JP2005281513A - Resin composition, prepreg and laminate sheet - Google Patents

Resin composition, prepreg and laminate sheet Download PDF

Info

Publication number
JP2005281513A
JP2005281513A JP2004097823A JP2004097823A JP2005281513A JP 2005281513 A JP2005281513 A JP 2005281513A JP 2004097823 A JP2004097823 A JP 2004097823A JP 2004097823 A JP2004097823 A JP 2004097823A JP 2005281513 A JP2005281513 A JP 2005281513A
Authority
JP
Japan
Prior art keywords
resin
resin composition
prepreg
weight
cyanate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004097823A
Other languages
Japanese (ja)
Other versions
JP4517699B2 (en
Inventor
Tadasuke Endo
忠相 遠藤
Takeshi Hozumi
猛 八月朔日
Takayuki Baba
孝幸 馬場
Masataka Arai
政貴 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2004097823A priority Critical patent/JP4517699B2/en
Publication of JP2005281513A publication Critical patent/JP2005281513A/en
Application granted granted Critical
Publication of JP4517699B2 publication Critical patent/JP4517699B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Reinforced Plastic Materials (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a resin composition capable of producing a laminate sheet superior in hardenability, low thermal expansion coefficient, low dielectric constant and heat resistance, a prepreg using the same and a laminate sheet. <P>SOLUTION: This resin composition is used for use in formation of the prepreg in a sheet form by impregnation of the resin composition into a substrate. The resin composition comprises a cyanate resin and/or its prepolymer, an epoxy resin containing substantially no halogen atom, an imidazole compound of 15% or less weight loss by sublimation or decomposition at 200°C and an inorganic filler. The prepreg produced by impregnation of the resin composition into the substrate and the laminate sheet produced by molding the prepreg are provided. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、樹脂組成物、プリプレグおよび積層板に関するものである。   The present invention relates to a resin composition, a prepreg, and a laminate.

半導体の分野では、高密度実装技術の進歩から、従来の面実装からエリア実装に移行していくトレンドが進行し、BGA(ボールグリッドアレイ)やCSP(チップスケールパッケージ)など新しいパッケージが増加しつつある。また情報伝達速度の高速化も進んでいる。
このため、以前にも増してインターポーザ用リジッド基板が注目されるようになり、高耐熱、低熱膨張、低誘電基板の要求が高まってきている。
In the semiconductor field, the trend of shifting from conventional surface mounting to area mounting has progressed due to advances in high-density mounting technology, and new packages such as BGA (ball grid array) and CSP (chip scale package) are increasing. is there. The speed of information transmission is also increasing.
For this reason, the rigid substrate for interposers has been attracting more attention than ever before, and the demand for high heat resistance, low thermal expansion, and low dielectric substrate is increasing.

さらに近年、電子機器の高機能化等の要求に伴い、電子部品の高密度集積化、更には高密度実装化等が進んでおり、これらに使用される高密度実装対応のプリント配線板等は、従来にも増して、小型化かつ高密度化が進んでいる。このプリント配線板等の高密度化への対応としてビルドアップ多層配線板が多く採用されている。   Furthermore, in recent years, with the demand for higher functionality of electronic devices, etc., the integration of electronic components has been increased, and further, the mounting of high density has been progressing. More than ever, miniaturization and higher density are progressing. Many build-up multilayer wiring boards have been adopted as a countermeasure for increasing the density of such printed wiring boards.

しかし、ビルドアップ多層配線板による方法では、微細なビアにより層間接続されるので接続強度が低下するため、高温多湿雰囲気中での機械的、電気的な接続信頼性を保持することが困難であるという問題点があった。   However, in the method using the build-up multilayer wiring board, since the interlayer connection is made by fine vias, the connection strength is lowered, so that it is difficult to maintain the mechanical and electrical connection reliability in a high temperature and high humidity atmosphere. There was a problem.

このような目的を達成するためには、基板に用いられる樹脂の高耐熱化、低線膨張性化が有効な手段であり、耐熱性に優れる樹脂としてシアネート樹脂が用いられ、また、シアネート樹脂の反応を促進するためにイミダゾール化合物が用いられる。これにより、得られる絶縁層の低熱膨張性、低誘電性、低吸水性を発現させることができる(例えば、特許文献1参照。)。
しかし、イミダゾール化合物は一般的に昇華温度が低いため、樹脂組成物を基材に含浸・乾燥させてプリプレグを製造する際に昇華しやすく、シアネート樹脂等の硬化反応の促進作用が得られない場合があった。
In order to achieve such an object, high heat resistance and low linear expansion of the resin used for the substrate are effective means, and cyanate resin is used as a resin having excellent heat resistance. An imidazole compound is used to accelerate the reaction. Thereby, the low thermal expansion property, the low dielectric property, and the low water absorption of the insulating layer obtained can be expressed (for example, refer patent document 1).
However, since imidazole compounds generally have a low sublimation temperature, they tend to sublime when a prepreg is produced by impregnating and drying a resin composition on a base material, and a curing reaction such as cyanate resin cannot be promoted. was there.

特開2003−253018号公報JP 2003-253018 A

本発明は、硬化性に優れ、低熱膨張率、低誘電率、耐熱性を有する積層板を製造することができる樹脂組成物、及び、これを用いたプリプレグ、積層板を提供するものである。   The present invention provides a resin composition that is excellent in curability and can produce a laminate having a low coefficient of thermal expansion, a low dielectric constant, and heat resistance, and a prepreg and laminate using the resin composition.

このような目的は、下記(1)〜(6)に記載の本発明により達成される。
(1)基材に含浸させてシート状のプリプレグを形成するために用いる樹脂組成物であって、シアネート樹脂および/またはそのプレポリマーと、実質的にハロゲン原子を含まないエポキシ樹脂と、200℃における昇華、分解による重量減少が15%以下であるイミダゾール化合物と、無機充填材とを含有することを特徴とする樹脂組成物。
(2)上記シアネート樹脂は、ノボラック型シアネートである上記(1)に記載の樹脂組成物。
(3)上記エポキシ樹脂は、アリールアルキレン型エポキシ樹脂である上記(1)又は(2)に記載の樹脂組成物。
(4)上記イミダゾール化合物の含有量は、シアネート樹脂とエポキシ樹脂の合計重量に
対して0.05〜5重量%である上記(1)ないし(3)のいずれかに記載の樹脂組成物。
(5)上記(1)ないし(4)のいずれかに記載の樹脂組成物を基材に含浸させてなることを特徴とするプリプレグ。
(6)上記(5)に記載のプリプレグを成形してなることを特徴とする積層板。
Such an object is achieved by the present invention described in the following (1) to (6).
(1) A resin composition used for impregnating a base material to form a sheet-like prepreg, which is a cyanate resin and / or a prepolymer thereof, an epoxy resin substantially free of halogen atoms, and 200 ° C. A resin composition characterized by containing an imidazole compound having a weight loss of 15% or less due to sublimation and decomposition, and an inorganic filler.
(2) The said cyanate resin is a resin composition as described in said (1) which is a novolak-type cyanate.
(3) The said epoxy resin is a resin composition as described in said (1) or (2) which is an aryl alkylene type epoxy resin.
(4) The resin composition according to any one of (1) to (3), wherein the content of the imidazole compound is 0.05 to 5% by weight with respect to the total weight of the cyanate resin and the epoxy resin.
(5) A prepreg obtained by impregnating a base material with the resin composition according to any one of (1) to (4).
(6) A laminate obtained by molding the prepreg as described in (5) above.

