JP2005282770A - Hydrodynamic bearing device - Google Patents

Hydrodynamic bearing device Download PDF

Info

Publication number
JP2005282770A
JP2005282770A JP2004100000A JP2004100000A JP2005282770A JP 2005282770 A JP2005282770 A JP 2005282770A JP 2004100000 A JP2004100000 A JP 2004100000A JP 2004100000 A JP2004100000 A JP 2004100000A JP 2005282770 A JP2005282770 A JP 2005282770A
Authority
JP
Japan
Prior art keywords
housing
bearing device
bearing
hydrodynamic
hydrodynamic bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004100000A
Other languages
Japanese (ja)
Other versions
JP4435614B2 (en
Inventor
Fumitada Satoji
文規 里路
Kenji Ito
健二 伊藤
Takahiro Shimizu
隆弘 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2004100000A priority Critical patent/JP4435614B2/en
Publication of JP2005282770A publication Critical patent/JP2005282770A/en
Application granted granted Critical
Publication of JP4435614B2 publication Critical patent/JP4435614B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Sliding-Contact Bearings (AREA)
  • Rotational Drive Of Disk (AREA)
  • Motor Or Generator Frames (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve adhesive force between a resin housing and a metal bracket. <P>SOLUTION: A bearing sleeve 8 is fixed inside the housing 7 for supporting a shaft member 2 in no contact therewith in the radial direction using the hydrodynamic operation of lubricating oil generated in a radial bearing gap between the shaft member 2 and the bearing sleeve 8. Onto the outer periphery of the housing 7, the metal bracket 6 is adhered and fixed via which a stator 4 of a motor is mounted thereon. The housing 7 is formed of a resin, and alkaline etching treatment is given to the surface thereof to improve adhesive force between the resin housing 7 and the metal bracket 6. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、動圧軸受装置に関する。ここでの動圧軸受装置は、情報機器、例えばHDD、FDD等の磁気ディスク装置、CD−ROM、CD−R/RW、DVD−ROM/RAM等の光ディスク装置、MD、MO等の光磁気ディスク装置などのスピンドルモータ用、レーザビームプリンタ(LBP)のポリゴンスキャナモータ、プロジェクタのカラーホイール、あるいは電気機器、例えば軸流ファンなどの小型モータ用の軸受装置として好適である。   The present invention relates to a hydrodynamic bearing device. The hydrodynamic bearing device here is an information device, for example, a magnetic disk device such as HDD or FDD, an optical disk device such as CD-ROM, CD-R / RW, or DVD-ROM / RAM, or a magneto-optical disk such as MD or MO. It is suitable as a bearing device for a spindle motor such as a device, a polygon scanner motor of a laser beam printer (LBP), a color wheel of a projector, or a small motor such as an electric device such as an axial fan.

上記各種モータには、高回転精度の他、高速化、低コスト化、低騒音化などが求められている。これらの要求性能を決定づける構成要素の一つに当該モータのスピンドルを支持する軸受があり、近年では、この種の軸受として、上記要求性能に優れた特性を有する動圧軸受の使用が検討され、あるいは実際に使用されている。   In addition to high rotational accuracy, the various motors are required to have high speed, low cost, low noise, and the like. One of the components that determine the required performance is a bearing that supports the spindle of the motor, and in recent years, as this type of bearing, the use of a hydrodynamic bearing having characteristics excellent in the required performance has been studied. Or it is actually used.

その一例として、例えばHDD等のディスク駆動装置のスピンドルモータで使用される動圧軸受装置が、特開2000−291648号公報に記載されている。この軸受装置は、有底円筒状のハウジングの内周に軸受スリーブを固定すると共に、軸受スリーブの内周に外径側に張り出したフランジ部を有する軸部材を挿入し、回転する軸部材と固定側の部材(軸受スリーブ、ハウジング等)との間に形成したラジアル軸受隙間やスラスト軸受隙間に流体動圧を発生させ、この流体動圧で軸部材を非接触支持するものである。   As an example, a hydrodynamic bearing device used in a spindle motor of a disk drive device such as an HDD is described in Japanese Patent Application Laid-Open No. 2000-291648. In this bearing device, a bearing sleeve is fixed to the inner periphery of a bottomed cylindrical housing, and a shaft member having a flange portion projecting to the outer diameter side is inserted into the inner periphery of the bearing sleeve to be fixed to the rotating shaft member. A fluid dynamic pressure is generated in a radial bearing gap or a thrust bearing gap formed between the side members (bearing sleeve, housing, etc.), and the shaft member is supported in a non-contact manner by this fluid dynamic pressure.

ところで、この種のスピンドルモータは、マグネットからなるモータロータとコイルからなるモータステータとの間に生じた励磁力で軸部材を回転させるものであり、従来では、モータロータを軸部材と共に回転する部材(ディスクハブ等)に固定する一方、モータステータを動圧軸受装置のハウジング外周に固定した金属製の保持部材、例えばモータブラケットに固定するものが多い。
特開2000−291648号公報
By the way, this type of spindle motor rotates a shaft member with an exciting force generated between a motor rotor made of a magnet and a motor stator made of a coil, and conventionally, a member (disk) that rotates the motor rotor together with the shaft member. In many cases, the motor stator is fixed to a metal holding member, for example, a motor bracket, which is fixed to the outer periphery of the housing of the hydrodynamic bearing device.
JP 2000-291648 A

モータブラケットとハウジングの固定は、接着によるものが一般的である。従来ではモータブラケットとハウジングの何れもが金属製であり、接着部が金属接着となっているため、必要十分な接着力が得られていた。   The motor bracket and the housing are generally fixed by adhesion. Conventionally, since both the motor bracket and the housing are made of metal and the bonding portion is metal bonding, a necessary and sufficient bonding force has been obtained.

しかしながら、近年ではハウジングの樹脂化が検討されている。この場合、樹脂製ハウジングと金属製モータブラケットとの間では十分な接着力が得られず、如何にして両者間で強固な接着力を得るかが問題となる。対策として、嫌気性接着剤を用いると共に、樹脂表面に金属イオンを含むプライマーを塗布することも試みられたが、接着強度は金属同士の場合の1/10〜1/5程度しか得られず、十分な接着力は得られなかった。   In recent years, however, the use of resin for the housing has been studied. In this case, a sufficient adhesive force cannot be obtained between the resin housing and the metal motor bracket, and how to obtain a strong adhesive force between the two becomes a problem. As a countermeasure, while anaerobic adhesive was used, it was also attempted to apply a primer containing metal ions to the resin surface, but the adhesive strength was obtained only about 1/10 to 1/5 of the case of metals, Sufficient adhesive strength was not obtained.

本発明は、かかる実情に鑑み、ハウジングと保持部材のうち、何れか一方が樹脂成形品である場合における両部材間の接着力の向上を図ることを目的とする。   In view of such a situation, an object of the present invention is to improve the adhesive force between both members when one of a housing and a holding member is a resin molded product.

