present invention provides an optical waveguide, wherein a resin having a same refractive index as that of the core of the optical waveguide and having a reflection surface for converting an optical path from the core is formed on a light input / output end face of the optical waveguide. Element. Hereinafter, the present invention will be described in detail.
Here, a polyimide optical waveguide using a polyamic acid solution which is a precursor of polyimide will be described as an example,
Of course, it is also possible to produce the optical waveguide using a resin solution of an optical material other than the polyamic acid solution. In addition, the resin for optical path conversion will be described using a UV-curable epoxy acrylate as an example, but it is of course possible to produce a resin solution other than the UV-curable epoxy acrylate, a thermosetting resin solution, or the like. . First, a lower cladding layer is formed on a silicon wafer. A core layer is formed thereon. Next, a resist pattern is formed using a mask pattern on which a desired core pattern is drawn. Dry etching is performed by oxygen plasma using this resist as a mask. Next, the remaining resist is removed with a stripper. Next, an upper clad layer is formed from above. Next, the optical waveguide is peeled from the silicon wafer. If necessary, the optical waveguide film thus obtained is cut into a desired shape with a dicing saw or the like, and then, as shown in FIG. 1, a light emitting / receiving element 6 such as a laser diode or a photodetector is mounted and driven. An adhesive is attached to the circuit board 4 on which an electric circuit is formed. Thereafter, a very small amount of UV curable resin is dropped on the end of the optical waveguide by using an ink jet method or a dispensing method. Thereafter, the place where the liquid is dropped is irradiated with a UV lamp and cured to obtain a resin block 5. At this time, the resin block 5 is in contact with the end face of the core 2 sandwiched between the upper clad 3 and the lower clad 1. Then, the interface between the resin block 5 and air serves as a reflection surface. The reflecting surface has a curved surface due to surface tension before the resin is cured, and a light collecting effect can be obtained. In this manner, an optical waveguide having an optical path conversion function can be manufactured on an electric circuit board. With this structure, the light beam 7 is converted into an optical path, and at the same time, a light collecting effect is also generated. The circuit board 4 may use a transparent substrate,
A through hole may be provided at a location that becomes an optical path of light. In the case of a transparent substrate, the resin block 5 is formed so as to be in contact with a corresponding portion of the circuit board surface through which a light beam whose optical path is converted passes. When a through hole is provided in the circuit board, the resin block may have an interface with air at the through hole. It is more preferable that the through hole is filled with the resin of the resin block so that the resin comes into contact with the light receiving / emitting surface of the light receiving / emitting element because the reflection surface can be reduced and the loss can be suppressed. A reflection layer such as a metal layer may be provided on the interface between the resin block 5 and the air, which is the reflection surface. Subsequently, the present invention will be described in more detail with reference to several examples. It is clear that an unlimited number of polymer optical waveguides of the present invention can be obtained by using solutions of various polymers having different molecular structures. Therefore, the present invention is not limited to only these examples. Example 1 2,2-bis (3,4-dicarboxyphenyl) hexafluoropropane dianhydride (6FDA) and 2,2-bis (trifluoromethyl) -4 on a 4-inch silicon wafer After heating, a 15 wt% DMAc solution of polyamic acid of 4,4'-diaminobiphenyl (TFDB) was spin-coated so that the film thickness became 15 μm. This was heated and imidized at 380 ° C. for 1 hour to form a lower cladding layer. On top of this, 6FDA and 4,
Polyamide acid of 4'-oxydianiline (ODA) about 1
The film thickness is 50 μm after imidization of a 5 wt% DMAc solution by heating.
And imidized by heating. On top of this, a Si-containing resist was spin-coated so as to have a film thickness of 3 μm, and temporarily dried at 90 ° C. 50 μm width, length 6
Exposure and development were performed using a glass mask pattern on which 40 cm patterns were drawn, and resist patterning was performed. Next, the core layer was etched by 50 μm by reactive ion etching. Thereafter, the remaining resist was stripped with a stripping solution. Finally, the upper cladding layer 6
15 wt% DMAc of polyamic acid of FDA and TFDB
The solution was applied by a method such as spin coating, and this was heated and imidized to obtain an upper clad layer. In this way, a buried optical waveguide is formed. Thereafter, the optical waveguide on the silicon wafer was immersed in a 5 wt% hydrofluoric acid aqueous solution, and the optical waveguide was peeled off from the silicon wafer to produce a film optical waveguide. Next, a film optical waveguide was cut out to a width of 5 mm and a length of 5 cm using a dicing saw or the like. afterwards,
This optical waveguide film was adhered to an electric circuit board having a copper pattern formed on a commercially available polyimide film such as Kapton or Iupirex using an epoxy adhesive. By making these polyimide films thin, light can be substantially transmitted. Next, a UV-curable epoxy acrylate was dropped on the end surface of the 5-nanoliter optical waveguide by an inkjet method, and irradiated with a UV lamp at 200 mJ to be cured.
At that time, the contact angle between the electric circuit board and the dripping resin is 44 °
Met. In this manner, an optical waveguide device with an optical path conversion can be formed. At this time, the coupling efficiency between the optical waveguide and the laser diode and the coupling efficiency between the optical waveguide and the photodetector were about 80% and about 90%, respectively. Comparative Example 1 15 wt% DMA of polyamic acid of 6FDA and TFDB on a 4-inch silicon wafer
The solution c was spin-coated after heating so that the film thickness became 15 μm. After forming a lower clad layer by heat imidization, a polyamide acid solution of about 15 wt% of 6FDA and ODA as a core layer is spin-coated on the lower clad layer so as to have a film thickness of 50 μm after heat imidization. did. On top of this, a Si-containing resist was spin-coated so as to have a film thickness of 3 μm, and temporarily dried at 90 ° C. 50 μm
Exposure and development were performed using a glass mask pattern on which 40 patterns each having a width and a length of 6 cm were drawn, and resist patterning was performed. Next, the core layer was etched by 50 μm by reactive ion etching. Thereafter, the remaining resist was stripped with a stripping solution. Finally, 15 wt% of polyamic acid of 6FDA and TFDB to be the upper cladding layer
% DMAc solution by a method such as spin coating,
This was heated and imidized to obtain an upper cladding layer having a thickness of 15 μm. In this way, a buried optical waveguide is formed. After that, the optical waveguide on this silicon wafer is 5 wt.
% Of hydrofluoric acid aqueous solution, and the optical waveguide was peeled off from the silicon wafer to produce a film optical waveguide. Then width 5
A film optical waveguide was cut out to a length of 5 mm using a dicing saw or the like. Thereafter, this optical waveguide film was adhered to an electric circuit board having a copper pattern formed on a commercially available polyimide film such as Kapton or Iupirex using an epoxy adhesive. Next, the end face of the optical waveguide was cut by 45 ° using a dicing saw. At this time, the coupling efficiency between the optical waveguide and the laser diode and the coupling efficiency between the optical waveguide and the photodetector are about 50% and about 60%, respectively.
Met. According to the present invention, an optical waveguide and an optical component having good coupling efficiency with a light receiving / emitting element and excellent mass productivity can be manufactured.

