JP2005281581A - Epoxy resin composition and semiconductor device given by using the same - Google Patents
Epoxy resin composition and semiconductor device given by using the same Download PDFInfo
- Publication number
- JP2005281581A JP2005281581A JP2004099490A JP2004099490A JP2005281581A JP 2005281581 A JP2005281581 A JP 2005281581A JP 2004099490 A JP2004099490 A JP 2004099490A JP 2004099490 A JP2004099490 A JP 2004099490A JP 2005281581 A JP2005281581 A JP 2005281581A
- Authority
- JP
- Japan
- Prior art keywords
- epoxy resin
- resin composition
- silica powder
- less
- particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 0 CC*C(C1)(CC2)OC1(C)CCC2C(C=CC(N)=*)=CC=CC Chemical compound CC*C(C1)(CC2)OC1(C)CCC2C(C=CC(N)=*)=CC=CC 0.000 description 2
Landscapes
- Epoxy Resins (AREA)
- Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
本発明は応力特性に優れた半導体封止用エポキシ樹脂組成物及びそれを用いた半導体装置に関するものである。 The present invention relates to an epoxy resin composition for semiconductor encapsulation excellent in stress characteristics and a semiconductor device using the same.
従来、半導体装置はエポキシ樹脂組成物にて封止されているものが多くを占めてきた。近年の半導体装置は高速化、高機能化などが進んでおり、それに伴って半導体素子にはより大きな応力が掛かるようになってきている。半導体素子の配線間に用いられる層間絶縁層には低誘電性が要求されるようになってきているが、低誘電性を有する層間絶縁層自体が構造的に弱いため、封止材側から掛かる応力に抵抗できずに層間絶縁層を含む配線を構造的に破壊してしまう不具合が生じ、半導体素子としての機能を発揮することができなくなるという点が問題となっている。半導体装置を製造する際に半導体素子にダメージを与えないようにするために、半導体封止用エポキシ樹脂組成物に低弾性特性を付与するシリコーン系化合物を添加する手法(例えば、特許文献1参照。)や低架橋構造を構成するレジンシステムを用いる手法(例えば、特許文献2参照。)等が開示されている。しかしながら、これらの手法を用いても更なる低誘電性を有する素子には対応が困難になりつつあった。 Conventionally, many semiconductor devices have been sealed with an epoxy resin composition. In recent years, semiconductor devices have been increased in speed and functionality, and accordingly, more stress is applied to semiconductor elements. An interlayer insulating layer used between wirings of a semiconductor element is required to have low dielectric properties. However, since the interlayer insulating layer having low dielectric properties itself is structurally weak, it starts from the sealing material side. There is a problem in that a failure of resisting stress and structural destruction of the wiring including the interlayer insulating layer occurs, and the function as a semiconductor element cannot be exhibited. In order to prevent damage to the semiconductor element when manufacturing a semiconductor device, a technique of adding a silicone compound that imparts low elasticity to the epoxy resin composition for semiconductor encapsulation (see, for example, Patent Document 1). ) And a method using a resin system constituting a low-crosslinking structure (for example, see Patent Document 2). However, even if these methods are used, it has become difficult to cope with devices having further low dielectric properties.
本発明は上記のような従来の問題点を解決するためになされたもので、その目的とするところは、低誘電特性を有する素子を用いた半導体装置における組み立て時の発生応力や実装時のリフロー加熱による応力による素子へのダメージを大幅に低減することができるエポキシ樹脂組成物及びこれを用いて製造された半導体装置を提供するものである。 The present invention has been made to solve the above-described conventional problems, and the object of the present invention is to generate stress during assembly and reflow during mounting in a semiconductor device using an element having low dielectric characteristics. An epoxy resin composition capable of significantly reducing damage to elements due to stress caused by heating, and a semiconductor device manufactured using the same are provided.