この目的達成手段として、本発明では、ハウジングと、ハウジングの内部に固定された軸受スリーブと、ハウジング及び軸受スリーブに対して回転する回転部材と、前記軸受スリーブと前記回転部材との間のラジアル軸受隙間に生じる流体の動圧作用で前記回転部材をラジアル方向に非接触支持するラジアル軸受部と、ハウジングとの接着によりハウジングを保持する保持部材とを備える動圧型軸受装置において、ハウジングおよび保持部材のうち少なくとも何れか一方を樹脂成形品とし、かつ樹脂成形品の少なくとも接着部に、相手部材との間の接着力を強化させるための表面処理を施したものである。保持部材として、例えばモータステータの取付け部を有するブラケット(モータブラケット)が考えられる。表面処理法としては、機械的手段による表面処理法(例えばサンドペーパがけや噴射加工(サンドブラスト等)によるもの等)を除く、物理的もしくは化学的な表面処理方法を採用することができ、これに該当するものとして、例えばアルカリエッチング処理、UV処理、プラズマエッチング処理、あるいは金属メッキ処理等を挙げることができる。   As means for achieving this object, in the present invention, a housing, a bearing sleeve fixed inside the housing, a rotating member that rotates relative to the housing and the bearing sleeve, and a radial bearing between the bearing sleeve and the rotating member are provided. In a hydrodynamic bearing device comprising: a radial bearing portion that supports the rotating member in a non-contact manner in the radial direction by a dynamic pressure action of fluid generated in a gap; and a holding member that holds the housing by adhesion to the housing. At least one of them is a resin molded product, and at least an adhesion portion of the resin molded product is subjected to a surface treatment for strengthening the adhesive force with the mating member. As the holding member, for example, a bracket (motor bracket) having a motor stator attachment portion is conceivable. As the surface treatment method, a physical or chemical surface treatment method other than a surface treatment method by mechanical means (for example, sandpaper blasting or blasting (sandblasting, etc.)) can be adopted. For example, an alkali etching process, a UV process, a plasma etching process, or a metal plating process can be used.

このような表面処理を行うことにより、ハウジングと保持部材の何れか一方または双方が樹脂成形品である場合にも両部材間で十分な接着力が得られるため、衝撃荷重等に対しても高い結合強度を確保することができ、軸受装置の耐久性や信頼性の向上を図ることが可能となる。   By performing such a surface treatment, even when either or both of the housing and the holding member are resin molded products, a sufficient adhesive force can be obtained between the two members, so that the impact load is high. The coupling strength can be ensured, and the durability and reliability of the bearing device can be improved.

ハウジングと保持部材は、何れか一方を樹脂成形品とし、他方を金属で形成する他、双方を樹脂成形品とすることができる。何れか一方が樹脂成形品で、他方が金属製である場合、表面処理は樹脂成形品に施せば足りる。双方が樹脂成形品である場合、表面処理は双方の樹脂成形品に施すのが望ましいが、十分な接着力が得られる限り、一方の樹脂成形品のみに施してもよい。   One of the housing and the holding member can be a resin molded product, the other can be a metal molded product, and the other can be a resin molded product. When either one is a resin molded product and the other is made of metal, the surface treatment may be applied to the resin molded product. When both are resin molded products, the surface treatment is desirably performed on both resin molded products, but may be performed on only one of the resin molded products as long as sufficient adhesive force is obtained.

樹脂成形品を形成する樹脂は熱可塑性樹脂であれば特に限定されないが、例えば、非晶性樹脂として、ポリサルフォン(PSF)、ポリエーテルサルフォン(PES)、ポリフェニルサルフォン(PPSF)、ポリエーテルイミド(PEI)等、結晶性樹脂として、液晶ポリマー(LCP)、ポリエーテルエーテルケトン(PEEK)、ポリブチレンテレフタレート(PBT)、ポリフェニレンサルファイド(PPS)等を用いることができる。   The resin forming the resin molded product is not particularly limited as long as it is a thermoplastic resin. For example, examples of the amorphous resin include polysulfone (PSF), polyethersulfone (PES), polyphenylsulfone (PPSF), and polyether. As a crystalline resin such as imide (PEI), liquid crystal polymer (LCP), polyether ether ketone (PEEK), polybutylene terephthalate (PBT), polyphenylene sulfide (PPS), or the like can be used.

また、上記の樹脂には必要に応じて充填材を添加することもできる。充填剤の種類は特に限定されないが、例えばガラス繊維等の繊維状充填材、チタン酸カリウム等のウィスカー状充填材、マイカ等の鱗片状充填材、カーボンファイバー、カーボンブラック、黒鉛、カーボンナノマテリアル、金属粉末等の繊維状又は粉末状の導電性充填材を用いることができる。これらの充填材は、単独で用い、あるいは、二種以上を混合して使用しても良い。   In addition, a filler can be added to the resin as necessary. The type of filler is not particularly limited, for example, fibrous filler such as glass fiber, whisker filler such as potassium titanate, scaly filler such as mica, carbon fiber, carbon black, graphite, carbon nanomaterial, Fibrous or powdery conductive fillers such as metal powder can be used. These fillers may be used alone or in combination of two or more.

表面処理としては、樹脂成形品表面のスキン層を除去するものが望ましい。スキン層は、充填材の乏しい平滑な薄層で、射出成形に伴って型との接触面に形成される。このスキン層を除去することにより、その下の、繊維等からなる充填材をリッチに含む層(コア層)が表面に現れるため、界面でのアンカー効果および接着剤の濡れ性が高まり、接着強度が増すこととなる。このようにスキン層を除去する処理の具体例として、例えばアルカリエッチング処理を挙げることができる。   As the surface treatment, it is desirable to remove the skin layer on the surface of the resin molded product. The skin layer is a smooth thin layer with little filler, and is formed on the contact surface with the mold along with injection molding. By removing this skin layer, a layer (core layer) rich in fillers consisting of fibers, etc., appears on the surface, so that the anchor effect at the interface and the wettability of the adhesive increase, and the adhesive strength Will increase. As a specific example of the process for removing the skin layer as described above, for example, an alkali etching process can be given.

また、表面処理としては、樹脂成形品表面を活性化(イオン化)させるものも使用できる。表面を活性化させることにより、接着剤との親和性(なじみ性)が向上するため、同様に接着強度の向上を図ることができる。この種の表面処理として、紫外線とオゾンの作用で樹脂表面を活性化させるUV処理、もしくは真空(常圧でもよい)下でプラズマを発生させて樹脂表面を活性化させるプラズマエッチング処理等を挙げることができる。   Further, as the surface treatment, one that activates (ionizes) the surface of the resin molded product can be used. By activating the surface, the affinity (compatibility) with the adhesive is improved, so that the adhesive strength can be similarly improved. Examples of this type of surface treatment include UV treatment that activates the resin surface by the action of ultraviolet rays and ozone, or plasma etching treatment that activates the resin surface by generating plasma under vacuum (or normal pressure). Can do.

この他、表面処理として、樹脂成形品表面に金属メッキ層を形成することもできる。これにより接着部が金属接着となるので、接着強度を向上させることができる。   In addition, as a surface treatment, a metal plating layer can be formed on the surface of the resin molded product. Thereby, since an adhesion part turns into metal adhesion, adhesive strength can be raised.