本発明によれば、硬化性に優れ、低膨張率、低誘電率、高耐熱性を有する積層板を製造することができる樹脂組成物、及び、これを用いたプリプレグと積層板を得ることができる。   According to the present invention, it is possible to obtain a resin composition that can produce a laminate having excellent curability, low expansion coefficient, low dielectric constant, and high heat resistance, and a prepreg and laminate using the same. it can.

以下、本発明の樹脂組成物、プリプレグおよび積層板について詳細に説明する。
本発明の樹脂組成物は、基材に含浸させてシート状のプリプレグを形成するために用いる樹脂組成物であって、シアネート樹脂および/またはそのプレポリマーと、実質的にハロゲン原子を含まないエポキシ樹脂と、200℃における昇華、分解による重量減少が15%以下であるイミダゾール化合物と、無機充填材とを含有することを特徴とする。
また、本発明のプリプレグは、上記本発明の樹脂組成物を基材に含浸させてなることを特徴とする。
そして、本発明の積層板は、上記本発明のプリプレグを成形してなることを特徴とする。
Hereinafter, the resin composition, prepreg and laminate of the present invention will be described in detail.
The resin composition of the present invention is a resin composition used for impregnating a base material to form a sheet-like prepreg, and is an epoxy substantially free of a halogen atom and a cyanate resin and / or a prepolymer thereof. It contains a resin, an imidazole compound whose weight loss due to sublimation and decomposition at 200 ° C. is 15% or less, and an inorganic filler.
Moreover, the prepreg of the present invention is characterized in that a base material is impregnated with the resin composition of the present invention.
And the laminated board of this invention shape | molds the said prepreg of this invention, It is characterized by the above-mentioned.

まず、本発明の樹脂組成物について説明する。
本発明の樹脂組成物では、シアネート樹脂を用いる。これにより、低誘電特性、低熱膨張性を向上させることができる。
上記シアネート樹脂としては、シアネート基を有する樹脂であれば特に限定されるものではないが、例えば、ノボラック型シアネート樹脂、ビスフェノールA型シアネート樹脂、ビスフェノールE型シアネート樹脂、ビスフェノールF型シアネート樹脂等が挙げられる。これらの中でも、下記一般式(I)で示されるノボラックシアネート樹脂を含むことが好ましい。これにより、ガラス転移温度を高くすることができ、硬化後の樹脂特性や難燃性をより向上することができる。
First, the resin composition of the present invention will be described.
In the resin composition of the present invention, a cyanate resin is used. Thereby, low dielectric properties and low thermal expansion can be improved.
The cyanate resin is not particularly limited as long as it has a cyanate group, and examples thereof include novolak type cyanate resin, bisphenol A type cyanate resin, bisphenol E type cyanate resin, and bisphenol F type cyanate resin. It is done. Among these, it is preferable that the novolak cyanate resin shown by the following general formula (I) is included. Thereby, a glass transition temperature can be made high and the resin characteristic and flame retardance after hardening can be improved more.

Figure 2005281513
Figure 2005281513

上記一般式(I)で示されるノボラック型シアネート樹脂の重量平均分子量は特に限定されないが、500〜4,500が好ましく、特に600〜3,000が好ましい。ノボラック型シアネート樹脂の重量平均分子量が上記下限値未満であると機械的強度が低下す
る場合があり、上記上限値を超えると樹脂組成物の硬化速度が速いため保存性が低下する場合がある。
上記ノボラック型シアネート樹脂は、例えばノボラック樹脂と塩化シアン、臭化シアン等の化合物とを反応させることで得ることができる。また、このようにして調製された市販品を用いることもできる。
The weight average molecular weight of the novolak cyanate resin represented by the general formula (I) is not particularly limited, but is preferably 500 to 4,500, and particularly preferably 600 to 3,000. When the weight average molecular weight of the novolak-type cyanate resin is less than the lower limit, the mechanical strength may be lowered, and when the upper limit is exceeded, the curing rate of the resin composition is high and the storage stability may be lowered.
The novolak-type cyanate resin can be obtained, for example, by reacting a novolak resin with a compound such as cyanogen chloride or cyanogen bromide. Moreover, the commercial item prepared in this way can also be used.

また、上記シアネート樹脂をプレポリマー化したものも成形性、流動性を調整するために好ましく使用され、本発明のシアネート樹脂に含まれるものである。
プレポリマー化は、通常加熱溶融して行われる。本発明でプレポリマーとは、例えば3量化率が20〜50%のものをいう。
上記3量化率は、例えば赤外分光分析装置を用いて求めることができる。なお、シアネート樹脂と上記シアネート樹脂をプレポリマー化したものとを併用しても構わない。
Moreover, what prepolymerized the said cyanate resin is preferably used in order to adjust a moldability and fluidity | liquidity, and is contained in the cyanate resin of this invention.
The prepolymerization is usually performed by heating and melting. In the present invention, the prepolymer refers to one having a trimerization rate of 20 to 50%, for example.
The trimerization rate can be determined using, for example, an infrared spectroscopic analyzer. In addition, you may use together cyanate resin and what prepolymerized the said cyanate resin.

上記シアネート樹脂の含有量は特に限定されないが、樹脂組成物全体に対して、5〜70重量%が好ましく、特に10〜60重量%が好ましい。含有量が上記下限値未満であると、低誘電特性を向上させる効果が低下する場合があり、上記上限値を超えると反応を制御するのが困難となり成形性が低下する場合がある。   Although content of the said cyanate resin is not specifically limited, 5-70 weight% is preferable with respect to the whole resin composition, and 10-60 weight% is especially preferable. If the content is less than the lower limit, the effect of improving the low dielectric properties may be reduced. If the content exceeds the upper limit, it may be difficult to control the reaction and formability may be reduced.

本発明の樹脂組成物では、実質的にハロゲン原子を含まないエポキシ樹脂を用いる。これにより、吸水率を低下させることができる。ここで、実質的にハロゲン原子を含まないとは、例えばエポキシ樹脂中のハロゲン原子の含有量が1重量%以下のものをいう。
エポキシ樹脂としては、例えばフェノールノボラック型エポキシ樹脂、ビスフェノール型エポキシ樹脂、ナフタレン型エポキシ樹脂、アリールアルキレン型エポキシ樹脂等が挙げられる。これらの中でもアリールアルキレン型エポキシ樹脂が好ましい。これにより、難燃性、吸湿半田耐熱性を向上することができる。
In the resin composition of the present invention, an epoxy resin containing substantially no halogen atom is used. Thereby, a water absorption rate can be reduced. Here, the phrase “substantially free of halogen atoms” means, for example, that the content of halogen atoms in the epoxy resin is 1% by weight or less.
Examples of the epoxy resin include phenol novolac type epoxy resin, bisphenol type epoxy resin, naphthalene type epoxy resin, arylalkylene type epoxy resin and the like. Among these, aryl alkylene type epoxy resins are preferable. Thereby, a flame retardance and moisture absorption solder heat resistance can be improved.