本発明は、
[1](A)エポキシ樹脂、(B)硬化剤、(C)硬化促進剤及び(D)平均粒径が30μm以下であり、粒径150μm以上の粒子の含有量が全シリカ粉末中の1重量%未満であり、且つ粒径75μm以上の粒子の含有量が全シリカ粉末中の10重量%未満であるシリカ粉末を必須成分とする半導体封止用エポキシ樹脂組成物であり、前記樹脂組成物を硬化成形した成形品の任意の断面においてEPMA(Electron Probe Micro Analyzer)分析を行った際に、Si元素の分布状態のばらつき値が70以下であることを特徴とするエポキシ樹脂組成物、
The present invention
[1] (A) epoxy resin, (B) curing agent, (C) curing accelerator, and (D) the average particle size is 30 μm or less, and the content of particles having a particle size of 150 μm or more is 1 in the total silica powder. An epoxy resin composition for encapsulating a semiconductor comprising as an essential component a silica powder that is less than 10% by weight and the content of particles having a particle diameter of 75 μm or more is less than 10% by weight in the total silica powder, and the resin composition An epoxy resin composition characterized in that when EPMA (Electron Probe Micro Analyzer) analysis is performed on an arbitrary cross section of a molded product obtained by curing and molding, a variation value of Si element distribution state is 70 or less,
[2]前記シリカ粉末が、平均粒径が25μm以下であり、粒径75μm以上の粒子の含有量が全シリカ粉末中の0.5重量%未満であり、且つ粒径53μm以上の粒子の含有量が全シリカ粉末中の1重量%未満であるシリカ粉末である第[1]項記載のエポキシ樹脂組成物、 [2] The silica powder has an average particle size of 25 μm or less, the content of particles having a particle size of 75 μm or more is less than 0.5% by weight in the total silica powder, and contains particles having a particle size of 53 μm or more. The epoxy resin composition according to item [1], wherein the amount is less than 1% by weight of the total silica powder,
[3]前記EPMA分析のSi元素の分散状態のばらつき値が50以下である第[1]又は[2]項記載のエポキシ樹脂組成物、 [3] The epoxy resin composition according to [1] or [2], wherein a dispersion value of a dispersion state of Si element in the EPMA analysis is 50 or less,
[4]前記エポキシ樹脂が一般式(1)で表されるエポキシ樹脂である第[1]、[2]又は[3]項のいずれかに記載のエポキシ樹脂組成物、
[5]前記硬化剤が一般式(2)で表されるフェノール樹脂である第[1]、[2]又は[3]項のいずれかに記載のエポキシ樹脂組成物、
[6]前記エポキシ樹脂が一般式(1)で表されるエポキシ樹脂であり、且つ前記硬化剤が一般式(2)で表されるフェノール樹脂である第[1]、[2]又は[3]項のいずれかに記載のエポキシ樹脂組成物、
[7]第[1]ないし[6]項のいずれかに記載のエポキシ樹脂組成物を用いて半導体素子を封止してなることを特徴とする半導体装置、
である。
[7] A semiconductor device comprising a semiconductor element sealed with the epoxy resin composition according to any one of [1] to [6],
It is.
本発明に従うと、低誘電特性を有する素子を用いた半導体装置における組み立て時の発生応力や実装時のリフロー加熱による応力による素子へのダメージを大幅に低減することができるエポキシ樹脂組成物及びこれを用いて製造された半導体装置が得られる。 According to the present invention, an epoxy resin composition capable of significantly reducing damage to the element due to stress generated during assembly and stress due to reflow heating during mounting in a semiconductor device using an element having low dielectric characteristics, and A semiconductor device manufactured using the same is obtained.
本発明は、低誘電特性の半導体素子を用いた半導体装置において、半導体装置を組み立てる際に発生する応力、及び基盤上に表面実装する際にリフロー加熱により発生する応力を低減するために、エポキシ樹脂組成物の構成成分の分散性に着目し、半導体素子にかかる応力を抑制することができるとの知見をもとになされたものであり、(A)エポキシ樹脂、(B)硬化剤、(C)硬化促進剤及び(D)平均粒径が30μm以下であり、粒径150μm以上の粒子の含有量が全シリカ粉末中の1重量%未満であり、且つ粒径75μm以上の粒子の含有量が全シリカ粉末中の10重量%未満であるシリカ粉末を必須成分とする半導体封止用エポキシ樹脂組成物であり、前記樹脂組成物を硬化成形した成形品の任意の断面においてEPMA(Electron Probe Micro Analyzer)分析を行った際に、Si元素の分布状態のばらつき値が70以下、望ましくは50以下であることが重要な因子であることを見いだしたものである。
以下、本発明に関する詳細について説明する。
The present invention relates to an epoxy resin for reducing a stress generated when a semiconductor device is assembled in a semiconductor device using a semiconductor element having a low dielectric property, and a stress generated by reflow heating when being surface-mounted on a substrate. Focusing on the dispersibility of the constituent components of the composition, it was made based on the knowledge that the stress applied to the semiconductor element can be suppressed. (A) epoxy resin, (B) curing agent, (C The curing accelerator and (D) the average particle size is 30 μm or less, the content of particles having a particle size of 150 μm or more is less than 1% by weight in the total silica powder, and the content of particles having a particle size of 75 μm or more is An epoxy resin composition for encapsulating a semiconductor comprising silica powder that is less than 10% by weight of the total silica powder as an essential component, and EPMA (Electron P) in an arbitrary cross section of a molded product obtained by curing and molding the resin composition. In the analysis of the robe micro analyzer, it was found that the variation value of the distribution state of the Si element is 70 or less, preferably 50 or less, which is an important factor.
Details regarding the present invention will be described below.