ところで、上記情報機器のモータは、高温環境下や低温環境下を問わず使用されるものであり、高い耐熱衝撃性が要求される。本発明者らが検証したところ、接着強度の耐熱衝撃性はハウジングの外周と保持部材の内周の間の接着すきまに依存し、この接着すきまの幅(半径量)が30μmを越えると、接着強度の耐熱衝撃性が大きく低下することが判明した。従って、ハウジングと保持部材の間の接着すきまは30μm以下に設定するのが望ましい。   By the way, the motor of the information equipment is used regardless of whether it is in a high temperature environment or a low temperature environment, and high thermal shock resistance is required. The inventors have verified that the thermal shock resistance of the adhesive strength depends on the adhesive clearance between the outer periphery of the housing and the inner periphery of the holding member, and if the width (radius amount) of this adhesive clearance exceeds 30 μm, It was found that the thermal shock resistance of the strength was greatly reduced. Therefore, it is desirable to set the adhesion clearance between the housing and the holding member to 30 μm or less.

以上に述べた各動圧軸受装置と、ブラケットに取り付けられたモータステータと、回転部材に取り付けられたモータロータとを有するモータは、ハウジングとブラケットとの間で高い接着力が確保されているので、耐久性や信頼性の面で優れた特性を有する。   Since the motor having each of the dynamic pressure bearing devices described above, the motor stator attached to the bracket, and the motor rotor attached to the rotating member ensures a high adhesive force between the housing and the bracket, Excellent properties in terms of durability and reliability.

本発明によれば、ハウジングと保持部材との間で高い接着力を確保することができ、耐久性や信頼性の向上を図ることができる。   According to the present invention, a high adhesive force can be ensured between the housing and the holding member, and durability and reliability can be improved.

以下、本発明の実施形態を図1〜図10に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to FIGS.

図1は、この実施形態にかかる動圧軸受装置1を組み込んだ情報機器用スピンドルモータの一構成例を概念的に示している。このスピンドルモータは、HDD等のディスク駆動装置に用いられるもので、軸部材2を回転自在に非接触支持する動圧軸受装置1と、軸部材2に装着されたディスクハブ3と、例えば半径方向のギャップを介して対向させたモータステータ4およびモータロータ5とを備えている。モータステータ4は例えばコイルからなり、ブラケット6の外周に取り付けられている。モータロータ5は例えばマグネットからなり、ディスクハブ3の内周に取り付けられている。後述のように動圧軸受装置1のハウジング7は、ブラケット6の内周に接着固定される。ディスクハブ3には、磁気ディスク等のディスクが一又は複数枚保持される。モータステータ4に通電すると、モータステータ4とモータロータ5との間の電磁力でモータロータ5が回転し、それによって、ディスクハブ3および軸部材2が回転部材となり、一体回転する。   FIG. 1 conceptually shows a configuration example of a spindle motor for information equipment incorporating a fluid dynamic bearing device 1 according to this embodiment. This spindle motor is used in a disk drive device such as an HDD, and includes a hydrodynamic bearing device 1 that rotatably supports a shaft member 2 in a non-contact manner, a disk hub 3 mounted on the shaft member 2, and a radial direction, for example. The motor stator 4 and the motor rotor 5 are provided to face each other through the gap. The motor stator 4 is made of a coil, for example, and is attached to the outer periphery of the bracket 6. The motor rotor 5 is made of, for example, a magnet and is attached to the inner periphery of the disk hub 3. As will be described later, the housing 7 of the hydrodynamic bearing device 1 is bonded and fixed to the inner periphery of the bracket 6. The disk hub 3 holds one or more disks such as magnetic disks. When the motor stator 4 is energized, the motor rotor 5 is rotated by electromagnetic force between the motor stator 4 and the motor rotor 5, whereby the disk hub 3 and the shaft member 2 become rotating members and rotate integrally.

図2は、動圧軸受装置1を拡大して示している。この動圧軸受装置1は、ハウジング7と、ハウジング7に固定された軸受スリーブ8と、軸部材2とを構成部品して構成される。   FIG. 2 shows the hydrodynamic bearing device 1 in an enlarged manner. The hydrodynamic bearing device 1 is configured by constituting a housing 7, a bearing sleeve 8 fixed to the housing 7, and the shaft member 2.

軸受スリーブ8の内周面8aと軸部材2の外周面2aとの間に第1ラジアル軸受部R1と第2ラジアル軸受部R2とが軸方向に離隔して設けられる。また、ハウジング7の開口側端面(上側端面)7dと、これに対向する、軸部材2に固定されたディスクハブ(ロータ)3の下側端面3aとの間にスラスト軸受部T1が形成される。尚、説明の便宜上、ハウジング7の底部7bの側を下側、底部7bと反対の側を上側として説明を進める。   Between the inner peripheral surface 8a of the bearing sleeve 8 and the outer peripheral surface 2a of the shaft member 2, the first radial bearing portion R1 and the second radial bearing portion R2 are provided apart from each other in the axial direction. Further, a thrust bearing portion T1 is formed between the opening end surface (upper end surface) 7d of the housing 7 and the lower end surface 3a of the disk hub (rotor) 3 fixed to the shaft member 2 opposite to the end surface. . For convenience of explanation, the description will proceed with the bottom 7b side of the housing 7 as the lower side and the side opposite to the bottom 7b as the upper side.

ハウジング7は、例えば、結晶性樹脂としての液晶ポリマー(LCP)に、導電性充填材としてのカーボンナノチューブを2〜8wt%配合した樹脂材料を射出成形して有底円筒状に型成形される。図面では、ハウジング7として、円筒状の側部7aと側部7aの下端に一体に設けられた底部7bとを備えるものを例示している。   The housing 7 is molded into a bottomed cylindrical shape by, for example, injection molding a resin material in which 2 to 8 wt% of carbon nanotubes as a conductive filler are blended in a liquid crystal polymer (LCP) as a crystalline resin. In the drawing, the housing 7 is illustrated as having a cylindrical side portion 7a and a bottom portion 7b integrally provided at the lower end of the side portion 7a.

図4に示すように、スラスト軸受部T1のスラスト軸受面となる上側端面7dには、例えばスパイラル形状の動圧溝7d1が形成される。この動圧溝7d1は、ハウジング7の射出成形時に成形されたものである。すなわち、ハウジング7を成形する成形型の所要部位(上側端面7dを成形する部位)に、動圧溝7d1を成形する溝型を加工しておき、ハウジング7の射出成形時に上記溝型の形状をハウジング7の上側端面7dに転写することにより、動圧溝7d1をハウジング7の成形と同時成形することができる。   As shown in FIG. 4, for example, a spiral-shaped dynamic pressure groove 7 d 1 is formed on the upper end surface 7 d serving as a thrust bearing surface of the thrust bearing portion T 1. The dynamic pressure groove 7d1 is formed when the housing 7 is injection molded. That is, a groove mold for forming the dynamic pressure groove 7d1 is processed in a required portion of the mold for forming the housing 7 (a portion for forming the upper end surface 7d), and the shape of the groove mold is changed during the injection molding of the housing 7. By transferring to the upper end surface 7 d of the housing 7, the dynamic pressure groove 7 d 1 can be molded simultaneously with the molding of the housing 7.

