JP2008157821A - Device for inspecting x-ray foreign matter - Google Patents
Device for inspecting x-ray foreign matter Download PDFInfo
- Publication number
- JP2008157821A JP2008157821A JP2006348546A JP2006348546A JP2008157821A JP 2008157821 A JP2008157821 A JP 2008157821A JP 2006348546 A JP2006348546 A JP 2006348546A JP 2006348546 A JP2006348546 A JP 2006348546A JP 2008157821 A JP2008157821 A JP 2008157821A
- Authority
- JP
- Japan
- Prior art keywords
- ray
- inspection
- foreign
- candidate
- fluoroscopic image
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Analysing Materials By The Use Of Radiation (AREA)
Abstract
Description
本発明は、検査対象物にX線を照射することにより検査対象物の透視画像を取得し、当該透視画像を用いて検査対象物中の異物の有無を判断するX線異物検査装置に関するものである。 The present invention relates to an X-ray foreign substance inspection apparatus that acquires a fluoroscopic image of an inspection object by irradiating the inspection object with X-rays and determines the presence or absence of a foreign substance in the inspection object using the fluoroscopic image. is there.
この種のX線異物検査装置の一例として、図9に示すように、X線を放射するX線源3と、検査対象物1を透過したX線源3からのX線を検出するX線検出部が複数配列されてなるX線検出器4と、X線源3とX線検出器4との間に検査対象物1を搬送する搬送手段2とを備えたものが提案されている。このX線異物検査装置は、X線検出器4における各X線検出部で検出したX線の強度に応じた濃度値の画素を持つ透視画像を用いて、検査対象物1や検査対象物1中の異物により遮られたX線の強度の低下を検出することで検査対象物1に異物が混入しているか否かを検査する。 As an example of this type of X-ray foreign matter inspection apparatus, as shown in FIG. 9, an X-ray that detects X-rays from an X-ray source 3 that emits X-rays and an X-ray source 3 that passes through an inspection object 1. An apparatus including an X-ray detector 4 in which a plurality of detection units are arranged, and a transport unit 2 that transports the inspection object 1 between the X-ray source 3 and the X-ray detector 4 has been proposed. The X-ray foreign substance inspection apparatus uses a fluoroscopic image having pixels having density values corresponding to the intensity of X-rays detected by each X-ray detection unit in the X-ray detector 4 to inspect the inspection object 1 and the inspection object 1. By detecting a decrease in the intensity of the X-rays blocked by the foreign matter inside, it is inspected whether or not the foreign matter is mixed in the inspection object 1.
ところで、X線異物検査装置は透視画像を用いて検査対象物1中の異物の有無を判断するので、透視画像の解像度が高いほど、より小さな異物を検出可能となる。しかしながら、一般的なX線異物検査装置は透視画像の解像度が低く、小さな異物を検出することは困難である。 By the way, the X-ray foreign substance inspection apparatus uses the fluoroscopic image to determine the presence or absence of the foreign substance in the inspection object 1, so that the higher the resolution of the fluoroscopic image, the smaller the foreign substance can be detected. However, a general X-ray foreign substance inspection apparatus has a low resolution of the fluoroscopic image, and it is difficult to detect a small foreign substance.
そこで、透視画像の解像度を向上させるために、図10に示すように、X線検出器4におけるX線検出部(素子)の配列方向を、搬送手段2による検査対象物1の搬送方向に直交する平面に対して角度θ(θ≠90度)だけ傾けて設定することにより、前記搬送方向に直交する面内でのX線検出部のピッチを実際のX線検出部のピッチのcosθ倍に縮小したX線異物検査装置が提案されている(たとえば特許文献1参照)。 Therefore, in order to improve the resolution of the fluoroscopic image, as shown in FIG. 10, the arrangement direction of the X-ray detection units (elements) in the X-ray detector 4 is orthogonal to the conveyance direction of the inspection object 1 by the conveyance means 2. By setting the angle to be inclined by an angle θ (θ ≠ 90 degrees), the pitch of the X-ray detector in the plane orthogonal to the transport direction is set to cos θ times the pitch of the actual X-ray detector. A reduced X-ray foreign substance inspection apparatus has been proposed (see, for example, Patent Document 1).
ただし、特許文献1に記載のX線異物検査装置においては、前記搬送方向に直交する面内でのX線検出器4の有効長さがX線検出器4の全長のcosθ倍に縮小されるので、比較的大きなサイズの検査対象物1については全体の透視画像を取得することはできない。検査対象物1中の異物の有無を検査するためには、検査対象物1の全体の透視画像を取得する必要があるので、特許文献1のX線異物検査装置では、比較的大きなサイズの検査対象物1については異物の有無を検査することができないことになる。 However, in the X-ray foreign substance inspection apparatus described in Patent Document 1, the effective length of the X-ray detector 4 in the plane orthogonal to the transport direction is reduced to cos θ times the entire length of the X-ray detector 4. Therefore, the entire fluoroscopic image cannot be acquired for the inspection object 1 having a relatively large size. In order to inspect the presence or absence of a foreign substance in the inspection object 1, it is necessary to obtain a fluoroscopic image of the entire inspection object 1, so that the X-ray foreign substance inspection apparatus of Patent Document 1 has a relatively large size inspection. The object 1 cannot be inspected for the presence of foreign matter.
これに対して、比較的大きなサイズの検査対象物1についても全体の透視画像を取得して異物の有無を検査できるように、X線検出部を多数列設した複数のセンサを、搬送手段2による検査対象物1の搬送方向と直交する面内で略一列に並設することで、これら複数のセンサを前記X線検出器4(検出部)としたX線異物検査装置が提案されている(たとえば特許文献2参照)。この構成では、複数のセンサにより検査対象物1の全体について高解像度の透視画像を取得することができるので、比較的大きなサイズの検査対象物1について、小さな異物の検出が可能となる。
しかしながら、特許文献2に記載の発明では、検査対象物1のサイズが大きくなるほど多数のセンサが必要になり、X線検出器4にかかるコストが増加し、X線異物検査装置が高コストになるという問題がある。 However, in the invention described in Patent Document 2, as the size of the inspection object 1 increases, a larger number of sensors are required, the cost for the X-ray detector 4 increases, and the X-ray foreign substance inspection apparatus becomes expensive. There is a problem.
本発明は上記事由に鑑みて為されたものであって、低コストで実現可能でありながらも、比較的大きなサイズの検査対象物について、小さな異物の検出が可能なX線異物検査装置を提供することを目的とする。 The present invention has been made in view of the above-described reasons, and provides an X-ray foreign matter inspection apparatus capable of detecting a small foreign matter with respect to an inspection object having a relatively large size, which can be realized at a low cost. The purpose is to do.
請求項1の発明では、検査対象物を搬送する搬送手段と、検査対象物にX線を放射するX線源と、検査対象物を透過したX線源からのX線を検出するX線検出部が複数配列されてなり、検査対象物中の異物の有無を検査する全体検査時に、各X線検出部で検出したX線の強度に応じた濃度値の画素を持ち検査対象物の全体を含む全体透視画像を出力する第1のX線検出手段と、全体検査時に全体透視画像を取得し、当該全体透視画像における画素の濃度値および画素数の組み合わせに基づいて検査対象物中の異物の有無を判断するとともに、異物の有無が確定しなければ異物候補があると判断して異物候補が異物か否かを検査する再検査を開始させる判断手段と、前記X線検出部が複数配列されてなり、再検査時に、各X線検出部で検出したX線の強度に応じた濃度値の画素を持ち少なくとも異物候補が含まれる検査対象物の一部を拡大した拡大透視画像を出力する第2のX線検出手段と、第2のX線検出手段を移動させる移動手段と、移動手段を制御することにより再検査時に拡大透視画像が得られるように第2のX線検出手段を移動させる移動制御手段とを備え、判断手段は、再検査時に拡大透視画像を取得し、当該拡大透視画像における画素の濃度値および画素数の組み合わせに基づいて異物候補が異物か否かを判断することを特徴とする。 According to the first aspect of the present invention, the conveying means for conveying the inspection object, the X-ray source for emitting X-rays to the inspection object, and the X-ray detection for detecting X-rays from the X-ray source transmitted through the inspection object. A plurality of sections are arranged, and at the time of the entire inspection for inspecting the presence or absence of foreign matter in the inspection object, the entire inspection object has pixels with density values corresponding to the intensity of the X-ray detected by each X-ray detection section. First X-ray detection means for outputting a whole fluoroscopic image including the whole X-ray detection unit, acquiring the whole fluoroscopic image at the time of the whole examination, and detecting the foreign substance in the inspection object based on the combination of the pixel density value and the number of pixels in the whole fluoroscopic image. A plurality of determination means and a plurality of the X-ray detectors are arranged to determine the presence / absence, to determine that there is a foreign matter candidate if the presence / absence of the foreign matter is not determined, and to start a reexamination to inspect whether the foreign matter candidate is a foreign matter Detected by each X-ray detector during re-examination A second X-ray detection unit for outputting an enlarged fluoroscopic image having a pixel having a density value corresponding to the intensity of the line and enlarging a part of the inspection object including at least a foreign substance candidate; and a second X-ray detection unit A moving means for moving; and a movement control means for moving the second X-ray detection means so as to obtain an enlarged fluoroscopic image at the time of reexamination by controlling the moving means. An image is acquired, and it is determined whether or not a foreign substance candidate is a foreign substance based on a combination of a pixel density value and the number of pixels in the enlarged fluoroscopic image.