本発明に用いるEPMA(Electron Probe Micro Analyzer)分析装置としては、例えば日本電子(株)製JXA−8600Mが挙げられ、その測定条件は例えば以下の通りとすることができる。
加速電圧:15.0kV
フ゜ローフ゛電流:5.0×10-8
分解能 :20μm
測定面積:8.0×8.0mm(400pixel×400pixel)
分析時間:150ms/pixel
測定元素:Si
また、本発明のEPMA分析に用いるエポキシ樹脂組成物の成形品の作成条件は、例えば以下の通りとすることができる。
成形温度:170℃
成形圧力:2.9MPa
成形時間:120秒
上記の条件により得られたエポキシ樹脂組成物の成形品(50φmm、厚み3mm)から約18mm×18mmのサイズに切り出した試料を、エポキシ樹脂系包埋剤で包埋し、観察面を研磨・琢磨後、蒸着を施し、EPMA測定試料とすることができる。
データ解析は、測定Si元素の分布状態を強度として扱い、その強度のばらつき具合を標準偏差として算出することができるものである(上記の条件におけるn数は、160000=400×400)。標準偏差が大きいと成形材料の均質性が少ないことを意味する。
As an EPMA (Electron Probe Micro Analyzer) analyzer used in the present invention, for example, JXA-8600M manufactured by JEOL Ltd. can be mentioned, and the measurement conditions can be as follows, for example.
Acceleration voltage: 15.0kV
Flow current: 5.0 × 10 -8
Resolution: 20 μm
Measurement area: 8.0 × 8.0 mm (400 pixels × 400 pixels)
Analysis time: 150ms / pixel
Measuring element: Si
Moreover, the preparation conditions of the molded article of the epoxy resin composition used for the EPMA analysis of the present invention can be as follows, for example.
Molding temperature: 170 ° C
Molding pressure: 2.9 MPa
Molding time: 120 seconds A sample cut out to a size of about 18 mm × 18 mm from a molded product (50 φmm, thickness 3 mm) of the epoxy resin composition obtained under the above conditions was embedded with an epoxy resin embedding agent and observed After polishing and polishing the surface, vapor deposition is performed to obtain an EPMA measurement sample.
In the data analysis, the distribution state of the measured Si element can be treated as the intensity, and the variation degree of the intensity can be calculated as the standard deviation (n number in the above condition is 160000 = 400 × 400). A large standard deviation means less homogeneity of the molding material.
本発明においては、樹脂組成物を硬化成形した成形品の任意の断面においてEPMA分析を行った際に、Si元素の分布状態のばらつき値が70以下であることが必須であり、より好ましくは50以下である。これは、Si元素の分布状態を表す強度のばらつき値が70を越えると成形品の均質性が悪いことを意味し、そのことにより、低誘電素子に対する局部応力が増大し、素子へのダメージ又は素子自体の破壊につながるものである。
樹脂組成物を硬化成形した成形品の任意の断面においてEPMA分析を行った際に、Si元素の分布状態のばらつき値が70以下となるようにするには、粒径の大きなシリカ粉末の含有量を規定すること、原材料混合時の混合条件や混合物の微粉砕化、凝集防止を目的とした微粉砕工程の導入等により、調整することができる。
In the present invention, when EPMA analysis is performed on an arbitrary cross section of a molded product obtained by curing and molding the resin composition, it is essential that the variation value of the distribution state of the Si element is 70 or less, more preferably 50. It is as follows. This means that when the intensity variation value representing the distribution state of the Si element exceeds 70, the homogeneity of the molded product is poor, thereby increasing the local stress on the low dielectric element, This leads to destruction of the element itself.
When EPMA analysis is performed on an arbitrary cross section of a molded product obtained by curing and molding the resin composition, the content of silica powder having a large particle size is set so that the variation value of the distribution state of Si element is 70 or less. It can be adjusted by mixing conditions for mixing raw materials, fine grinding of the mixture, introduction of a fine grinding process for the purpose of preventing aggregation, and the like.
本発明に用いるシリカ粉末としては、結晶構造を特に限定するものではなく、溶融シリカ粉末、結晶シリカ粉末のいずれも使用可能である。また、その形状としても、特に限定するものではなく、不定形、球形のいずれも使用可能である。しかしながら、本発明に用いるシリカ粉末は、平均粒径が30μm以下であり、粒径150μm以上の粒子の含有量が全シリカ粉末中の1重量%未満であり、且つ粒径75μm以上の粒子の含有量が全シリカ粉末中の10重量%未満であることが必須である。また、好ましくは、シリカ粉末の平均粒径が25μm以下であり、75μm以上の粒子の含有量が全シリカ粉末中の0.5重量%未満であり、且つ53μm以上の粒子の含有量が全シリカ粉末中の1重量%未満である。
これは、平均粒径が大きく、特定粒径以上の粒子が多いと半導体素子にかかる局部的な応力が大きくなり、半導体素子とエポキシ樹脂組成物の硬化物との界面での剥離や、素子の配線層破壊につながるためである。また、本発明に用いるシリカ粉末は、一般的なカップリング剤による処理をはじめ、レジン成分との相溶性を向上させる処理を施しても差し支えない。
本発明に用いるシリカ粉末の含有量としては、特に限定されないが、全エポキシ樹脂組成物中60〜96重量%が好ましく、より好ましくは80〜93重量%である。上記下限値を下回ると十分な耐半田性が得られない可能性があり、上記上限値を超えると十分な流動性が得られない可能性がある。
The silica powder used in the present invention is not particularly limited in crystal structure, and either fused silica powder or crystalline silica powder can be used. Further, the shape is not particularly limited, and either an indefinite shape or a spherical shape can be used. However, the silica powder used in the present invention has an average particle size of 30 μm or less, the content of particles having a particle size of 150 μm or more is less than 1% by weight in the total silica powder, and contains particles having a particle size of 75 μm or more. It is essential that the amount is less than 10% by weight in the total silica powder. Preferably, the average particle diameter of the silica powder is 25 μm or less, the content of particles of 75 μm or more is less than 0.5% by weight in the total silica powder, and the content of particles of 53 μm or more is all silica. Less than 1% by weight in the powder.