また、ハウジング7は、その上方部外周に、上方に向かって漸次拡径するテーパ状外壁7eを備える。このテーパ状外壁7eと、ディスクハブ3に設けられた鍔部3bの内壁3b1との間に、上方に向かって漸次縮小するテーパ状のシール空間Sが形成される。このシール空間Sは、軸部材2及びディスクハブ3の回転時、スラスト軸受部T1のスラスト軸受隙間の外径側と連通する。   In addition, the housing 7 includes a tapered outer wall 7e that gradually increases in diameter upward on the outer periphery of the upper portion thereof. Between the tapered outer wall 7e and the inner wall 3b1 of the flange 3b provided on the disk hub 3, a tapered sealing space S that gradually decreases upward is formed. The seal space S communicates with the outer diameter side of the thrust bearing gap of the thrust bearing portion T1 when the shaft member 2 and the disk hub 3 are rotated.

軸部材2は例えばステンレス鋼等の金属材料で同一径の軸状に形成される。軸部材2には、図示のようなねじ止めの他、圧入や接着等の適宜の手段でディスクハブ3が固定される。   The shaft member 2 is formed in a shaft shape having the same diameter with a metal material such as stainless steel. The disk hub 3 is fixed to the shaft member 2 by appropriate means such as press-fitting and adhesion, as well as screwing as shown in the figure.

軸受スリーブ8は例えば焼結金属からなる多孔質体、特に銅を主成分とする焼結金属の多孔質体で円筒状に形成され、例えば超音波溶着によってハウジング7の内周面7cの所定位置に固定される。   The bearing sleeve 8 is formed in a cylindrical shape with a porous body made of sintered metal, for example, a sintered metal porous body mainly composed of copper, and is formed at a predetermined position on the inner peripheral surface 7c of the housing 7 by, for example, ultrasonic welding. Fixed to.

焼結金属で形成された軸受スリーブ8の内周面8aには、第1ラジアル軸受部R1と第2ラジアル軸受部R2の各ラジアル軸受面となる上下2つの領域が軸方向に離隔して設けられ、これら2つの領域には、例えば図3に示すようなヘリングボーン形状(スパイラル形状でもよい)の動圧溝8a1、8a2がそれぞれ形成される。上側の動圧溝8a1は、軸方向中心m(上下の傾斜溝間領域の軸方向中央)に対して軸方向非対称に形成されており、軸方向中心mより上側領域の軸方向寸法X1が下側領域の軸方向寸法X2よりも大きくなっている。また、軸受スリーブ8の外周面8dには、1又は複数本の軸方向溝8d1が軸方向全長に亙って形成される。   On the inner peripheral surface 8a of the bearing sleeve 8 formed of sintered metal, two upper and lower regions serving as the radial bearing surfaces of the first radial bearing portion R1 and the second radial bearing portion R2 are provided apart in the axial direction. In these two regions, for example, herringbone shaped (or spiral shaped) dynamic pressure grooves 8a1 and 8a2 as shown in FIG. 3 are formed. The upper dynamic pressure groove 8a1 is formed axially asymmetric with respect to the axial center m (the axial center of the upper and lower inclined groove regions), and the axial dimension X1 of the upper region is lower than the axial center m. It is larger than the axial dimension X2 of the side region. Further, one or a plurality of axial grooves 8d1 are formed on the outer peripheral surface 8d of the bearing sleeve 8 over the entire axial length.

軸部材2は軸受スリーブ8の内周面8aに挿入される。なお、軸部材2及びディスクハブ3の停止時において、軸部材2の下側端面2bとハウジング7の内底面7b1との間、軸受スリーブ8の下側端面8cとハウジング7の内底面7b1との間にはそれぞれ僅かな隙間が存在する。   The shaft member 2 is inserted into the inner peripheral surface 8 a of the bearing sleeve 8. When the shaft member 2 and the disk hub 3 are stopped, the lower end surface 2b of the shaft member 2 and the inner bottom surface 7b1 of the housing 7 and the lower end surface 8c of the bearing sleeve 8 and the inner bottom surface 7b1 of the housing 7 are stopped. There are slight gaps between them.

ハウジング7の内部空間等は潤滑油で充満される。すなわち、潤滑油は、軸受スリーブ8の内部気孔を含め、軸受スリーブ8の内周面8aと軸部材2の外周面2aとの間の隙間部、軸受スリーブ8の下側端面8c及び軸部材2の下側端面2bとハウジング7の内底面7b1との間の隙間部、軸受スリーブ8の軸方向溝8d1、軸受スリーブ8の上側端面8bとディスクハブ3の下側端面3aとの間の隙間部、スラスト軸受部T1、及びシール空間Sに充満される。   The internal space of the housing 7 is filled with lubricating oil. That is, the lubricating oil, including the internal pores of the bearing sleeve 8, includes a gap between the inner peripheral surface 8 a of the bearing sleeve 8 and the outer peripheral surface 2 a of the shaft member 2, the lower end surface 8 c of the bearing sleeve 8, and the shaft member 2. A gap between the lower end face 2b of the housing 7 and the inner bottom face 7b1 of the housing 7, an axial groove 8d1 of the bearing sleeve 8, and a gap between the upper end face 8b of the bearing sleeve 8 and the lower end face 3a of the disk hub 3. The thrust bearing portion T1 and the seal space S are filled.

軸部材2及びディスクハブ3の回転時、軸受スリーブ8の内周面8aのラジアル軸受面となる領域(上下2箇所の領域)は、それぞれ、軸部材2の外周面2aとラジアル軸受隙間を介して対向する。また、ハウジング7の上側端面7dのスラスト軸受面となる領域は、ディスクハブ3の下側端面3aとスラスト軸受隙間を介して対向する。そして、軸部材2及びディスクハブ3の回転に伴い、ラジアル軸受隙間に潤滑油の動圧が発生し、軸部材2がラジアル軸受隙間内に形成される潤滑油の油膜によってラジアル方向に回転自在に非接触支持される。これにより、軸部材2及びディスクハブ3をラジアル方向に回転自在に非接触支持する第1ラジアル軸受部R1と第2ラジアル軸受部R2とが構成される。同時に、上記スラスト軸受隙間に潤滑油の動圧が発生し、ディスクハブ3が上記スラスト軸受隙間内に形成される潤滑油の油膜によってスラスト方向に回転自在に非接触支持される。これにより、軸部材2及びディスクハブ3をスラスト方向に回転自在に非接触支持するスラスト軸受部T1が構成される。   When the shaft member 2 and the disk hub 3 are rotated, the regions (two upper and lower regions) of the inner peripheral surface 8a of the bearing sleeve 8 are respectively spaced via the outer peripheral surface 2a of the shaft member 2 and the radial bearing gap. Facing each other. Further, the region serving as the thrust bearing surface of the upper end surface 7d of the housing 7 is opposed to the lower end surface 3a of the disk hub 3 through the thrust bearing gap. As the shaft member 2 and the disk hub 3 rotate, the dynamic pressure of the lubricating oil is generated in the radial bearing gap, and the shaft member 2 is rotatable in the radial direction by the oil film of the lubricating oil formed in the radial bearing gap. Non-contact supported. Thus, the first radial bearing portion R1 and the second radial bearing portion R2 that support the shaft member 2 and the disk hub 3 in a non-contact manner so as to be rotatable in the radial direction are configured. At the same time, dynamic pressure of lubricating oil is generated in the thrust bearing gap, and the disk hub 3 is supported in a non-contact manner in the thrust direction by the oil film of lubricating oil formed in the thrust bearing gap. Thus, a thrust bearing portion T1 that supports the shaft member 2 and the disk hub 3 in a non-contact manner so as to be rotatable in the thrust direction is configured.