【図面の簡単な説明】 【図1】光路変換機能付高分子光導波路の構成の一例を
示す図 【符号の説明】 1:下部クラッド、2:コア、3:上部クラッド、4:
回路基板、5:樹脂ブロック、6:受発光素子、7:光
ビーム
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram showing an example of the configuration of a polymer optical waveguide having an optical path conversion function. [Description of References] 1: Lower clad, 2: Core, 3: Upper clad, 4:
Circuit board, 5: resin block, 6: light emitting / receiving element, 7: light beam

Claims (1)

【特許請求の範囲】 【請求項1】 光導波路の光入出射端面に光導波路のコ
アと同じ屈折率を有しコアからの光路を変換させる反射
面を備えた樹脂が形成されていることを特徴とする光導
波路素子。
Claims: 1. A resin having a reflection surface which is the same as that of a core of an optical waveguide and has a reflection surface for converting an optical path from the core is formed on a light input / output end face of the optical waveguide. Characteristic optical waveguide element.
JP2001372056A 2001-12-05 2001-12-05 Optical waveguide element with optical path alternation function Pending JP2003172836A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001372056A JP2003172836A (en) 2001-12-05 2001-12-05 Optical waveguide element with optical path alternation function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001372056A JP2003172836A (en) 2001-12-05 2001-12-05 Optical waveguide element with optical path alternation function

Publications (1)

Publication Number Publication Date
JP2003172836A true JP2003172836A (en) 2003-06-20

Family

ID=19181008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001372056A Pending JP2003172836A (en) 2001-12-05 2001-12-05 Optical waveguide element with optical path alternation function

Country Status (1)

Country Link
JP (1) JP2003172836A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006030294A (en) * 2004-07-12 2006-02-02 Nitto Denko Corp Method for manufacturing flexible optical waveguide
JP2007148456A (en) * 2002-09-20 2007-06-14 Toppan Printing Co Ltd Optical waveguide
JP2007178578A (en) * 2005-12-27 2007-07-12 Hitachi Cable Ltd Optical transmitter-receiver
JP2008506158A (en) * 2004-07-08 2008-02-28 ダウ・コーニング・コーポレイション Short-range optical interconnection device
JP2009258417A (en) * 2008-04-17 2009-11-05 Nitto Denko Corp Manufacturing method of optical waveguide module
KR101091251B1 (en) 2003-09-05 2011-12-07 소니 주식회사 Optical waveguide device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007148456A (en) * 2002-09-20 2007-06-14 Toppan Printing Co Ltd Optical waveguide
KR101091251B1 (en) 2003-09-05 2011-12-07 소니 주식회사 Optical waveguide device
JP2008506158A (en) * 2004-07-08 2008-02-28 ダウ・コーニング・コーポレイション Short-range optical interconnection device
JP4855397B2 (en) * 2004-07-08 2012-01-18 ダウ・コーニング・コーポレイション Short-range optical interconnection device
JP2006030294A (en) * 2004-07-12 2006-02-02 Nitto Denko Corp Method for manufacturing flexible optical waveguide
JP2007178578A (en) * 2005-12-27 2007-07-12 Hitachi Cable Ltd Optical transmitter-receiver
JP4609311B2 (en) * 2005-12-27 2011-01-12 日立電線株式会社 Optical transceiver
JP2009258417A (en) * 2008-04-17 2009-11-05 Nitto Denko Corp Manufacturing method of optical waveguide module

Similar Documents

Publication Publication Date Title
EP0961139B1 (en) Polymer optical waveguide, optica integrated circuit , optical module and optical communication apparatus
KR100872244B1 (en) Process for producing filmy optical waveguide
CN102369467B (en) Manufacture the method for optical waveguide core, the method manufacturing optical waveguide, optical waveguide and optoelectronic composite wiring board
JP2008293040A (en) Optical waveguide having micromirror formed by laser beam machining
KR20070088762A (en) Optical wiring substrate and optical and electric combined substrate
JP4659422B2 (en) Manufacturing method of optical waveguide
JPH10148729A (en) Formation of ridge pattern of core part of polymer optical waveguide
JP2004177864A (en) Process for producing polyimide optical waveguide
JP2003172836A (en) Optical waveguide element with optical path alternation function
JP2000047044A (en) Optical signal transmission system and its manufacture
JP4799764B2 (en) Photosensitive polyimide precursor composition for optical waveguide, photosensitive polyimide composition for optical waveguide, and optical waveguide using the same
JP2004177529A (en) Method for manufacturing three dimensional polyimide optical waveguide
JP4441994B2 (en) Optical wiring layer manufacturing method and optical / electrical wiring board
JP3327356B2 (en) Fluorinated polyimide optical waveguide and method for manufacturing the same
JP2003322740A (en) Optical wiring part and optical electronic parts mixedly loaded substrate
JP2003302544A (en) Polymer optical waveguide element with function of converting optical path and method for manufacturing the same
JP2003172837A (en) Optical waveguide element with lens and method of manufacturing the same
JP2004021042A (en) Opto-electric consolidated wiring board
JP2006047764A (en) Projected optical waveguide, method of manufacturing the same and optoelectric hybrid substrate using the same
JP2004206015A (en) Optical and electric hybrid circuit board
JP2006119659A (en) Polymer optical waveguide and method of manufacturing the same
JP4119809B2 (en) Opto-electric hybrid board
JP2000321455A (en) Production of polyimide optical waveguide
JP2004212774A (en) Optical coupling method using optical waveguide
JP2004170578A (en) Optical coupling method using optical waveguide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041216

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050201