JP2005282418A - エンジンの始動装置 - Google Patents

エンジンの始動装置 Download PDF

Info

Publication number
JP2005282418A
JP2005282418A JP2004095593A JP2004095593A JP2005282418A JP 2005282418 A JP2005282418 A JP 2005282418A JP 2004095593 A JP2004095593 A JP 2004095593A JP 2004095593 A JP2004095593 A JP 2004095593A JP 2005282418 A JP2005282418 A JP 2005282418A
Authority
JP
Japan
Prior art keywords
engine
intake
predetermined
dead center
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004095593A
Other languages
English (en)
Other versions
JP4395726B2 (ja
Inventor
Masayuki Tetsuno
雅之 鐵野
Junichi Taga
淳一 田賀
Hideo Hosoya
英生 細谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2004095593A priority Critical patent/JP4395726B2/ja
Priority to US11/090,309 priority patent/US7079941B2/en
Priority to EP05006733.9A priority patent/EP1582738B1/en
Publication of JP2005282418A publication Critical patent/JP2005282418A/ja
Application granted granted Critical
Publication of JP4395726B2 publication Critical patent/JP4395726B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N19/00Starting aids for combustion engines, not otherwise provided for
    • F02N19/005Aiding engine start by starting from a predetermined position, e.g. pre-positioning or reverse rotation
    • F02N2019/008Aiding engine start by starting from a predetermined position, e.g. pre-positioning or reverse rotation the engine being stopped in a particular position

Abstract

【課題】 エンジンの自動停止時における掃気性を効果的に向上させることができるとともに、ピストンを適正位置に停止させてエンジンを確実に再始動させ得るようにする。
【解決手段】 エンジンの自動停止条件が成立したときにこれを自動的に停止させるとともに、再始動条件が成立したときにこれを再始動させるように構成されたエンジンの始動装置において、吸気流量を調節するスロットル弁と、エンジンを自動停止させる際、所定回転速度N1で燃料供給を停止し、その後も、少なくとも気筒内に供給された燃料が燃焼するまで点火を継続させるとともに、スロットル弁を、自動停止動作の初期の所定時期t1に吸気流量が多くなるように設定し、その後の所定時期t2に吸気流量を減少させるように制御する自動停止制御手段とを備え、所定時期t2は、エンジン回転速度Neが低下し始めた後の、所定回転速度N2に到達した時点に設定されるように構成する。
【選択図】 図5