前述したように、第1ラジアル軸受部R1の動圧溝8a1は、軸方向中心mに対して軸方向非対称に形成されており、軸方向中心より上側領域の軸方向寸法X1が下側領域の軸方向寸法X2よりも大きくなっている。そのため、軸部材2およびディスクハブ3の回転時、動圧溝8a1による潤滑油の引き込み力(ポンピング力)は上側領域が下側領域に比べて相対的に大きくなる。そして、この引き込み力の差圧によって、軸受スリーブ8の内周面8aと軸部材12の外周面2aとの間の隙間に満たされた潤滑油が下方に流動し、軸受スリーブ8の下側端面8cとハウジング7の内底面7b1との間の隙間→軸方向溝8d1→ディスクハブ3の下側端面3aと軸受スリーブ8の上側端面8bとの間の隙間という経路を循環して、第1ラジアル軸受部R1のラジアル軸受隙間に再び引き込まれる。このように、潤滑油が上記隙間部を流動循環するように構成することで、ハウジング7の内部空間及びスラスト軸受部T1のスラスト軸受隙間内の潤滑油圧力が局部的に負圧になる現象を防止して、負圧発生に伴う気泡の生成、気泡の生成に起因する潤滑油の漏れや振動の発生等の問題を解消することができる。また、潤滑油の外部への漏れは、シール空間Sの毛細管力と、スラスト軸受部T1の動圧溝7d1による潤滑油の引き込み力(ポンピング力)によって、より効果的に防止される。   As described above, the dynamic pressure groove 8a1 of the first radial bearing portion R1 is formed to be axially asymmetric with respect to the axial center m, and the axial dimension X1 of the upper region from the axial center is the lower region. It is larger than the axial dimension X2. Therefore, when the shaft member 2 and the disk hub 3 are rotated, the lubricating oil pulling force (pumping force) by the dynamic pressure groove 8a1 is relatively larger in the upper region than in the lower region. Due to the differential pressure of the pulling force, the lubricating oil filled in the gap between the inner peripheral surface 8a of the bearing sleeve 8 and the outer peripheral surface 2a of the shaft member 12 flows downward, and the lower end surface of the bearing sleeve 8 The first radial is circulated through a path between the gap 8c and the inner bottom surface 7b1 of the housing 7 → the axial groove 8d1 → the gap between the lower end surface 3a of the disk hub 3 and the upper end surface 8b of the bearing sleeve 8. It is again drawn into the radial bearing gap of the bearing portion R1. In this way, by configuring the lubricating oil to flow and circulate through the gap portion, the lubricating oil pressure in the internal space of the housing 7 and the thrust bearing gap of the thrust bearing portion T1 becomes a negative pressure locally. It is possible to prevent problems such as generation of bubbles accompanying the generation of negative pressure, leakage of lubricating oil and generation of vibration due to the generation of bubbles. Moreover, leakage of the lubricating oil to the outside is more effectively prevented by the capillary force of the seal space S and the pulling force (pumping force) of the lubricating oil by the dynamic pressure groove 7d1 of the thrust bearing portion T1.

図1に示すように、ハウジング7の側部7aの外周には、金属製、望ましくはアルミ合金等の軽合金からなるブラケット6が接着固定される。このブラケット6は、ハウジング7を規定位置に保持するための保持部材として機能するものであり、接着後は、図5に示すようにハウジング7の外周7f(テーパ状外壁7eを除く)とブラケット6の内周6aとが接着すきま9に満たされた接着剤(散点模様)で強固に結合される(図5では接着すきま9の幅Pを誇張して描いている)。接着剤9としては、加熱硬化型接着剤と嫌気性接着剤の何れも使用できるが、接着強度の安定化等の面から嫌気性接着剤を使用するのがより好ましい。   As shown in FIG. 1, a bracket 6 made of a metal, preferably a light alloy such as an aluminum alloy, is bonded and fixed to the outer periphery of the side portion 7 a of the housing 7. The bracket 6 functions as a holding member for holding the housing 7 in a specified position. After bonding, as shown in FIG. 5, the outer periphery 7f of the housing 7 (excluding the tapered outer wall 7e) and the bracket 6 The inner circumference 6a is firmly bonded with an adhesive (dot pattern) filled in the bonding gap 9 (in FIG. 5, the width P of the bonding gap 9 is exaggerated). As the adhesive 9, either a thermosetting adhesive or an anaerobic adhesive can be used, but it is more preferable to use an anaerobic adhesive from the viewpoint of stabilizing the adhesive strength.

ハウジング7とブラケット6との接着強度を確保するため、本発明では、樹脂成形品であるハウジング7の表面に、アルカリエッチング処理、UV処理、プラズマエッチング処理、もしくは金属メッキ処理の何れかの表面処理を施している。なお、これらの表面処理は必ずしもハウジング7全体に施す必要はなく、少なくともブラケット6との接着部に施されていれば足りる。   In order to secure the adhesive strength between the housing 7 and the bracket 6, in the present invention, the surface of the housing 7, which is a resin molded product, is subjected to any surface treatment of alkali etching treatment, UV treatment, plasma etching treatment, or metal plating treatment. Has been given. Note that these surface treatments do not necessarily have to be applied to the entire housing 7, and are only required to be applied to at least the bonding portion with the bracket 6.