この構成によれば、全体検査で異物候補があると判断された場合の再検査においては、第2のX線検出手段を移動させることで異物候補を含む検査対象物の一部を拡大した拡大透視画像を第2のX線検出手段から取得して異物候補が異物か否かを検査するので、再検査では異物候補が異物か否かを確実に判断することができる。すなわち、全体検査において全体透視画像を用いて検査対象物の全体を検査しつつ、再検査においては高解像度の拡大透視画像を用いて小さな異物でも確実に検出することができる。しかも、この構成では、検査対象物のサイズが大きくなっても多数のX線検出手段が必要になることはないので、検査対象物のサイズが大きくなるほど多数のセンサが必要になる従来構成に比べてX線異物検査装置を低コストで実現できる。したがって、低コストで実現可能でありながらも、比較的大きなサイズの検査対象物について、小さな異物を検出することができるという利点がある。 According to this configuration, in the re-inspection when it is determined that there is a foreign substance candidate in the overall inspection, the enlarged part of the inspection object including the foreign substance candidate is enlarged by moving the second X-ray detection unit. Since the fluoroscopic image is acquired from the second X-ray detection unit and it is inspected whether the foreign matter candidate is a foreign matter, it is possible to reliably determine whether the foreign matter candidate is a foreign matter in the reexamination. That is, it is possible to reliably detect even a small foreign object using a high-resolution enlarged fluoroscopic image in the reexamination while inspecting the entire inspection object using the overall fluoroscopic image in the overall inspection. In addition, this configuration does not require a large number of X-ray detection means even when the size of the inspection object increases, so that the number of sensors increases as the size of the inspection object increases. Thus, an X-ray foreign substance inspection apparatus can be realized at low cost. Accordingly, there is an advantage that a small foreign object can be detected for an inspection object having a relatively large size, although it can be realized at a low cost.
請求項2の発明は、請求項1の発明において、前記X線源と前記搬送手段との距離が一定であって、X線源からのX線がX線源から離れるほど広がっており、前記移動制御手段が、前記再検査時に、前記異物候補の大きさに合わせて前記第2のX線検出手段と前記X線源との間の距離を前記移動手段で調節することにより前記拡大透視画像の拡大率を調節することを特徴とする。 The invention of claim 2 is the invention of claim 1, wherein the distance between the X-ray source and the transport means is constant, and the X-ray from the X-ray source spreads away from the X-ray source. When the re-examination is performed, the movement control unit adjusts the distance between the second X-ray detection unit and the X-ray source in accordance with the size of the foreign substance candidate, thereby the enlarged fluoroscopic image. It is characterized by adjusting the enlargement ratio.
この構成によれば、再検査時に、異物候補の大きさに合わせて第2のX線検出手段とX線源との間の距離を移動手段で調節することにより拡大透視画像の拡大率を調節するので、異物候補が小さいほど拡大透視画像の拡大率を向上させて拡大透視画像の解像度を向上させることができ、再検査における検査精度が向上する。 According to this configuration, at the time of re-examination, the magnification ratio of the enlarged fluoroscopic image is adjusted by adjusting the distance between the second X-ray detection means and the X-ray source according to the size of the foreign object candidate. Therefore, the smaller the foreign substance candidate is, the higher the magnification rate of the enlarged fluoroscopic image can be improved and the resolution of the enlarged fluoroscopic image can be improved, and the inspection accuracy in the reinspection is improved.
請求項3の発明は、請求項1または請求項2の発明において、前記判断手段が、異物のない正常な前記検査対象物の前記全体透視画像を標準画像として前記全体検査前に予め取得しており、全体検査時に前記第1のX線検出手段から取得した全体透視画像を取得画像として、取得画像と標準画像との差分をとることにより検査対象物の差分画像を生成し、当該差分画像について濃度値が所定値以上となる画素を異常画素とし、隣接する異常画素の濃度値および画素数の組み合わせに基づいて検査対象物中の異物の有無、あるいは前記異物候補があるかを判断することを特徴とする。 According to a third aspect of the present invention, in the first or second aspect of the present invention, the determination means obtains the whole fluoroscopic image of the normal inspection object without foreign matter as a standard image in advance before the whole inspection. A difference image between the acquired image and the standard image is generated by using the entire fluoroscopic image acquired from the first X-ray detection means at the time of the entire inspection as an acquired image, and the difference image is generated. A pixel having a density value equal to or higher than a predetermined value is determined as an abnormal pixel, and it is determined whether there is a foreign substance in the inspection target or whether there is the foreign substance candidate based on a combination of the density value and the number of pixels of adjacent abnormal pixels. Features.
この構成によれば、判断手段は、全体検査時に取得画像と標準画像との差分をとった差分画像を用いて検査対象物中の異物の有無、あるいは前記異物候補があるかを判断するので、異物のない正常な検査対象物の輪郭等を誤って異物あるいは異物候補と判断してしまうことを回避できる。 According to this configuration, the determination unit determines whether there is a foreign object in the inspection object or the foreign object candidate using a difference image obtained by taking a difference between the acquired image and the standard image at the time of the entire inspection. It is possible to avoid erroneously determining a contour or the like of a normal inspection object having no foreign matter as a foreign matter or a foreign matter candidate.
請求項4の発明は、請求項1ないし請求項3のいずれかの発明において、前記第1および第2の両X線検出手段は複数の前記X線検出部が2次元配列され前記X線源と対向配置された1つのX線検出器からなり、前記移動手段がX線検出器を移動させるように構成され、前記移動制御手段が、前記全体検査時には前記全体透視画像が得られる基準位置にX線検出器を移動手段で移動させ、前記再検査時には前記拡大透視画像が得られる拡大位置にX線検出器を移動手段で移動させており、1つの前記検査対象物について全体検査を行う期間に検査対象物がX線源とX線検出器との間に設定した所定の検査位置で停止するとともに、再検査を行う場合には再検査が終了するまで検査対象物が前記停止位置で引き続き停止するように前記搬送手段を制御する搬送制御手段を備えることを特徴とする。 According to a fourth aspect of the present invention, there is provided the X-ray source according to any one of the first to third aspects, wherein the first and second X-ray detection means include a plurality of X-ray detection units arranged two-dimensionally. And the movement means is configured to move the X-ray detector, and the movement control means is at a reference position where the whole fluoroscopic image is obtained during the whole examination. A period in which the X-ray detector is moved by the moving means, the X-ray detector is moved by the moving means to the enlarged position where the enlarged fluoroscopic image is obtained at the time of the re-examination, and the entire inspection is performed on one inspection object When the inspection object stops at a predetermined inspection position set between the X-ray source and the X-ray detector, and the re-inspection is performed, the inspection object continues at the stop position until the re-inspection is completed. Said conveying means to stop Characterized in that it comprises a conveyance control means for controlling.
この構成によれば、第1および第2の両X線検出手段は1つのX線検出器からなるので、第1および第2の両X線検出手段を別々に備える場合に比べて構成が簡単になる。しかも、搬送制御手段により、1つの検査対象物について全体検査を行う期間に所定の検査位置で検査対象物を停止させるとともに、再検査を行う場合には再検査が終了するまで検査対象物を停止位置で引き続き停止させるので、X線検出器の移動範囲を基準位置と拡大位置との間に収めることができ、移動手段および移動制御手段の簡略化につながる。 According to this configuration, since both the first and second X-ray detection means comprise one X-ray detector, the configuration is simpler than when both the first and second X-ray detection means are provided separately. become. In addition, the conveyance control means stops the inspection object at a predetermined inspection position during the period for performing the entire inspection on one inspection object, and when re-inspecting, stops the inspection object until the re-inspection is completed. Since the stop is continued at the position, the movement range of the X-ray detector can be kept between the reference position and the enlarged position, leading to simplification of the moving means and the movement control means.
請求項5の発明は、請求項1ないし請求項3のいずれかの発明において、前記X線源と前記搬送手段との間においてX線源からのX線は前記検査対象物の搬送方向に並ぶ2本のファンビームとして搬送手段に照射しており、前記第1のX線検出手段が、複数の前記X線検出部が1次元配列され前記搬送方向の上流側のファンビームを検出し、前記第2のX線検出手段が、複数の前記X線検出部が1次元配列され前記搬送方向の下流側のファンビームを検出することを特徴とする。 According to a fifth aspect of the present invention, in any one of the first to third aspects, the X-rays from the X-ray source are arranged in the transport direction of the inspection object between the X-ray source and the transport means. The transport unit is irradiated with two fan beams, and the first X-ray detection unit detects a fan beam on the upstream side in the transport direction in which a plurality of the X-ray detection units are arranged one-dimensionally, and The second X-ray detection means is characterized in that a plurality of the X-ray detection units are arranged one-dimensionally to detect a fan beam on the downstream side in the transport direction.