Description

本発明は、エンジンの始動装置に関し、エンジンのアイドル運転状態等において予め設定されたエンジンの自動停止条件が成立したときにエンジンを自動停止させるとともに、自動停止状態にあるエンジンを再始動条件が成立したとき再始動させるように構成されたエンジンの始動装置に関するものである。
近年、燃費低減およびCO排出量の抑制等を図るため、アイドル運転時等にエンジンを自動的に一旦停止させ、その後に運転者により車両の発進操作が行われる等の再始動条件が成立した時点で、エンジンを自動的に再始動させるようにしたエンジンの自動停止制御(いわゆるアイドルストップ制御)の技術が開発されている。このアイドルストップ制御時における再始動は、車両の発進操作等に応じてエンジンを即座に始動させる迅速性が要求されるが、従来から一般的に行われているように、スタータモータによりエンジンの出力軸を駆動するクランキングを経てエンジンを再始動させる方法によると、始動が完了するまでにかなりの時間を要するという問題がある。
そこで、膨張行程で停止状態にある気筒内に燃料を噴射して点火、燃焼させることにより、その燃焼エネルギーでエンジンを即時的に始動させることが望ましい。しかし、上記のように膨張行程で停止状態にある気筒のピストン停止位置が不適切である場合、例えば上死点あるいは下死点に極めて近い位置にピストンが停止している場合には、気筒内の空気量が著しく少なくなって燃焼エネルギーが充分に得られなくなり、あるいは燃焼エネルギーがピストンに作用する行程が短すぎる等により、エンジンを正常に始動させることができない可能性がある。
このような問題の対策として、例えば下記特許文献1に示されるように、エンジンのクランク軸に対して制動装置を設け、膨張行程で停止状態となる気筒のピストンが行程途中の適正位置で停止するように上記制動装置を制御し、あるいは下記特許文献2に示すように、エンジンの自動停止条件が成立したと判定されると、吸気圧力を増大させることにより、膨張行程で停止状態となる気筒のピストンを所定位置で停止させることが可能なように圧縮圧力を上昇させることが行われている。
実開昭60−128975号公報 特開2001−173473号公報
上記特許文献1に開示されたエンジンの始動装置によると、車両の制動装置とは別にエンジンのクランク軸を制動するための装置を設ける必要があり、しかも膨張行程で停止状態となる気筒のピストンを適正位置に停止させるには上記制動装置を精度良くコントロールしなければならず、このコントロールが困難であるという問題がある。
一方、上記特許文献2に開示されているように、エンジンの自動停止条件が成立した時点で、吸気圧力を増大させて圧縮圧力を上昇させるように構成した場合においても、エンジン回転速度の低下度合が変化すると、ピストンの停止位置が変化してエンジンの再始動に適した位置にピストンを適正に停止させることが困難であるという問題がある。
本発明は上記の事情に鑑み、エンジンの自動停止時における掃気性を効果的に向上させることができるとともに、ピストンを適正位置に停止させてエンジンを確実に再始動させることができるエンジンの始動装置を提供するものである。
請求項1に係る本発明は、予め設定されたエンジンの自動停止条件が成立したときに、エンジン運転を継続させるための燃料供給を停止させてエンジンを自動的に停止させるとともに、自動停止状態にあるエンジンの再始動条件が成立したときに、少なくとも膨張行程で停止状態にある気筒に燃料を噴射して点火、燃焼を行わせることによりエンジンを再始動させるように構成されたエンジンの始動装置において、エンジンの気筒に吸入される吸気流量を調節する吸気流量調節手段と、エンジンを自動停止させる際、第1所定エンジン回転速度で燃料供給を停止し、その後も、少なくとも気筒内に供給された燃料が燃焼するまで点火を継続させるとともに、上記吸気流量調節手段を、自動停止動作の初期の第1所定時期にエンジン運転を継続させるために必要な最小限の吸気流量よりも所定量多い吸気流量状態となるように設定し、その後の第2所定時期に上記吸気流量を減少させるように制御する自動停止制御手段とを備え、上記第2所定時期は、上記燃料供給停止後の各気筒における燃焼期間が経過してエンジン回転速度が低下し始めた後の、第2所定エンジン回転速度に到達した時点に設定されることを特徴とする。
請求項2に係る本発明は、請求項1記載のエンジンの始動装置において、上記第1所定エンジン回転速度が、アイドル回転速度よりも所定速度高い値に設定されていることを特徴とする。
請求項3に係る本発明は、請求項2記載のエンジンの始動装置において、上記第2所定エンジン回転速度が、アイドル回転速度よりも高く、上記第1所定エンジン回転速度よりも低い値に設定されていることを特徴とする。
なお、請求項2及び3でいうアイドル回転速度とは、上記自動停止制御を行わない場合の通常のアイドル回転速度をいう。
請求項4に係る本発明は、請求項1乃至3の何れか1項に記載のエンジンの始動装置において、上記第1所定時期は、上記燃料供給を停止する時期と略同時として設定されていることを特徴とする。
請求項5に係る本発明は、請求項1乃至4の何れか1項に記載のエンジンの始動装置において、上記自動停止制御手段は、エンジン回転速度の低下状態から停止直前の最後の圧縮上死点通過時期を判別し、その最後の圧縮上死点通過時期以降に設定される第3所定時期に上記吸気流量を増大させるとともに、上記最後の圧縮上死点通過時期付近のエンジン回転速度が第3所定エンジン回転速度以上のときは、上記第3所定時期になされる吸気流量増大の量を抑制することを特徴とする。
なお、圧縮上死点通過とは、圧縮行程から上死点を経て膨張行程に移行することをいう。また停止直前の最後の圧縮上死点通過時期は、全気筒中、停止直前の最後に圧縮上死点を通過した気筒の、その最後の圧縮上死点通過時期を指す。
請求項6に係る本発明は、請求項1乃至5の何れか1項に記載のエンジンの始動装置において、吸気圧力を検出する吸気圧力検出手段を備え、上記自動停止制御手段は、エンジン回転速度の低下状態から停止直前の最後の圧縮上死点通過時期を判別し、その最後の圧縮上死点通過時期以降に設定される第3所定時期に上記吸気流量を増大させるとともに、上記エンジンの自動停止動作中の所定時期における上記吸気圧力検出手段による検出圧力が第1所定圧力以下のときは、上記第3所定時期になされる吸気流量増大の量を抑制することを特徴とする。
なお当明細書において、検出された吸気圧力が負圧のとき、この吸気圧力が小さいとはより真空側の低圧であり、吸気圧力が大きいとはより大気圧側の高圧であるものとする。
請求項7に係る本発明は、請求項1乃至4の何れか1項に記載のエンジンの始動装置において、吸気圧力を検出する吸気圧力検出手段を備え、上記自動停止制御手段は、エンジン回転速度の低下状態から停止直前の最後の圧縮上死点通過時期を判別し、その最後の圧縮上死点通過時期以降に設定される第3所定時期に上記吸気流量を増大させるとともに、上記最後の圧縮上死点通過時期付近のエンジン回転速度が第3所定エンジン回転速度以上であり、かつ上記エンジンの自動停止動作中の所定時期における上記吸気圧力検出手段による検出圧力が第1所定圧力以下のときは、上記第3所定時期になされる吸気流量増大の量を抑制することを特徴とする。
なお当明細書において、上記のようにエンジンの自動停止中に膨張行程で停止状態にある気筒、または結果的にその状態で停止することになる何れかの気筒を膨張行程気筒と称するものとする。同様に圧縮、吸気および排気の各行程に対応する気筒をそれぞれ圧縮行程気筒、吸気行程気筒および排気行程気筒と称するものとする。
請求項1に係る発明によれば、エンジンの自動停止条件が成立して自動停止制御を実行する際に、まず第1所定エンジン回転速度で燃料供給を停止した後も、少なくとも気筒内に供給された燃料が燃焼するまで点火を継続させるので、未燃ガスが気筒内に残留することが確実に防止される。そして第1所定時期において、吸気流量が、エンジン運転を継続させるために必要な最小限の吸気流量よりも所定量多くなるように設定されるので、エンジンの各気筒に吸入される吸気流量を充分に確保して排気ガスの掃気性を効果的に向上させることができる。またこの間の吸気抵抗も小さくなり、エンジンの回転速度が過度に早く低下することが抑制される。これによって燃料供給を停止してからエンジンが停止するまでのエンジンの回転数(吸気、圧縮、膨張、排気の行程数)を増やすことができるので、回転速度の低下状態を適切にコントロールしてピストンを狙いの位置に停止させ易くなる。またエンジン停止までの行程数が増えるので、これによっても排気ガスの掃気性を向上させることができる。
そして、その後の第2所定時期に吸気流量を減少させることにより、自動停止動作中の各気筒の筒内空気量が必要以上に増加せず、ピストンが圧縮上死点付近で受ける圧縮反力の増大が抑制される。圧縮反力の増大が抑制されることにより、回転変動(微小な回転速度の増減)が少なくなり、振動や騒音を低減することができる。
また第2所定時期を適切に設定することにより、圧縮行程気筒への最終吸気行程(エンジンが停止するまでに当該気筒において最後になされる吸気行程)の吸気流量と膨張行程気筒への最終吸気行程の吸気流量とのバランスを調節することができる。ピストン停止位置はこの吸気流量のバランスに大きく依存し、吸気流量の多い方のピストンが小さい方のピストンに比べてより下死点側に停止する傾向が強い。この特性を利用して、吸気流量を減少させるタイミング(第2所定時期)を好適な設定とすることにより、ピストンを狙いの適正位置に精度良く停止させることができる。
ところで、一律に第1所定エンジン回転速度で燃料供給を停止し、第1所定時期に上記のような吸気流量状態となるように設定しても、エンジン回転速度の低下度合は必ずしも一定ではない。エンジンの回転抵抗や吸気抵抗等には個体差によるバラツキがあり、また同一のエンジンでも潤滑油温度の変化等によって回転抵抗に違いが生ずるからである。従って、あるエンジンの特定の条件下で第2所定時期を好適な設定としても、上記のような要因によってエンジン回転速度の低下度合がばらつくので、第2所定時期が好適な設定から外れてしまう虞がある。
第2所定時期は、エンジン回転速度の低下度合が急速であるほど早めることが望ましい。そこで本発明によれば、上記第2所定時期を、エンジン回転速度が低下し始めた後の、第2所定エンジン回転速度に到達した時点に設定している。このようにすれば、何らかの要因でエンジン回転速度の低下度合が急速になったときにはそれに応じて第2所定時期が早期化される。逆にエンジン回転速度の低下度合が緩やかになったときにはそれに応じて第2所定時期が遅延化される。つまり複雑な制御を行わなくても、エンジン回転速度の低下度合に応じて第2所定時期を自動的に好適な方向に補正することができ、結果的に個体差や潤滑油温等によるばらつきの影響を相殺し、常に狙いの適正範囲内にピストンが停止し易いようにすることができる。
なお、エンジン回転速度の低下度合が急速になり、第2所定時期が早期化された場合であっても、吸気流量を減少させる第2所定時期は、燃料供給停止後の各気筒における燃焼期間が経過した後に設定されることになるので、掃気が不十分になる虞はない。
請求項2に係る発明によれば、第1所定エンジン回転速度がアイドル回転速度よりも高い値に設定されているので、エンジン停止までの回転数(吸気、圧縮、膨張、排気の行程数)を充分確保すことができ、エンジンの回転速度の低下度合が急速な場合でも請求項1におけるピストン停止位置の精度向上効果や掃気性向上効果を確実に得ることができる。
さらに請求項3に係る発明によれば、第1所定エンジン回転速度よりも低い値として設定される第2エンジン回転速度をもアイドル回転速度よりも高い値に設定している。従って、上記ピストン停止位置の精度向上効果や掃気性向上効果を一層確実なものとすることができる。
請求項4に係る発明によれば、第1所定時期を、燃料供給を停止する時期(既に供給すみの燃料が完全に燃焼する前)という早い時期に設定しているので、充分な掃気が燃料停止直後からなされるとともに、停止動作初期の吸気抵抗を低減することによって、エンジン回転速度の低下度合が急速になり過ぎることを効果的に防止することができる。
請求項5に係る発明によれば、さらに最後の圧縮上死点通過時期以降に第3所定時期を設定して再び吸気流量を増大させている。但し最後の圧縮上死点通過時期以降は、何れの気筒も現状の行程を維持したまま停止に至るので、圧縮行程気筒や膨張行程気筒においては吸排気弁が閉弁状態となっており、この第3所定時期に吸気流量を増大させても圧縮行程気筒および膨張行程気筒の最終吸気行程における吸気流量バランスに影響はない。第3所定時期以降の吸気流量増大の影響を直接受けるのは、このとき吸気動作を行う吸気行程気筒である。第3所定時期に吸気流量を増大させると、吸気圧力が増大することにより、この吸気行程気筒の吸気抵抗が低減される。吸気抵抗の低減によってピストンがより円滑に動くようになり、停止位置のバラツキを小さくすることができる。