アリールアルキレン型エポキシ樹脂とは、繰り返し単位中に一つ以上のアリールアルキレン基を有するエポキシ樹脂をいう。例えばキシリレン型エポキシ樹脂、ビフェニルジメチレン型エポキシ樹脂等が挙げられる。これらの中でもビフェニルジメチレン型エポキシ樹脂が好ましい。ビフェニルジメチレン型エポキシ樹脂は、例えば下記一般式(II)で示すものを用いることができる。   The aryl alkylene type epoxy resin refers to an epoxy resin having one or more aryl alkylene groups in a repeating unit. For example, a xylylene type epoxy resin, a biphenyl dimethylene type epoxy resin, etc. are mentioned. Among these, a biphenyl dimethylene type epoxy resin is preferable. As the biphenyldimethylene type epoxy resin, for example, those represented by the following general formula (II) can be used.

Figure 2005281513
Figure 2005281513

上記一般式(II)で示されるビフェニルジメチレン型エポキシ樹脂のnは、特に限定されないが、1〜10が好ましく、特に2〜5が好ましい。これより少ないとビフェニルジメチレン型エポキシ樹脂は結晶化しやすくなり、汎用溶媒に対する溶解性が比較的低下するため、取り扱いが困難となる場合がある。また、これより多いと樹脂の流動性が低下し、成形不良等の原因となる場合がある。   Although n of the biphenyl dimethylene type epoxy resin represented by the general formula (II) is not particularly limited, 1 to 10 is preferable, and 2 to 5 is particularly preferable. If the amount is less than this, the biphenyldimethylene type epoxy resin is easily crystallized, and the solubility in a general-purpose solvent is relatively lowered, which may make handling difficult. Moreover, when more than this, the fluidity | liquidity of resin will fall and it may become a cause of a molding defect.

上記エポキシ樹脂の含有量は特に限定されないが、樹脂組成物全体に対して5〜60重量%が好ましく、特に15〜55重量%が好ましい。含有量が上記下限値未満であると密着性を向上させる効果が低下する場合があり、上記上限値を超えると低熱膨張性が充分に付与できないことがある。   Although content of the said epoxy resin is not specifically limited, 5 to 60 weight% is preferable with respect to the whole resin composition, and 15 to 55 weight% is especially preferable. If the content is less than the above lower limit, the effect of improving adhesion may be reduced, and if it exceeds the upper limit, low thermal expansion may not be sufficiently imparted.

上記エポキシ樹脂の重量平均分子量は、特に限定されないが、重量平均分子量が4,000以下であることが好ましく、さらに500〜4,000が好ましく、特に600〜3,000が好ましい。重量平均分子量が上記下限値未満であると、プリプレグにタックが生じる場合があり、上記上限値を超えると半田耐熱性が低下する場合がある。   The weight average molecular weight of the epoxy resin is not particularly limited, but the weight average molecular weight is preferably 4,000 or less, more preferably 500 to 4,000, and particularly preferably 600 to 3,000. When the weight average molecular weight is less than the above lower limit value, tackiness may occur in the prepreg, and when the upper limit value is exceeded, solder heat resistance may be reduced.

本発明の樹脂組成物では、200℃で昇華、分解による重量減少が15%以下であるイミダゾール化合物を用いる。これにより、樹脂組成物の諸特性を低下させることなく、上記シアネート樹脂やエポキシ樹脂の反応を促進することができ、硬化性に優れたものとすることができる。このような目的のためには、上記重量減少が10%以下であることがさらに好ましい。
200℃で昇華、分解による重量減少が15%以下であるイミダゾール化合物としては、例えば、1−ベンジルー2−フェニルイミダゾール、2,4−ジアミノ−6−(2’−ウンデシルイミダゾリル)−エチル−s−トリアジン、2−フェニルイミダゾール、2−フェニル−4−メチル−5−ヒドルキシメチルイミダゾール等を挙げることができる。
これらの中でも、特に1−ベンジルー2−フェニルイミダゾールが好ましい。これにより、樹脂組成物を含浸し、乾燥させる際にイミダゾールの昇華を抑制することができ、樹脂組成物の耐熱性を向上させ、得られる絶縁層の熱膨張率、誘電率を低下させることができる。
In the resin composition of the present invention, an imidazole compound having a weight loss by sublimation and decomposition at 200 ° C. of 15% or less is used. Thereby, the reaction of the cyanate resin or the epoxy resin can be promoted without deteriorating various properties of the resin composition, and the curability can be improved. For this purpose, it is more preferable that the weight reduction is 10% or less.
Examples of imidazole compounds that sublimate at 200 ° C. and have a weight loss of 15% or less due to decomposition include 1-benzyl-2-phenylimidazole, 2,4-diamino-6- (2′-undecylimidazolyl) -ethyl-s -Triazine, 2-phenylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole and the like can be mentioned.
Among these, 1-benzyl-2-phenylimidazole is particularly preferable. Thereby, when the resin composition is impregnated and dried, sublimation of imidazole can be suppressed, the heat resistance of the resin composition can be improved, and the thermal expansion coefficient and dielectric constant of the resulting insulating layer can be reduced. it can.

ここで、200℃における昇華、分解による重量減少量は、TGA(熱重量測定装置)を用い、50℃を基準として、試料を10℃/分で昇温させたときの、200℃における重量減少を測定したものである。
上記の方法で測定した場合、上記イミダゾール化合物の重量減少率はそれぞれ、1−ベンジルー2−フェニルイミダゾール(7.3重量%)、2,4−ジアミノ−6−(2’−ウンデシルイミダゾリル)−エチル−s−トリアジン(12.0重量%)、2−フェニルイミダゾール(7.1重量%)、2−フェニル−4−メチル−5−ヒドルキシメチルイミダゾール(2.8重量%)である。
Here, the amount of weight loss due to sublimation and decomposition at 200 ° C. is the weight loss at 200 ° C. when the temperature of the sample is raised at 10 ° C./min using TGA (thermogravimetry) as a reference. Is measured.
When measured by the above method, the weight loss rates of the imidazole compounds are 1-benzyl-2-phenylimidazole (7.3 wt%) and 2,4-diamino-6- (2′-undecylimidazolyl)-, respectively. Ethyl-s-triazine (12.0% by weight), 2-phenylimidazole (7.1% by weight), 2-phenyl-4-methyl-5-hydroxymethylimidazole (2.8% by weight).

上記イミダゾール化合物の含有量は、特に限定されないが、シアネート樹脂とエポキシ樹脂の合計重量に対して0.05〜5重量%が好ましく、特に0.5〜2重量%が好ましい。含有量が上記下限値未満であるとシアネート樹脂やエポキシ樹脂の硬化反応を促進する効果が小さくなる場合があり、また、上記上限値を超えると反応を制御できなくなり、成形が困難となる場合がある。   Although content of the said imidazole compound is not specifically limited, 0.05 to 5 weight% is preferable with respect to the total weight of cyanate resin and an epoxy resin, and 0.5 to 2 weight% is especially preferable. If the content is less than the above lower limit, the effect of promoting the curing reaction of cyanate resin or epoxy resin may be reduced, and if the content exceeds the upper limit, the reaction cannot be controlled and molding may be difficult. is there.