図6は、LCP系のハウジング7表面にアルカリエッチング処理、UV処理、およびプラズマエッチング処理をそれぞれ施し、アルミ合金製のブラケット6を接着固定した後、接着強度を測定した結果を示すものである(なお、図中ではアルカリ処理を「AL処理」、プラズマエッチング処理を「PL処理」と表記している)。接着剤としてスリーボンド社製の嫌気性接着剤TB1355を使用し、プライマとして同社製の1390Fを使用している。アルカリ処理は、60℃に保持した4%水酸化ナトリウム溶液にハウジングを1時間浸漬することにより行った。また、UV処理は、装置としてハリソン東芝ライティング(株)製のTOSCURE251を使用し、波長365[nm]、照射強度20[mW/cm2]、照射時間10[min]の条件下で行った。さらに、プラズマエッチング処理は、装置としてヤマト科学(株)製のPR31を使用し、O2量50[cc/min]、電力150[W]、時間2[min]の条件下で行った。接着面積は90[mm2]である。 FIG. 6 shows the results of measuring the adhesive strength after performing alkaline etching treatment, UV treatment, and plasma etching treatment on the surface of the LCP-based housing 7 and bonding and fixing the aluminum alloy bracket 6 (FIG. 6). In the figure, alkali treatment is indicated as “AL treatment” and plasma etching treatment is indicated as “PL treatment”). An anaerobic adhesive TB1355 manufactured by ThreeBond is used as the adhesive, and 1390F manufactured by the same company is used as the primer. The alkali treatment was performed by immersing the housing in a 4% sodium hydroxide solution maintained at 60 ° C. for 1 hour. In addition, the UV treatment was performed under the conditions of wavelength 365 [nm], irradiation intensity 20 [mW / cm 2 ], and irradiation time 10 [min] using Harrison Toshiba Lighting Co., Ltd. TOSCURE251. Further, the plasma etching process was performed under the conditions of an O 2 amount of 50 [cc / min], an electric power of 150 [W], and a time of 2 [min] using PR31 manufactured by Yamato Scientific Co., Ltd. as an apparatus. The bonding area is 90 [mm 2 ].

また、図6には、比較例として、射出成形後に鏡面加工した樹脂の加工面(平滑面)、この平滑面にサンドペーパーをかけて粗くした面(粗面A)、および成形面をショットブラストで粗くした金型で射出成形した面(粗面B)をそれぞれアルミ合金と接着し、その接着強度を測定した結果も記載してている。   In addition, FIG. 6 shows, as a comparative example, a processed surface (smooth surface) of a mirror-finished resin after injection molding, a surface roughened by sandpaper on the smooth surface (rough surface A), and a shot surface. The results of bonding the surfaces (rough surface B) injection-molded with a metal mold roughened with the aluminum alloy and measuring the adhesive strength are also described.

図6の測定結果が示すとおり、アルカリエッチング処理、UV処理、およびプラズマエッチング処理の何れの処理でも、比較例の粗面A、Bに比べて接着力が大幅に向上しており、これらの処理の有効性が確認された。   As shown in the measurement results of FIG. 6, in any of the alkali etching treatment, the UV treatment, and the plasma etching treatment, the adhesive force is greatly improved as compared with the rough surfaces A and B of the comparative example. The effectiveness of was confirmed.

ところで、動圧軸受装置1の組立工程においては、ハウジング7内部に潤滑油を供給する際に、予め組み立てたユニット全体を油中に浸漬して真空引きした後、大気圧に復帰させて潤滑油を各隙間に充満させる方法を採用する場合がある。この場合、ハウジング7全体が潤滑油中に浸漬されるため、油浸漬後にハウジング7の脱脂処理を行っても、ブラケットとの接着強度が低下する場合がある。   By the way, in the assembly process of the hydrodynamic bearing device 1, when supplying the lubricating oil into the housing 7, the whole assembled unit is immersed in the oil and evacuated, and then returned to the atmospheric pressure to return the lubricating oil. In some cases, a method of filling each gap is used. In this case, since the entire housing 7 is immersed in the lubricating oil, even if the housing 7 is degreased after the oil immersion, the adhesive strength with the bracket may decrease.

図7は、上記各処理後のハウジング7を油浸漬し、その脱脂処理後にハウジング7とブラケット6とを接着固定した時の接着力を測定したものである。この測定結果からも明らかなように、油浸漬を行った場合、粗面A、Bのみならず、UV処理やプラズマエッチング処理でも接着力の大きな低下が認められるが、アルカリエッチング処理であれば、油浸漬後も高い接着力が維持される。従って、ハウジング7内部への注油工程でハウジング7を油浸漬する場合、樹脂製ハウジング7の表面処理としてアルカリエッチング処理を行うのが好ましい。   FIG. 7 shows the measurement of the adhesive strength when the housing 7 after each treatment is immersed in oil and the housing 7 and the bracket 6 are bonded and fixed after the degreasing treatment. As is apparent from this measurement result, when oil immersion is performed, not only the rough surfaces A and B, but also a large decrease in adhesive force is observed in UV treatment and plasma etching treatment. High adhesive strength is maintained even after oil immersion. Therefore, when the housing 7 is immersed in the oil supply process inside the housing 7, it is preferable to perform an alkali etching process as a surface treatment of the resin housing 7.

図8は、上記条件下で処理時間を異ならせてアルカリエッチングを行った時の接着力の測定結果を示す。図示のように、処理時間が短いほど接着強度は低下するが、その一方で、処理時間が長くなっても接着強度が低下することが理解できる。以上の検証から、接着強度はアルカリエッチングの処理時間が1時間付近となったところで臨界値に達すると思われる。   FIG. 8 shows the measurement results of the adhesive strength when alkali etching is performed under different conditions under the above conditions. As shown in the figure, the adhesive strength decreases as the processing time is shortened. On the other hand, it can be understood that the adhesive strength decreases even when the processing time is increased. From the above verification, it is considered that the adhesive strength reaches a critical value when the alkali etching treatment time is around 1 hour.

ところで、上記各種情報機器用モータは、近年の高速化や高密度化に伴い、ますます高温環境で使用される傾向にある。これに対応するため、動圧軸受装置1にも高い耐熱衝撃性が求められているが、本発明者らが検証したところ、接着強度の耐熱衝撃性はハウジング7とブラケット6との間の接着すきまの幅Pに大きく依存することが判明した。図9はその測定結果を示すもので、図中の△は熱衝撃負荷後の接着強度を、●は熱衝撃負荷前の接着強度を示す。図示からも明らかなように、接着すきま9の幅P(半径量:図5参照)が30μmを越えると、熱衝撃負荷後の接着力が大きく低下することが判明した。従って、耐熱衝撃性を確保するため、ハウジング7の外周7fとブラケット6の内周6aの間の接着すきま9は30μm以下(5μm以上)に設定するのが望ましい。   By the way, the motors for various information devices tend to be used in a higher temperature environment with the recent increase in speed and density. In order to cope with this, the hydrodynamic bearing device 1 is also required to have high thermal shock resistance. However, the present inventors have verified that the thermal shock resistance of the adhesive strength is the adhesion between the housing 7 and the bracket 6. It was found that it greatly depends on the width P of the clearance. FIG. 9 shows the measurement results. In the figure, Δ indicates the adhesive strength after thermal shock loading, and ● indicates the adhesive strength before thermal shock loading. As is apparent from the figure, it was found that when the width P (radius amount: see FIG. 5) of the bonding gap 9 exceeds 30 μm, the adhesive strength after the thermal shock load is greatly reduced. Therefore, in order to ensure the thermal shock resistance, it is desirable to set the adhesion gap 9 between the outer periphery 7f of the housing 7 and the inner periphery 6a of the bracket 6 to 30 μm or less (5 μm or more).