特に、再始動時に一旦エンジンを僅かに逆転させてから正転方向に始動するようにしたエンジンの場合、その望ましいピストンの停止位置は、圧縮行程気筒のピストン停止位置が中立(上死点と下死点との中間)よりもやや上死点側、膨張行程気筒のピストン停止位置が中立よりもやや下死点側である。この発明によれば、第3所定時期に吸気流量を増大させ、吸気抵抗を低減させるようにしており、これはピストン停止位置のバラツキを低減させるのに加え、ピストンを下死点側(吸気動作方向)に動き易くすることにより、より下死点寄り(行程後期寄り)に停止し易くする。すなわち圧縮行程気筒のピストン停止位置を行程後期寄りのやや上死点側にし、膨張行程気筒のピストン停止位置を行程後期寄りのやや下死点側にすることができ、ピストンを適正範囲内に一層停止させ易くすることができる。
結局、最後の圧縮上死点通過時期以降に第3所定時期を設定して吸気流量を増大させることにより、圧縮行程気筒および膨張行程気筒の最終吸気行程における吸気流量バランスに影響を及ぼすことなく、そのバランスに応じた狙いの適正範囲内に精度良くピストンを停止させることができる。またそれによってより確実性の高い再始動を行うことができる。
なお、第3所定時期は、最後の圧縮上死点通過時期と略同時としても良いが、ある程度の遅れ(たとえば圧縮行程気筒の吸気弁が完全に閉じるまでの期間)を設けて設定しても良い。
ところでピストンの停止位置は、最後の圧縮上死点通過時期付近のエンジン回転速度によっても影響を受け、比較的高速のときは行程後期寄りで停止し易くなる。このようなときに第3所定時期以降の吸気流量を増大させると、行程後期寄りで停止し易くなる条件が重なり、かえってピストンの停止位置が行程後期側に適正範囲を外れてしまう虞がある。そこで本発明によれば、最後の圧縮上死点通過時期付近のエンジン回転速度が第3所定エンジン回転速度以上のときは、第3所定時期になされる吸気流量増大の量を抑制することにより、行程後期寄りで停止し易い傾向を全体として適度に保つことができる。これによって、ピストンの停止位置をより確実に適正範囲内とすることができる。
またピストンの停止位置は、吸気圧力(特に最後から2番目の圧縮上死点通過時期の吸気圧力)によっても影響を受ける。この吸気圧力の変化は、圧縮行程気筒および膨張行程気筒の最終吸気行程における吸気流量バランスに影響を及ぼすからである。たとえば圧縮行程気筒の最終吸気行程における吸気圧力が低いときには、吸気流量が少なくなって狙いよりも上死点寄り(行程後期寄り)に停止し易くなる。このようなときに第3所定時期以降の吸気流量を増大させると、行程後期寄りで停止し易くなる条件が重なり、かえってピストンの停止位置が行程後期側に適正範囲を外れてしまう虞がある。
そこで請求項6に係る発明によれば、このようなとき(所定時期における吸気圧力が第1所定圧力以下のとき)に、第3所定時期になされる吸気流量増大の量を抑制することにより、行程後期寄りで停止し易い傾向を全体として適度に保つことができる。これによって、ピストンの停止位置をより確実に適正範囲内とすることができる。
請求項7に係る発明によれば、最後の圧縮上死点通過時期付近のエンジン回転速度が第3所定エンジン回転速度以上であり、かつ上記エンジンの自動停止動作中の所定時期における上記吸気圧力検出手段による検出圧力が第1所定圧力以下という、行程後期寄りで停止し易くなる条件が重なっているときに、第3所定時期になされる吸気流量増大の量を抑制することにより、行程後期寄りで停止し易い傾向を全体として適度に保つことができる。これによって、ピストンの停止位置をより確実に適正範囲内とすることができる。
図1および図2は本発明に係るエンジンの始動装置を有する4サイクル火花点火式エンジンの概略構成を示している。このエンジンには、シリンダヘッド10およびシリンダブロック11を有するエンジン本体1と、エンジン制御用のECU2とを備えている。上記エンジン本体1には、四つの気筒(#1気筒12A、#2気筒12B、#3気筒12C及び#4気筒12D)が設けられるとともに、各気筒12A〜12Dの内部には、クランク軸3に連結されたピストン13が嵌挿されることにより、その上方に燃焼室14が形成されている。
上記各気筒12A〜12Dの燃焼室14の頂部には、プラグ先端が燃焼室14内に臨むように点火プラグ15が設置されている。点火プラグ15には、これに電気火花を発生させるための点火装置27が付設されている。また、上記燃焼室14の側方には、燃焼室14内に燃料を直接噴射する燃料噴射弁16が設けられている。この燃料噴射弁16は、図外のニードル弁およびソレノイドを内蔵し、上記ECU2から入力されたパルス信号のパルス幅に対応する時間だけ駆動されて開弁し、その開弁時間に応じた量の燃料を上記点火プラグ15の電極付近に向けて噴射するように構成されている。
また、上記各気筒12A〜12Dの燃焼室14の上部には、燃焼室14に向かって開口する吸気ポート17および排気ポート18が設けられるとともに、これらのポート17,18に、吸気弁19および排気弁20がそれぞれ装備されている。上記吸気弁19および排気弁20は、図示を省略したカムシャフト等を有する動弁機構によって駆動されることにより、各気筒12A〜12Dが所定の位相差をもって燃焼サイクルを行うように各気筒12A〜12Dの吸・排気弁19,20の開閉タイミングが設定されている。
上記吸気ポート17および排気ポート18には、吸気通路21および排気通路22が接続されている。上記吸気ポート17に近い吸気通路21の下流側は、図2に示すように、各気筒12A〜12Dに対応して独立した分岐吸気通路21aとされ、この各分岐吸気通路21aの上流端がそれぞれサージタンク21bに連通している。このサージタンク21bよりも上流側には共通吸気通路21cが設けられるとともに、この共通吸気通路21cには、アクチュエータ24により駆動されるロータリバルブからなるスロットル弁23(吸気流量調節手段)が配設されている。このスロットル弁23の上流側および下流側には、それぞれ吸気流量を検出するエアフローセンサ25と、吸気圧力(負圧)を検出する吸気圧センサ26(吸気圧力検出手段)とが配設されている。
また、上記エンジン本体1には、タイミングベルト等によりクランク軸3に連結されたオルタネータ28が付設されている。このオルタネータ28は、図示を省略したフィールドコイルの電流を制御して出力電圧を調節することにより発電量を調整するレギュレータ回路28aを内蔵し、このレギュレータ回路28aに入力される上記ECU2からの制御信号に基づき、車両の電気負荷および車載バッテリーの電圧等に対応した発電量の制御が実行されるように構成されている。
さらに、上記エンジンには、クランク軸3の回転角を検出する2つのクランク角センサ30,31が設けられ、一方のクランク角センサ30から出力される検出信号に基づいてエンジンの回転速度が検出されるとともに、後述するように上記両クランク角センサ30,31から出力される位相のずれた検出信号に基づいてクランク軸3の回転方向および回転角度が検出されるようになっている。
上記ECU2には、カムシャフトに設けられた気筒識別用の特定回転位置を検出するカム角センサ32と、エンジンの冷却水温度を検出する水温センサ33と、運転者のアクセル操作量に対応したアクセル開度を検出するアクセルセンサ34とからそれぞれ出力される各検出信号が入力されるようになっている。
そして、ECU2は、上記各センサ25,26,30〜34からの検出信号を受け、燃料噴射弁16に対して燃料の噴射量および噴射時期を制御するための制御信号を出力するとともに、点火プラグ15に付設された点火装置27に対して点火時期を制御するため制御信号を出力し、かつ上記スロットル弁23のアクチュエータ24に対してスロットル開度を制御するための制御信号を出力するように構成されている。また、後述するように、予め設定されたエンジンの自動停止条件が成立したときに各気筒12A〜12Dへの燃料噴射を所定のタイミングで停止(燃料カット)して自動的にエンジンを停止させるとともに、その後に運転者によるアクセル操作が行わる等により再始動条件が成立したときにエンジンを自動的に再始動させる制御(アイドルストップ制御)が実行されるようになっている。ECU2は、このアイドルストップ制御において、エンジンンの自動停止時になされる制御を行う自動停止制御手段を機能的に含んでいる。
アイドルストップ制御によるエンジンの再始動時には、圧縮行程気筒で初回の燃焼を行わせることにより、そのピストン13を押し下げてクランク軸3を少しだけ逆転させる。これによって膨張行程気筒のピストン13を一旦上昇させ、その気筒内の混合気を圧縮した状態で、この混合気に点火して燃焼させることにより、クランク軸3に正転方向の駆動トルクを与えてエンジンを再始動させるように構成されている。
上記のようにして再始動モータ等を使用することなく、特定の気筒に噴射された燃料に点火するだけでエンジンを適正に再始動させるためには、上記膨張行程気筒の混合気を燃焼させることにより得られる燃焼エネルギーを充分に確保することにより、これに続いて圧縮上死点を迎える気筒(圧縮行程気筒)がその圧縮反力に打ち勝って圧縮上死点を超えるようにしなければならない。したがって、膨張行程気筒内に充分な空気量を確保しておく必要がある。
図3(a),(b)に示すように、圧縮行程気筒と膨張行程気筒とでは、それぞれ位相が180°CAだけずれているため、各ピストン13が互いに逆方向に作動する。膨張行程気筒のピストン13が行程中央よりも下死点側に位置していれば、その気筒の空気量が多くなって充分な燃焼エネルギーが得られる。しかし、上記膨張行程気筒のピストン13が極端に下死点側に位置した状態となると、圧縮行程気筒内の空気量が少なくなり過ぎて、再始動時の初回燃焼でクランク軸3を逆転させるための燃焼エネルギーが充分に得られなくなる。
これに対して上記膨張行程気筒の行程中央、つまり圧縮上死点後のクランク角が90°CAとなる位置よりもやや下死点側の所定範囲R、例えば圧縮上死点後のクランク角が100°〜120°CAとなる範囲R内にピストン13を停止させることができれば、圧縮行程気筒内に所定量の空気が確保されて上記初回の燃焼によりクランク軸3を少しだけ逆転させ得る程度の燃焼エネルギーが得られることになる。しかも、膨張行程気筒内に多くの空気量を確保することにより、クランク軸3を正転させるための燃焼エネルギーを充分に発生させてエンジンを確実に再始動させることが可能となる。
そこで、ピストン13を範囲R内に停止させるよう、ECU2によって次のような制御がなされる。図4は、この制御によるエンジン自動停止時のタイムチャートであり、エンジンの回転速度Ne、ブースト圧Bt(吸気圧力)およびスロットル弁23の開度Kを示す。また図5は、図4の時点t1付近以降の拡大図であり、図4に加えてクランク角CAおよび各気筒の行程推移チャートを示す。なお、以下説明を簡潔にするため、#1気筒12Aが膨張行程気筒、#2気筒12Bが排気行程気筒、#3気筒12Cが圧縮行程気筒、#4気筒12Dが吸気行程気筒であるものとする。
ECU2は、エンジンの自動停止条件が成立した時点t0で、エンジンの目標速度を、所定速度N1(第1所定エンジン回転速度)に設定する。自動停止条件成立時のアイドル回転速度である所定速度N1は、エンジンを自動停止させない時の通常のアイドル回転速度(以下、通常のアイドル回転速度という)よりも高い値、例えば通常のアイドル回転速度が650rpm(自動変速機はドライブ(D)レンジ)に設定されたエンジンでは850rpm程度(自動変速機はニュートラル(N)レンジ)に設定される。そしてECU2は、エンジンの回転速度Neを通常のアイドル回転速度よりも少し高い目標速度(所定速度N1)で安定させる制御を実行する。またブースト圧Btが比較的高い所定の値(約−400mmHg)で安定するようにスロットル弁23の開度Kを調節する。
そしてエンジンの回転速度Neが目標の所定速度N1に安定した時点t1で燃料噴射を停止させる。但し燃料噴射を停止しても既に各気筒に噴射済みの燃料が全て燃焼できるように、少なくともその燃焼期間が経過するまでは点火を継続する。時点t1後、この燃焼期間が経過するとエンジンの回転速度Neが低下し始める。一方、エンジンを自動停止させる制御動作の初期段階である上記燃料噴射の停止時点t1(第1所定時期)で、スロットル弁23の開度Kを、気筒内空燃比を空気過剰率λ=1にしたときのアイドル時の吸気流量(エンジン運転を継続させるために必要な最小限の吸気流量)よりも多い吸気流量となるように設定する。すなわち、上記時点t1直前の燃焼状態が、気筒内空燃比を空気過剰率λ=1ないしλ=1付近に設定されて均質燃焼されている場合はスロットル弁23の開度Kを増大させ(例えば開度K=30%程度)、気筒内空燃比がリーンに設定されて成層燃焼されている場合はスロットル弁23の開度Kをそのまま(成層燃焼時の比較的大きな開度のまま)維持する。図4及び図5は前者の場合を示している。
この制御によって時点t1からやや遅れるものの、エンジンの回転速度Neの低下開始に対して可及的速やかにブースト圧Btが増大し始める(時点t1直前が均質燃焼の場合)か、または比較的高いブースト圧Btを維持する(時点t1直前が成層燃焼の場合)ので、排気ガスの掃気が促進される。