この構成によれば、検査対象物の搬送方向の上流側で全体検査を行い、検査対象物の搬送方向の下流側で再検査を行うので、搬送手段による検査対象物の搬送を一旦停止させることなく全体検査と再検査との両方を行うことができる。そのため、検査対象物を一旦停止させて検査対象物の検査を行う場合に比べて、検査対象物の検査に要する時間を短縮できる。 According to this configuration, since the entire inspection is performed on the upstream side in the conveyance direction of the inspection object and the re-inspection is performed on the downstream side in the conveyance direction of the inspection object, the conveyance of the inspection object by the conveyance unit is temporarily stopped. Both the overall inspection and the re-inspection can be performed. Therefore, the time required for the inspection of the inspection object can be shortened compared to the case where the inspection object is temporarily stopped and the inspection object is inspected.
請求項6の発明は、請求項1ないし請求項5のいずれかの発明において、前記移動制御手段が、前記再検査時に、前記拡大透視画像のうちの前記異物候補に対応する部位の中心が前記第2のX線検出手段の測定中心と重なるように第2のX線検出手段の位置を前記移動手段で調節することを特徴とする。 According to a sixth aspect of the present invention, in the invention according to any one of the first to fifth aspects, the center of a part corresponding to the foreign substance candidate in the enlarged fluoroscopic image is determined when the movement control unit performs the reexamination. The position of the second X-ray detection means is adjusted by the moving means so as to overlap the measurement center of the second X-ray detection means.
この構成によれば、再検査時に、拡大透視画像のうちの異物候補に対応する部位の中心が第2のX線検出手段の測定中心と重なるので、異物候補を透過したX線が第2のX線検出手段からはみ出すことを回避して、異物候補を透過したX線を全て第2のX線検出手段で受けることができる。これにより、再検査において拡大透視画像の拡大率を上げることができ、拡大透視画像の解像度がより向上することになる。 According to this configuration, at the time of re-examination, the center of the part corresponding to the foreign substance candidate in the enlarged fluoroscopic image overlaps with the measurement center of the second X-ray detection unit. By avoiding protruding from the X-ray detection means, all the X-rays that have passed through the foreign substance candidate can be received by the second X-ray detection means. Thereby, the enlargement ratio of the enlarged fluoroscopic image can be increased in the re-examination, and the resolution of the enlarged fluoroscopic image is further improved.
請求項7の発明は、請求項1ないし請求項6のいずれかの発明において、前記判断手段が、前記全体検査において1つの前記検査対象物から前記異物候補が複数検出された場合に、前記全体透視画像における各異物候補の画素の濃度値と画素数とに基づいて異物である可能性の程度を示す不良指数を異物候補ごとに計算し、不良指数が最も高い異物候補を前記再検査の対象とし、再検査において前記異物候補が異物ではないと判断すると、前記検査対象物について別途検査を行うことにより異物の有無を判断することを特徴とする。 The invention of claim 7 is the invention according to any one of claims 1 to 6, wherein when the determination means detects a plurality of the foreign substance candidates from one inspection object in the overall inspection, A defect index indicating the degree of possibility of being a foreign substance is calculated for each foreign substance candidate based on the density value and the number of pixels of each foreign substance candidate in the fluoroscopic image, and the foreign substance candidate having the highest defect index is subject to the re-examination. When the foreign object candidate is determined not to be a foreign object in the re-inspection, the presence or absence of the foreign object is determined by separately inspecting the inspection object.
この構成によれば、複数の異物候補のうち、異物である可能性の程度、つまり不良指数が最も高い異物候補を再検査の対象とするので、全ての異物候補について再検査を行う場合に比べて、1つの検査対象物の検査に要する時間を短縮できる。 According to this configuration, among the plurality of foreign matter candidates, the degree of possibility of being a foreign matter, that is, the foreign matter candidate with the highest defect index is targeted for re-examination, so compared to the case where all the foreign matter candidates are re-inspected. Thus, the time required for inspection of one inspection object can be shortened.
本発明は、全体検査において全体透視画像を用いて検査対象物の全体を検査しつつ、再検査においては高解像度の拡大透視画像を用いて小さな異物でも確実に検出することができるので、比較的大きなサイズの検査対象物について、小さな異物を検出することができるという効果がある。 The present invention is capable of reliably detecting even small foreign objects using a high-resolution enlarged fluoroscopic image in re-examination while inspecting the entire inspection object using the overall fluoroscopic image in the overall inspection. There is an effect that a small foreign object can be detected for a large-sized inspection object.
(実施形態1)
本実施形態のX線異物検査装置は、図1に示すように、検査対象物1を搬送する搬送手段2と、検査対象物1にX線を照射するX線源3と、検査対象物1を透過したX線源3からのX線を検出するX線検出器4と、X線検出器4を移動させる移動手段5と、移動手段5を制御してX線検出器4の位置を調節する移動制御手段6と、X線検出器4での検出結果を用いて検査対象物1中の異物の有無を判断する判断手段7とを備えている。
(Embodiment 1)
As shown in FIG. 1, the X-ray foreign substance inspection apparatus according to this embodiment includes a transport unit 2 that transports an inspection object 1, an X-ray source 3 that irradiates the inspection object 1 with X-rays, and an inspection object 1. X-ray detector 4 for detecting X-rays from the X-ray source 3 that has passed through, moving means 5 for moving the X-ray detector 4, and controlling the moving means 5 to adjust the position of the X-ray detector 4 A movement control means 6 that performs the detection, and a determination means 7 that determines the presence or absence of foreign matter in the inspection object 1 using the detection result of the X-ray detector 4.
ここで、搬送手段2は、検査対象物1をX線源3とX線検出器4との間を通して一方向(図1に矢印Aで示す方向)に搬送する。X線検出器4は、X線を検出する複数のX線検出部(図示せず)が配列されており、各X線検出部でそれぞれ検出したX線の強度に応じた出力を行う。判断手段7は、それぞれX線検出器4の各X線検出部で検出したX線の強度に対応する濃度値を持つ複数の画素からなる検査対象物1の透視画像を取得し、当該透視画像を用いて検査対象物1中の異物の有無を判断する。なお、X線検出部で検出したX線の強度が大きいほど対応する画素の濃度値は低くなる。 Here, the transport means 2 transports the inspection object 1 in one direction (the direction indicated by the arrow A in FIG. 1) between the X-ray source 3 and the X-ray detector 4. The X-ray detector 4 includes a plurality of X-ray detection units (not shown) that detect X-rays, and performs output according to the intensity of the X-rays detected by each X-ray detection unit. The determination means 7 acquires a fluoroscopic image of the inspection object 1 composed of a plurality of pixels each having a density value corresponding to the intensity of the X-ray detected by each X-ray detector of the X-ray detector 4, and the fluoroscopic image Is used to determine the presence or absence of foreign matter in the inspection object 1. In addition, the density value of a corresponding pixel becomes low, so that the intensity | strength of the X-ray detected by the X-ray detection part is large.
ここにおいて、本実施形態のX線異物検査装置は、検査対象物1の全体を含む全体透視画像を用いて検査対象物1中の異物の有無を検査する全体検査を行う。ただし、この全体検査では、判断手段7は検査対象物1中の異物の有無を判断するだけでなく、異物の有無が確定しない場合には異物か否かが定かでない異物候補があると判断する。そして、異物候補があると判断した場合には、異物候補が異物か否かを検査する再検査を開始させる。再検査では、少なくとも異物候補が含まれる検査対象物1の一部を拡大した拡大透視画像を用いて異物候補が異物か否かを検査する。 Here, the X-ray foreign substance inspection apparatus according to the present embodiment performs an overall inspection for inspecting the presence or absence of foreign substances in the inspection object 1 using an entire fluoroscopic image including the entire inspection object 1. However, in this overall inspection, the determination means 7 not only determines the presence or absence of foreign matter in the inspection object 1, but also determines that there is a foreign matter candidate for which it is not certain whether or not there is a foreign matter if the presence or absence of the foreign matter is not determined. . When it is determined that there is a foreign object candidate, re-inspection for inspecting whether the foreign object candidate is a foreign object is started. In the reexamination, it is inspected whether or not the foreign matter candidate is a foreign matter by using an enlarged perspective image in which a part of the inspection object 1 including at least the foreign matter candidate is enlarged.
ここに、X線検出器4は、全体検査時に検査対象物1の全体を含む全体透視画像を出力する第1のX線検出手段4aと、再検査時に少なくとも異物候補が含まれる検査対象物1の一部を拡大した拡大透視画像を出力する第2のX線検出手段4bとの両方の機能を有している。移動制御手段6は、移動手段5を制御することで再検査時に拡大透視画像が得られるように第2のX線検出手段4bを移動させる。 Here, the X-ray detector 4 includes a first X-ray detection means 4a that outputs an entire fluoroscopic image including the entire inspection object 1 during the entire inspection, and an inspection object 1 that includes at least a foreign substance candidate during the re-inspection. And the second X-ray detection means 4b for outputting an enlarged fluoroscopic image in which a part of the image is enlarged. The movement control means 6 controls the movement means 5 to move the second X-ray detection means 4b so that an enlarged fluoroscopic image can be obtained at the time of reexamination.