以上本発明を一実施形態に基いて説明したが、本発明は図1〜図3に例示した動圧軸受装置に限らず、樹脂製ハウジング7と金属製ブラケット6を有するものであれば、種々のタイプの動圧軸受装置に適用することができる。図10は、その一例を示すもので、軸部材2を軸部2cと外径側に張り出したフランジ部2dとで構成し、フランジ部2dの一方の端面とこれに対向する軸受スリーブ8の端面の何れか一方、およびフランジ部2dの他方の端面とこれに対向するフランジ部2dの底部7bの何れか一方にスラスト軸受面を形成することにより、第一スラスト軸受部T1と第二スラスト軸受部T2を上下に離隔形成したものである(ラジアル軸受部R1、R2の図示は省略している)。この実施形態においても同様に樹脂製ハウジング7の外周面が金属製ブラケット6の内周面に接着固定されるが、接着前のハウジング7の外周面にアルカリエッチング等の表面処理を施すことにより、あるいは接着すきまを30μm以下に設定することにより、高い接着強度を得ることができる。スラスト軸受部T1、T2として接触型のピボット軸受を使用してもよい。   Although the present invention has been described based on one embodiment, the present invention is not limited to the fluid dynamic bearing device illustrated in FIG. 1 to FIG. 3, and may be various as long as it has a resin housing 7 and a metal bracket 6. This type of fluid dynamic bearing device can be applied. FIG. 10 shows an example thereof. The shaft member 2 is composed of a shaft portion 2c and a flange portion 2d projecting to the outer diameter side, and one end surface of the flange portion 2d and the end surface of the bearing sleeve 8 facing this end surface. The first thrust bearing portion T1 and the second thrust bearing portion are formed by forming a thrust bearing surface on one of the other end surface of the flange portion 2d and the bottom portion 7b of the flange portion 2d facing the flange portion 2d. T2 is vertically spaced apart (radial bearing portions R1 and R2 are not shown). Similarly in this embodiment, the outer peripheral surface of the resin housing 7 is bonded and fixed to the inner peripheral surface of the metal bracket 6, but by subjecting the outer peripheral surface of the housing 7 before bonding to surface treatment such as alkali etching, Alternatively, a high adhesive strength can be obtained by setting the adhesive clearance to 30 μm or less. Contact-type pivot bearings may be used as the thrust bearing portions T1 and T2.

また、以上の説明では、ブラケット6を金属製としているが、ブラケット6を樹脂成形品とすることもできる。この場合、ハウジング7が軟質金蔵等の金属製であれば、ブラケット6表面の接着部に上記表面処理を施す必要がある。ハウジング7も樹脂製である場合には、双方の部材の接着部に上記表面処理を施すのが望ましいが、十分な接着力が得られるのであれば、何れか一方の部材の接着部にのみ上記表面処理を施しても良い。   In the above description, the bracket 6 is made of metal, but the bracket 6 can be made of a resin molded product. In this case, if the housing 7 is made of a metal such as a soft metal warehouse, it is necessary to perform the surface treatment on the bonding portion on the surface of the bracket 6. When the housing 7 is also made of resin, it is desirable to perform the surface treatment on the bonding portion of both members. However, if sufficient adhesive force is obtained, only the bonding portion of one of the members is the above. A surface treatment may be applied.

本発明にかかる動圧軸受装置を組み込んだ情報機器用スピンドルモータの断面図である。It is sectional drawing of the spindle motor for information devices incorporating the dynamic pressure bearing apparatus concerning this invention. 上記動圧軸受装置の断面図である。It is sectional drawing of the said dynamic pressure bearing apparatus. 上記動圧軸受装置で使用される軸受スリーブの断面図である。It is sectional drawing of the bearing sleeve used with the said dynamic pressure bearing apparatus. ハウジングを図2のB方向から見た図である。It is the figure which looked at the housing from the B direction of FIG. ハウジングとブラケットの接着部を拡大した半径方向の断面図である。It is sectional drawing of the radial direction which expanded the adhesion part of a housing and a bracket. 接着強度の測定結果を示す図である。It is a figure which shows the measurement result of adhesive strength. 油浸漬後における接着強度の測定結果を示す図である。It is a figure which shows the measurement result of the adhesive strength after oil immersion. アルカリエッチング処理の処理時間を異ならせた時の接着強度の測定結果を示す図である。It is a figure which shows the measurement result of the adhesive strength when the processing time of an alkali etching process is varied. 接着すきまと接着強度の関係の測定結果を示す図である。It is a figure which shows the measurement result of the relationship between an adhesion clearance gap and adhesive strength. 他の実施形態にかかる動圧軸受装置を組み込んだ情報機器用スピンドルモータの断面図である。It is sectional drawing of the spindle motor for information devices incorporating the dynamic pressure bearing apparatus concerning other embodiment.

符号の説明Explanation of symbols

1 動圧軸受装置
2 軸部材
3 ディスクハブ
4 ステータ
5 ロータ
6 ブラケット
7 ハウジング
7d1 動圧溝
8 軸受スリーブ
8a1、8a2 動圧溝
9 接着すきま
R1、R2 ラジアル軸受部
T1、T2 スラスト軸受部
DESCRIPTION OF SYMBOLS 1 Dynamic pressure bearing apparatus 2 Shaft member 3 Disc hub 4 Stator 5 Rotor 6 Bracket 7 Housing 7d1 Dynamic pressure groove 8 Bearing sleeve 8a1, 8a2 Dynamic pressure groove 9 Adhesive clearance R1, R2 Radial bearing part T1, T2 Thrust bearing part

Claims (10)