またECU2は、時点t1でオルタネータ28の発電を一旦停止させる。これによってクランク軸3の回転抵抗を低減し、エンジンの回転速度Neの速度が早く低下し過ぎないようにしている。
こうして時点t1で燃焼噴射を停止すると、やや遅れてエンジンの回転速度Neが低下し始め、予め設定された所定速度N2(第2所定エンジン回転速度)、例えば760rpm以下になったことが確認された時点t2(第2所定時期)でスロットル弁23を閉止する。すると時点t2からやや遅れてブースト圧Btが減少し始め、エンジンの各気筒に吸入される吸気流量が減少する。スロットル弁23を開放している時点t1から時点t2までの間に吸入された空気は、共通吸気通路21c及びサージタンク21bを経由して各気筒の分岐吸気通路21aに導かれる。そして吸気行程を迎えた気筒から順にその空気を吸入することになる。図5に示す場合では#4気筒12D、#2気筒12B、#1気筒12A、#3気筒12Cの順となる。ここで、時点t1及び時点t2の設定を上記のようにすることによって、#3気筒12C(圧縮行程気筒)よりも#1気筒12A(膨張行程気筒)の方がより多くの空気を吸入することになる。
時点t1以降はエンジンが惰性で回転するため、エンジンの回転速度Neが次第に低下し、やがて時点t5で停止するが、このエンジンの回転速度Neの低下は、図4および図5に示すように、小刻みなアップダウン(4気筒4サイクルエンジンでは10回前後)を繰り返しながら低下して行く。
図5に示すクランク角CAのタイムチャートは、実線が#1気筒12Aおよび#3気筒12Cの上死点(TDC)を0°CAとした場合のクランク角を示し、一点鎖線が#2気筒12Bおよび#4気筒12Dの上死点を0°CAとした場合のクランク角を示している。実線と一点鎖線とは90°CAを境に互いに逆位相となっている。4気筒4サイクルエンジンでは、180°CAごとに何れかの気筒が順次圧縮上死点を迎えるので、このタイムチャートは、実線または一点鎖線で示す波形の頂点(クランク角=0°CA)において何れかの気筒が圧縮上死点を通過していることを示している。
この何れかの気筒が圧縮上死点となるタイミングは、上記エンジンの回転速度Neのアップダウンの谷のタイミングと一致している。つまり、エンジンの回転速度Neは、各気筒が順次圧縮上死点を迎える度に一時的に落ち込んだ後、その圧縮上死点を超えた時点で再び上昇するという小刻みなアップダウンを繰り返しながら次第に低下するのである。
そして最後の圧縮上死点を通過した時点t4の後に圧縮上死点を迎える圧縮行程気筒12Cでは、慣性力によるピストン13の上昇に伴って空気圧が高まり、その圧縮反力によりピストン13が上死点を超えることなく押し返されてクランク軸3が逆転する。このクランク軸3の逆転によって膨張行程気筒12Aの空気圧が上昇するため、その圧縮反力に応じて膨張行程気筒12Aのピストン13が下死点側に押し返されてクランク軸3が再び正転し始め、このクランク軸3の逆転と正転とが数回繰り返されてピストン13が往復作動した後に停止することになる。このピストン13の停止位置は、圧縮行程気筒12Cおよび膨張行程気筒12Aにおける圧縮反力のバランスにより略決定されるとともに、吸気行程気筒12Dの吸気抵抗やエンジンの摩擦等の影響を受け、上記最後の圧縮上死点を超えた時点t4のエンジンの回転慣性、つまりエンジン回転速度Neの高低によっても変化することになる。
したがって、膨張行程気筒12Aのピストン13を再始動に適した上記所定範囲R内に停止させるためには、まず膨張行程気筒12Aおよび圧縮行程気筒12Cの圧縮反力がそれぞれ充分に大きくなり、かつ膨張行程気筒12Aの圧縮反力が圧縮行程気筒12Cの圧縮反力よりも所定値以上大きくなるように、両気筒に対する吸気流量を調節する必要がある。このために、燃料噴射の停止時点t1でスロットル弁23を開放してその開度Kを増大させることにより膨張行程気筒12Aおよび圧縮行程気筒12Cの両方に所定量の空気を吸入させた後、所定時間が経過した時点t2で上記スロットル弁23を閉止してその開度Kを低減することにより上記吸入空気量を調節するようにしている。
ところで、エンジンの回転抵抗や吸気抵抗等には個体差によるバラツキがあり、また同一のエンジンでも潤滑油温度の変化等によって回転抵抗に違いが生ずるため、燃料供給を停止(時点t1)してからのエンジン回転速度Neの低下度合は必ずしも一様ではない。図6は、この点を模式的に示す説明図であり、図4及び図5におけるエンジン回転速度Neに相当する(説明を簡潔にするため、微小なアップダウンを省略し、直線的な特性で模式的に示している)。図6に実線で示す特性51は、第2所定時期t2を設定する際に想定したエンジンの回転速度変化特性であり、破線で示す特性52は、個体差や運転条件等、何らかの理由で燃料供給停止後のエンジン回転速度の低下度合が特性51よりも急速になった場合のエンジンの回転速度変化特性である。
第2所定時期t2は、特性51に対して適切に設定されており、このタイミングでスロットル弁23の開度Kを減少させることにより、膨張行程気筒12Aおよび圧縮行程気筒12Cに必要な吸気流量が確保されるとともに、圧縮行程気筒12Cよりも膨張行程気筒12Aの方により多くの吸気がなされるという理想的な吸気流量バランスとなる。
ところが、特性52に対しても第2所定時期として時点t2を設定すると、結果的に、エンジンの回転速度Neがより低下した時点、即ちよりエンジン停止時点に近いタイミングでスロットル弁23の開度Kを減少させることになる。そうすると、ブースト圧Btが充分低下する前に各気筒の最終吸気行程がなされる。つまり膨張行程気筒12Aにも圧縮行程気筒12Cにも充分過ぎる吸気がなされるため、上記のような吸気流量バランスを保つことが困難となる。また、各気筒への吸気流量が増大するため、各圧縮上死点における圧縮反力が増大し、エンジンの回転速度Neの微小変動(上記アップダウン)の幅が大きくなり、振動や騒音に悪影響を及ぼす虞もある。
逆に、エンジン回転速度の低下度合が特性51よりも緩やかになった場合に第2所定時期として時点t2を設定すると、結果的に、エンジンの回転速度Neがあまり低下しない時点、即ちよりエンジン停止時点から遠いタイミングでスロットル弁23の開度Kを減少させることになる。そうすると、ブースト圧Btが低下し過ぎた時点で各気筒の最終吸気行程がなされる。つまり膨張行程気筒12Aにも圧縮行程気筒12Cにも充分な吸気がなされず、上記のような吸気流量バランスを保つことが困難となる。
以上のような事態を回避するためには、エンジンの回転速度Neの低下度合が急速になった場合は第2所定時期t2を早期化し、各気筒で最終吸気行程を迎える時点のブースト圧Btが適度な圧力まで低下しているようにすれば良い。またエンジンの回転速度Neの低下度合が緩やかになった場合は第2所定時期t2を遅らせ、各気筒で最終吸気行程を迎える時点のブースト圧Btが低下し過ぎないようにすれば良い。
そこで当実施形態では、第2所定時期t2を固定値(例えば時点t1からのタイマー値)とせず、エンジンの回転速度Neが低下し始めた後の、所定速度N2に到達した時点に設定している。このようにすると、図6に示すように、エンジンの回転速度Neの低下度合が急速な特性52に対し、第2所定時期が時点t2から時点t2’に早期化される(そのときの開度Kを破線で示す)。また逆に、エンジンの回転速度Neの低下度合が緩やかになった場合には、同様にして遅延化されることになる。しかもその早期化や遅延化の度合は、エンジンの回転速度Neの低下度合の変動幅に略比例して自動的に設定される。従って、複雑な制御を行わなくても、エンジンの回転速度Neの低下度合に応じて第2所定時期t2を自動的に好適な方向に補正することができ、結果的に個体差や潤滑油温等によるばらつきの影響を相殺し、常に狙いの適正範囲内にピストンが停止し易いようにすることができる。
こうして吸気流量のバランスが常に狙いのバランスとなるように調整されるが、実際のエンジンでは、スロットル弁23、吸気ポート17および分岐吸気通路21a等の形状に個体差があることにより、それらを流通する空気の挙動が変化するため、エンジンの自動停止期間中に各気筒12A〜12Dに吸入される吸気流量や吸気行程気筒12Dの吸気抵抗になおバラツキが生じる。また、第2所定時期t2で吸気流量を減少させた後のエンジンの回転速度Neの低下度合にもバラツキが生じるため、更なる停止位置制御の精度向上が望まれる。
そこで当実施形態では、エンジンの自動停止期間中においてエンジンの回転速度が低下する過程で、図7に一例を示すように、各気筒12A〜12Dが圧縮上死点を通過する際のエンジン回転速度(上死点回転速度)neと、膨張行程気筒12Aのピストン停止位置との間に明確な相関関係があることを利用した制御を行っている。
図7は、上記のようにエンジンの回転速度Neが所定速度となった時点t1で燃料噴射を停止し、その後の所定期間に亘りスロットル弁23を開状態に維持するようにして、惰性により回転するエンジンの各気筒12A〜12Dに設けられたピストン13が圧縮上死点を通過する際の上死点回転速度neを計測するとともに、エンジンの停止時点における膨張行程気筒12Aのピストン位置を調べ、このピストン位置を縦軸に取るとともに、上記エンジンの上死点回転速度neを横軸に取って、両者の関係をグラフ化したものである。この作業を繰り返してエンジンの停止動作期間中における上記上死点回転速度neと、膨張行程気筒12Aにおけるピストン停止位置との相関関係を示す分布図が得られることになる。
この分布図から、エンジンの停止動作期間中における上死点回転速度neと膨張行程気筒12Aにおけるピストン停止位置との間に所定の相関関係が見られ、図7に示す例では、エンジンが停止状態となる前の6番目〜2番目における上死点回転速度neがハッチングで示す範囲(以下これを適正回転速度範囲という)内にあれば、ピストン13の停止位置がエンジンの再始動に適した範囲R(圧縮上死点後の100°〜120°CA)に入り易いことが分かる。
特に、エンジンが停止状態となる前から2番目の上死点回転速度ne(図5における時点t3におけるエンジンの回転速度Neに相当)についてみれば、図8に示すように、上記上死点回転速度neが略280rpm〜380rpmの範囲内にあるとともに、約320rpmを境にしてそれ以下の低回転側では、上記上死点回転速度neが低下するのに伴ってピストン停止位置が徐々に上死点寄りに変化している。一方、上記上死点回転速度neが320rpm以上の高回転側では、この上死点回転速度neの高低に拘わらず、ピストン13の停止位置が概ね一定になり、略適正範囲R内に入ることが分かる。
上記のような特徴的な分布傾向が見られるのは、エンジンの上死点回転速度neが320rpm以上の高回転側にあると、膨張行程気筒12Aおよび圧縮行程気筒12Cにそれぞれ充分な量の空気が充填され、この空気の圧縮反力によってピストン停止位置が行程の中央寄りに集中するためであると考えられる。なお、上記320rpm以下の低回転側でピストン停止位置が左下がりの分布状態となるのは、各気筒内で往復動するピストン13が圧縮上死点側で反転した後、摩擦等により減速されて行程中央まで戻ることができずに停止するためであると考えられる。
一方、燃料噴射の停止後にスロットル弁23を開放操作することなく、これを閉止状態に維持した場合には、図8に破線で示すように、一様な右肩上がりの分布状態となり、エンジンの上死点回転速度neの高低に応じてピストン13の停止位置が変化することになる。これは、スロットル弁23を閉じたままに維持すると、吸気圧力が低い状態に維持され、吸気流量が少ないので膨張行程気筒12Aおよび圧縮行程気筒12Cの圧縮反力が小さくなるために、エンジンの回転速度(回転慣性)と摩擦との影響が相対的に大きくなるからである。
したがって、燃料噴射を停止した時点t1から所定時間が経過するまで、つまりエンジン回転速度Neが所定速度N2(例えば760rpm程度)以下に低下する時点t2までは、スロットル弁23の開度Kを比較的大きな値(例えば、全開の30%の開度)に設定して各気筒の掃気性を確保する。そして、エンジン回転速度Neが所定速度N2以下に低下した時点t2で、上記スロットル弁23の開度Kを低減する。さらにその間予め行った実験等に基づいて設定された基準ラインに沿ってエンジン回転速度が低下するように(各上死点回転数neが、順次図7に示す適正回転速度範囲に入るように)エンジンの負荷(たとえばオルタネータの発電量)を調節することによって、膨張行程気筒12Aのピストンが圧縮上死点後100〜120°CAという適正位置に停止し易くなるようにしている。
最後の圧縮上死点通過時期(図5に示す時点t4)を過ぎると、何れの気筒も上死点を通過することがなく、行程の推移はなされなくなる。ピストン13は、その行程内で減衰振動(逆向きに動くときはクランク軸3が逆転し、エンジンの回転速度Neが負になる)しつつ狙いの上記適正位置に停止しようとする。しかし、このとき吸気行程気筒12Dは吸気動作を行っており、その吸気抵抗が大きいとピストン13の停止位置がばらつき易くなる。特に、吸気抵抗はピストン13が下死点側に動くときに大きくなるように作用するので、ピストン13が狙いよりも上死点寄りに停止し易くなる。吸気行程気筒12Dのピストン13と膨張行程気筒12Aのピストン13とは同位相で動くので、結局膨張行程気筒12Aのピストン13が狙いよりも上死点寄りに停止し易くなってしまう。