This is because when the average particle size is large and there are many particles having a specific particle size or more, the local stress applied to the semiconductor element increases, peeling at the interface between the semiconductor element and the cured product of the epoxy resin composition, This is because the wiring layer is destroyed. Further, the silica powder used in the present invention may be subjected to a treatment for improving the compatibility with the resin component, including a treatment with a general coupling agent.
Although it does not specifically limit as content of the silica powder used for this invention, 60 to 96 weight% is preferable in all the epoxy resin compositions, More preferably, it is 80 to 93 weight%. If the lower limit value is not reached, sufficient solder resistance may not be obtained, and if the upper limit value is exceeded, sufficient fluidity may not be obtained.
本発明に用いるエポキシ樹脂としては、1分子中にエポキシ基を2個以上有するモノマー、オリゴマー、ポリマー全般を言い、その分子量、分子構造は特に限定されるものではないが、例えばフェニレン及び/又はビフェニレン骨格を有するアラルキル型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビスフェノール型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノール型エポキシ樹脂、ナフタレン型エポキシ樹脂、ジシクロペンタジエン変性フェノール型エポキシ樹脂、アルキル変性トリフェノールメタン型エポキシ樹脂、トリアジン核含有エポキシ樹脂等が挙げられ、これらは単独でも混合して用いても差し支えない。その中でも、特に架橋点間距離が長く、強靱性を有しているフェニレン及び/又はビフェニレン骨格を有するフェノールアラルキル型エポキシ樹脂は、IRリフローによる実装時にクラックが発生し難いため好ましく、ビフェニレン骨格を有するアラルキル型エポキシ樹脂がより好ましい。また、樹脂組成物の耐湿性向上のためには、Clイオン、Naイオン等の不純物イオンが極力少ないことが望ましく、また、硬化性の観点からエポキシ当量としては150〜300g/eqが望ましい。 The epoxy resin used in the present invention refers to monomers, oligomers, and polymers in general having two or more epoxy groups in one molecule, and the molecular weight and molecular structure are not particularly limited. For example, phenylene and / or biphenylene Aralkyl epoxy resin having skeleton, biphenyl epoxy resin, bisphenol epoxy resin, phenol novolac epoxy resin, cresol novolac epoxy resin, bisphenol epoxy resin, naphthalene epoxy resin, dicyclopentadiene modified phenol epoxy resin, alkyl Modified triphenol methane type epoxy resin, triazine nucleus-containing epoxy resin and the like can be mentioned, and these may be used alone or in combination. Among them, a phenol aralkyl type epoxy resin having a phenylene and / or biphenylene skeleton having a long toughness between crosslinks and having a toughness is particularly preferable because it hardly causes cracks during mounting by IR reflow, and has a biphenylene skeleton. Aralkyl type epoxy resins are more preferred. Further, in order to improve the moisture resistance of the resin composition, it is desirable that impurity ions such as Cl ions and Na ions are as small as possible. From the viewpoint of curability, the epoxy equivalent is preferably 150 to 300 g / eq.