ハウジングと、ハウジングの内部に固定された軸受スリーブと、ハウジング及び軸受スリーブに対して回転する回転部材と、前記軸受スリーブと前記回転部材との間のラジアル軸受隙間に生じる流体の動圧作用で前記回転部材をラジアル方向に非接触支持するラジアル軸受部と、ハウジングとの接着によりハウジングを保持する保持部材とを備える動圧型軸受装置において、
ハウジングおよび保持部材のうち少なくとも何れか一方が樹脂成形品であり、かつ樹脂成形品の少なくとも接着部に、相手部材との間の接着力を強化させるための表面処理を施したことを特徴とする動圧軸受装置。
A housing, a bearing sleeve fixed inside the housing, a rotating member rotating with respect to the housing and the bearing sleeve, and a hydrodynamic action of fluid generated in a radial bearing gap between the bearing sleeve and the rotating member. In a hydrodynamic bearing device comprising a radial bearing portion that supports a rotating member in a radial direction in a non-contact manner, and a holding member that holds the housing by adhesion to the housing.
At least one of the housing and the holding member is a resin molded product, and at least an adhesive portion of the resin molded product is subjected to a surface treatment for strengthening an adhesive force with a counterpart member. Hydrodynamic bearing device.
表面処理が表面のスキン層を除去するものである請求項1記載の動圧軸受装置。   2. The hydrodynamic bearing device according to claim 1, wherein the surface treatment removes the skin layer on the surface. 表面処理がアルカリエッチング処理である請求項2記載の動圧軸受装置。   The hydrodynamic bearing device according to claim 2, wherein the surface treatment is an alkali etching treatment. 表面処理が表面を活性化させるものである請求項1記載の動圧軸受装置。   The hydrodynamic bearing device according to claim 1, wherein the surface treatment activates the surface. 表面処理がUV処理もしくはプラズマエッチング処理の何れかである請求項4記載の動圧軸受装置。   The hydrodynamic bearing device according to claim 4, wherein the surface treatment is either UV treatment or plasma etching treatment. 表面処理が表面に金属メッキ層を形成するものである請求項1記載の動圧軸受装置。   2. The hydrodynamic bearing device according to claim 1, wherein the surface treatment forms a metal plating layer on the surface. ハウジングと保持部材との間の接着すきまを30μm以下にした請求項1〜6何れか記載の動圧軸受装置。   The hydrodynamic bearing device according to claim 1, wherein an adhesion clearance between the housing and the holding member is 30 μm or less. ハウジングと、ハウジングの内部に固定された軸受スリーブと、ハウジング及び軸受スリーブに対して回転する回転部材と、前記軸受スリーブと前記回転部材との間のラジアル軸受隙間に生じる流体の動圧作用で前記回転部材をラジアル方向に非接触支持するラジアル軸受部と、ハウジングとの接着によりハウジングを保持する保持部材とを備える動圧型軸受装置において、
ハウジングと保持部材との間の接着すきまを30μm以下にした動圧軸受装置。
A housing, a bearing sleeve fixed inside the housing, a rotating member rotating with respect to the housing and the bearing sleeve, and a hydrodynamic action of fluid generated in a radial bearing gap between the bearing sleeve and the rotating member. In a hydrodynamic bearing device comprising a radial bearing portion that supports a rotating member in a radial direction in a non-contact manner, and a holding member that holds the housing by adhesion to the housing.
A hydrodynamic bearing device in which a bonding clearance between the housing and the holding member is 30 μm or less.
保持部材が、モータステータの取付け部を有するブラケットである請求項1〜8何れか記載の動圧軸受装置。   The hydrodynamic bearing device according to claim 1, wherein the holding member is a bracket having a motor stator attachment portion. 請求項9に記載した動圧軸受装置と、ブラケットに取り付けられたモータステータと、回転部材に取り付けられたモータロータとを有するモータ。

A motor comprising the fluid dynamic bearing device according to claim 9, a motor stator attached to a bracket, and a motor rotor attached to a rotating member.

JP2004100000A 2004-03-30 2004-03-30 Hydrodynamic bearing device Expired - Lifetime JP4435614B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004100000A JP4435614B2 (en) 2004-03-30 2004-03-30 Hydrodynamic bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004100000A JP4435614B2 (en) 2004-03-30 2004-03-30 Hydrodynamic bearing device

Publications (2)

Publication Number Publication Date
JP2005282770A true JP2005282770A (en) 2005-10-13
JP4435614B2 JP4435614B2 (en) 2010-03-24

Family

ID=35181389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004100000A Expired - Lifetime JP4435614B2 (en) 2004-03-30 2004-03-30 Hydrodynamic bearing device

Country Status (1)

Country Link
JP (1) JP4435614B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008102419A (en) * 2006-10-20 2008-05-01 Oki Data Corp Image forming apparatus
JP2009189093A (en) * 2008-02-04 2009-08-20 Mitsuba Corp Electric motor
US7650697B2 (en) 2004-06-01 2010-01-26 Nidec Corporation Methods of manufacturing fluid-dynamic-pressure bearing and spindle motor incorporating the bearing, and spindle motor and recording-disk drive incorporating the bearing
EP2312170A1 (en) * 2008-07-10 2011-04-20 NTN Corporation Mechanical component and method for manufacturing the same
JP2013256987A (en) * 2012-06-12 2013-12-26 Ntn Corp Fluid dynamic bearing unit

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7650697B2 (en) 2004-06-01 2010-01-26 Nidec Corporation Methods of manufacturing fluid-dynamic-pressure bearing and spindle motor incorporating the bearing, and spindle motor and recording-disk drive incorporating the bearing
US8087156B2 (en) 2004-06-01 2012-01-03 Nidec Corporation Methods of manufacturing fluid-dynamic-pressure bearing and spindle motor incorporating the bearing, and spindle motor and recording-disk drive incorporating the bearing
JP2008102419A (en) * 2006-10-20 2008-05-01 Oki Data Corp Image forming apparatus
JP2009189093A (en) * 2008-02-04 2009-08-20 Mitsuba Corp Electric motor
EP2312170A1 (en) * 2008-07-10 2011-04-20 NTN Corporation Mechanical component and method for manufacturing the same
CN102089532A (en) * 2008-07-10 2011-06-08 Ntn株式会社 Mechanical component and method for manufacturing the same
EP2312170A4 (en) * 2008-07-10 2012-10-03 Ntn Toyo Bearing Co Ltd Mechanical component and method for manufacturing the same
US8603286B2 (en) 2008-07-10 2013-12-10 Ntn Corporation Mechanical part and manufacturing method for the same
EP2955210A1 (en) * 2008-07-10 2015-12-16 NTN Corporation Manufacturing method for a mechanical part
EP2957609A1 (en) * 2008-07-10 2015-12-23 NTN Corporation Manufacturing method for a mechanical part
JP2013256987A (en) * 2012-06-12 2013-12-26 Ntn Corp Fluid dynamic bearing unit

Also Published As

Publication number Publication date
JP4435614B2 (en) 2010-03-24

Similar Documents

Publication Publication Date Title
JP2009138878A (en) Fluid bearing device
JP2005321089A (en) Dynamic pressure bearing device
JP4443915B2 (en) Hydrodynamic bearing device
KR20090085026A (en) Fluid bearing device and process for manufacturing the same
JP4476670B2 (en) Hydrodynamic bearing device
JP4937619B2 (en) Hydrodynamic bearing device
JP4435614B2 (en) Hydrodynamic bearing device
JP2005090653A (en) Fluid bearing device
JP2007051717A (en) Manufacturing method of dynamic pressure bearing device
JP2007024089A (en) Dynamic pressure bearing device and motor
JP4916673B2 (en) Hydrodynamic bearing device
JP4689283B2 (en) Hydrodynamic bearing device
JP5133131B2 (en) Hydrodynamic bearing device
KR20090121396A (en) Fluid bearing device
JP2007071312A (en) Dynamic pressure bearing device
JP2008008472A (en) Fluid bearing device
JP2010060034A (en) Hydrodynamic pressure bearing device
JP2006300178A (en) Fluid bearing device
JP2010096202A (en) Fluid bearing device and method of manufacturing the same
JP2011007336A (en) Dynamic pressure bearing device and motor
JP2007100834A (en) Hydrodynamic bearing device
JP2008128332A (en) Fluid bearing device and its manufacturing method
JP2009011018A (en) Fluid bearing device, and manufacturing method thereof
JP4689567B2 (en) Method for manufacturing hydrodynamic bearing device
JP4937524B2 (en) Hydrodynamic bearing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090826

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091026

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091224

R150 Certificate of patent or registration of utility model

Ref document number: 4435614

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140108

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250