本実施形態の判断手段7は、全体検査を行う前に異物のない正常な検査対象物1の上記全体透視画像が標準画像として予め取得しており、全体検査時には、第1のX線検出手段4aの出力から取得した全体透視画像を取得画像として、取得画像と標準画像とを比較する画像処理を行う。具体的には、図2に示すように、取得画像と標準画像との差分をとることにより差分画像を得る。ここで得られる差分画像が、実際に検査中の検査対象物1と正常な検査対象物1との相違点であって、検査中の検査対象物1中に異物が存在する場合には、異物に応じた差分画像が得られることになる。なお、本実施形態のX線異物検査装置は、検査対象物1に比べてX線の透過率の低い異物の有無を検査するものであって、検査対象物1中に異物が存在する場合には、差分画像のうち異物に対応する部分の濃度値は周囲の濃度値よりも高くなる。 The determination means 7 of the present embodiment obtains the whole fluoroscopic image of the normal inspection object 1 without foreign matter in advance as a standard image before the whole inspection, and the first X-ray detection means at the time of the whole inspection. Image processing for comparing the acquired image with the standard image is performed using the entire fluoroscopic image acquired from the output of 4a as the acquired image. Specifically, as shown in FIG. 2, the difference image is obtained by taking the difference between the acquired image and the standard image. If the difference image obtained here is the difference between the inspection object 1 actually being inspected and the normal inspection object 1 and there is a foreign object in the inspection object 1 being inspected, the foreign object A difference image corresponding to is obtained. Note that the X-ray foreign substance inspection apparatus of the present embodiment inspects for the presence or absence of a foreign substance having a lower X-ray transmittance than the inspection object 1, and when the foreign object exists in the inspection object 1. In the difference image, the density value of the portion corresponding to the foreign matter is higher than the surrounding density value.
ここにおいて、判断手段7は検査対象物1の差分画像について前記濃度値が所定値以上となる画素を異常画素とし、隣接する異常画素の平均濃度値と画素数との組み合わせに基づいて検査対象物1中の異物の有無を判断する。ただし、前記組み合わせから異物の有無が確定しない場合には上述したように異物候補があると判断する。具体的には、判断手段7は、隣接する異常画素の平均濃度値と画素数との組み合わせについて異常判定ゾーンZ1(図7参照)と正常判定ゾーンZ2(図7参照)とグレーゾーンZ0(図7参照)とを全体透視画像を取得する前に予め設定しており、前記組み合わせが異常判定ゾーンZ1に該当するときには異物があると判断し、前記組み合わせが正常判定ゾーンZ2に該当するときには異物がないと判断し、前記組み合わせがグレーゾーンZ0に該当するときには異物候補があると判断する。なお、異常判定ゾーンZ1、正常判定ゾーンZ2、グレーゾーンZ0の具体例については後述する。 Here, the judging means 7 uses the pixel having the density value equal to or higher than a predetermined value in the difference image of the inspection object 1 as an abnormal pixel, and the inspection object based on the combination of the average density value of adjacent abnormal pixels and the number of pixels. The presence or absence of foreign matter in 1 is determined. However, if the presence or absence of foreign matter is not determined from the combination, it is determined that there is a foreign matter candidate as described above. Specifically, the determination means 7 determines the abnormality determination zone Z1 (see FIG. 7), normal determination zone Z2 (see FIG. 7), and gray zone Z0 (see FIG. 7) for the combination of the average density value of adjacent abnormal pixels and the number of pixels. 7) is set in advance before acquiring the whole fluoroscopic image. When the combination corresponds to the abnormality determination zone Z1, it is determined that there is a foreign object. When the combination corresponds to the normal determination zone Z2, the foreign object is It is determined that there is a foreign object candidate when the combination corresponds to the gray zone Z0. Specific examples of the abnormality determination zone Z1, the normality determination zone Z2, and the gray zone Z0 will be described later.
さらに、上述の全体検査において異物候補があると判断した場合には再検査を開始し、移動制御手段6が異物候補の位置に合わせて移動手段5で第2のX線検出手段4bの位置を調節するとともに、判断手段7は少なくとも異物候補が含まれる検査対象物1の一部について拡大した拡大透視画像を第2のX線検出手段4bから取得し、この拡大透視画像を用いて前記異物候補が異物か否かを判断する。 Further, when it is determined that there is a foreign substance candidate in the above-described overall inspection, re-inspection is started, and the movement control means 6 adjusts the position of the second X-ray detection means 4b by the movement means 5 in accordance with the position of the foreign substance candidate. At the same time, the determination means 7 obtains an enlarged fluoroscopic image enlarged from at least a part of the inspection object 1 including the foreign substance candidate from the second X-ray detection means 4b, and uses the enlarged fluoroscopic image to determine the foreign substance candidate. It is determined whether or not is a foreign object.
再検査においては、判断手段7は拡大透視画像の隣接する異常画素の平均濃度値と画素数との組み合わせに基づいて異物候補が異物か否かを判断する。ただし、再検査時には、隣接する異常画素の平均濃度値と画素数との組み合わせに関してグレーゾーンZ0は設定されず、異物があると判断する異常判定ゾーンZ1と異物がないと判断する正常判定ゾーンZ2との2つの領域のみが設定される。したがって、再検査では、全体検査のように異物候補があると判断されることはなく検査対象物1中の異物の有無が最終的に判断される。 In the reexamination, the determination unit 7 determines whether or not the foreign object candidate is a foreign object based on the combination of the average density value of adjacent abnormal pixels and the number of pixels in the enlarged fluoroscopic image. However, at the time of re-examination, the gray zone Z0 is not set for the combination of the average density value of adjacent abnormal pixels and the number of pixels, the abnormality determination zone Z1 for determining that there is a foreign object, and the normal determination zone Z2 for determining that there is no foreign object. Only two areas are set. Therefore, in the re-inspection, it is not determined that there is a foreign object candidate as in the entire inspection, and the presence or absence of the foreign object in the inspection object 1 is finally determined.
以下に、上述したX線異物検査装置の各部のより詳しい構成について図3を参照して説明する。 Hereinafter, a more detailed configuration of each part of the X-ray foreign substance inspection apparatus described above will be described with reference to FIG.
第1および第2の両X線検出手段4a,4bは1つのX線検出器4からなり、移動手段5はX線検出器4全体を移動させるように構成されている。搬送手段2としてはX線源3とX線検出器4との間を通るベルトコンベアを採用しており、検査対象物1は搬送手段2の上面側に載置された状態で、X線源3とX線検出器4との間を一方向(図3に矢印Aで示す方向)に搬送されることになる。X線源3は、搬送手段2の真上に配置されており、X線源3の真下に位置する検査対象物1に対してX線を照射する。ここに、X線検出器4は、X線源3からのX線が照射する搬送手段2の上面に沿う面内で複数のX線検出部が2次元配列されており、X線源3と対向配置される。 Both the first and second X-ray detection means 4a and 4b are composed of one X-ray detector 4, and the moving means 5 is configured to move the entire X-ray detector 4. A belt conveyor passing between the X-ray source 3 and the X-ray detector 4 is adopted as the conveying means 2, and the inspection object 1 is placed on the upper surface side of the conveying means 2, and the X-ray source 3 and the X-ray detector 4 are conveyed in one direction (direction indicated by arrow A in FIG. 3). The X-ray source 3 is disposed immediately above the transport unit 2 and irradiates the inspection object 1 positioned immediately below the X-ray source 3 with X-rays. Here, in the X-ray detector 4, a plurality of X-ray detectors are two-dimensionally arranged in a plane along the upper surface of the conveying means 2 irradiated with X-rays from the X-ray source 3. Opposed.
ところで、移動制御手段6は、全体検査時にはX線検出器4を第1のX線検出手段4aとして動作させるように、全体透視画像が得られる基準位置にX線検出器4を移動手段5で移動させ、一方、再検査時にはX線検出器4を第2のX線検出手段4bとして動作させるように、拡大透視画像が得られる拡大位置にX線検出器4を移動手段5で移動させる。 By the way, the movement control means 6 moves the X-ray detector 4 with the movement means 5 to the reference position where the whole fluoroscopic image is obtained so that the X-ray detector 4 operates as the first X-ray detection means 4a during the whole examination. On the other hand, at the time of re-examination, the X-ray detector 4 is moved by the moving means 5 to an enlarged position where an enlarged fluoroscopic image is obtained so that the X-ray detector 4 is operated as the second X-ray detecting means 4b.