本発明に用いる硬化剤としては、フェノール系、アミン系、ポリアミノアミド系、酸無水物系が挙げられ、それらの分子構造は特に限定されるものではないが、例えばフェノール系ではフェノールノボラック樹脂、クレゾールノボラック樹脂、ジシクロペンタジエン変性フェノール樹脂、フェニレン及び/又はビフェニレン骨格を有するフェノールアラルキル樹脂、トリフェノールメタン樹脂、テルペン変性フェノール樹脂、トリフェノールメタン型フェノール樹脂等、アミン系では脂肪族ジアミンやポリアミン、芳香族ジアミンやポリアミン等、酸無水物系では脂肪族、脂環式、芳香族系等が挙げられ、ポリアミノアミド系ではポリアミノビスマレイミドおよびその誘導体等が挙げられ、これらは単独でも混合して用いても差し支えない。先に挙げたリフロークラック性の観点より、ビフェニレン骨格を有するフェノールアラルキル樹脂が望ましい。 Examples of the curing agent used in the present invention include phenolic, amine-based, polyaminoamide-based, and acid anhydride-based types, and their molecular structures are not particularly limited. For example, phenolic novolak resins and cresols are used for phenol-based curing agents. Novolak resin, dicyclopentadiene modified phenol resin, phenol aralkyl resin having phenylene and / or biphenylene skeleton, triphenol methane resin, terpene modified phenol resin, triphenol methane type phenol resin, etc., amine type aliphatic diamine, polyamine, aromatic Aliphatic diamines and polyamines, such as aliphatic anhydrides, alicyclics, and aromatics in acid anhydrides, and polyaminobismaleimides and derivatives thereof in polyaminoamides are used alone or in combination. There is no problem. From the viewpoint of the reflow crack property mentioned above, a phenol aralkyl resin having a biphenylene skeleton is desirable.
本発明に用いる硬化促進剤は、エポキシ樹脂と硬化剤の反応を促進するものであればよく、一般に封止材料に使用されているものを利用することができる。例えば、1,8−ジアザビシクロ(5,4,0)ウンデセン−7等のジアザビシクロアルケン及びその誘導体、トリフェニルホスフィン等の有機ホスフィン類、2−メチルイミダゾール等のイミダゾール化合物等があり、これらは単独でも混合して用いてもよい。 The hardening accelerator used for this invention should just accelerate | stimulate reaction of an epoxy resin and a hardening | curing agent, and what is generally used for the sealing material can be utilized. For example, there are diazabicycloalkenes such as 1,8-diazabicyclo (5,4,0) undecene-7 and derivatives thereof, organic phosphines such as triphenylphosphine, imidazole compounds such as 2-methylimidazole, etc. You may use individually or in mixture.
本発明のエポキシ樹脂組成物は、(A)〜(D)成分を必須とするが、これ以外に必要に応じて、シランカップリング剤、難燃剤、難燃助剤、離型剤及びシリコーン系や合成ゴム系の低応力剤等の種々の添加剤、着色剤等を適宜配合しても差し支えない。
本発明のエポキシ樹脂組成物は、例えば(A)〜(D)成分及びその他の添加剤をミキサー等により混合した後、更に熱ロールやニーダー等で溶融混練し、冷却後粉砕して製造すればよい。
Si元素の分散性向上には上記に示したミキサーを用いるだけでなく、バッチ式のボールミルや連続式のボールミルおよびそれに相当する措置を用いると更に分散性を向上させることが可能になる。また、凝集防止には混合後に長時間放置しないことが重要である。具体的には混合後12時間以内に溶融混練工程をおこなうことが望ましい。
The epoxy resin composition of the present invention essentially comprises the components (A) to (D), but in addition to this, a silane coupling agent, a flame retardant, a flame retardant aid, a release agent, and a silicone-based agent In addition, various additives such as a synthetic rubber-based low stress agent, a coloring agent, and the like may be appropriately blended.
The epoxy resin composition of the present invention can be produced by, for example, mixing the components (A) to (D) and other additives with a mixer, etc., further melt-kneading with a hot roll or kneader, etc., cooling and pulverizing. Good.
In order to improve the dispersibility of the Si element, not only the above-described mixer is used but also the dispersibility can be further improved by using a batch-type ball mill, a continuous ball mill, and measures corresponding thereto. In order to prevent aggregation, it is important not to leave it for a long time after mixing. Specifically, it is desirable to perform the melt-kneading step within 12 hours after mixing.
本発明のエポキシ樹脂組成物を用いて半導体装置を製造するには、トランスファーモールド、コンプレッションモールド、インジェクションモールド等の従来からの成形方法で硬化成形すればよい。 In order to manufacture a semiconductor device using the epoxy resin composition of the present invention, it may be cured by a conventional molding method such as transfer molding, compression molding, injection molding or the like.
以下本発明を実施例にて具体的に説明するが、本発明はこれらに限定されるものではない。配合割合は重量部とする。
実施例1
Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. The blending ratio is parts by weight.
Example 1
エポキシ樹脂1:式(3)で示されるビフェニレン骨格を有するフェノールアラルキル型エポキシ樹脂(軟化点58℃、エポキシ当量272g/eq) 8.0重量部
フェノール樹脂1:式(4)で示されるビフェニレン骨格を有するフェノールアラルキル樹脂(軟化点65℃、エポキシ当量200g/eq) 6.0重量部
1,8−ジアザビシクロ(5,4,0)ウンデセン−7(以下、DBUという)
0.2重量部
溶融シリカ粉末1(平均粒径20μm、粒径150μm以上の粒子の配合割合0.1重量%未満、粒径75μm以上の粒子の配合割合0.5重量%、球状) 85.5重量部
カルナバワックス 0.3重量部
をミキサーにて常温混合し、80〜110℃で二軸混練機により混練し、冷却後粉砕しエポキシ樹脂組成物を得た。評価結果を表1に示す。
1,8-diazabicyclo (5,4,0) undecene-7 (hereinafter referred to as DBU)
0.2 parts by weight Fused silica powder 1 (average particle size 20 μm, blending ratio of particles having a particle diameter of 150 μm or more, less than 0.1 wt%, blending ratio of particles having a particle diameter of 75 μm or more, 0.5 wt%, spherical) 85. 5 parts by weight Carnauba wax 0.3 parts by weight was mixed at room temperature with a mixer, kneaded with a biaxial kneader at 80 to 110 ° C., cooled and ground to obtain an epoxy resin composition. The evaluation results are shown in Table 1.
評価方法
EPMA分散性:日本電子(株)製JXA−8600Mを用いて、下記の測定条件で測定を行なった。
加速電圧:15.0kV
フ゜ローフ゛電流:5.0×10-8
分解能 :20μm
測定面積:8.0×8.0mm(400pixel×400pixel)
分析時間:150ms/pixel
測定元素:Si
エポキシ樹脂組成物の成形品は、下記の成形条件で作成した。
成形温度:170℃
成形圧力:2.9MPa
成形時間:120秒
上記の条件により作成したエポキシ樹脂組成物の成形品(50φmm、厚み3mm)を約18mm×18mmのサイズに切り出した試料を、エポキシ樹脂系包埋剤で包埋し、観察面を研磨・琢磨後、蒸着を施し、EPMA測定試料とした。
分散性のデータ解析は、Si元素の分布状態を強度として扱い、その強度のばらつき具合を標準偏差として算出したものを用いた。ここで、測定のn数は16万とした。
Evaluation method EPMA dispersibility: Measurement was performed using JXA-8600M manufactured by JEOL Ltd. under the following measurement conditions.
Acceleration voltage: 15.0kV
Flow current: 5.0 × 10 -8
Resolution: 20 μm
Measurement area: 8.0 × 8.0 mm (400 pixels × 400 pixels)
Analysis time: 150ms / pixel
Measuring element: Si
The molded article of the epoxy resin composition was created under the following molding conditions.
Molding temperature: 170 ° C
Molding pressure: 2.9 MPa
Molding time: 120 seconds A sample obtained by cutting an epoxy resin composition molded product (50φ mm, thickness 3 mm) prepared under the above conditions into a size of about 18 mm × 18 mm is embedded with an epoxy resin embedding agent, and the observation surface After polishing and polishing, vapor deposition was performed to obtain an EPMA measurement sample.
In the data analysis of dispersibility, the distribution state of Si element was treated as intensity, and the intensity variation was calculated as standard deviation. Here, the n number of measurement was 160,000.
耐半田性:金型温度175℃、注入圧力7.3MPa、硬化時間1分の成形条件でエポキシ樹脂組成物を100pTQFP(半導体素子のサイズは8.0×8.0mm、リードフレームはCuアロイ製)を成形し、175℃、8時間で後硬化した。得られたパッケージを、85℃、相対湿度85%で168時間加湿処理し、その後240℃の半田槽に10秒間浸漬した。半導体素子とエポキシ樹脂組成物の硬化物との界面の剥離の有無、及び素子配線層の破壊の有無を顕微鏡により観察した(n=10)。半導体素子と樹脂組成物の硬化物との界面の剥離については剥離面積が20%を越えたものを不合格とし、素子配線層の破壊については破壊が見られたものを不合格とした。 Solder resistance: 100 pTQFP of epoxy resin composition under molding conditions of mold temperature of 175 ° C., injection pressure of 7.3 MPa, curing time of 1 minute (the size of the semiconductor element is 8.0 × 8.0 mm, the lead frame is made of Cu alloy) ) And post-cured at 175 ° C. for 8 hours. The obtained package was humidified for 168 hours at 85 ° C. and 85% relative humidity, and then immersed in a solder bath at 240 ° C. for 10 seconds. The presence or absence of peeling of the interface between the semiconductor element and the cured product of the epoxy resin composition and the presence or absence of destruction of the element wiring layer were observed with a microscope (n = 10). Regarding the peeling of the interface between the semiconductor element and the cured product of the resin composition, the peeling area exceeding 20% was rejected, and the breaking of the element wiring layer was rejected.
実施例2〜5、比較例1〜3
表1に示す割合で各成分を配合し、実施例1と同様にしてエポキシ樹脂組成物を得、実施例1と同様にして評価した。結果を表1に示す。
実施例5
実施例4の配合において、同一配合の成分をミキサーにて常温混合し、ボールミルを用いて混合物を微粉砕混合し、作製後6時間後に80〜110℃で二軸混練機により混練し、冷却後粉砕しエポキシ樹脂組成物を得た。評価結果を表1に示す。
Examples 2-5, Comparative Examples 1-3
Each component was mix | blended in the ratio shown in Table 1, the epoxy resin composition was obtained like Example 1, and it evaluated similarly to Example 1. FIG. The results are shown in Table 1.