そこで当実施形態では、時点t4と略同時(やや遅らせても良い)を第3所定時期とし、この第3所定時期にスロットル弁23の開度Kを第1所定開度(図5に示す開度K1。例えばK1=40%程度)まで増大させ、吸気行程気筒12Dの吸気抵抗を低減している。これによって膨張行程気筒12Aおよび圧縮行程気筒12Cにおける吸気流量バランスに影響を及ぼすことなく、そのバランスに応じた狙いの位置にピストン13がより停止し易くなっている。
なお、このような制御を行うためには、時点t4が最後の圧縮上死点通過時期であることを即時に判別する必要があり、次の(圧縮行程気筒12Cでの)圧縮上死点は通過しないことを時点t4において予測しなければならない。そのため当実施形態では、ECU2が最後の上死点通過時期を判別するようにしている。ECU2は、各上死点通過時のエンジン回転速度と、予め実験等で求められた所定の回転速度(例えば260rpm)とを比較し、前者が後者以下となった時点で、それが最後の圧縮上死点通過時期であると判別する。なお、最後の圧縮上死点通過時期における上死点回転速度neは、高いほど行程後期寄り(膨張行程気筒12Aのピストン停止位置が下死点寄り、圧縮行程気筒12Cでは上死点寄り)で停止し易くなる。
ところで、エンジン停止直前の膨張行程気筒12Aおよび圧縮行程気筒12Cの最終吸気行程における吸気流量バランスは、ブースト圧Btによっても影響を受ける。特に、停止前から2番目の圧縮上死点通過時期(図5の時点t3)は、圧縮行程気筒12Cにおいて最終吸気行程の始点となっており、この時点のブースト圧Btの影響が大きい。すなわち、このブースト圧Btが低い(真空側)と、圧縮行程気筒12Cへの吸気流量が少なくなり、結果的に圧縮行程気筒12Cのピストン13の停止位置が上死点寄り(膨張行程気筒12Aでは下死点寄り)となり易い。ブースト圧Btが高い(大気圧側)と、その逆となる。
従って、最後の上死点通過時期における上死点回転速度neが高く、また停止前から2番目の圧縮上死点通過時期のブースト圧Btが低いときは、膨張行程気筒12Aのピストン13が行程後期寄りで停止し易い条件が重なっており、狙いの停止位置(上死点後100〜120°CA)で停止する可能性が高い。このような条件のときに、第3所定時期にスロットル弁23の開度Kを第1所定開度K1まで増大させる制御を行うと、ピストン停止位置がより行程後期寄りとなって、かえって狙いの停止位置から外れてしまう虞がある。そこで当実施形態では、そのような場合には、第3所定時期におけるスロットル弁23の開度Kを第1所定開度K1より低開度(または閉止)とされる第2所定開度(図5に示す開度K2)に設定し、吸気流量の増大を抑制することにより、膨張行程気筒12Aのピストン停止位置が下死点寄りになり過ぎないようにしている。
次にエンジンを自動停止させる際のECU2の制御動作を図9および図10に示すフローチャートに基づいて説明する。なお、これらのフローチャートは、気筒内の空燃比が理論空燃比、ないし理論空燃比付近に設定された均一燃焼からのエンジン自動停止制御のフローチャートである。この制御動作がスタートすると、まず各種センサ類から出力された検出信号に基づいてエンジンの自動停止条件が成立したか否かを判定する(ステップS1)。具体的には、ブレーキスイッチのON状態が所定時間に亘り継続し、かつバッテリー残量が予め設定された基準値以上であり、車速が所定値(例えば10km/h)以下の状態であること等が確認された場合には、エンジンの自動停止条件が成立したと判定され、上記要件の一つでも満たされていない場合には、エンジンの自動停止条件が成立していないと判定される。
上記ステップS1でYESと判定されてエンジンの自動停止条件が成立したことが確認された場合には、自動変速機のシフトレンジをニュートラルに設定して無負荷状態とするとともに(ステップS2)、EGR通路に設けられたEGR弁(図示せず)を閉弁して、排気還流を停止させ(ステップS31)、エンジン回転速度Neの目標値(目標速度)を通常のアイドル回転速度よりも高い所定速度N1(例えば850rpm程度)に設定する(ステップS3)。また、ブースト圧Btが例えば−400mmHg程度に設定された目標圧P1となるようにスロットル弁23の開度Kを調節(スロットル弁23を開弁方向に操作)するとともに(ステップS4)、エンジンの回転速度Neが目標の所定速度N1となるように点火時期のリタード量を算出する(ステップS5)。これにより、上記ブースト圧Btを目標圧P1とするためにスロットル開度Kがフィードバックされるとともに、エンジンの回転速度Neを所定速度N1とするために点火時期のリタード量がフィートバックされる(エンジン回転速度のフィードバック制御が実行される)ことになる。
なお、上記ステップS1において、エンジンの自動停止条件の判定を、車速が10km/h以下に低下した時点で実行するようにしているので、エンジンの自動停止条件成立時のアイドル回転速度(所定速度N1)を、エンジンを自動停止させないときの通常のアイドル回転速度(例えば、自動変速機のDレンジ状態において650rpm)よりも高い値(850rpm)に設定でき、エンジン回転速度が通常のアイドル回転速度(650rpm)に低下する前に、上記ステップS2およびステップS3が実行できる。よって、一旦、通常のアイドル回転速度まで低下したエンジン回転速度を目標回転速度N1(850rpm)まで上昇させる必要がなく、運転者に対して、エンジン回転速度の上昇に伴う不快感を与えることがない。
エンジンの自動停止条件が成立した時点t0で、上記ステップS2の自動変速機のシフトレンジがドライブ状態(Dレンジ)からニュートラル状態(Nレンジ)にシフトされて自動変速機の負荷が軽減されるようになり、かつ上記ステップS3によってエンジンの目標回転速度がN1に設定されるため、図4に示されるように、エンジン回転速度Neが、時点t0から少し上昇して安定するようになる。
次いで、燃料噴射の停止条件(燃料カット条件)が成立したか否か、具体的にはエンジン回転速度Neが目標の所定速度N1となるとともに、ブースト圧Btが上記目標圧P1となったか否かを判定し(ステップS6)、NOと判定された場合には、ステップS4に戻って上記制御動作を繰り返す。そして、上記ステップS6でYESと判定された時点(図4及び図5の時点t1:第1所定時期)で、スロットル弁23を比較的大きな開度(30%程度)に開弁させ(ステップS7)、オルタネータ28の発電量を0に設定して発電を停止させるとともに(ステップS8)、燃料噴射を停止する(ステップS9)。
その後、燃料噴射の停止時点t1の後に、エンジンの回転速度Neが低下し始めたことを判定するために、エンジンの回転速度Neが予め760rpm程度に設定された所定速度N2以下となったか否かを判定する(ステップS10)。そしてステップS10でYESと判定された時点(第2所定時期t2)でスロットル弁23を閉止状態とする(ステップS11)。この結果、上記ステップS7でスロットル弁23を開放して大気圧に近づくようにしたブースト圧Btが、上記スロットル弁23の閉止操作に応じて所定の時間差をもって低下し始めることになる。
なお、上記ステップS10でエンジンの回転速度Neが所定速度N2以下になったと判定された時点t2でスロットル弁23を閉止状態とするように構成された上記実施形態に代え、ピストン13が圧縮上死点を通過するときのエンジン回転速度、つまりエンジンの上死点回転速度neが所定速度N2以下になったと判定された時点で、スロットル弁23を閉止状態とするように構成しても良い。
次いで、エンジンの上死点回転速度neが、予め設定された760rpm程度に設定された所定速度N2以下となったか否かを判定する(ステップS12)。ここでYESと判定されると、これ以降、予め設定された基準ラインに沿ってエンジンの回転速度Neが低下するように制御する。当実施形態では、順次通過する各圧縮上死点時の上死点回転速度neが、適正回転速度範囲内(図7参照)となるようにオルタネータ28の発電量を調節する(ステップS13)。具体的には、上死点回転速度neが高めのときは発電量を増やしてクランク軸3の回転抵抗を高め、エンジンの回転速度Neの低下速度を上げることによって次回の上死点回転速度neが予め設定された基準ラインに近づくようにする。上死点回転速度neが低めのときはその逆に発電量を減少させる。
そして、各気筒が順次圧縮上死点を通過するたびにエンジンの上死点回転速度neが所定値N3以下か否かを判定する(ステップS17)。この所定値N3は、予め設定された基準ラインに沿ってエンジンの回転速度Neが低下している過程で最後の圧縮上死点を通過する際のエンジン回転速度に対応した値であり、例えば260rpm程度に設定されている。また、各気筒が順次圧縮上死点を通過する各時点のブースト圧Btも検知し、記憶しておく。
上記ステップS17でNOと判定された場合には、ステップS13に戻って上記制御動作を繰り返し、上記ステップS17でYESと判定されてエンジンの上死点回転速度neが上記所定値N3以下となったことが確認された時点(第3所定時期t4)で、最後の上死点を通過したことが判別される。またこの時点t4で、その1回前の圧縮上死点通過時(時点t3)におけるブースト圧Btを読み出し、それが停止前から2番目の圧縮上死点におけるブースト圧Btであると決定する(ステップS18)。
そして、最後の圧縮上死点通過時の上死点回転速度ne(以下最終上死点回転速度ne1という)と、停止前から2番目の圧縮上死点におけるブースト圧Bt(以下ブースト圧Bt2という)とに基いて、行程後期寄り(膨張行程気筒12Aでは下死点寄り)で停止する傾向が大であるか否かの判定がなされる(ステップS19)。具体的には、最終上死点回転速度ne1が所定速度N4(第3所定エンジン回転速度。例えばN4=200rpm)以上であり、かつブースト圧Bt2が第1所定圧力P2(例えばP2=−200mmHg)以下(真空側)のときに行程後期寄り(膨張行程気筒12Aにおけるピストン停止位置が、圧縮上死点後100〜120°CAとなる適正範囲Rに対し、120°CAに近い位置)で停止する傾向が大であると判定される。
このステップS19でNOと判定された場合には、上記行程後期寄りで停止する傾向があまり大きくなく、比較的行程前期寄り(膨張行程気筒12Aにおけるピストン停止位置が、上記適正範囲Rに対し、100°CAに近い位置もしくは100°CA以下)で停止する傾向がある。そこでより確実に適正範囲内で停止することができるように、スロットル弁23を開放する。すなわち、例えば40%程度に設定された第1所定開度K1となるようにスロットル弁23の開度Kを増大させ、吸気流量を増大させる(ステップS20)。こうすることにより、吸気行程気筒12Dの吸気抵抗が低減し、より行程後期寄りで停止し易くなる。結果的に、膨張行程気筒12Aにおけるピストン13の停止位置が適正範囲Rの下限(100°CA)を下回ることが可及的に防止され、適正範囲R内への停止精度をより向上させることができる。
一方、上記ステップS19でYESと判定された場合には、エンジンの回転慣性が大きく、また圧縮行程気筒12Cへの最終吸気行程における吸気流量が少なく、圧縮反力が小さいという、ピストン13が行程後期寄りで停止し易い条件が既に揃っている。そこでスロットル弁23の開度Kを第2所定開度K2(ステップS7で閉弁したときのスロットル弁23の開度に近い開度、例えばK2=5%程度)となるようにスロットル弁23の開度Kを調節する(ステップS21)。この第2開度は、エンジンの特性等に応じて、さらに小開度、或いは閉止としても良い。こうすることにより、吸気行程気筒12Dに適度な大きさの吸気抵抗が生じ、狙いの行程後期寄りよりもさらに後期寄りに行き越すことが起こりにくくなる。結果的に、膨張行程気筒12Aにおけるピストン13の停止位置が適正範囲Rの上限(120°CA)を超えることが可及的に防止され、適正範囲R内への停止精度をより向上させることができる。
こうしてエンジンの回転速度Neがさらに低下するに従い、エンジンが停止状態になったか否かを判定し(ステップS22)、YESと判定された時点で、後述するように上記クランク角センサ30,31の検出信号に基づいてピストン13の停止位置の検出する制御を実行した後に(ステップS23)、制御動作を終了する。
図11は、上記フローチャートのステップS23において実行されるピストン停止位置の検出制御動作を示している。この検出制御がスタートすると、第1クランク角信号CA1(クランク角センサ30からの信号)および第2クランク角信号CA2(クランク角センサ31からの信号)に基づき、第1クランク角信号CA1の立ち上がり時に第2クランク角信号CA2がLowであるか否か、または第1クランク角信号CA1の立ち下がり時に第2クランク角信号CA2がHighであるか否かを判定する(ステップS41)。これにより、エンジンの停止動作時における上記信号CA1,CA2の位相の関係が、図12(a)のようになるか、それとも図12(b)のようになるかを判定してエンジンが正転状態にあるか逆転状態にあるかを判別する。