ここにおいて、移動手段5は、X線検出器4を上下方向、前後方向(搬送手段2による検査対象物1の搬送方向)、左右方向の3軸方向に移動可能に構成されている。ここで、本実施形態ではX線源3からのX線はX線源3から離れるほど広がるように発散しており、且つX線源3と搬送手段2との距離を一定としている。そのため、異物候補からX線検出器4までの距離を変化させればX線検出器4に投影される異物候補の像の拡大率が変化し、判断手段7で取得される透視画像の拡大率が変化する。これを利用して、再検査時におけるX線検出器4の位置(拡大位置)を調節することで、検査対象物1中の異物候補8の拡大透視画像の拡大率を調節する。 Here, the moving means 5 is configured to be able to move the X-ray detector 4 in the three axial directions of the vertical direction, the front-rear direction (the conveyance direction of the inspection object 1 by the conveyance means 2), and the left-right direction. Here, in this embodiment, the X-rays from the X-ray source 3 diverge so as to spread away from the X-ray source 3, and the distance between the X-ray source 3 and the conveying means 2 is constant. Therefore, if the distance from the foreign object candidate to the X-ray detector 4 is changed, the enlargement ratio of the image of the foreign object candidate projected on the X-ray detector 4 changes, and the enlargement ratio of the fluoroscopic image acquired by the determination means 7 Changes. By utilizing this, the magnification (magnification position) of the X-ray detector 4 at the time of re-examination is adjusted, thereby adjusting the magnification of the enlarged fluoroscopic image of the foreign object candidate 8 in the inspection object 1.
具体的には、検査対象物1中の異物候補8の拡大透視画像の拡大率は、X線源3と、異物候補8と、X線検出器4との位置関係によって決まり、図4に示すようにX線源3と異物候補8との間の距離をX線検出器X4と異物候補8との間の距離をyとすれば、拡大率rはr={(x+y)/x}で表される。すなわち、X線検出器4をX線源3から遠ざけるほど、拡大率は向上し、より高解像度で再検査することができる。本実施形態では、全体検査において検出された異物候補8の大きさ(つまり隣接する異常画素の画素数)に基づいて、異物候補8の全体が含まれる範囲内で最大の拡大率の拡大透視画像が得られるように拡大率を決定し、この拡大率に基づいて再検査時のX線検出器4と検査対象物1との間の距離を決定する。 Specifically, the enlargement ratio of the enlarged perspective image of the foreign object candidate 8 in the inspection object 1 is determined by the positional relationship among the X-ray source 3, the foreign object candidate 8, and the X-ray detector 4, and is shown in FIG. Thus, if the distance between the X-ray source 3 and the foreign object candidate 8 is y and the distance between the X-ray detector X4 and the foreign object candidate 8 is y, the enlargement ratio r is r = {(x + y) / x}. expressed. That is, as the X-ray detector 4 is moved away from the X-ray source 3, the enlargement ratio is improved and re-inspection can be performed with higher resolution. In the present embodiment, based on the size of the foreign object candidate 8 detected in the overall inspection (that is, the number of adjacent abnormal pixels), the enlarged fluoroscopic image having the maximum magnification within the range including the entire foreign object candidate 8 is included. Is determined so that the distance between the X-ray detector 4 and the inspection object 1 at the time of re-examination is determined.
したがって、移動制御手段6は、全体検査において異物候補8があると判断された場合に、移動手段5でX線検出器4を下降させることにより検査対象物1とX線検出器4との距離を広げ、判断手段7で拡大透視画像を取得可能とする。このとき、X線検出器4を前後左右に適宜移動させることにより、拡大透視画像のうちの異物候補8に対応する部位の中心(つまり、X線検出器4に投影される異物候補8の像の中心)を、X線検出器4の測定中心に位置させるようにX線検出器4の位置(拡大位置)を調節する。これにより、図5(a)のように異物候補8を通ったX線がX線検出器4からはみ出すことを回避でき、図5(b)のように異物候補8を通ったX線を全てX線検出器4で受けることができる。なお、ここでは、拡大透視画像のうちの異物候補8に対応する部位の前後方向の両端間の中心線と左右方向の両端間の中心線との交点をX線検出器4の測定中心に位置させるが、これに限らず、たとえば拡大透視画像のうちの異物候補8に対応する部位の重心を中心としてX線検出器4の測定中心に位置させるようにしてもよい。 Therefore, the movement control means 6 moves the distance between the inspection object 1 and the X-ray detector 4 by lowering the X-ray detector 4 by the movement means 5 when it is determined that there is a foreign substance candidate 8 in the entire inspection. And the determination means 7 can acquire an enlarged perspective image. At this time, by appropriately moving the X-ray detector 4 back and forth, right and left, the center of the part corresponding to the foreign substance candidate 8 in the enlarged fluoroscopic image (that is, the image of the foreign substance candidate 8 projected on the X-ray detector 4). The position (enlarged position) of the X-ray detector 4 is adjusted so that the center of the X-ray detector 4 is positioned at the measurement center of the X-ray detector 4. As a result, the X-rays that have passed through the foreign object candidate 8 as shown in FIG. 5A can be prevented from protruding from the X-ray detector 4, and all the X-rays that have passed through the foreign object candidate 8 as shown in FIG. It can be received by the X-ray detector 4. Here, the intersection of the center line between both ends in the front-rear direction and the center line between both ends in the left-right direction of the part corresponding to the foreign substance candidate 8 in the enlarged fluoroscopic image is positioned at the measurement center of the X-ray detector 4. However, the present invention is not limited to this. For example, the X-ray detector 4 may be positioned at the measurement center with the center of gravity of the part corresponding to the foreign object candidate 8 in the enlarged fluoroscopic image as the center.
ところで、X線異物検査装置は、1つの検査対象物1について前記全体検査を行う期間にこの検査対象物1がX線源3とX線検出器4との間に設定された所定の検査位置で停止するように搬送手段2を制御する搬送制御手段9を備えている。これにより、搬送手段2は、検査対象物1の移動と停止とを繰り返しながら検査対象物1を間欠的に搬送することとなる。そして、搬送制御手段9は、再検査を行う場合には、再検査が終了するまで検査対象物1を前記検査位置で引き続き停止させる。すなわち、X線異物検査装置は、検査対象物1が検査位置で停止している期間内に全体検査を行い、また再検査を行う場合には前記期間内に再検査も行う。 By the way, the X-ray foreign substance inspection apparatus has a predetermined inspection position in which the inspection object 1 is set between the X-ray source 3 and the X-ray detector 4 during the period of performing the entire inspection on one inspection object 1. Is provided with a conveyance control means 9 for controlling the conveyance means 2 so as to stop at the above. Thereby, the conveying means 2 will intermittently convey the inspection object 1 while repeating the movement and stop of the inspection object 1. Then, when performing re-inspection, the conveyance control means 9 continues to stop the inspection object 1 at the inspection position until the re-inspection is completed. That is, the X-ray foreign substance inspection apparatus performs a whole inspection within a period when the inspection object 1 is stopped at the inspection position, and also performs a re-inspection within the period when performing a re-inspection.
上述したX線異物検査装置は、たとえば電子機器等において部品の封止に用いられる合成樹脂製の封止材を検査対象物1とすることにより、検査対象物1中における金属片などの異物の有無を非破壊検査によって判断するために使用される。異物が混入していると判断された検査対象物1については、たとえば破棄などの措置がとられる。 The X-ray foreign substance inspection apparatus described above uses, for example, a synthetic resin sealing material used for sealing parts in an electronic device or the like as the inspection object 1, so that foreign substances such as metal pieces in the inspection object 1 are removed. Used to determine the presence or absence by nondestructive inspection. For the inspection object 1 that is determined to be contaminated, measures such as discarding are taken.
以下に、本実施形態のX線異物検査装置の動作例を示す。 Below, the operation example of the X-ray foreign material inspection apparatus of this embodiment is shown.
たとえば、差分画像における濃度値を0(白)〜1.0a(黒)と定義し、濃度値が0.5a以上の画素を異常画素10と定義すると、濃度値が1.0aの異常画素10を中心としてその周囲に濃度値が0.8aの異常画素10が4つと濃度値が0.6aの異常画素10が4つ存在する図6(a)の例の場合、隣接する異常画素10の画素数は9となり、隣接する異常画素10の平均濃度値は、{1.0a+(4×0.8a)+(4×0.6a)}/9から0.73aとなる。なお、図6では各画素の持つ濃度値は各画素内に示している。 For example, if the density value in the difference image is defined as 0 (white) to 1.0a (black) and a pixel having a density value of 0.5a or more is defined as an abnormal pixel 10, the abnormal pixel 10 having a density value of 1.0a. In the case of the example of FIG. 6A in which there are four abnormal pixels 10 having a density value of 0.8a and four abnormal pixels 10 having a density value of 0.6a in the vicinity thereof, the adjacent abnormal pixels 10 The number of pixels is 9, and the average density value of the adjacent abnormal pixels 10 is {1.0a + (4 × 0.8a) + (4 × 0.6a)} / 9 to 0.73a. In FIG. 6, the density value of each pixel is shown in each pixel.