本発明の樹脂組成物は、無機充填材を含有する。これにより、低熱膨張性、難燃性の向上を図ることができる。
また、上記シアネート樹脂及び/またはそのプレポリマー(特にノボラック型シアネート樹脂)と無機充填材との組合せにより、弾性率を向上することができる。
上記無機充填材としては特に限定されないが、例えば、タルク、アルミナ、ガラス、シリカ、マイカ等を挙げることができる。これらの中でもシリカが好ましく、溶融シリカが低膨張性に優れる点で好ましい。その形状は破砕状、球状があるが、ガラス基材への含浸性を確保するために樹脂組成物の溶融粘度を下げるには球状シリカを使うなど、その目的にあわせた使用方法が採用される。
The resin composition of the present invention contains an inorganic filler. Thereby, low thermal expansibility and an improvement of a flame retardance can be aimed at.
Moreover, an elastic modulus can be improved by the combination of the said cyanate resin and / or its prepolymer (especially novolak-type cyanate resin) and an inorganic filler.
Although it does not specifically limit as said inorganic filler, For example, a talc, an alumina, glass, a silica, mica etc. can be mentioned. Among these, silica is preferable, and fused silica is preferable in that it has excellent low expansibility. The shape is crushed and spherical, but in order to reduce the melt viscosity of the resin composition in order to ensure the impregnation property to the glass substrate, a usage method adapted to the purpose such as using spherical silica is adopted. .

上記無機充填材の平均粒径は、特に限定されないが、0.01〜5μmが好ましく、特に0.2〜2μmが好ましい。無機充填材の粒径が前記下限値未満であるとワニスの粘度が高くなるため、樹脂付き金属箔を作製する際の作業性に影響を与える場合がある。また、前記上限値を超えると、ワニス中で無機充填剤の沈降等の現象が起こる場合がある。
本発明の樹脂組成物においては、特に、上記平均粒径を有する球状溶融シリカを用いることが好ましい。これにより、無機充填剤の充填性を向上させることができる。
The average particle size of the inorganic filler is not particularly limited, but is preferably 0.01 to 5 μm, particularly preferably 0.2 to 2 μm. If the particle size of the inorganic filler is less than the lower limit, the viscosity of the varnish increases, which may affect the workability when producing the resin-coated metal foil. When the upper limit is exceeded, phenomena such as sedimentation of the inorganic filler may occur in the varnish.
In the resin composition of the present invention, it is particularly preferable to use spherical fused silica having the above average particle diameter. Thereby, the filling property of an inorganic filler can be improved.

上記無機充填材の含有量は、樹脂組成物全体に対して5〜70重量%が好ましく、特に15〜60重量%が好ましい。含有量が上記下限値未満であると低熱膨脹性、密着性が充分でない場合があり、上記上限値を超えると流動性の低下により成形性が低下する場合がある。   The content of the inorganic filler is preferably 5 to 70% by weight, particularly preferably 15 to 60% by weight, based on the entire resin composition. If the content is less than the above lower limit, low thermal expansion and adhesion may not be sufficient, and if it exceeds the upper limit, moldability may be reduced due to a decrease in fluidity.

本発明の樹脂組成物では、特に限定されないが、更にカップリング剤を含有することが好ましい。これにより、樹脂と無機充填剤との界面の濡れ性を向上させることにより、基材に対して樹脂および充填剤を均一に定着させ、耐熱性、特に吸湿後の半田耐熱性を向上させることができる。   Although it does not specifically limit in the resin composition of this invention, It is preferable to contain a coupling agent further. This improves the wettability of the interface between the resin and the inorganic filler, thereby uniformly fixing the resin and the filler to the base material, and improving the heat resistance, particularly the solder heat resistance after moisture absorption. it can.

上記カップリング剤としては、通常用いられるものなら何でも使用できるが、これらの中でもエポキシシランカップリング剤、チタネート系カップリング剤、アミノシランカップリング剤及びシリコーンオイル型カップリング剤の中から選ばれる1種以上のカップリング剤を使用すること好ましい。これにより、無機充填剤の界面との濡れ性を高くでき、耐熱性をより向上させることができる。   As the coupling agent, any of those usually used can be used, and among these, one kind selected from an epoxy silane coupling agent, a titanate coupling agent, an aminosilane coupling agent, and a silicone oil type coupling agent. It is preferable to use the above coupling agent. Thereby, wettability with the interface of an inorganic filler can be made high, and heat resistance can be improved more.

上記カップリング剤の含有量は特に限定されないが、無機充填剤100重量部に対して0.05〜3重量部であることが好ましい。含有量が上記下限値未満であると無機充填剤を十分に被覆できず耐熱性を向上させる効果が低下する場合があり、上記上限値を超えると積層板の曲げ強度が低下する場合がある。   Although content of the said coupling agent is not specifically limited, It is preferable that it is 0.05-3 weight part with respect to 100 weight part of inorganic fillers. If the content is less than the above lower limit value, the inorganic filler cannot be sufficiently coated and the effect of improving heat resistance may be reduced, and if the content exceeds the upper limit value, the bending strength of the laminate may be reduced.

本発明の樹脂組成物は、以上に説明した成分のほかにも、本発明の目的、効果を損なわない範囲内で、必要に応じて各種添加剤を用いることができる。添加剤としては例えば、消泡材、レベリング材等を挙げることができる。   In addition to the components described above, the resin composition of the present invention can use various additives as necessary within a range that does not impair the objects and effects of the present invention. Examples of the additive include an antifoaming material and a leveling material.

次に、本発明のプリプレグについて説明する。
本発明のプリプレグは、上記本発明の樹脂組成物を基材に含浸させてなるものである。これにより、誘電特性、高温多湿下での機械的特性、電気的接続信頼性等の各種特性に優れたプリプレグを得ることができる。
Next, the prepreg of the present invention will be described.
The prepreg of the present invention is obtained by impregnating a base material with the resin composition of the present invention. Thereby, a prepreg excellent in various characteristics such as dielectric characteristics, mechanical characteristics under high temperature and high humidity, and electrical connection reliability can be obtained.

本発明のプリプレグで用いる基材としては特に限定されないが、例えば、ガラス繊布、ガラス不繊布等のガラス繊維基材、あるいはガラス以外の無機化合物を成分とする繊布又は不繊布等の無機繊維基材、芳香族ポリアミド樹脂、ポリアミド樹脂、芳香族ポリエステル樹脂、ポリエステル樹脂、ポリイミド樹脂、フッ素樹脂等の有機繊維で構成される有機繊維基材等が挙げられる。これら基材の中でも機械的強度、吸水率の点でガラス織布に代表されるガラス繊維基材が好ましい。   Although it does not specifically limit as a base material used with the prepreg of this invention, For example, inorganic fiber base materials, such as glass fiber base materials, such as a glass fiber cloth and a glass non-woven cloth, or a fiber cloth or non-fiber cloth which uses inorganic compounds other than glass as a component And organic fiber base materials composed of organic fibers such as aromatic polyamide resin, polyamide resin, aromatic polyester resin, polyester resin, polyimide resin, and fluororesin. Among these base materials, glass fiber base materials represented by glass woven fabric are preferable in terms of mechanical strength and water absorption.