すなわち、エンジンの正転時には、図12(a)のように、第1クランク角信号CA1に対して第2クランク角信号CA2が半パルス幅程度の位相遅れをもって生じることにより、第1クランク角信号CA1の立ち上がり時に第2クランク角信号CA2がLow、第1クランク角信号CA1の立ち下がり時に第2クランク角信号CA2がHighとなる。一方、エンジンの逆転時には、図12(b)のように、第1クランク角信号CA1に対して第2クランク角信号CA2が半パルス幅程度の位相の進みをもって生じることにより、エンジンの正転時とは逆に第1クランク角信号CA1の立ち上がり時に第2クランク角信号CA2がHigh、第1クランク角信号CA1の立ち下がり時に第2クランク角信号CA2がLowとなる。
そこで、ステップS41の判定がYESであれば、エンジンの正転方向のクランク角変化を計測するためのCAカウンタをアップし(ステップS42)、ステップS41の判定がNOの場合は、上記CAカウンタをダウンする(ステップS43)。そして、エンジン停止後に上記CAカウンタの計測値を調べることでピストン停止位置を求める(ステップS44)。
上記のようにして自動停止状態となったエンジンを再始動させる際の制御動作を図13に示すフローチャートに基づいて説明する。まず、予め設定されたエンジンの再始動条件が成立したか否かを判定し(ステップS101)、NOと判定されてエンジンの再始動条件が成立していないことが確認された場合には、そのままの状態で待機する。そして、停車状態から発進のためのアクセル操作等が行われた場合、あるいはバッテリー電圧が低下した場合等により、上記ステップS101でYESと判定されてエンジンの再始動条件が成立したことが確認された場合には、ピストン13の停止位置に基づいて圧縮行程気筒12Cおよび膨張行程気筒12A内の空気量を算出する(ステップS102)。つまり、上記ピストン13の停止位置から圧縮行程気筒12Cおよび膨張行程気筒12Aの燃焼室容積が求められ、また、エンジン停止の際には燃料噴射の停止後にエンジンが数回転してから停止するので膨張行程気筒12Aも新気で満たされた状態にあり、かつ、エンジン停止中に圧縮行程気筒12Cおよび膨張行程気筒12Aの内部は略大気圧となっているので、上記燃焼室容積から新気量が求められることとなる。
続いて、上記ステップS102で算出された圧縮行程気筒12Cの空気量に対して所定の1回目用空燃比となるように燃料を噴射させ(ステップS103)、その後、上記ステップS102で算出された膨張行程気筒12A内の空気量に対して所定の空燃比となるように燃料を噴射する(ステップS104)。この場合、圧縮行程気筒12Cの1回目用空燃比および膨張行程気筒12A用の空燃比はピストンの停止位置に応じてマップM1,M2から求められる。圧縮行程気筒12Cの1回目用空燃比は理論空燃比よりもリッチな空燃比(空燃比11〜14の範囲)となり、膨張行程気筒12Aの空燃比は略理論空燃比もしくはそれより多少リッチな空燃比となるように、予め上記各マップM1,M2が設定されている。
次に圧縮行程気筒12Cの燃料噴射後に燃料の気化時間を考慮して設定した時間の経過後に、当該気筒に対して点火を行う(ステップS105)。そして、点火してから一定時間内にクランク角センサのエッジ(クランク角信号の立ち上がり又は立ち下がり)が検出されたか否かにより、ピストンが動いたか否かを判定し(ステップS106)、NOと判定されて失火によりピストンが動かなかったことが確認された場合には、圧縮行程気筒12Cに対して再点火を繰り返し行う(ステップS107)。
上記ステップS106でYESと判定されてクランク角センサのエッジが検出された場合には、エッジ検出後に所定のディレイ時間が経過してから、すなわち、エンジンの逆転動作が終了する頃までの時間が経過してから、膨張行程気筒12Aに対して点火を行う(ステップS108)。上記ディレイ時間はピストン13の停止位置に応じてマップM3から求められる。さらに、所定クランク角(圧縮行程気筒12Cの2回目用噴射時期)となったとき圧縮行程気筒12Cに対して再度燃料を噴射する(ステップS109)。この場合、上記停止位置に応じてマップM4から圧縮行程気筒12Cの2回目用空燃比を求め、これらに基づいて燃料噴射量を演算するとともに、マップM5から、圧縮行程気筒12Cの適正な燃料噴射時期、すなわち、燃料噴射による気化潜熱の作用(燃料の気化によって気筒内のガス温度を下げる)が、圧縮圧力の低下に寄与する適正な噴射時期(例えば、圧縮行程の中期から後期前半の適正な時期)を設定する。
なお、圧縮行程気筒12Cの2回目用空燃比は、気化潜熱の効果が大きくなる適正なリッチ空燃比に設定されており、この圧縮行程気筒12Cの再度の燃料噴射によって、圧縮行程気筒12Cの圧縮上死点付近の圧縮反力を低下させ、膨張行程気筒12Aの燃焼(上記ステップS108の点火によってもたらされた燃焼)による圧縮上死点の乗り越えを充分に可能とする。このような始動時の制御が完了すれば、通常制御に移行する(ステップS110)。
上記の再始動制御が実行されることにより、図14および図15に示すように、先ず圧縮行程気筒12C(#3気筒)において燃焼空燃比が理論空燃比よりも多少リッチとされて燃焼(図14中の(1))が行われ、この燃焼(1)による燃焼圧(図15中のa部分)で、圧縮行程気筒12Cのピストン13が下死点側に押し下げられてエンジンが逆転方向に駆動され、それに伴って膨張行程気筒12A(#1気筒)のピストン13が上死点に近づくことにより、当該気筒内の空気が圧縮されて筒内圧が上昇する(図15中のb部分)。そして、膨張行程気筒12Aのピストン13が上死点に充分に近づいた時点で当該気筒に対する点火が行われて、予め当該気筒に噴射されている燃料が燃焼し(図14中の(2))、その燃焼圧(図15中のc部分)でエンジンが正転方向に駆動される。さらに、圧縮行程気筒12Cに対して適当なタイミングで燃料が噴射されることにより(図14中の(3))、この圧縮行程気筒12Cでは燃焼させないものの、燃料噴射による気化潜熱作用によって該圧縮行程気筒12Cの圧縮圧力を低下させる(図15中のd部分)。これにより、上記膨張行程気筒12Aでの燃焼によって始動開始から2番目の圧縮上死点を超えるまで、すなわち、吸気行程気筒12D(#4気筒)で燃焼が行われてエンジン駆動力を付与するまで、のエンジン駆動力が確保される。
この場合、圧縮行程気筒12Cの空燃比が多少リッチとされたことにより、エンジンの駆動力が高められて逆転動作が充分に行われ、膨張行程気筒12Aの気筒内の圧力が高められて、充分な燃焼トルク(エンジンの駆動力)が生成できるようになる。
また、圧縮行程気筒12Cにおいて圧縮圧力を低下させるための燃料噴射を行うことで、膨張行程気筒12Aの燃焼による始動を確実なものとする。
さらに、吸気行程気筒12Dにおける燃料噴射時期を、燃料の気化潜熱によって気筒内の温度、および圧縮圧力を低下させる適正なタイミング(例えば圧縮行程の中期以降)に設定しているため(図14中の(4))、該吸気行程気筒12Dの圧縮行程での(圧縮上死点前での)自着火が防止され、また、該吸気行程気筒12Dの点火時期が圧縮上死点以降に設定されているため、圧縮上死点前での燃焼が防止され、該吸気行程気筒12Dにおいて、圧縮反力を低下させつつ、正転方向へのエンジン駆動効率を高めることができる。
その後は、通常制御により各気筒で順次燃焼(図14中の(5)、(6))が行われてエンジンの再始動が完了する。
以上、本発明の一実施形態について説明したが、本発明は上記の実施形態に限定されるものではなく、特許請求の範囲に記載した発明の範囲内で種々の変形が可能である。例えば上記実施形態では、サージタンク21bより上流の共通吸気通路21cに配設されたスロットル弁23からなる吸気流量調節手段により各気筒12A〜12Dへの吸気流量を調節するように構成した例について説明したが、これに限らず、各気筒12A〜12Dに設けられた吸気弁19のリフト量を変更する周知の可変動弁機構を設けることにより、上記各気筒12A〜12Dへの吸気流量を調節するように構成しても良く、あるいは各気筒12A〜12Dに接続された分岐吸気通路21aに個別に弁体が配設された多連型スロットル弁を用いて上記各気筒12A〜12Dへの吸気流量を調節するように構成してもよい。
上記実施形態の図9及び図10に示したフローチャートは、自動停止を行う直前の燃焼状態が均一燃焼である場合を示したが、自動停止を行う直前の燃焼状態はリーン空燃比の成層燃焼であっても良い。その場合は、図9のステップS7の時点で、既にスロットル弁23の開度Kが大きな値に設定されている。従って、その開度Kを維持するように制御すれば良い。
上記実施形態では、ピストン13が行程後期寄りで停止する傾向の大小に応じて第3所定時期t4以降のスロットル弁23の開度Kを2段階に切換えるようにしている(図10のステップS19〜S21)が、さらに3段階以上の切換えとしても良く、連続的に変化させるようにしても良い。
なお、上記実施形態では、エンジン再始動時において、圧縮行程気筒12Cに対して、1回目用空燃比を理論空燃比以下のリッチ空燃比に設定した例を説明したが、これに限らず、1回目用空燃比を理論空燃比よりも所定量リーンに設定して余剰酸素を気筒内に残し、エンジンが正転方向に転じた後の本来の圧縮行程において、圧縮上死点直後に2回目の燃焼が行えるように燃料を噴射させ、圧縮上死点直後に点火するようにしても良い。
特に、エンジン停止時の膨張行程気筒12Aのピストン位置が、始動適正範囲内の上死点側に寄っている場合は、このようにすることが好ましい。
すなわち、エンジン停止時の膨張行程気筒12Aのピストン位置が、始動適正範囲内の上死点側に寄っている場合は、膨張行程気筒12Aの空気容積が少ない側に振れているため、その空気量に対応する燃料噴射量が抑えられ、一方で、膨張行程気筒12Aと逆位相の関係にある圧縮行程気筒12Cにおいては、空気容積が多い側に振れているため、その空気量に対応する燃料噴射量が増大できる関係にあることから、圧縮行程気筒12Cにおいて、逆転動作(膨張行程気筒12Aの空気圧縮)と正転動作との双方で燃焼させるように、1回目用空燃比をリーンとし、2回目用空燃比が理論空燃比以下となるように設定して、正転動作時における膨張行程気筒12Aでの燃焼に続いて、圧縮行程気筒12Cで燃焼させても良い。
また、上記実施形態におけるエンジンの始動装置では、自動停止状態にあるエンジンを再始動させる際に、圧縮行程気筒12Cに第1回目の燃焼を行わせることにより、最初にクランク軸3を少しだけ逆回転させて膨張行程気筒12A内の混合気を圧縮した後に点火するようにしているが、本発明に係るエンジンの始動装置は、これに限るものではなく、膨張行程気筒12Aにおいて初回の燃焼を行わせ、エンジンを一旦逆転させることなく再始動させるように構成してもよい。
またピストン13の適正停止位置R、エンジンの各所定回転速度N1〜N4、スロットル弁23の各所定開度K1,K2および吸気圧力の各所定圧力P1,P2などの設定値は、エンジンの特性等に応じて適宜変更して良い。
本発明に係る始動装置を備えたエンジンの概略断面図である。 エンジンの吸気系および排気系の構成を示す説明図である。 エンジンの停止時に膨張行程および圧縮行程になる気筒のピストン停止位置と空気量との関係を示す説明図である。 エンジン停止時におけるエンジン回転速度の変化状態等を示すタイムチャートである。 図4の部分拡大図であり、さらにクランク角および各気筒の行程推移を示すタイムチャートである。 燃料供給を停止してからのエンジン回転速度の低下度合と、スロットル弁の開度特性との関係を模式的に示す説明図である。 エンジン停止時のエンジン回転速度とピストン停止位置との相関関係を示す分布図である。 エンジン停止前から2番目における上死点回転速度とピストン停止位置との相関関係を示す分布図である。 エンジンの自動停止制御動作の前半部を示すフローチャートである。 エンジンの自動停止制御動作の後半部を示すフローチャートである。 ピストン停止位置の検出制御動作を示すフローチャートである。 クランク角信号に出力信号を示す説明図である。 エンジンの再始動時における制御動作を示すフローチャートである。 エンジンの再始動時における燃焼動作等を示すタイムチャートである。 エンジンの再始動時におけるエンジン回転速度の変化状態等を示すタイムチャートである。
符号の説明
2 ECU(自動停止制御手段)
12A,12B,12C,12D 気筒
23 スロットル弁(吸気流量調節手段)
26 吸気圧センサ(吸気圧力検出手段)
N1 第1所定エンジン回転速度
N2 第2所定エンジン回転速度
N4 第3所定エンジン回転速度
P2 第1所定圧力
t1 第1所定時期
t2 第2所定時期
t4 第3所定時期

Claims (7)

  1. 予め設定されたエンジンの自動停止条件が成立したときに、エンジン運転を継続させるための燃料供給を停止させてエンジンを自動的に停止させるとともに、自動停止状態にあるエンジンの再始動条件が成立したときに、少なくとも膨張行程で停止状態にある気筒に燃料を噴射して点火、燃焼を行わせることによりエンジンを再始動させるように構成されたエンジンの始動装置において、
    エンジンの気筒に吸入される吸気流量を調節する吸気流量調節手段と、
    エンジンを自動停止させる際、第1所定エンジン回転速度で燃料供給を停止し、その後も、少なくとも気筒内に供給された燃料が燃焼するまで点火を継続させるとともに、上記吸気流量調節手段を、自動停止動作の初期の第1所定時期にエンジン運転を継続させるために必要な最小限の吸気流量よりも所定量多い吸気流量状態となるように設定し、その後の第2所定時期に上記吸気流量を減少させるように制御する自動停止制御手段とを備え、
    上記第2所定時期は、上記燃料供給停止後の各気筒における燃焼期間が経過してエンジン回転速度が低下し始めた後の、第2所定エンジン回転速度に到達した時点に設定されることを特徴とするエンジンの始動装置。
  2. 上記第1所定エンジン回転速度が、アイドル回転速度よりも所定速度高い値に設定されていることを特徴とする請求項1記載のエンジンの始動装置。
  3. 上記第2所定エンジン回転速度が、アイドル回転速度よりも高く、上記第1所定エンジン回転速度よりも低い値に設定されていることを特徴とする請求項2記載のエンジンの始動装置。
  4. 上記第1所定時期は、上記燃料供給を停止する時期と略同時として設定されていることを特徴とする請求項1乃至3記載のエンジンの始動装置。
  5. 上記自動停止制御手段は、エンジン回転速度の低下状態から停止直前の最後の圧縮上死点通過時期を判別し、その最後の圧縮上死点通過時期以降に設定される第3所定時期に上記吸気流量を増大させるとともに、上記最後の圧縮上死点通過時期付近のエンジン回転速度が第3所定エンジン回転速度以上のときは、上記第3所定時期になされる吸気流量増大の量を抑制することを特徴とする請求項1乃至4の何れか1項に記載のエンジンの始動装置。
  6. 吸気圧力を検出する吸気圧力検出手段を備え、
    上記自動停止制御手段は、エンジン回転速度の低下状態から停止直前の最後の圧縮上死点通過時期を判別し、その最後の圧縮上死点通過時期以降に設定される第3所定時期に上記吸気流量を増大させるとともに、上記エンジンの自動停止動作中の所定時期における上記吸気圧力検出手段による検出圧力が第1所定圧力以下のときは、上記第3所定時期になされる吸気流量増大の量を抑制することを特徴とする請求項1乃至5の何れか1項に記載のエンジンの始動装置。
  7. 吸気圧力を検出する吸気圧力検出手段を備え、
    上記自動停止制御手段は、エンジン回転速度の低下状態から停止直前の最後の圧縮上死点通過時期を判別し、その最後の圧縮上死点通過時期以降に設定される第3所定時期に上記吸気流量を増大させるとともに、上記最後の圧縮上死点通過時期付近のエンジン回転速度が第3所定エンジン回転速度以上であり、かつ上記エンジンの自動停止動作中の所定時期における上記吸気圧力検出手段による検出圧力が第1所定圧力以下のときは、上記第3所定時期になされる吸気流量増大の量を抑制することを特徴とする請求項1乃至4の何れか1項に記載のエンジンの始動装置。
JP2004095593A 2004-03-29 2004-03-29 エンジンの始動装置 Expired - Lifetime JP4395726B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004095593A JP4395726B2 (ja) 2004-03-29 2004-03-29 エンジンの始動装置
US11/090,309 US7079941B2 (en) 2004-03-29 2005-03-28 Engine starting system
EP05006733.9A EP1582738B1 (en) 2004-03-29 2005-03-29 Engine starting system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004095593A JP4395726B2 (ja) 2004-03-29 2004-03-29 エンジンの始動装置