ここで、上述した異常判定ゾーンZ1と正常判定ゾーンZ2とグレーゾーンZ0とのそれぞれは、隣接する異常画素10の画素数と平均濃度値との両方に関連付けて定義されており、図7に示すように、異常画素10の画素数が5〜10の全範囲と、異常画素10の画素数が10を超え且つ平均濃度値が0.3a以下の範囲とをグレーゾーンZ0とする。一方、異常画素10の画素数が5を下回る範囲は平均濃度値の大小にかかわらず正常判定ゾーンZ2とし、異常画素10の画素数が10を超え且つ平均濃度値が0.3aを超える範囲は異常判定ゾーンZ1とする。 Here, each of the above-described abnormality determination zone Z1, normality determination zone Z2, and gray zone Z0 is defined in association with both the number of adjacent abnormal pixels 10 and the average density value, as shown in FIG. As described above, the entire range in which the number of abnormal pixels 10 is 5 to 10 and the range in which the number of abnormal pixels 10 exceeds 10 and the average density value is 0.3a or less are defined as a gray zone Z0. On the other hand, the range in which the number of abnormal pixels 10 is less than 5 is the normal determination zone Z2 regardless of the average density value, and the range in which the number of abnormal pixels 10 exceeds 10 and the average density value exceeds 0.3a. The abnormality determination zone Z1.
すなわち、判断手段7は、全体検査において、異常画素10の画素数が5〜10の場合、あるいは異常画素10の画素数が10を超え且つ平均濃度値が0.3a以下の場合には異物候補8があると判断し、異常画素10の画素数が5に達しない場合には平均濃度値の大小にかかわらず異物がないと判断し、異常画素10の画素数が10を超え且つ平均濃度値が0.3aを超える場合には異物があると判断する。ここにおいて、画素数のみについてグレーゾーンZ0の範囲を設定することも考えられるが、ノイズ等の影響で濃度値の低い異常画素10が多数検出された場合に誤って異物があると判断してしまうことを避けるために、上述のように異常画素10の画素数および平均濃度値の組み合わせについてグレーゾーンZ0の範囲を設定することが望ましい。 That is, the judgment means 7 determines whether the foreign object candidate is 5 to 10 in the overall inspection, or if the number of abnormal pixels 10 exceeds 10 and the average density value is 0.3a or less. If the number of abnormal pixels 10 does not reach 5, it is determined that there is no foreign matter regardless of the average density value, the number of abnormal pixels 10 exceeds 10, and the average density value Is greater than 0.3a, it is determined that there is a foreign object. Here, it is conceivable to set the range of the gray zone Z0 only for the number of pixels. However, when a large number of abnormal pixels 10 having a low density value are detected due to noise or the like, it is erroneously determined that there is a foreign object. In order to avoid this, it is desirable to set the range of the gray zone Z0 for the combination of the number of abnormal pixels 10 and the average density value as described above.
図6(a)に示す例の場合、異常画素10の画素数が9、異常画素10の平均濃度値が0.73aであるからグレーゾーンZ0に該当し、判断手段7は全体検査において異物候補8があると判断する。したがって、判断手段7は再検査を開始させる。 In the example shown in FIG. 6A, since the number of abnormal pixels 10 is 9 and the average density value of abnormal pixels 10 is 0.73a, it corresponds to the gray zone Z0. 8 is judged. Therefore, the determination unit 7 starts reinspection.
再検査時には、移動制御手段6は検査対象物1における異物候補8の位置に応じて移動手段5でX線検出器4を移動させ、少なくとも異物候補8が含まれる検査対象物1の一部について拡大した拡大透視画像を得られるようにする。判断手段7はX線検出器4から拡大透視画像を取得し、この拡大透視画像を用いて再検査を行う。再検査では、全体検査のように異物候補8があると判断されることはなく異物の有無が最終的に判断される。 At the time of re-inspection, the movement control means 6 moves the X-ray detector 4 by the moving means 5 according to the position of the foreign object candidate 8 on the inspection object 1, and at least a part of the inspection object 1 including the foreign object candidate 8. An enlarged magnified perspective image can be obtained. The determination unit 7 acquires an enlarged fluoroscopic image from the X-ray detector 4 and performs reexamination using the enlarged fluoroscopic image. In the re-examination, it is not determined that there is the foreign object candidate 8 as in the entire inspection, and the presence or absence of the foreign object is finally determined.
ところで、上記説明では1つの検査対象物1の1箇所にのみ異物候補8が検出される場合について説明したが、実際には1つの検査対象物1の複数箇所で異物候補8が検出される場合もある。後者の場合に、複数の異物候補8のそれぞれについて再検査を行い異物か否かを判断する構成としてもよいが、この構成では、再検査を異物候補8の個数分だけ繰り返し行う必要があるので、X線源3とX線検出器4との間の検査位置で検査対象物1を停止させる時間が長くなるという問題がある。そこで、本実施形態では以下の構成を採用することにより、複数の異物候補8が検出された場合に、検査位置で検査対象物1を停止させる時間を短縮している。 By the way, in the above description, the case where the foreign object candidate 8 is detected only at one place of one inspection object 1 has been described, but actually, the foreign object candidate 8 is detected at a plurality of places of one inspection object 1. There is also. In the latter case, each of the plurality of foreign matter candidates 8 may be reexamined to determine whether or not it is a foreign matter. However, in this configuration, it is necessary to repeat the reexamination for the number of foreign matter candidates 8. There is a problem that it takes a long time to stop the inspection object 1 at the inspection position between the X-ray source 3 and the X-ray detector 4. Therefore, in the present embodiment, by adopting the following configuration, the time for stopping the inspection object 1 at the inspection position when a plurality of foreign object candidates 8 are detected is shortened.
判断手段7は、1つの検査対象物1から異物候補8が複数検出された場合、各異物候補8について異物である可能性の程度を示す不良指数を計算し、不良指数が最も高い異物候補8を再検査の対象とする。ここに、不良指数は各異物候補8における異常画素10の画素数および濃度値をパラメータとして所定の評価関数を用いて計算されるものであって、不良指数が高いほど異物である可能性が高い。ここでは一例として、各異物候補8における異常画素10の濃度値の総和をそれぞれの不良指数とする。 When a plurality of foreign object candidates 8 are detected from one inspection object 1, the determination means 7 calculates a defect index indicating the degree of possibility of being a foreign object for each foreign object candidate 8, and the foreign object candidate 8 having the highest defect index. Are subject to re-examination. Here, the defect index is calculated using a predetermined evaluation function with the number of pixels and the density value of the abnormal pixels 10 in each foreign substance candidate 8 as parameters, and the higher the defect index, the higher the possibility of being a foreign object. . Here, as an example, the sum of the density values of the abnormal pixels 10 in each foreign substance candidate 8 is used as each defect index.
図6(a)に示すように濃度値が1.0aの異常画素10を中心としてその周囲に濃度値が0.8aの異常画素10が4つと濃度値が0.6aの異常画素10が4つ存在する異物候補8と、図6(b)に示すように濃度値が1.0aの異常画素10とその周囲に濃度値が0.8aの異常画素10が4つと濃度値が0.7aの異常画素10が2つと濃度値が0.6aの異常画素10が3つと濃度値が0.5aの異常画素10が1つ存在する異物候補8とが検出された場合について不良指数を計算する例を示す。図6(a)の異物候補8については、不良指数が0.6a+0.8a+0.6a+0.8a+1.0a+0.8a+0.6a+0.8a+0.6a=6.6aとなり、一方、図6(b)の異物候補8については、不良指数が0.5a+0.6a+0.6a+0.7a+0.8a+0.8a+1.0a+0.8a+0.7a+0.8a+0.6a=7.9aとなる。 As shown in FIG. 6 (a), there are four abnormal pixels 10 having a density value of 0.8a and four abnormal pixels 10 having a density value of 0.6a around the abnormal pixel 10 having a density value of 1.0a. 6 foreign object candidates 8, as shown in FIG. 6 (b), the abnormal pixel 10 having a density value of 1.0a, four abnormal pixels 10 having a density value of 0.8a, and a density value of 0.7a. The defect index is calculated when two foreign pixels 10, three abnormal pixels 10 with a density value of 0.6 a, and foreign object candidate 8 with one abnormal pixel 10 with a density value of 0.5 a are detected. An example is shown. For the foreign object candidate 8 in FIG. 6A, the defect index is 0.6a + 0.8a + 0.6a + 0.8a + 1.0a + 0.8a + 0.6a + 0.8a + 0.6a = 6.6a, whereas the foreign object candidate in FIG. 6B. For 8, the defect index is 0.5a + 0.6a + 0.6a + 0.7a + 0.8a + 0.8a + 1.0a + 0.8a + 0.7a + 0.8a + 0.6a = 7.9a.