本発明で得られる樹脂組成物を基材に含浸させる方法として特に限定されないが、例えば、上記本発明の樹脂組成物を溶媒に溶解・分散させた樹脂ワニスを調製し、基材を樹脂ワニスに浸漬する方法、各種コーター装置により樹脂ワニスを基材に塗布する方法、スプレー装置により樹脂ワニスを基材に吹き付ける方法等が挙げられる。
これらの中でも、基材を樹脂ワニスに浸漬する方法が好ましい。これにより、基材に対する樹脂組成物の含浸性を向上することができる。なお、基材を樹脂ワニスに浸漬する場
合、通常の含浸塗布設備を使用することができる。
The method for impregnating the resin composition obtained in the present invention into the substrate is not particularly limited. For example, a resin varnish in which the resin composition of the present invention is dissolved and dispersed in a solvent is prepared, and the substrate is used as the resin varnish. Examples include a dipping method, a method of applying a resin varnish to a substrate with various coater devices, and a method of spraying the resin varnish onto a substrate with a spray device.
Among these, the method of immersing the base material in the resin varnish is preferable. Thereby, the impregnation property of the resin composition with respect to a base material can be improved. In addition, when a base material is immersed in a resin varnish, a normal impregnation coating equipment can be used.

上記樹脂ワニスの調製に用いられる溶媒は、上記樹脂組成物中の樹脂成分に対して良好な溶解性を示すことが望ましいが、悪影響を及ぼさない範囲で貧溶媒を使用しても構わない。良好な溶解性を示す溶媒としては、例えばメチルエチルケトン、シクロヘキサノン等が挙げられる。
上記樹脂ワニス中の固形分は特に限定されないが、40〜80重量%が好ましく、特に50〜65重量%が好ましい。これにより、樹脂ワニスの基材への含浸性を更に向上させることができる。
本発明のプリプレグは、上記基材に上記樹脂ワニスを含浸させ、所定温度、例えば80〜200℃等で乾燥させることにより得ることができる。
The solvent used for the preparation of the resin varnish desirably has good solubility in the resin component in the resin composition, but a poor solvent may be used as long as it does not adversely affect the resin varnish. Examples of the solvent exhibiting good solubility include methyl ethyl ketone and cyclohexanone.
The solid content in the resin varnish is not particularly limited, but is preferably 40 to 80% by weight, and particularly preferably 50 to 65% by weight. Thereby, the impregnation property to the base material of the resin varnish can further be improved.
The prepreg of the present invention can be obtained by impregnating the base material with the resin varnish and drying it at a predetermined temperature, for example, 80 to 200 ° C.

次に、本発明の積層板について説明する。
本発明の積層板は、上記本発明のプリプレグを少なくとも1枚成形してなるものである。これにより、低誘電特性、高温多湿下での機械的特性、電気的接続信頼性に優れた積層板を得ることができる。
プリプレグ1枚を用いるときは、その上下両面もしくは片面に金属箔あるいはフィルムを重ねる。また、プリプレグを2枚以上積層して用いることもできる。プリプレグを2枚以上用いるときは、積層したプリプレグの最も外側の上下両面もしくは片面に金属箔あるいはフィルムを重ねる。次に、プリプレグと金属箔等とを重ねたものを加熱、加圧することで積層板を得ることができる。
加熱する温度は、特に限定されないが、120〜220℃が好ましく、特に150〜200℃が好ましい。また、加圧する圧力は、特に限定されないが、2〜5MPaが好ましく、特に2.5〜4MPaが好ましい。
Next, the laminated board of this invention is demonstrated.
The laminate of the present invention is formed by molding at least one prepreg of the present invention. As a result, it is possible to obtain a laminate having low dielectric properties, mechanical properties under high temperature and high humidity, and excellent electrical connection reliability.
When one prepreg is used, a metal foil or film is stacked on both upper and lower surfaces or one surface. Also, two or more prepregs can be laminated and used. When two or more prepregs are used, a metal foil or film is laminated on the outermost upper and lower surfaces or one surface of the laminated prepreg. Next, a laminate can be obtained by heating and pressurizing a laminate of a prepreg and a metal foil.
Although the temperature to heat is not specifically limited, 120-220 degreeC is preferable and especially 150-200 degreeC is preferable. Moreover, the pressure to pressurize is not particularly limited, but is preferably 2 to 5 MPa, and particularly preferably 2.5 to 4 MPa.

上記金属箔を構成する金属としては、例えば銅および銅系合金、アルミおよびアルミ系合金、鉄および鉄系合金等が挙げられる。また、フィルムとしては、例えばポリエチレン、ポリプロピレン等を挙げることができる。   Examples of the metal constituting the metal foil include copper and copper-based alloys, aluminum and aluminum-based alloys, iron and iron-based alloys, and the like. Examples of the film include polyethylene and polypropylene.

以下、本発明を実施例及び比較例により説明するが、本発明はこれに限定されるものではない。   Hereinafter, although an example and a comparative example explain the present invention, the present invention is not limited to this.

(実施例1)
(1)樹脂ワニスの調製
ノボラック型シアネート樹脂(ロンザジャパン株式会社製、プリマセット PT−30、重量平均分子量約700)30重量部、ノボラック型シアネート樹脂(ロンザジャパン株式会社製、プリマセット PT−60、重量平均分子量約2600)5重量部、ビフェニルジメチレン型エポキシ樹脂(日本化薬株式会社製、NC−3000H、エポキシ当量275)35重量部、およびエポキシシラン型カップリング剤(日本ユニカー株式会社製、A187)0.2重量部をメチルエチルケトンに常温で溶解し、球状溶融シリカ(株式会社アドマテックス社製、球状溶融シリカ SO−32R、平均粒径1.5μm)30重量部を添加し、高速攪拌機を用いて10分間攪拌した。これに、イミダゾール化合物として、1−ベンジルー2−フェニルイミダゾール(四国化成工業株式会社製・キュアゾール「1B2PZ」)をシアネート樹脂とエポキシ樹脂との合計100重量部に対して1.0重量部添加し、高速攪拌機を用いて10分間攪拌して、固形分65重量%の樹脂ワニスを得た。
(Example 1)
(1) Preparation of resin varnish 30 parts by weight of novolak-type cyanate resin (Lonza Japan KK, Primaset PT-30, weight average molecular weight 700), novolak-type cyanate resin (Lonza Japan KK, Primaset PT-60) , Weight average molecular weight of about 2600) 5 parts by weight, biphenyl dimethylene type epoxy resin (Nippon Kayaku Co., Ltd., NC-3000H, epoxy equivalent 275) 35 parts by weight, and epoxy silane type coupling agent (manufactured by Nippon Unicar Co., Ltd.) A187) 0.2 part by weight is dissolved in methyl ethyl ketone at room temperature, 30 parts by weight of spherical fused silica (manufactured by Admatechs Co., Ltd., spherical fused silica SO-32R, average particle size 1.5 μm) is added, and a high-speed stirrer is added. And stirred for 10 minutes. As an imidazole compound, 1.0 part by weight of 1-benzyl-2-phenylimidazole (manufactured by Shikoku Kasei Kogyo Co., Ltd., Curesol “1B2PZ”) is added to 100 parts by weight of the total of the cyanate resin and the epoxy resin, The mixture was stirred for 10 minutes using a high-speed stirrer to obtain a resin varnish having a solid content of 65% by weight.

