JP2005283147A - X-ray foreign matter inspection apparatus - Google Patents

X-ray foreign matter inspection apparatus Download PDF

Info

Publication number
JP2005283147A
JP2005283147A JP2004093054A JP2004093054A JP2005283147A JP 2005283147 A JP2005283147 A JP 2005283147A JP 2004093054 A JP2004093054 A JP 2004093054A JP 2004093054 A JP2004093054 A JP 2004093054A JP 2005283147 A JP2005283147 A JP 2005283147A
Authority
JP
Japan
Prior art keywords
ray
line sensor
rays
elements
ray line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004093054A
Other languages
Japanese (ja)
Inventor
Shuhei Ishiguro
修平 石黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2004093054A priority Critical patent/JP2005283147A/en
Publication of JP2005283147A publication Critical patent/JP2005283147A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an X-ray foreign matter inspection apparatus for detecting smaller foreign matters as compared with a conventional apparatus and for improving detection sensitivity regarding the size of the foreign matters even if an X-ray line sensor having the same pitch between elements is used. <P>SOLUTION: The spread direction of X rays in a fan beam shape from an X-ray generator 1 and the arrangement direction of the element of the X-ray line sensor 2 are set to an angle without orthogonally crossing a direction R orthogonally crossing the conveyance direction of a tested object W by each carrying device 3, thus obtaining X-ray see-through information equivalent to a case when the pitch of the element in the R direction is multiplied by cosθ, and improving resolution in the direction R orthogonally crossing the conveyance direction. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、例えば食品や医薬品、あるいは衣服や夜具などの検査対象物中の異物の存在の有無を検査するためのX線異物検査装置に関し、更に詳しくは、ファンビーム状のX線を照射するX線発生装置とそれに対応するX線ラインセンサの間で検査対象物を搬送するタイプのX線異物検査装置に関する。   The present invention relates to an X-ray foreign substance inspection apparatus for inspecting the presence or absence of foreign substances in, for example, foods and medicines, or clothing and night items, and more specifically, irradiates fan beam X-rays. The present invention relates to an X-ray foreign matter inspection apparatus of a type that conveys an inspection object between an X-ray generation apparatus and an X-ray line sensor corresponding to the X-ray generation apparatus.

食品等に異物が混入しているか否かを非破壊のもとに検査する装置として、従来、図6に模式的に例示するような構成のX線異物検査装置が知られている。この例において、X線発生装置61は、X線源61aからのX線をスリット61bを通すことによってファンビーム状に絞ったX線を下方に向けて出力し、このX線発生装置61に対向してその下方に、ファンビーム状のX線の広がり方向に素子が配列されたX線ラインセンサ62が配置されている。検査対象物Wは、X線発生装置61とX線ラインセンサ62の間を、ベルトコンベアなどの搬送装置63によってファンビーム状のX線の広がり方向に直交する方向に搬送され、この搬送中にX線が照射され、そのX線透過情報がX線ラインセンサ62により刻々と検出されて、所定の微小間隔ごとに画像処理装置64に逐次取り込まれる。   2. Description of the Related Art Conventionally, an X-ray foreign substance inspection apparatus having a configuration as schematically illustrated in FIG. 6 has been known as an apparatus for inspecting whether or not foreign substances are mixed in food or the like under nondestructive conditions. In this example, the X-ray generator 61 outputs X-rays focused in a fan beam downward by passing the X-rays from the X-ray source 61a through the slit 61b, and faces the X-ray generator 61. Below that, an X-ray line sensor 62 in which elements are arranged in the fan beam-shaped X-ray spreading direction is arranged. The inspection object W is transported between the X-ray generator 61 and the X-ray line sensor 62 by a transport device 63 such as a belt conveyor in a direction orthogonal to the fan beam-shaped X-ray spreading direction. X-rays are irradiated, and the X-ray transmission information is detected every moment by the X-ray line sensor 62 and sequentially taken into the image processing device 64 at predetermined minute intervals.

画像処理装置64に逐次取り込まれる各回のX線透過情報、つまり各回のX線ラインセンサ62に素子出力は、検査対象物Wを透過したX線のファンビームの広がり方向への強度分布を表すものとなり、検査対象物WがX線発生装置61とX線ラインセンサ62の間を通過した後には、画像処理装置64には検査対象物Wの2次元X線透過データが収集されることになる。   Each time the X-ray transmission information sequentially taken into the image processing device 64, that is, the element output to the X-ray line sensor 62 each time, represents the intensity distribution in the spreading direction of the X-ray fan beam transmitted through the inspection object W. Thus, after the inspection object W passes between the X-ray generator 61 and the X-ray line sensor 62, the image processing apparatus 64 collects the two-dimensional X-ray transmission data of the inspection object W. .

X線ラインセンサ62の各素子出力に基づくX線透過データは、オフセット除去、素子間の感度補正、LOG変換/テーブル補正、階調変換などが施されたうえで、画像処理装置64において最終的に2値化して異物検出レベルと比較し、検査対象物W内に異物が混入しているか否かを判定し、異物が混入している場合には搬送装置63の搬送方向下流側に設けられている排除装置(図示せず)に制御信号を供給して不良品を排除するように構成されている(例えば特許文献1または特許文献2参照)。   X-ray transmission data based on the output of each element of the X-ray line sensor 62 is subjected to offset removal, sensitivity correction between elements, LOG conversion / table correction, gradation conversion, and the like, and finally is performed in the image processing apparatus 64. It is binarized and compared with the foreign object detection level to determine whether or not foreign matter is mixed in the inspection object W. If foreign matter is mixed, it is provided downstream in the transport direction of the transport device 63. A reject signal is supplied by supplying a control signal to an exclusion device (not shown) (see, for example, Patent Document 1 or Patent Document 2).

このようなX線異物検査装置においては、通常、図7(A)に示すように、X線発生装置61とX線ラインセンサ62を含む所要領域が防護箱65で覆われ、この防護箱65には検査対象物Wの入口65aと出口65bのみが開口した状態とされる。このような搬送方向とX線の絞り方向の組み合わせにより、図7(B)のようにX線を絞らない場合に比して、防護箱65の入口65aと出口65bを介してのX線の漏洩を少なくすることができるという利点もある。
特開平9−145343号公報 特開2001−281173号公報
In such an X-ray foreign substance inspection apparatus, as shown in FIG. 7A, a required area including the X-ray generator 61 and the X-ray line sensor 62 is usually covered with a protective box 65. Only the entrance 65a and the exit 65b of the inspection object W are opened. Due to such a combination of the transport direction and the X-ray aperture direction, X-rays can be transmitted via the inlet 65a and the outlet 65b of the protective box 65, as compared with the case where the X-ray is not focused as shown in FIG. There is also an advantage that leakage can be reduced.
JP-A-9-145343 JP 2001-281173 A

ところで、以上のようなX線異物検査装置においては、検出可能な異物の大きさの下限は、X線ラインセンサ62の素子のピッチに大きく依存する。例えば、素子のピッチが0.43mmである場合、X線ラインセンサ62上に投影された異物の大きさが0.43mmより小さい場合には検出できない可能性がある。   By the way, in the X-ray foreign substance inspection apparatus as described above, the lower limit of the size of the detectable foreign substance greatly depends on the element pitch of the X-ray line sensor 62. For example, when the pitch of the elements is 0.43 mm, it may not be possible to detect when the size of the foreign matter projected on the X-ray line sensor 62 is smaller than 0.43 mm.

本発明は、素子間のピッチが同じX線ラインセンサを用いても、従来の装置に比してより小さい異物を確実に検出することができ、もって異物のサイズに関する検出感度を向上させることのできるX線異物検査装置の提供をその課題としている。   Even if an X-ray line sensor having the same pitch between elements is used, the present invention can reliably detect a foreign material smaller than that of a conventional apparatus, and thus can improve the detection sensitivity related to the size of the foreign material. An object of the present invention is to provide an X-ray foreign substance inspection apparatus capable of performing the same.

上記の課題を解決するため、本発明のX線異物検査装置は、ファンビーム状に絞られたX線を出力するX線発生装置と、そのX線発生装置に対して対向配置され、上記X線発生装置からのX線を入射すべく当該X線の広がり方向に複数の素子が配列されてなるX線ラインセンサと、これらのX線発生装置とX線ラインセンサの間に設けられ、検査対象物を上記X線と交差する所定方向に搬送する搬送装置と、上記X線ラインセンサの出力に基づく検査対象物のX線透視像情報を用いた画像処理により、当該透視対象物中の異物の有無を判定する画像処理装置を備えたX線異物検査装置において、上記X線発生装置からのX線の広がり方向および上記X線ラインセンサの素子の配列方向が、それぞれ上記搬送装置の搬送方向に対して直交しない角度に設定されていることによって特徴づけられる(請求項1)。   In order to solve the above-described problems, an X-ray foreign matter inspection apparatus according to the present invention is disposed so as to face an X-ray generator that outputs X-rays focused in a fan beam, and the X-ray generator. An X-ray line sensor in which a plurality of elements are arranged in the direction in which the X-ray spreads in order to allow X-rays from the X-ray generator to enter, and an inspection is provided between these X-ray generator and X-ray line sensor. A foreign device in the fluoroscopic object by image processing using the X-ray fluoroscopic image information of the inspection object based on the output of the X-ray line sensor and the conveying device that conveys the object in a predetermined direction intersecting the X-ray In the X-ray foreign matter inspection apparatus provided with the image processing apparatus for determining the presence or absence of X-rays, the X-ray spreading direction from the X-ray generation apparatus and the arrangement direction of the elements of the X-ray line sensor are respectively the transport directions of the transport apparatus Not orthogonal to It characterized by being set each time (claim 1).

ここで、本発明においては、上記X線発生装置からのX線の広がり方向および上記X線ラインセンサの素子の配列方向の上記搬送装置の搬送方向に対する角度を、それぞれ変更可能とした構成(請求項2)を好適に採用することができる。   Here, in the present invention, it is possible to change the angles of the X-ray spreading direction from the X-ray generation device and the arrangement direction of the elements of the X-ray line sensor with respect to the transport direction of the transport device (claims). Item 2) can be preferably employed.

本発明は、検査対象物の搬送方向に対して、ファンビーム状のX線の広がり方向、およびX線ラインセンサをその素子の配列方向が直交しない斜め方向となるように配置することによって、検査対象物の搬送方向に直交する方向への解像度を向上させ、これによって所期の目的を達成しようとするものである。   According to the present invention, the fan beam-shaped X-ray spreading direction and the X-ray line sensor are arranged so that the arrangement direction of the elements is in an oblique direction that is not orthogonal to the conveyance direction of the inspection object. The resolution in the direction orthogonal to the conveyance direction of the object is improved, thereby achieving the intended purpose.

すなわち、ファンビーム状のX線の広がり方向とX線ラインセンサの素子の配列方向とを、検査対象物の搬送方向に垂直な方向に対して互いに等しい所定角度傾けると、搬送方向に直交する方向への検査対象物の一定の寸法を撮像するのに寄与する素子数が増大し(図2(A),(B)参照)、例えば搬送方向に直交する方向に対してX線ラインセンサの素子の配列方向をθだけ傾けると、搬送方向に直交する方向への素子のピッチは実質的にcosθ倍に縮小され、その分、解像度が向上する。   That is, when the fan beam-shaped X-ray spreading direction and the arrangement direction of the elements of the X-ray line sensor are inclined at a predetermined angle equal to the direction perpendicular to the conveyance direction of the inspection object, the direction orthogonal to the conveyance direction The number of elements that contribute to imaging a certain dimension of the inspection object on the head increases (see FIGS. 2A and 2B), for example, the elements of the X-ray line sensor with respect to the direction orthogonal to the transport direction Is tilted by θ, the element pitch in the direction orthogonal to the transport direction is substantially reduced by cos θ times, and the resolution is improved accordingly.

また、請求項2に係る発明のように、ファンビーム上のX線の広がり方向とX線ラインセンサの素子の配列方向の搬送方向に対する傾き角度を任意に変更可能とする構成を採用すれば、搬送方向に直交する方向への検査対象物の寸法(幅寸法)に応じて、ほぼ全ての素子が撮像に関与するように設定することが可能となり、検査対象物の幅寸法に応じて可能な限り解像度を向上させることができる。   Further, as in the invention according to claim 2, if a configuration is adopted in which the inclination angle of the X-ray spread direction on the fan beam and the conveying direction of the arrangement direction of the elements of the X-ray line sensor can be arbitrarily changed, According to the dimension (width dimension) of the inspection object in the direction orthogonal to the transport direction, it is possible to set almost all elements to participate in imaging, and according to the width dimension of the inspection object. As long as the resolution can be improved.

本発明によれば、検査対象物の搬送方向に直交する方向に対してファンビーム状のX線の広がり方向およびX線ラインセンサの素子の配列方向をそれぞれ所定の角度で傾斜させてX線透過情報を採取するので、素子間のピッチが同じX線ラインセンサを用いても、従来のこの種のX線異物検査装置に比して解像度が向上し、より細かい異物の検出が可能となる。   According to the present invention, the X-ray transmission is performed by inclining the fan beam-shaped X-ray spreading direction and the X-ray line sensor element arrangement direction at a predetermined angle with respect to the direction orthogonal to the conveyance direction of the inspection object. Since the information is collected, even if X-ray line sensors having the same pitch between elements are used, the resolution is improved as compared with the conventional X-ray foreign substance inspection apparatus of this type and finer foreign substances can be detected.

また、請求項2に係る発明のように、X線の広がり方向とX線ラインセンサの検査対象物の搬送方向に対する角度を可変とすれば、検査対象部のサイズに応じてX線ラインセンサの有効幅のほぼ全てが撮像に寄与するように角度を設定することで、有効幅を最大限に活用して高い効率でX線透過情報を検出することができ、可及的に高い解像度でX線透過情報を得ることができ、異物の検出感度をより向上させることができる。そしてこの構成の採用により、X線ラインセンサの寿命を向上させることができるという利点もある。   In addition, as in the invention according to claim 2, if the angle of the X-ray spreading direction and the X-ray line sensor with respect to the conveyance direction of the inspection object is variable, By setting the angle so that almost all of the effective width contributes to imaging, X-ray transmission information can be detected with high efficiency by making the best use of the effective width, and X with the highest possible resolution. The line transmission information can be obtained, and the foreign substance detection sensitivity can be further improved. By adopting this configuration, there is an advantage that the life of the X-ray line sensor can be improved.

すなわち、検査対象物のサイズが小さい場合、従来のこの種のX線異物検査装置では、X線ラインセンサの有効幅の中で殆ど撮像に寄与しない領域の素子には、常にX線が直接的に照射されていたのに対し、請求項2に係る発明の構成を採用して、X線ラインセンサの有効幅のほぼ全てが撮像に寄与するように角度を設定すれば、ほぼ全ての素子に検査対象物を透過したX線が入射することになり、常に直接的にX線に曝される素子が殆どなくなる結果、寿命を向上させることができる。   That is, when the size of the inspection object is small, in this type of conventional X-ray foreign matter inspection apparatus, X-rays are always directly applied to elements in the region that hardly contributes to imaging within the effective width of the X-ray line sensor. If the angle is set so that almost all of the effective width of the X-ray line sensor contributes to imaging by adopting the configuration of the invention according to claim 2, almost all the elements are applied. X-rays that have passed through the inspection object are incident, and as a result, there are almost no elements that are always directly exposed to X-rays, so that the lifetime can be improved.

以下、図面を参照しつつ本発明の実施の形態について説明する。
図1は本発明の実施の形態の構成図で、機械的構成を表す模式図と電気的構成を表すブロック図とを併記して示す図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a configuration diagram of an embodiment of the present invention, and is a diagram illustrating a schematic diagram showing a mechanical configuration and a block diagram showing an electrical configuration.

X線発生装置1に対向してその下方にX線ラインセンサ2が配設されており、これらの間にベルトコンベア3が設けられている。X線発生装置1は、従来のものと同様に、X線源1aから発生するX線をスリット1bを通過させることによってファンビーム状に絞って出力するのであるが、スリット1bの方向はベルトコンベア3による検査対象物Wの搬送方向に直交しておらず、これにより、ファンビーム状のX線の広がり方向は、検査対象物Wの搬送方向に直交する方向Rに対してθだけ傾いた状態に設定されている。   An X-ray line sensor 2 is disposed below and opposed to the X-ray generator 1, and a belt conveyor 3 is provided therebetween. The X-ray generator 1 outputs the X-rays generated from the X-ray source 1a in the form of a fan beam by passing it through the slit 1b in the same manner as the conventional one. 3, the fan beam-shaped X-ray spreading direction is inclined by θ with respect to the direction R perpendicular to the inspection object W conveyance direction. Is set to

また、X線ラインセンサ2についても、その素子の配列方向が検査対象物Wの搬送方向に直交する方向Rに対して同じ角度θだけ傾いた状態に設定されている。このX線ラインセンサ2の出力は、従来と同様にオフセット処理や感度補正等の各種処理を施した後に従来と同等の画像処理装置4に取り込まれて、異物検出レベルとの比較により異物の混入の有無が判定される。また、従来と同様に、異物が混入していると判定したときには、搬送方向下流側に設けられている排除装置(図示せず)に駆動制御信号を供給してその物品を排除する。   In addition, the X-ray line sensor 2 is also set so that the arrangement direction of the elements is inclined by the same angle θ with respect to the direction R perpendicular to the conveyance direction of the inspection object W. The output of the X-ray line sensor 2 is subjected to various processes such as offset processing and sensitivity correction in the same manner as in the past, and then taken into the image processing apparatus 4 equivalent to the conventional one. The presence or absence of is determined. Further, as in the conventional case, when it is determined that foreign matter is mixed, a drive control signal is supplied to an exclusion device (not shown) provided on the downstream side in the transport direction to exclude the article.

なお、画像処理装置4には、各種設定や指令を与えるための操作部5と、画像処理後の検査対象物WのX線透視像等を表示するためのTVモニタ6などが接続されている。また、X線発生装置1およびX線ラインセンサ2を含む所要領域は、従来装置同様に防護箱内に収容されている。   The image processing apparatus 4 is connected to an operation unit 5 for giving various settings and commands, a TV monitor 6 for displaying an X-ray fluoroscopic image of the inspection object W after image processing, and the like. . The required area including the X-ray generator 1 and the X-ray line sensor 2 is accommodated in a protective box as in the conventional apparatus.

以上の本発明の実施の形態において、ベルトコンベア3を駆動して検査対象物Wを搬送しつつX線発生装置1からのファンビーム状のX線を照射し、その透過X線をX線ラインセンサ2により検出すると、その出力に含まれている検査対象物WのX線透過情報は、搬送方向に直交する方向Rに沿うようにX線の広がり方向およびX線ラインセンサの素子の配列方向を設定する従来の装置に比して、方向Rへの解像度が大幅に向上する。   In the embodiment of the present invention described above, the belt conveyor 3 is driven to convey the inspection object W, and the fan beam-shaped X-rays from the X-ray generator 1 are irradiated, and the transmitted X-rays are converted into X-ray lines. When detected by the sensor 2, the X-ray transmission information of the inspection object W included in the output of the X-ray spread direction and the arrangement direction of the elements of the X-ray line sensor along the direction R orthogonal to the transport direction. The resolution in the direction R is greatly improved as compared with the conventional apparatus that sets

すなわち、図2(A)に平面図で示すように、搬送方向に直交する方向Rに対してθだけX線ラインセンサ2およびX線の広がり方向を傾けた本発明の実施の形態においては、同図(B)に示すように、X線ラインセンサ2およびX線の広がり方向を方向Rに沿わせる場合に比して、検出幅は小さくなるものの、検査対象物Wの撮像に実際に寄与する素子数が増大し、R方向への素子間の実際のピッチをPとしたとき、実質的にPcosθのピッチのラインセンサを用いた場合と等価となり、その分、検査対象物WのX線透視像のR方向への解像度が向上する。   That is, as shown in a plan view in FIG. 2A, in the embodiment of the present invention in which the X-ray line sensor 2 and the X-ray spreading direction are inclined by θ with respect to the direction R orthogonal to the transport direction, As shown in FIG. 5B, the detection width is smaller than that in the case where the X-ray line sensor 2 and the X-ray spread direction are along the direction R, but it actually contributes to the imaging of the inspection object W. When the number of elements to be increased increases and the actual pitch between elements in the R direction is P, this is substantially equivalent to the case where a line sensor having a pitch of P cos θ is used. The resolution of the fluoroscopic image in the R direction is improved.

ここで、以上の実施の形態において、X線発生装置1のスリット1bおよびX線ラインセンサ2の搬送方向に直交する方向Rに対する傾き角度θを任意に変更できるようにすれば、図3(A),(B)に模式的要部平面図を示すように、検査対象物WのR方向へのサイズに応じて、X線ラインセンサ2のほぼ全ての素子が検査対象物Wの撮像に寄与するように角度をθ1,θ2に設定変更することで、X線ラインセンサ2の有効幅を最大限活用して、可及的に高い解像度のもとに検査対象物WのX線透過情報を得ることができる。   Here, in the above embodiment, if the inclination angle θ with respect to the direction R orthogonal to the conveying direction of the slit 1b of the X-ray generator 1 and the X-ray line sensor 2 can be arbitrarily changed, FIG. ), (B), as shown in a schematic plan view of the main part, almost all elements of the X-ray line sensor 2 contribute to imaging of the inspection object W according to the size of the inspection object W in the R direction. By changing the angle to θ1 and θ2 so that the effective width of the X-ray line sensor 2 is maximized, the X-ray transmission information of the inspection object W can be obtained with as high a resolution as possible. Can be obtained.

この場合、ベルトコンベア3に、図1に示すような支え板31がコンベアベルト32に沿って配置されていれば、その支え板31にX線を透過させるための角孔を形成する必要があるが、この角孔についてもX線ラインセンサ2の傾き角度θに合わせて変更する必要がある。この角孔の角度を変更する機構の例として、図4(A)に要部断面図を、同図(B)にコンベアベルト32を外した状態での要部平面図を示すように、支え板31の所要箇所を円形に刳り抜き、その刳り抜き部分に、角孔33aを形成した円板33を嵌め込み、支え板31に形成した支持部31aで回動自在に支持し、固定ねじなどの適当な回り止め(図示せず)を設ければ、角孔33aの姿勢を任意の角度に変更することができる。   In this case, if the support plate 31 as shown in FIG. 1 is disposed along the conveyor belt 32 in the belt conveyor 3, it is necessary to form a square hole for transmitting X-rays to the support plate 31. However, this square hole also needs to be changed in accordance with the inclination angle θ of the X-ray line sensor 2. As an example of a mechanism for changing the angle of the square hole, as shown in FIG. 4 (A), a main part sectional view is shown, and in FIG. 4 (B), a main part plan view with the conveyor belt 32 removed is shown. A required portion of the plate 31 is rounded out, and a circular plate 33 having a square hole 33a is fitted into the cut-out portion, and the plate 31 is rotatably supported by a support portion 31a formed in the support plate 31. If an appropriate detent (not shown) is provided, the posture of the square hole 33a can be changed to an arbitrary angle.

また、上記のようにX線ラインセンサ2の有効幅を最大限に活用するように検査対象物Wのサイズに合わせてθを変更する場合、X線ラインセンサ2の寿命が長くなるという利点もある。すなわち、図5(A)に示す従来装置のようにX線ラインセンサ62を搬送方向に直交する方向に沿わせる場合、検査対象物Wの撮像に寄与しない図中Nで示される領域の素子には、検査対象物Wを透過しないX線が直接的に常に照射され、この領域の素子の劣化が速くなるのに対し、図5(B)に示す本発明の実施の形態のようにX線ラインセンサ2の有効幅Lを形成するほぼ全ての素子が撮像に寄与するようにその配置角度を設定すれば、ほぼ全ての素子に検査対象物Wを透過したX線が入射することになり、上記した劣化の原因を除去することができる結果、X線ラインセンサ2の寿命を向上させることができる。   In addition, when θ is changed in accordance with the size of the inspection object W so as to make maximum use of the effective width of the X-ray line sensor 2 as described above, there is also an advantage that the life of the X-ray line sensor 2 is extended. is there. That is, when the X-ray line sensor 62 is set along the direction orthogonal to the transport direction as in the conventional apparatus shown in FIG. 5A, the element in the region indicated by N in the figure that does not contribute to the imaging of the inspection target W X-rays that do not pass through the inspection object W are always directly irradiated, and the deterioration of the elements in this region is accelerated, whereas the X-rays as in the embodiment of the present invention shown in FIG. If the arrangement angle is set so that almost all elements forming the effective width L of the line sensor 2 contribute to imaging, X-rays that have passed through the inspection object W are incident on almost all elements. As a result of removing the cause of the deterioration described above, the life of the X-ray line sensor 2 can be improved.

本発明の実施の形態の構成図で、機械的構成を表す模式図と電気的構成を表すブロック図とを併記して示す図である。In the block diagram of embodiment of this invention, it is the figure which writes together and shows the schematic diagram showing a mechanical structure, and the block diagram showing an electric structure. 本発明の実施の形態と従来例との作用の相違の説明図で、(A)は本発明の実施の形態におけるX線ラインセンサ2の検出幅および撮像に寄与する素子を表す図で、(B)は従来装置におけるX線ラインセンサ62の検出幅および撮像に寄与する素子を表す図である。It is explanatory drawing of the difference of effect | action of embodiment of this invention and a prior art example, (A) is a figure showing the element which contributes to the detection width and imaging of the X-ray line sensor 2 in embodiment of this invention, ( B) is a diagram showing the detection width of the X-ray line sensor 62 and elements contributing to imaging in the conventional apparatus. 本発明の実施の形態においてX線ラインセンサ2とX線の広がり方向の角度を変更可能とした場合の作用説明図である。It is operation | movement explanatory drawing at the time of enabling change of the X-ray line sensor 2 and the angle of the X-ray spreading direction in embodiment of this invention. 本発明の実施の形態においてθを任意に変化させる場合に必要な、ベルトコンベア3の支え板31に形成されている角孔33aの角度を変更する機構の例の説明図で、(A)は要部断面図で、(B)はコンベアベルト32を外した状態で示す要部平面図である。It is explanatory drawing of the example of the mechanism which changes the angle of the square hole 33a formed in the support plate 31 of the belt conveyor 3 required when changing (theta) arbitrarily in embodiment of this invention, (A) is. It is principal part sectional drawing, (B) is a principal part top view shown in the state which removed the conveyor belt 32. FIG. 本発明の実施の形態と従来例とのX線ラインセンサの各素子へのX線の入射の仕方の相違の説明図であり、(A)は従来例、(B)は本発明の実施の形態をそれぞれ説明する図である。It is explanatory drawing of the difference in the method of X-ray incidence to each element of the X-ray line sensor of embodiment of this invention and a prior art example, (A) is a prior art example, (B) is implementation of this invention. It is a figure explaining each form. ファンビーム状のX線とX線ラインセンサを用いた従来のX線異物検査装置の構成例の説明図である。It is explanatory drawing of the structural example of the conventional X-ray foreign material inspection apparatus using a fan beam-shaped X-ray and an X-ray line sensor. 図6の装置においてX線を絞ることによるX線の漏洩を抑制する効果の説明図で、(A)はX線を絞った場合、(B)は絞らない場合の、X線の漏洩の状況の説明図である。FIG. 7 is an explanatory diagram of the effect of suppressing the leakage of X-rays by narrowing the X-rays in the apparatus of FIG. It is explanatory drawing of.

符号の説明Explanation of symbols

1 X線発生装置
1a X線源
1b スリット
2 X線ラインセンサ
3 ベルトコンベア
31 支え板
32 コンベアベルト
33 円板
33a 角孔
4 画像処理装置
5 操作部
6 TVモニタ
W 検査対象物
DESCRIPTION OF SYMBOLS 1 X-ray generator 1a X-ray source 1b Slit 2 X-ray line sensor 3 Belt conveyor 31 Support plate 32 Conveyor belt 33 Disc 33a Square hole 4 Image processing device 5 Operation part 6 TV monitor W Inspection object

Claims (2)

ファンビーム状に絞られたX線を出力するX線発生装置と、そのX線発生装置に対して対向配置され、上記X線発生装置からのX線を入射すべく当該X線の広がり方向に複数の素子が配列されてなるX線ラインセンサと、これらのX線発生装置とX線ラインセンサの間に設けられ、検査対象物を上記X線と交差する所定方向に搬送する搬送装置と、上記X線ラインセンサの出力に基づく検査対象物のX線透視像情報を用いた画像処理により、当該透視対象物中の異物の有無を判定する画像処理装置を備えたX線異物検査装置において、
上記X線発生装置からのX線の広がり方向および上記X線ラインセンサの素子の配列方向が、それぞれ上記搬送装置の搬送方向に対して直交しない角度に設定されていることを特徴とするX線異物検査装置。
An X-ray generator that outputs X-rays focused in a fan beam shape, and an X-ray generator that is disposed opposite to the X-ray generator and in the direction in which the X-rays spread so as to be incident on the X-rays from the X-ray generator An X-ray line sensor in which a plurality of elements are arranged, a transfer device that is provided between the X-ray generator and the X-ray line sensor, and transfers an inspection object in a predetermined direction intersecting the X-ray; In an X-ray foreign substance inspection apparatus provided with an image processing apparatus that determines the presence or absence of foreign substances in the fluoroscopic object by image processing using X-ray fluoroscopic image information of the inspection object based on the output of the X-ray line sensor,
X-rays characterized in that the X-ray spreading direction from the X-ray generation device and the arrangement direction of the elements of the X-ray line sensor are set at angles that are not orthogonal to the transport direction of the transport device, respectively. Foreign matter inspection device.
上記X線発生装置からのX線の広がり方向および上記X線ラインセンサの素子の配列方向の上記搬送装置の搬送方向に対する角度を、それぞれ変更可能としていることを特徴とする請求項1に記載のX線異物検査装置。   The angle with respect to the conveyance direction of the said conveying apparatus of the spreading direction of the X-ray from the said X-ray generator and the arrangement | sequence direction of the element of the said X-ray line sensor is changeable, respectively. X-ray foreign substance inspection device.
JP2004093054A 2004-03-26 2004-03-26 X-ray foreign matter inspection apparatus Pending JP2005283147A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004093054A JP2005283147A (en) 2004-03-26 2004-03-26 X-ray foreign matter inspection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004093054A JP2005283147A (en) 2004-03-26 2004-03-26 X-ray foreign matter inspection apparatus

Publications (1)

Publication Number Publication Date
JP2005283147A true JP2005283147A (en) 2005-10-13

Family

ID=35181726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004093054A Pending JP2005283147A (en) 2004-03-26 2004-03-26 X-ray foreign matter inspection apparatus

Country Status (1)

Country Link
JP (1) JP2005283147A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007010470A (en) * 2005-06-30 2007-01-18 Jfe Steel Kk Method for measuring wall thickness of steel pipe
JP2007303848A (en) * 2006-05-09 2007-11-22 Shimadzu Corp X-ray fluoroscopic apparatus
JP2010127655A (en) * 2008-11-25 2010-06-10 Panasonic Electric Works Co Ltd X-ray inspection system
JP2011257200A (en) * 2010-06-07 2011-12-22 Toyota Motor Corp Radiation imaging method and radiation imaging system
JP2019174413A (en) * 2018-03-29 2019-10-10 住友化学株式会社 Device and method for foreign object inspection

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007010470A (en) * 2005-06-30 2007-01-18 Jfe Steel Kk Method for measuring wall thickness of steel pipe
JP2007303848A (en) * 2006-05-09 2007-11-22 Shimadzu Corp X-ray fluoroscopic apparatus
JP2010127655A (en) * 2008-11-25 2010-06-10 Panasonic Electric Works Co Ltd X-ray inspection system
JP2011257200A (en) * 2010-06-07 2011-12-22 Toyota Motor Corp Radiation imaging method and radiation imaging system
JP2019174413A (en) * 2018-03-29 2019-10-10 住友化学株式会社 Device and method for foreign object inspection
JP7106323B2 (en) 2018-03-29 2022-07-26 住友化学株式会社 Foreign matter inspection device and foreign matter inspection method

Similar Documents

Publication Publication Date Title
JP4548385B2 (en) Surface inspection device
JP2010519515A (en) Method and apparatus for illuminating materials for automatic inspection
JP6336735B2 (en) Appearance inspection device
JP2010190830A (en) Radiation detection device
JP2010117322A (en) Surface flaw inspection device, method and program for surface flaw inspection
JP2008157821A (en) Device for inspecting x-ray foreign matter
JP2005283147A (en) X-ray foreign matter inspection apparatus
JP2009236633A (en) X-ray foreign matter inspection device
JP6498477B2 (en) Varnish inspection device and varnish inspection method
JP2002168802A (en) X-ray foreign matter detector
JP5860347B2 (en) X-ray inspection equipment
JP2004309287A (en) Defect detection device and defect detection method
JP2008286646A (en) Surface flaw inspection device
JP2020106295A (en) Sheet defect inspection device
US9791387B2 (en) Inspection system and method for controlling the same
JP3804619B2 (en) Radiation inspection equipment
JP7077635B2 (en) Defect inspection device and manufacturing method for sheet-like materials
JP2591171B2 (en) Inspection device for foreign substances in food
JP6708857B2 (en) X-ray inspection device
JP2010139425A (en) X-ray inspection apparatus
JP2009145307A (en) Surface inspection apparatus and surface inspection method
JP3979872B2 (en) X-ray foreign object detection device
JP4984832B2 (en) X-ray inspection equipment
JP2012068211A (en) Distortion inspection device for sheet member and distortion inspection method for sheet member
JP6970866B2 (en) Surface inspection equipment