したがって、判断手段7は不良指数が最も高い図6(a)の異物候補8についてのみ再検査を行い、図6(b)の異物候補8については再検査を行わない。そして、再検査の結果、異物候補8が異物であると判断された場合には、検査対象物1に異物が混入しているものと判断する。一方、異物候補8が異物ではないと判断された場合には、残りの異物候補8も異物ではないと推測する。すなわち、異物である可能性が最も高い異物候補8が異物でなければ、残りの異物候補8も異物ではないと推測できるから、この場合には残りの異物候補8について拡大透視画像を用いた再検査は行わない。この構成によれば、不良指数が最も高い異物候補8についてのみ再検査を行うので、全ての異物候補8について再検査を行う場合に比べて、検査位置で検査対象物1を停止させる時間を短縮できる。ただし、異物である可能性が最も高い異物候補8が異物ではないと判断された検査対象物1については、たとえば検査員が目視で全体透視画像を検査する別途検査を行い、検査対象物1中の異物の有無を改めて検査する。 Therefore, the judging means 7 re-inspects only the foreign substance candidate 8 of FIG. 6A having the highest defect index, and does not re-examine the foreign substance candidate 8 of FIG. 6B. As a result of the re-examination, when it is determined that the foreign object candidate 8 is a foreign object, it is determined that a foreign object is mixed in the inspection object 1. On the other hand, when it is determined that the foreign object candidate 8 is not a foreign object, it is assumed that the remaining foreign object candidates 8 are also not foreign objects. That is, if the foreign object candidate 8 having the highest possibility of being a foreign object is not a foreign object, it can be estimated that the remaining foreign object candidate 8 is not a foreign object. In this case, the remaining foreign object candidate 8 is reproduced using an enlarged perspective image. There is no inspection. According to this configuration, since only the foreign object candidate 8 with the highest defect index is re-inspected, the time for stopping the inspection object 1 at the inspection position is shortened compared to the case where all the foreign object candidates 8 are re-inspected. it can. However, for the inspection object 1 determined that the foreign object candidate 8 having the highest possibility of being a foreign object is not a foreign object, for example, an inspector performs a separate inspection to visually inspect the entire fluoroscopic image. Inspect again for the presence of foreign material.
(実施形態2)
本実施形態のX線異物検査装置は、図8に示すように、X線源3からのX線を検査対象物1の搬送方向に並ぶ2本のファンビームとして搬送手段2に照射させている点、およびX線検出器4が、各ファンビームをそれぞれ受光する第1のX線検出手段4aと第2のX線検出手段4bとを別々に有する点が実施形態1のX線異物検査装置とは相違する。
(Embodiment 2)
As shown in FIG. 8, the X-ray foreign substance inspection apparatus according to the present embodiment irradiates the transport means 2 with two fan beams arranged in the transport direction of the inspection object 1 with X-rays from the X-ray source 3. The X-ray foreign substance inspection apparatus according to the first embodiment is that the point and the X-ray detector 4 have first X-ray detection means 4a and second X-ray detection means 4b separately receiving each fan beam. Is different.
図8に例示するX線異物検査装置は、X線源3と搬送手段2との間において、検査対象物1の搬送方向に第1のスリットS1と第1のスリットS1よりも搬送方向の下流側に位置する第2のスリットS2とが並設され、第1および第2の各スリットS1,S2をそれぞれ通過させることによりX線源3からのX線を2本のファンビームとして照射させる配光手段11を備えている。第1および第2の両スリットS1,S2は、いずれも搬送手段2の上面に沿う面内において搬送手段2による検査対象物1の搬送方向に直交する方向に延長されている。なお、図8では、第1のスリットS1よりも第2のスリットS2を長く形成することにより、第2のスリットS2を通過したファンビームの開き角度θ2を、第1のスリットS1を通過したファンビームの開き角度θ1に比べて大きくしている。 The X-ray foreign substance inspection apparatus illustrated in FIG. 8 is downstream in the transport direction between the X-ray source 3 and the transport unit 2 in the transport direction of the inspection object 1 relative to the first slit S1 and the first slit S1. The second slit S2 located on the side is arranged in parallel, and the X-ray from the X-ray source 3 is irradiated as two fan beams by passing through the first and second slits S1 and S2, respectively. The light means 11 is provided. Both the first and second slits S <b> 1 and S <b> 2 are extended in a direction orthogonal to the transport direction of the inspection object 1 by the transport unit 2 in a plane along the upper surface of the transport unit 2. In FIG. 8, by forming the second slit S2 longer than the first slit S1, the opening angle θ2 of the fan beam that has passed through the second slit S2 is set to the fan that has passed through the first slit S1. It is larger than the beam opening angle θ1.
第1のX線検出手段4aは、第1のスリットS1の長手方向に複数のX線検出部が1次元配列されており、前記搬送方向の上流側の第1のスリットS1を通過したX線を検出する。一方、第2のX線検出手段4bは、第2のスリットS2の長手方向に複数のX線検出部が1次元配列されており、前記搬送方向の下流側の第2のスリットS2を通過したX線を検出する。第1および第2の各X線検出手段4a,4bにおいてはX線検出部が1次元配列されているものの、搬送手段2により検査対象物1が搬送手段2の上面に沿う面内でX線検出部の配列方向に直交する方向に搬送されているので検査対象物1の前記搬送方向に沿う全長について走査することができ、判断手段7においては、第1および第2の各X線検出手段4a,4bの出力から検査対象物1の透視画像を得ることができる。なお、本実施形態では第1のX線検出手段4aと第2のX線検出手段4bとは同様の構造を採用しており、同数のX線検出部が同ピッチで配列されている。 In the first X-ray detection means 4a, a plurality of X-ray detection units are arranged one-dimensionally in the longitudinal direction of the first slit S1, and the X-ray that has passed through the first slit S1 on the upstream side in the transport direction Is detected. On the other hand, in the second X-ray detection means 4b, a plurality of X-ray detection units are one-dimensionally arranged in the longitudinal direction of the second slit S2, and have passed through the second slit S2 on the downstream side in the transport direction. X-rays are detected. In each of the first and second X-ray detection means 4a and 4b, the X-ray detection units are one-dimensionally arranged. However, the inspection object 1 is in the plane along the upper surface of the conveyance means 2 by the conveyance means 2. Since it is conveyed in the direction orthogonal to the arrangement direction of the detectors, it is possible to scan the entire length of the inspection object 1 along the conveyance direction. In the determination means 7, the first and second X-ray detection means A fluoroscopic image of the inspection object 1 can be obtained from the outputs 4a and 4b. In the present embodiment, the first X-ray detector 4a and the second X-ray detector 4b have the same structure, and the same number of X-ray detectors are arranged at the same pitch.
ところで、第1のX線検出手段4aと第2のX線検出手段4bとでは投影される検査対象物1の像の拡大率は別々に設定される。すなわち、第1のX線検出手段4aには検査対象物1の全体像が投影されるように第1のX線検出手段4aと検査対象物1との距離が設定され、第2のX線検出手段4bには検査対象物1のうちの異物候補8の像が投影されるように第2のX線検出手段4bと検査対象物1との距離が設定される。ここで、本実施形態の判断手段7は、全体検査時に第1のX線検出手段4aの出力から全体透視画像を取得する第1判断部7aと、再検査時に第2のX線検出手段4bの出力から拡大透視画像を取得する第2判断部7bとを有している。 By the way, in the first X-ray detection unit 4a and the second X-ray detection unit 4b, the magnification of the image of the inspection object 1 to be projected is set separately. That is, the distance between the first X-ray detection means 4a and the inspection object 1 is set so that the entire image of the inspection object 1 is projected on the first X-ray detection means 4a, and the second X-ray is detected. The distance between the second X-ray detection means 4b and the inspection object 1 is set so that the image of the foreign object candidate 8 in the inspection object 1 is projected on the detection means 4b. Here, the determination means 7 of the present embodiment includes a first determination unit 7a that acquires an overall fluoroscopic image from the output of the first X-ray detection means 4a during the entire examination, and a second X-ray detection means 4b during the re-examination. And a second determination unit 7b that acquires an enlarged perspective image from the output of.
また、 X線検出器4を移動させる移動手段5は第2のX線検出手段4bについてのみ設けられている。この移動手段5は、第2のX線検出手段4bを上下方向、左右方向の2軸方向に移動可能に構成されている。ここに、第2のX線検出手段4bをX線源3から遠ざけるほど、拡大透視画像の拡大率は向上し、より高解像度で再検査することができる。本実施形態では、全体検査において検出された異物候補8の大きさ(つまり、隣接する異常画素10の画素数)に基づいて、異物候補8の全体が含まれる範囲内で最大の拡大率の拡大透視画像が得られるように拡大率を決定し、この拡大率に基づいて第2のX線検出手段4bと検査対象物1との間の距離を決定する。 Further, the moving means 5 for moving the X-ray detector 4 is provided only for the second X-ray detection means 4b. The moving means 5 is configured to be able to move the second X-ray detecting means 4b in the biaxial direction of the vertical direction and the horizontal direction. Here, as the second X-ray detection means 4b is moved away from the X-ray source 3, the enlargement ratio of the enlarged fluoroscopic image is improved, and reexamination can be performed with higher resolution. In the present embodiment, based on the size of the foreign object candidate 8 detected in the overall inspection (that is, the number of adjacent abnormal pixels 10), the maximum enlargement ratio is expanded within the range including the entire foreign object candidate 8. An enlargement ratio is determined so that a fluoroscopic image can be obtained, and a distance between the second X-ray detection means 4b and the inspection object 1 is determined based on the enlargement ratio.