(2)プリプレグの製造
上記樹脂ワニスをガラス織布(日東紡績製、WEA−2319)に含浸し、150℃の
加熱炉で3.5分間乾燥して、プリプレグ中に占める樹脂ワニス中の固形分が50重量%のプリプレグを得た。
(2) Manufacture of prepreg The above resin varnish is impregnated into a glass woven fabric (manufactured by Nitto Boseki Co., Ltd., WEA-2319), dried in a heating furnace at 150 ° C. for 3.5 minutes, and solid content in the resin varnish in the prepreg Yielded 50% by weight of prepreg.

(3)積層板の製造
上述のプリプレグを4枚、及び、8枚重ね、それぞれ両面に18μmの銅箔を重ねて、圧力4MPa、温度200℃で2時間加熱加圧成形することによって、厚さ0.4mm、及び、0.8mmの両面銅張積層板を得た。
(3) Manufacture of laminated plate 4 and 8 prepregs as described above, 18 μm copper foils are stacked on each side, and the thickness is determined by heating and pressing at a pressure of 4 MPa and a temperature of 200 ° C. for 2 hours. 0.4 mm and 0.8 mm double-sided copper clad laminates were obtained.

(実施例2)
樹脂ワニスの配合を以下のようにした以外は、実施例1と同様にして、樹脂組成物、プリプレグ、及び積層板を得た。
イミダゾール化合物として、1−ベンジルー2−フェニルイミダゾールをシアネート樹脂とエポキシ樹脂との合計100重量部に対して0.7重量部用いた。その他は実施例1と同様にした。
(Example 2)
A resin composition, a prepreg, and a laminate were obtained in the same manner as in Example 1 except that the composition of the resin varnish was as follows.
As the imidazole compound, 0.7 part by weight of 1-benzyl-2-phenylimidazole was used with respect to 100 parts by weight of the total of the cyanate resin and the epoxy resin. Others were the same as in Example 1.

(実施例3)
樹脂ワニスの配合を以下のようにした以外は、実施例1と同様にして、樹脂組成物、プリプレグ、及び積層板を得た。
イミダゾール化合物として、1−ベンジルー2−フェニルイミダゾールをシアネート樹脂とエポキシ樹脂との合計100重量部に対して0.4重量部用いた。その他は実施例1と同様にした。
(Example 3)
A resin composition, a prepreg, and a laminate were obtained in the same manner as in Example 1 except that the composition of the resin varnish was as follows.
As the imidazole compound, 0.4 part by weight of 1-benzyl-2-phenylimidazole was used with respect to 100 parts by weight of the total of the cyanate resin and the epoxy resin. Others were the same as in Example 1.

(実施例4)
樹脂ワニスの配合を以下のようにした以外は、実施例1と同様にして、樹脂組成物、プリプレグ、及び積層板を得た。
イミダゾール化合物として、1−ベンジルー2−フェニルイミダゾールをシアネート樹脂とエポキシ樹脂との合計100重量部に対して2.0重量部用いた。その他は実施例1と同様にした。
Example 4
A resin composition, a prepreg, and a laminate were obtained in the same manner as in Example 1 except that the composition of the resin varnish was as follows.
As an imidazole compound, 1-benzyl-2-phenylimidazole was used in an amount of 2.0 parts by weight based on 100 parts by weight of the total of the cyanate resin and the epoxy resin. Others were the same as in Example 1.

(比較例1)
樹脂ワニスの配合を以下のようにした以外は、実施例1と同様にして、樹脂組成物、プリプレグ、及び積層板を得た。
イミダゾール化合物として、2−フェニル−4−メチル−イミダゾール(四国化成工業株式会社製・キュアゾール「2P4MZ」、200℃における重量減少21%)を、シアネート樹脂とエポキシ樹脂との合計100重量部に対して1.0重量部用いた。その他は実施例1と同様にした。
(Comparative Example 1)
A resin composition, a prepreg, and a laminate were obtained in the same manner as in Example 1 except that the composition of the resin varnish was as follows.
As an imidazole compound, 2-phenyl-4-methyl-imidazole (manufactured by Shikoku Kasei Kogyo Co., Ltd., Curesol “2P4MZ”, 21% weight reduction at 200 ° C.) is used with respect to a total of 100 parts by weight of cyanate resin and epoxy resin. 1.0 part by weight was used. Others were the same as in Example 1.

(比較例2)
樹脂ワニスの配合を以下のようにした以外は、実施例1と同様にして、樹脂組成物、プリプレグ、及び積層板を得た。
イミダゾール化合物として、2−フェニル−4−メチル−イミダゾールを、シアネート樹脂とエポキシ樹脂との合計100重量部に対して2.0重量部用いた。その他は実施例1と同様にした。
(Comparative Example 2)
A resin composition, a prepreg, and a laminate were obtained in the same manner as in Example 1 except that the composition of the resin varnish was as follows.
As an imidazole compound, 2.0 parts by weight of 2-phenyl-4-methyl-imidazole was used with respect to 100 parts by weight of the total of the cyanate resin and the epoxy resin. Others were the same as in Example 1.

(比較例3)
樹脂ワニスの配合を以下のようにした以外は、実施例1と同様にして、樹脂組成物、プリプレグ、及び積層板を得た。
ノボラック型シアネート樹脂としてPT−30を17重量部、PT−60を3重量部、ビフェニルジメチレン型エポキシ樹脂としてNC−3000Hを11重量部、ビフェニルジメチレン型フェノール樹脂(明和化成社製、MEH−7851−HHH)を9重量部、
およびエポキシシラン型カップリング剤としてA187を0.2重量部、球状溶融シリカとしてSO−32Rを60重量部用いた。その他は実施例1と同様にした。
(Comparative Example 3)
A resin composition, a prepreg, and a laminate were obtained in the same manner as in Example 1 except that the composition of the resin varnish was as follows.
17 parts by weight of PT-30 as a novolak type cyanate resin, 3 parts by weight of PT-60, 11 parts by weight of NC-3000H as a biphenyl dimethylene type epoxy resin, biphenyl dimethylene type phenol resin (MEH Kasei Co., Ltd., MEH- 7851-HHH), 9 parts by weight,
In addition, 0.2 parts by weight of A187 was used as an epoxy silane type coupling agent, and 60 parts by weight of SO-32R was used as spherical fused silica. Others were the same as in Example 1.

実施例および比較例で得られた積層板について、次の評価を行った。得られた結果を表1に示す。   The following evaluation was performed about the laminated board obtained by the Example and the comparative example. The obtained results are shown in Table 1.