Example 5
In the compounding of Example 4, the components of the same compounding were mixed at room temperature with a mixer, the mixture was finely pulverized and mixed using a ball mill, kneaded with a twin-screw kneader at 80 to 110 ° C. 6 hours after preparation, and after cooling An epoxy resin composition was obtained by pulverization. The evaluation results are shown in Table 1.
実施例1以外で用いた成分について、以下に示す。
エポキシ樹脂2:ビフェニル型エポキシ樹脂(JSR製YX4000H、軟化点109℃、エポキシ当量190)
エポキシ樹脂3:ジシクロペンタジエン型エポキシ樹脂(大日本インキ製HP−7200、軟化点60℃、エポキシ当量263)
フェノール樹脂2:フェニレン骨格を有するフェノールアラルキル樹脂(三井化学製XL225−LL、軟化点75℃、水酸基当量174)
溶融シリカ粉末2(平均粒径13μm、粒径150μm以上の粒子の配合割合0.1重量%、粒径75μm以上の粒子の配合割合2.0重量%、不定形)
溶融シリカ粉末3(平均粒径28μm、粒径150μm以上の粒子の配合割合0.1重量%、粒径75μm以上の粒子の配合割合1.0重量%、球状)
溶融シリカ粉末4(平均粒径15μm、粒径150μm以上の粒子の配合割合0.1重量%未満、粒径75μm以上の粒子の配合割合0.1重量%未満、粒径53μm以上の粒子の配合割合0.5重量%、球状)
溶融シリカ粉末5(平均粒径40μm、粒径150μm以上の粒子の配合割合2重量%、粒径75μm以上の粒子の配合割合13重量%、球状)
溶融シリカ粉末6(平均粒径18μm、粒径150μm以上の粒子の配合割合2重量%、粒径75μm以上の粒子の配合割合8重量%、不定形)
溶融シリカ粉末7(平均粒径28μm、粒径150μm以上の粒子の配合割合0.5重量%、粒径75μm以上の粒子の配合割合12重量%、球状)
The components used in other than Example 1 are shown below.
Epoxy resin 2: biphenyl type epoxy resin (YSR 4000H manufactured by JSR, softening point 109 ° C., epoxy equivalent 190)
Epoxy resin 3: dicyclopentadiene type epoxy resin (HP-7200, manufactured by Dainippon Ink, softening point 60 ° C., epoxy equivalent 263)
Phenol resin 2: Phenol aralkyl resin having a phenylene skeleton (Mitsui Chemicals XL225-LL, softening point 75 ° C., hydroxyl equivalent 174)
Fused silica powder 2 (average particle size of 13 μm, particle content of 150 μm or larger, 0.1% by weight, particle size of 75 μm or larger, 2.0% by weight, irregular)
Fused silica powder 3 (average particle size 28 μm, mixing ratio 0.1% by weight of particles having a particle diameter of 150 μm or more, mixing ratio 1.0% by weight of particles having a particle diameter of 75 μm or more, spherical)
Fused silica powder 4 (mixing ratio of particles having an average particle diameter of 15 μm, particle diameter of 150 μm or more, less than 0.1 wt%, mixing ratio of particles of particle diameter of 75 μm or more, mixing of particles having a particle diameter of 53 μm or more (0.5% by weight, spherical)
Fused silica powder 5 (average particle size 40 μm, mixing ratio of particles having a particle diameter of 150 μm or more 2% by weight, mixing ratio of particles having a particle diameter of 75 μm or more, spherical)
Fused silica powder 6 (average particle size 18 μm, mixing ratio 2% by weight of particles having particle diameter 150 μm or more, mixing ratio 8% by weight of particles having particle diameter 75 μm or more, irregular shape)
Fused silica powder 7 (average particle size 28 μm, mixing ratio of particles of particle size 150 μm or more 0.5 wt%, mixing ratio of particles of particle diameter 75 μm or more, spherical)
本発明に従うと、低誘電特性を有する素子を用いた半導体装置における組み立て時の発生応力や実装時のリフロー加熱による応力による素子へのダメージを大幅に低減することができるエポキシ樹脂組成物、及びこれを用いて製造された半導体装置が得られるため、通信用、パソコン用などの産業用途を始め民生用等の半導体装置等に好適に用いることができるものである。 According to the present invention, an epoxy resin composition capable of significantly reducing damage to an element due to stress generated during assembly or stress due to reflow heating during mounting in a semiconductor device using an element having low dielectric characteristics, and the same Therefore, it can be suitably used for semiconductor devices for consumer use such as industrial use such as communication and personal computers.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004099490A JP2005281581A (en) | 2004-03-30 | 2004-03-30 | Epoxy resin composition and semiconductor device given by using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004099490A JP2005281581A (en) | 2004-03-30 | 2004-03-30 | Epoxy resin composition and semiconductor device given by using the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005281581A true JP2005281581A (en) | 2005-10-13 |
Family
ID=35180323
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004099490A Pending JP2005281581A (en) | 2004-03-30 | 2004-03-30 | Epoxy resin composition and semiconductor device given by using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005281581A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007191521A (en) * | 2006-01-17 | 2007-08-02 | Somar Corp | Epoxy resin composition and epoxy resin varnish, bonding sheet and cover-lay film by using the same |
JP2012251151A (en) * | 2012-07-17 | 2012-12-20 | Somar Corp | Epoxy resin composition and epoxy resin varnish, bonding sheet and cover-lay film using the same |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001151988A (en) * | 1999-11-26 | 2001-06-05 | Sumitomo Bakelite Co Ltd | Epoxy resin composition and semiconductor device |
JP2003096159A (en) * | 2001-09-19 | 2003-04-03 | Sumitomo Bakelite Co Ltd | Epoxy resin composition and semiconductor device |
JP2003171445A (en) * | 2001-06-06 | 2003-06-20 | Sumitomo Bakelite Co Ltd | Epoxy resin composition and semiconductor device |
JP2003213084A (en) * | 2002-01-28 | 2003-07-30 | Sumitomo Bakelite Co Ltd | Epoxy resin composition and semiconductor device |
JP2003261746A (en) * | 2002-03-11 | 2003-09-19 | Kyocera Chemical Corp | Resin composition for sealing and sealed electronic device |
-
2004
- 2004-03-30 JP JP2004099490A patent/JP2005281581A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001151988A (en) * | 1999-11-26 | 2001-06-05 | Sumitomo Bakelite Co Ltd | Epoxy resin composition and semiconductor device |
JP2003171445A (en) * | 2001-06-06 | 2003-06-20 | Sumitomo Bakelite Co Ltd | Epoxy resin composition and semiconductor device |
JP2003096159A (en) * | 2001-09-19 | 2003-04-03 | Sumitomo Bakelite Co Ltd | Epoxy resin composition and semiconductor device |
JP2003213084A (en) * | 2002-01-28 | 2003-07-30 | Sumitomo Bakelite Co Ltd | Epoxy resin composition and semiconductor device |
JP2003261746A (en) * | 2002-03-11 | 2003-09-19 | Kyocera Chemical Corp | Resin composition for sealing and sealed electronic device |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007191521A (en) * | 2006-01-17 | 2007-08-02 | Somar Corp | Epoxy resin composition and epoxy resin varnish, bonding sheet and cover-lay film by using the same |
JP2012251151A (en) * | 2012-07-17 | 2012-12-20 | Somar Corp | Epoxy resin composition and epoxy resin varnish, bonding sheet and cover-lay film using the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI527854B (en) | Epoxy resin composition and semiconductor device | |
JP4890063B2 (en) | Resin composition, varnish obtained using this resin composition, film adhesive and copper foil with film adhesive | |
EP3184588A1 (en) | Liquid epoxy resin composition | |
JP5622267B2 (en) | Adhesive resin composition, cured product thereof, and adhesive film | |
JP2005281581A (en) | Epoxy resin composition and semiconductor device given by using the same | |
JP2002309067A (en) | Epoxy resin composition for sealing and semiconductor device | |
JP2006282700A (en) | Pre-kneaded composition, epoxy resin composition for sealing semiconductor and semiconductor device | |
JP2595854B2 (en) | Epoxy resin composition and cured product thereof | |
JP2003327792A (en) | Sealing resin composition and sealed semiconductor device | |
KR20180123976A (en) | Epoxy resin composition and semiconductor device | |
JPH0588904B2 (en) | ||
JP3013511B2 (en) | Epoxy resin composition for semiconductor encapsulation | |
JP4040370B2 (en) | Epoxy resin composition and semiconductor device | |
JP3093051B2 (en) | Epoxy resin composition | |
JP2006022188A (en) | Epoxy resin composition and method for producing the same and semiconductor device | |
JP2007084624A (en) | Preliminarily kneaded composition, semiconductor sealing epoxy resin composition, and semiconductor device | |
JPH07107123B2 (en) | Epoxy resin composition | |
JP2009029904A (en) | Resin composition for sealing semiconductor and resin-sealed semiconductor device | |
JPH07107122B2 (en) | Epoxy resin composition | |
JP3317473B2 (en) | Epoxy resin composition | |
JP3093050B2 (en) | Epoxy resin composition | |
JPH06107772A (en) | Epoxy resin composition | |
JPH05343570A (en) | Epoxy resin composition | |
JP2004083764A (en) | Epoxy resin composition for semiconductor sealing and semiconductor device | |
JPH06100658A (en) | Epoxy resin composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070112 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090609 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100216 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20100629 |