Publications (2)

Publication Number Publication Date
JP2005282418A true JP2005282418A (ja) 2005-10-13
JP4395726B2 JP4395726B2 (ja) 2010-01-13

Family

ID=35181100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004095593A Expired - Lifetime JP4395726B2 (ja) 2004-03-29 2004-03-29 エンジンの始動装置

Country Status (1)

Country Link
JP (1) JP4395726B2 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007270773A (ja) * 2006-03-31 2007-10-18 Mazda Motor Corp エンジンの始動装置
JP2007278124A (ja) * 2006-04-04 2007-10-25 Mazda Motor Corp エンジンの停止制御装置
JP2008045527A (ja) * 2006-08-21 2008-02-28 Mazda Motor Corp エンジンの制御装置
JP2009062959A (ja) * 2007-09-10 2009-03-26 Mazda Motor Corp ディーゼルエンジンの制御装置
JP2010185312A (ja) * 2009-02-10 2010-08-26 Denso Corp ディーゼルエンジンの制御装置
WO2012001940A1 (en) * 2010-06-30 2012-01-05 Mazda Motor Corporation Starter and starting method of compression self-ignition engine
JP2013113159A (ja) * 2011-11-25 2013-06-10 Mazda Motor Corp 圧縮自己着火式エンジンの始動制御装置
JP2013541663A (ja) * 2010-09-10 2013-11-14 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング 内燃機関を制御するための方法および装置

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007270773A (ja) * 2006-03-31 2007-10-18 Mazda Motor Corp エンジンの始動装置
JP4626557B2 (ja) * 2006-04-04 2011-02-09 マツダ株式会社 エンジンの停止制御装置
JP2007278124A (ja) * 2006-04-04 2007-10-25 Mazda Motor Corp エンジンの停止制御装置
JP2008045527A (ja) * 2006-08-21 2008-02-28 Mazda Motor Corp エンジンの制御装置
JP4737005B2 (ja) * 2006-08-21 2011-07-27 マツダ株式会社 エンジンの制御装置
JP2009062959A (ja) * 2007-09-10 2009-03-26 Mazda Motor Corp ディーゼルエンジンの制御装置
JP2010185312A (ja) * 2009-02-10 2010-08-26 Denso Corp ディーゼルエンジンの制御装置
WO2012001940A1 (en) * 2010-06-30 2012-01-05 Mazda Motor Corporation Starter and starting method of compression self-ignition engine
JP2013530336A (ja) * 2010-06-30 2013-07-25 マツダ株式会社 圧縮自己着火式エンジンの始動装置および始動方法
US9097200B2 (en) 2010-06-30 2015-08-04 Mazda Motor Corporation Starter and starting method of compression self-ignition engine
JP2013541663A (ja) * 2010-09-10 2013-11-14 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング 内燃機関を制御するための方法および装置
JP2015057549A (ja) * 2010-09-10 2015-03-26 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh 内燃機関を制御するための方法および装置
JP2013113159A (ja) * 2011-11-25 2013-06-10 Mazda Motor Corp 圧縮自己着火式エンジンの始動制御装置

Also Published As

Publication number Publication date
JP4395726B2 (ja) 2010-01-13

Similar Documents

Publication Publication Date Title
JP4412025B2 (ja) エンジンの始動装置
JP3772891B2 (ja) エンジンの始動装置
JP3841058B2 (ja) エンジンの始動装置
JP4466437B2 (ja) 車両のエンジン始動装置
JP4395726B2 (ja) エンジンの始動装置
JP3966204B2 (ja) エンジンの始動装置
JP3772890B2 (ja) エンジンの始動装置
JP2009156045A (ja) エンジンの燃料噴射制御装置
JP4254607B2 (ja) エンジンの始動装置
JP3772892B2 (ja) エンジンの始動装置
JP4259375B2 (ja) エンジンの始動装置
JP4329589B2 (ja) エンジンの始動装置
JP4341475B2 (ja) エンジンの始動装置
JP4329591B2 (ja) エンジンの始動装置
JP4293075B2 (ja) 4サイクル多気筒エンジンの始動装置
JP5831168B2 (ja) 圧縮自己着火式エンジンの始動制御装置
JP4341477B2 (ja) エンジンの始動装置
JP2006052695A (ja) エンジンの始動装置
JP4244840B2 (ja) エンジンの始動装置
JP4315056B2 (ja) エンジンの始動装置
JP4577179B2 (ja) 多気筒エンジンの始動装置
JP4363245B2 (ja) エンジンの始動装置
JP4200937B2 (ja) エンジンの始動装置
JP4604948B2 (ja) 多気筒エンジンの始動装置
JP2005273629A (ja) エンジンの始動装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080909

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090924

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091007

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4395726

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131030

Year of fee payment: 4