Figure 2005281513
Figure 2005281513

評価は、下記の方法で実施した。
(1)プリプレグ製造時(塗布乾燥時)のイミダゾール化合物の昇華の有無
樹脂組成物を基材に含浸させ、乾燥させる際に、乾燥装置内にイミダゾールの昇華による白煙が見られるか否かを目視で確認した。
Evaluation was performed by the following method.
(1) Presence / absence of sublimation of imidazole compound during prepreg production (coating and drying) Whether or not white smoke due to sublimation of imidazole is observed in the drying apparatus when the resin composition is impregnated into a substrate and dried. It was confirmed visually.

(2)硬化反応開始温度
プリプレグ中の樹脂組成物を採取し、これをDSC(示差走査熱量分析装置)を用いて、10℃/minで昇温し、反応開始の温度を測定し、これを5℃単位で読み取った。
(2) Curing reaction start temperature The resin composition in the prepreg was sampled, and this was heated at 10 ° C./min using a DSC (differential scanning calorimeter), and the temperature at the start of the reaction was measured. Read in 5 ° C units.

(3)硬化反応温度
プリプレグ中の樹脂組成物を採取し、これをDSC(示差走査熱量分析装置)を用いて、10℃/minで昇温し、反応ピークの温度を測定した。
(3) Curing reaction temperature The resin composition in a prepreg was extract | collected, this was heated up at 10 degrees C / min using DSC (differential scanning calorimetry), and the temperature of the reaction peak was measured.

(4)成形性
積層板製造時の樹脂流れ量を、積層板端部からの樹脂フロー量を測定し、樹脂の流動性を確認した。また、両面積層板を両面全面エッチングして、成形性を確認した。符号は下記の通りである。
◎:プレス成形時のフロー量が1ミリ以上5ミリ以下であり、成形性良好
○:プレス成形時のフロー量が1ミリ未満であり、成形性良好
(4) Formability The resin flow rate at the time of manufacturing the laminated plate was measured by measuring the resin flow amount from the end of the laminated plate to confirm the fluidity of the resin. Moreover, the double-sided laminate was etched on both sides, and formability was confirmed. The symbols are as follows.
A: The flow amount during press molding is 1 mm or more and 5 mm or less, and the moldability is good. ○: The flow amount during press molding is less than 1 mm, and the moldability is good.

(5)線膨張係数
厚さ0.8mmの両面銅張積層板を全面エッチングし、得られた積層板から5mm×5mmのテストピースを切り出し、TMA(熱機械分析装置)を用いて、厚み方向(Z方向
)の線膨張係数を10℃/分で測定した。
(5) Linear expansion coefficient A 0.8 mm-thick double-sided copper-clad laminate is etched all over, a 5 mm × 5 mm test piece is cut out from the obtained laminate, and the thickness direction is measured using TMA (thermomechanical analyzer). The linear expansion coefficient in the (Z direction) was measured at 10 ° C./min.

(6)誘電特性
厚さ0.4mmの両面銅張積層板を全面エッチングし、得られた積層板から60mm×60mmのテストピースを切り出し、誘電率、誘電正接の測定をJIS C 6481に準拠して行った。
(6) Dielectric properties A double-sided copper-clad laminate with a thickness of 0.4 mm is etched all over, a test piece of 60 mm x 60 mm is cut out from the obtained laminate, and the dielectric constant and dielectric loss tangent are measured in accordance with JIS C 6481. I went.

(7)ガラス転移温度
厚さ0.8mmの両面銅張積層板を全面エッチングし、得られた積層板から5mm×5mmのテストピースを切り出し、TMAを用いて10℃/分で測定した。
(7) Glass transition temperature A double-sided copper-clad laminate having a thickness of 0.8 mm was entirely etched, and a 5 mm × 5 mm test piece was cut out from the obtained laminate and measured at 10 ° C./min using TMA.

実施例1〜4は、シアネート樹脂および/またはそのプレポリマーと、実質的にハロゲン原子を含まないエポキシ樹脂と、200℃における昇華、分解による重量減少が15%以下であるイミダゾール化合物と、無機充填材とを含有する本発明の樹脂組成物を用いたプリプレグと積層板であり、200℃における昇華、分解による重量減少が大きいイミダゾール化合物を用いた比較例1、2と比べて、プリプレグ製造時のイミダゾール化合物の昇華を抑えるとともに、イミダゾール化合物の硬化促進作用を有効に発現させることができ、硬化性を向上させることができた。
また、比較例3は硬化剤としてイミダゾール化合物の代わりにフェノール樹脂を用い、無機充填材の配合量を多くしたものであるが、実施例はいずれも、これより誘電率を向上させることができた。
Examples 1-4 are a cyanate resin and / or a prepolymer thereof, an epoxy resin substantially free of halogen atoms, an imidazole compound having a weight loss of not more than 15% by sublimation and decomposition at 200 ° C., and inorganic filling Prepreg and laminate using the resin composition of the present invention containing a material, compared with Comparative Examples 1 and 2 using an imidazole compound with a large weight loss due to sublimation and decomposition at 200 ° C. While suppressing the sublimation of the imidazole compound, the curing promoting action of the imidazole compound could be effectively expressed, and the curability could be improved.
Moreover, although the comparative example 3 uses phenol resin instead of an imidazole compound as a hardening | curing agent, and increased the compounding quantity of the inorganic filler, all the Examples were able to improve a dielectric constant from this. .

本発明によれば、硬化性に優れ、低熱膨張性、低誘電性、高耐熱性を有する積層板を製造することができる樹脂組成物と、これを用いたプリプレグと積層板を得ることができる。本発明の積層板は、高密度実装対応のプリント配線板用途などに好適に用いられるものである。   ADVANTAGE OF THE INVENTION According to this invention, the resin composition which can manufacture the laminated board which is excellent in sclerosis | hardenability, and has low thermal expansibility, low dielectric property, and high heat resistance, and a prepreg and laminated board using this can be obtained. . The laminated board of this invention is used suitably for the printed wiring board use etc. corresponding to high-density mounting.

Claims (6)

基材に含浸させてシート状のプリプレグを形成するために用いる樹脂組成物であって、シアネート樹脂および/またはそのプレポリマーと、実質的にハロゲン原子を含まないエポキシ樹脂と、200℃における昇華、分解による重量減少が15%以下であるイミダゾール化合物と、無機充填材とを含有することを特徴とする樹脂組成物。 A resin composition used for impregnating a base material to form a sheet-like prepreg, which is a cyanate resin and / or a prepolymer thereof, an epoxy resin substantially free of halogen atoms, and sublimation at 200 ° C. A resin composition comprising an imidazole compound whose weight loss due to decomposition is 15% or less and an inorganic filler. 前記シアネート樹脂は、ノボラック型シアネートである請求項1に記載の樹脂組成物。 The resin composition according to claim 1, wherein the cyanate resin is a novolak cyanate. 前記エポキシ樹脂は、アリールアルキレン型エポキシ樹脂である請求項1又は2に記載の樹脂組成物。 The resin composition according to claim 1, wherein the epoxy resin is an aryl alkylene type epoxy resin. 前記イミダゾール化合物の含有量は、シアネート樹脂とエポキシ樹脂の合計重量に対して0.05〜5重量%である請求項1ないし3のいずれかに記載の樹脂組成物。 The resin composition according to any one of claims 1 to 3, wherein a content of the imidazole compound is 0.05 to 5% by weight with respect to a total weight of the cyanate resin and the epoxy resin. 請求項1ないし4のいずれかに記載の樹脂組成物を基材に含浸させてなることを特徴とするプリプレグ。 A prepreg obtained by impregnating a base material with the resin composition according to claim 1. 請求項5に記載のプリプレグを成形してなることを特徴とする積層板。
A laminate obtained by molding the prepreg according to claim 5.
JP2004097823A 2004-03-30 2004-03-30 Resin composition, prepreg and laminate Expired - Fee Related JP4517699B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004097823A JP4517699B2 (en) 2004-03-30 2004-03-30 Resin composition, prepreg and laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004097823A JP4517699B2 (en) 2004-03-30 2004-03-30 Resin composition, prepreg and laminate