さらに、移動制御手段6は、再検査時に第2のX線検出手段4bを移動手段5で左右方向に適宜移動させることにより、拡大透視画像のうちの異物候補8に対応する部位の中心(つまり、第2のX線検出手段4bに投影される異物候補8の像の中心)を、第2のX線検出手段4bの測定中心に位置させるように第2のX線検出手段4bの位置を調節する。これにより、異物候補8を通ったX線が第2のX線検出手段4bからはみ出すことを回避でき、異物候補を通ったX線を全て第2のX線検出手段4bで受けることができる。 Furthermore, the movement control means 6 moves the second X-ray detection means 4b in the left-right direction by the movement means 5 at the time of re-examination, so that the center of the part corresponding to the foreign substance candidate 8 in the enlarged fluoroscopic image (that is, The position of the second X-ray detection unit 4b is set so that the center of the image of the foreign object candidate 8 projected on the second X-ray detection unit 4b is positioned at the measurement center of the second X-ray detection unit 4b. Adjust. Thereby, it is possible to avoid the X-rays that have passed through the foreign object candidate 8 from protruding from the second X-ray detection unit 4b, and all the X-rays that have passed through the foreign object candidate can be received by the second X-ray detection unit 4b.
上述した構成によれば、X線異物検査装置は、検査対象物1の搬送方向の上流側に設けた第1のX線検出手段4aの出力から得られる検査対象物1の全体の透視画像(全体透視画像)を用いて全体検査を行い、この全体検査で異物候補8があると判断された場合には、検査対象物1の搬送方向の下流側に設けた第2のX線検出手段4bの出力から得られる異物候補8を拡大した透視画像(拡大透視画像)を用いて再検査を行うので、搬送手段2を停止させることなく一定の速度で検査対象物1を搬送させることができ、検査対象物1の検査に要する時間を短縮できる。また、検査対象物1を間欠的に搬送するように搬送手段2を制御するための搬送制御手段9は本実施形態では省略することができるので、構成の簡略化にもつながる。 According to the above-described configuration, the X-ray foreign substance inspection apparatus is a fluoroscopic image of the entire inspection object 1 (obtained from the output of the first X-ray detection unit 4a provided on the upstream side in the transport direction of the inspection object 1). When a whole inspection is performed using the whole fluoroscopic image) and it is determined that there is a foreign substance candidate 8 in this whole inspection, the second X-ray detection means 4b provided on the downstream side in the transport direction of the inspection object 1 Since the reexamination is performed using the fluoroscopic image (enlarged fluoroscopic image) obtained by enlarging the foreign substance candidate 8 obtained from the output, the inspection object 1 can be conveyed at a constant speed without stopping the conveying means 2. The time required for the inspection of the inspection object 1 can be shortened. Moreover, since the conveyance control means 9 for controlling the conveyance means 2 so as to intermittently convey the inspection object 1 can be omitted in the present embodiment, the configuration is simplified.
その他の構成および機能は実施形態1と同様である。 Other configurations and functions are the same as those of the first embodiment.
1 検査対象物
2 搬送手段
3 X線源
4 X線検出器
4a 第1のX線検出手段
4b 第2のX線検出手段
5 移動手段
6 移動制御手段
7 判断手段
8 異物候補
9 搬送制御手段
A 搬送方向
DESCRIPTION OF SYMBOLS 1 Inspection object 2 Conveyance means 3 X-ray source 4 X-ray detector 4a 1st X-ray detection means 4b 2nd X-ray detection means 5 Movement means 6 Movement control means 7 Judgment means 8 Foreign substance candidate 9 Conveyance control means A Transport direction
Claims (7)
The determination means is a foreign object based on the density value and the number of pixels of each foreign object candidate in the overall fluoroscopic image when a plurality of the foreign object candidates are detected from one inspection object in the overall inspection. A defect index indicating the degree of possibility is calculated for each foreign substance candidate, and the foreign object candidate with the highest defect index is the target of the re-examination, and it is determined in the re-inspection that the foreign object candidate is not a foreign object. The X-ray foreign matter inspection apparatus according to claim 1, wherein the presence or absence of foreign matter is determined by performing a separate inspection.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006348546A JP2008157821A (en) | 2006-12-25 | 2006-12-25 | Device for inspecting x-ray foreign matter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006348546A JP2008157821A (en) | 2006-12-25 | 2006-12-25 | Device for inspecting x-ray foreign matter |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008157821A true JP2008157821A (en) | 2008-07-10 |
Family
ID=39658881
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006348546A Withdrawn JP2008157821A (en) | 2006-12-25 | 2006-12-25 | Device for inspecting x-ray foreign matter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008157821A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010127702A (en) * | 2008-11-26 | 2010-06-10 | Kyocera Chemical Corp | Automatic detection method of metal powder foreign body in insulating resin composition |
JP2011191212A (en) * | 2010-03-15 | 2011-09-29 | Sii Nanotechnology Inc | Apparatus and method for inspecting x-ray transmission |
JP2011196778A (en) * | 2010-03-18 | 2011-10-06 | Anritsu Sanki System Co Ltd | X-ray foreign matter detector |
JP2012515916A (en) * | 2009-01-27 | 2012-07-12 | クロメック リミテッド | Object scanning protocol |
JP2014080284A (en) * | 2012-10-16 | 2014-05-08 | Toshiba It & Control Systems Corp | Article inspection device |
JP2015227809A (en) * | 2014-05-30 | 2015-12-17 | 住友ベークライト株式会社 | Inspection method of inspected object |
EP3964823A1 (en) * | 2020-09-02 | 2022-03-09 | FORCE Technology | A device for testing a flat plate-shaped material |
WO2023189135A1 (en) * | 2022-03-31 | 2023-10-05 | 東レ株式会社 | Inspection device and inspection method |
-
2006
- 2006-12-25 JP JP2006348546A patent/JP2008157821A/en not_active Withdrawn
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010127702A (en) * | 2008-11-26 | 2010-06-10 | Kyocera Chemical Corp | Automatic detection method of metal powder foreign body in insulating resin composition |
JP2012515916A (en) * | 2009-01-27 | 2012-07-12 | クロメック リミテッド | Object scanning protocol |
JP2011191212A (en) * | 2010-03-15 | 2011-09-29 | Sii Nanotechnology Inc | Apparatus and method for inspecting x-ray transmission |
JP2011196778A (en) * | 2010-03-18 | 2011-10-06 | Anritsu Sanki System Co Ltd | X-ray foreign matter detector |
JP2014080284A (en) * | 2012-10-16 | 2014-05-08 | Toshiba It & Control Systems Corp | Article inspection device |
JP2015227809A (en) * | 2014-05-30 | 2015-12-17 | 住友ベークライト株式会社 | Inspection method of inspected object |
EP3964823A1 (en) * | 2020-09-02 | 2022-03-09 | FORCE Technology | A device for testing a flat plate-shaped material |
WO2022048720A1 (en) * | 2020-09-02 | 2022-03-10 | Force Technology | A device for testing a flat plate-shaped material |
WO2023189135A1 (en) * | 2022-03-31 | 2023-10-05 | 東レ株式会社 | Inspection device and inspection method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2008157821A (en) | Device for inspecting x-ray foreign matter | |
JP5852415B2 (en) | Non-destructive inspection apparatus and luminance data correction method in the apparatus | |
JP5876116B1 (en) | X-ray inspection equipment | |
JP5912427B2 (en) | Non-destructive inspection apparatus and misalignment detection method using the apparatus | |
JP2017120232A (en) | Inspection device | |
JP3715524B2 (en) | X-ray foreign object detection device | |
JP5860347B2 (en) | X-ray inspection equipment | |
JP2008286791A (en) | Surface defect inspection method and apparatus | |
JP2009236633A (en) | X-ray foreign matter inspection device | |
KR20150134033A (en) | X-Ray Apparatus for Detecting a Flaw of Small Sized Article Continuously | |
JP2007322344A (en) | X-ray inspection device | |
JP2010230559A (en) | X-ray inspection apparatus | |
JP2011085424A (en) | X-ray inspection method and x-ray inspection device using the same | |
JP2009080030A (en) | X-ray inspection device | |
JP4170366B2 (en) | X-ray inspection equipment | |
JP3668622B2 (en) | Article inspection method and apparatus | |
JP2012122877A (en) | Method for inspecting foreign substance in liquid | |
JP3949531B2 (en) | X-ray inspection equipment | |
JP4984832B2 (en) | X-ray inspection equipment | |
JP3955559B2 (en) | X-ray inspection equipment | |
JP2007003247A (en) | Foreign object detector | |
JP2020020593A (en) | Radiation inspection device and radiation inspection method | |
JP2000111501A (en) | Fluoroscope | |
JP2008116376A5 (en) | ||
JP2005283147A (en) | X-ray foreign matter inspection apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20100302 |