Publications (2)

Publication Number Publication Date
JP2005281513A true JP2005281513A (en) 2005-10-13
JP4517699B2 JP4517699B2 (en) 2010-08-04

Family

ID=35180258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004097823A Expired - Fee Related JP4517699B2 (en) 2004-03-30 2004-03-30 Resin composition, prepreg and laminate

Country Status (1)

Country Link
JP (1) JP4517699B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008101062A (en) * 2006-10-17 2008-05-01 Sumitomo Bakelite Co Ltd Resin composition, prepreg, laminated plate and semiconductor device
JP2009280823A (en) * 2006-04-28 2009-12-03 Hitachi Chem Co Ltd Resin composition, prepreg, laminate, and wiring board
JP2011195644A (en) * 2010-03-17 2011-10-06 Sumitomo Bakelite Co Ltd Cyanate resin composition for laminated board, prepreg, metal-clad laminate, printed wiring board, and semiconductor device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62277466A (en) * 1986-05-26 1987-12-02 Toray Ind Inc Resin composition for prepreg
JPH06100764A (en) * 1992-09-21 1994-04-12 Hitachi Chem Co Ltd Epoxy resin composition, epoxy resin prepreg and epoxy resin laminated board
JP2001064340A (en) * 1999-08-30 2001-03-13 Nippon Kayaku Co Ltd 4,4'-biphenydiyldimethylene-phenolic resin epoxy resin, epoxy resin composition, and its cured product
JP2002194119A (en) * 2000-12-22 2002-07-10 Mitsubishi Gas Chem Co Inc Prepreg and metal foil clad laminated plate
JP2002284963A (en) * 2001-03-26 2002-10-03 Nippon Kayaku Co Ltd Flame-retardant epoxy resin composition and use thereof
JP2003253018A (en) * 2002-03-06 2003-09-10 Sumitomo Bakelite Co Ltd Prepreg and printed wiring board using the same
JP2004115552A (en) * 2002-09-24 2004-04-15 Taoka Chem Co Ltd One-pack liquid epoxy resin composition
JP2004285284A (en) * 2003-03-25 2004-10-14 Mitsui Chemicals Inc Resin composition and film adhesive material comprising the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62277466A (en) * 1986-05-26 1987-12-02 Toray Ind Inc Resin composition for prepreg
JPH06100764A (en) * 1992-09-21 1994-04-12 Hitachi Chem Co Ltd Epoxy resin composition, epoxy resin prepreg and epoxy resin laminated board
JP2001064340A (en) * 1999-08-30 2001-03-13 Nippon Kayaku Co Ltd 4,4'-biphenydiyldimethylene-phenolic resin epoxy resin, epoxy resin composition, and its cured product
JP2002194119A (en) * 2000-12-22 2002-07-10 Mitsubishi Gas Chem Co Inc Prepreg and metal foil clad laminated plate
JP2002284963A (en) * 2001-03-26 2002-10-03 Nippon Kayaku Co Ltd Flame-retardant epoxy resin composition and use thereof
JP2003253018A (en) * 2002-03-06 2003-09-10 Sumitomo Bakelite Co Ltd Prepreg and printed wiring board using the same
JP2004115552A (en) * 2002-09-24 2004-04-15 Taoka Chem Co Ltd One-pack liquid epoxy resin composition
JP2004285284A (en) * 2003-03-25 2004-10-14 Mitsui Chemicals Inc Resin composition and film adhesive material comprising the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009280823A (en) * 2006-04-28 2009-12-03 Hitachi Chem Co Ltd Resin composition, prepreg, laminate, and wiring board
US9078365B2 (en) 2006-04-28 2015-07-07 Hitachi Chemical Co., Ltd. Resin composition, prepreg, laminate, and wiring board
DE112007001047B4 (en) 2006-04-28 2020-06-04 Hitachi Chemical Co., Ltd. Resin composition, prepreg, laminate and circuit board
JP2008101062A (en) * 2006-10-17 2008-05-01 Sumitomo Bakelite Co Ltd Resin composition, prepreg, laminated plate and semiconductor device
JP2011195644A (en) * 2010-03-17 2011-10-06 Sumitomo Bakelite Co Ltd Cyanate resin composition for laminated board, prepreg, metal-clad laminate, printed wiring board, and semiconductor device

Also Published As

Publication number Publication date
JP4517699B2 (en) 2010-08-04

Similar Documents

Publication Publication Date Title
TWI458777B (en) Resin composition, resin coated metallic foil, insulation sheet layered support material, and multilayer printed circuit board
JP3946626B2 (en) Resin composition, prepreg and printed wiring board using the same
JP5293598B2 (en) Resin composition, prepreg, laminate, multilayer printed wiring board, and semiconductor device
KR101236642B1 (en) Resin composition and prepreg and printed wiring board using the same
JP3821728B2 (en) Prepreg
JP2010024417A (en) Prepreg, laminated plate, multilayer printed wiring board and semiconductor device
JP4132703B2 (en) Prepreg for copper-clad laminate and copper-clad laminate using the same
JP5303826B2 (en) Resin composition, prepreg and printed wiring board using the same
JP4322463B2 (en) Copper-clad laminate prepreg and copper-clad laminate
JP4400191B2 (en) Resin composition and substrate using the same
US6544652B2 (en) Cyanate ester-containing insulating composition, insulating film made therefrom and multilayer printed circuit board having the film
JP4132755B2 (en) Resin composition, prepreg and printed wiring board using the same
JP2004277671A (en) Prepreg and printed circuit board using the same
JP2003213019A (en) Prepreg and printed wiring board using the same
JP2006312751A (en) Resin composition, prepreg and copper-clad laminate using the prepreg
JP4517699B2 (en) Resin composition, prepreg and laminate
JP2012153755A (en) Epoxy resin composition, prepreg, laminate, resin sheet, printed circuit board and semiconductor device
JP5428212B2 (en) Resin composition, prepreg and printed wiring board using the same
JP3821797B2 (en) Resin composition, resin-coated metal foil and multilayer printed wiring board
JP2008143971A (en) Insulation resin composition, insulation resin sheet with substrate, multi-layer printed wiring board and semiconductor device
JP2005209489A (en) Insulation sheet
JP4501475B2 (en) Metal foil with insulating layer and multilayer printed wiring board
JP4150178B2 (en) Resin composition, prepreg and printed wiring board using the same
JP5476772B2 (en) Prepreg and laminate
JP2005097524A (en) Resin composition, prepreg and laminated sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100427

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100510

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4517699

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140528

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees