JP2010024417A - Prepreg, laminated plate, multilayer printed wiring board and semiconductor device - Google Patents

Prepreg, laminated plate, multilayer printed wiring board and semiconductor device Download PDF

Info

Publication number
JP2010024417A
JP2010024417A JP2008191154A JP2008191154A JP2010024417A JP 2010024417 A JP2010024417 A JP 2010024417A JP 2008191154 A JP2008191154 A JP 2008191154A JP 2008191154 A JP2008191154 A JP 2008191154A JP 2010024417 A JP2010024417 A JP 2010024417A
Authority
JP
Japan
Prior art keywords
resin
prepreg
weight
wiring board
printed wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008191154A
Other languages
Japanese (ja)
Other versions
JP5428232B2 (en
Inventor
Tadasuke Endo
忠相 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2008191154A priority Critical patent/JP5428232B2/en
Publication of JP2010024417A publication Critical patent/JP2010024417A/en
Application granted granted Critical
Publication of JP5428232B2 publication Critical patent/JP5428232B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a prepreg, a laminated plate, a multilayer printed wiring board and a semiconductor device, reducing elevation of thermal expansion coefficient in the plane direction within the temperature range of ordinary to mounted region and reducing the warpage of a mounted multilayered printed wiring board. <P>SOLUTION: The prepreg is produced by impregnating a resin composition consisting essentially of (A) a specific multifunctional epoxy resin having a naphthalene ring, (B) a phenol novolac type cyanate resin, (C) a curing agent and (D) an inorganic filler, into a base material. The curing agent is preferably an imidazole compound. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、プリプレグ、積層板、多層プリント配線板、及び半導体装置に関する。 The present invention relates to a prepreg, a laminated board, a multilayer printed wiring board, and a semiconductor device.

積層板は、一般にガラス布等の基材にエポキシ樹脂やフェノール樹脂等の熱硬化性樹脂等を浸漬含浸させたプリプレグと呼ばれる絶縁層の両面に、もしくは、プリプレグを複数枚重ねた両面に、銅箔等の金属箔を張り合わせて加熱、加圧することにより、構成される(例えば、引用文献1に記載)。 Laminates are generally made of copper on both sides of an insulating layer called a prepreg, which is made by immersing and impregnating a thermosetting resin such as epoxy resin or phenolic resin in a substrate such as a glass cloth, or on both sides where a plurality of prepregs are stacked. A metal foil such as a foil is laminated and heated and pressed (for example, described in Patent Document 1).

近年、電子機器の高機能化等の要求に伴い、電子部品の高密度集積化、更には高密度実装化等が進んでおり、これらに使用される高密度実装対応のプリント配線板等は、従来にも増して、小型化かつ高密度化が進んでいる。 In recent years, with the demand for higher functionality of electronic devices, etc., high-density integration of electronic components, and further high-density mounting, etc. are progressing. Compared to the conventional technology, miniaturization and high density are progressing.

しかし、プリント配線板を薄型化した場合は、実装信頼性の低下、多層プリント配線板の反りが大きくなるといった問題があった。
これらの問題を解決すべく、用いられる樹脂組成物の線熱膨張率を下げる手法が様々検討されている(例えば、引用文献2、3に記載)。
しかしながら、樹脂組成物の線熱膨張率を下げる手法では、半導体装置の製造時に、多層プリント配線板に半導体素子を実装する工程において、実装温度が240〜260℃と高いことから、実装時に多層プリント配線板の反りが大きくなり、実装信頼性が低下するといった問題があった。
However, when the printed wiring board is made thin, there are problems that the mounting reliability is lowered and the warpage of the multilayer printed wiring board is increased.
In order to solve these problems, various methods for reducing the linear thermal expansion coefficient of the resin composition used have been studied (for example, described in References 2 and 3).
However, in the method of reducing the linear thermal expansion coefficient of the resin composition, the mounting temperature is as high as 240 to 260 ° C. in the process of mounting the semiconductor element on the multilayer printed wiring board at the time of manufacturing the semiconductor device. There has been a problem that the warpage of the wiring board is increased and the mounting reliability is lowered.

特開2003−64198号公報JP 2003-64198 A 特開2007−2917号公報JP 2007-2917 A 特開2007−25470号公報JP 2007-25470 A

本発明は、常温から実装領域温度の範囲において面方向の膨張率の上昇を抑え、実装時の多層プリント配線板の反りを低減させるプリプレグ、積層板、多層プリント配線板、及び半導体装置を提供するものである。 The present invention provides a prepreg, a laminated board, a multilayer printed wiring board, and a semiconductor device that suppress an increase in the expansion coefficient in the plane direction in a range from room temperature to a mounting region temperature and reduce warpage of the multilayer printed wiring board during mounting. Is.

このような目的は、下記[1]〜[9]に記載の本発明により達成される。
[1](A)下記一般式(1)で表される多官能エポキシ樹脂、(B)フェノールノボラック型シアネート樹脂、(C)硬化剤、(D)無機充填材を必須成分とする樹脂組成物を基材に含浸してなることを特徴とするプリプレグ。

Figure 2010024417
[式中、m、nは1.0以上2.0以下あり、m+nが2.0より大きく4.0以下である。また、Xは単結合、エーテル基、炭素数1〜4の炭化水素基のいずれかである。]
[2]前記樹脂組成物の硬化物は、動的粘弾性装置によるガラス転移温度が290℃以上である[1]項に記載のプリプレグ。
[3]前記(B)フェノールノボラック型シアネート樹脂は、樹脂組成物全体の5〜42重量%である[1]または[2]項に記載のプリプレグ。
[4]前記(C)硬化剤は、イミダゾール化合物である[1]ないし[3]項のいずれかに記載のプリプレグ。
[5]前記(D)無機充填材は、水酸化マグネシウム、水酸化アルミニウム、シリカ、タルク、焼成タルク、及びアルミナからなる群より選ばれた少なくとも1種類である[1]ないし[4]項のいずれかに記載のプリプレグ。
[6]前記(D)無機充填材の含有量は、樹脂組成物全体の20〜80重量%である[1]ないし[5]項のいずれかに記載のプリプレグ。
[7][1]ないし[6]項のいずれかに記載のプリプレグを1枚以上成形してなる積層板。
[8][1]ないし[6]項のいずれかに記載のプリプレグ、及び/または[7]項に記載の積層板を用いてなる多層プリント配線板。
[9][8]項に記載の多層プリント配線板に半導体素子を搭載してなる半導体装置。 Such an object is achieved by the present invention described in the following [1] to [9].
[1] A resin composition comprising (A) a polyfunctional epoxy resin represented by the following general formula (1), (B) a phenol novolac cyanate resin, (C) a curing agent, and (D) an inorganic filler as essential components. A prepreg obtained by impregnating a base material.
Figure 2010024417
[Wherein, m and n are 1.0 or more and 2.0 or less, and m + n is greater than 2.0 and 4.0 or less. X is any one of a single bond, an ether group, and a hydrocarbon group having 1 to 4 carbon atoms. ]
[2] The prepreg according to the item [1], wherein the cured product of the resin composition has a glass transition temperature of 290 ° C. or higher by a dynamic viscoelastic device.
[3] The prepreg according to the item [1] or [2], wherein the (B) phenol novolac-type cyanate resin is 5 to 42% by weight of the entire resin composition.
[4] The prepreg according to any one of [1] to [3], wherein the (C) curing agent is an imidazole compound.
[5] The (D) inorganic filler is at least one selected from the group consisting of magnesium hydroxide, aluminum hydroxide, silica, talc, calcined talc, and alumina. The prepreg according to any one of the above.
[6] The prepreg according to any one of [1] to [5], wherein the content of the (D) inorganic filler is 20 to 80% by weight of the entire resin composition.
[7] A laminate obtained by molding one or more prepregs according to any one of [1] to [6].
[8] A multilayer printed wiring board using the prepreg according to any one of [1] to [6] and / or the laminate according to [7].
[9] A semiconductor device comprising a semiconductor element mounted on the multilayer printed wiring board according to the item [8].

本発明は、低線熱膨張率であり、高いガラス転移温度を有するプリプレグ、及び積層板、実装時の反りが小さく、高い実装信頼性を有する多層プリント配線板、及び半導体装置を提供する。 The present invention provides a prepreg and a laminate having a low linear thermal expansion coefficient and a high glass transition temperature, a multilayer printed wiring board having a small warpage during mounting, and a high mounting reliability, and a semiconductor device.

以下、本発明のプリプレグ、積層板、多層プリント配線板、及び半導体装置ついて説明する。 Hereinafter, the prepreg, laminated board, multilayer printed wiring board, and semiconductor device of the present invention will be described.

まず、本発明のプリプレグについて説明する。 First, the prepreg of the present invention will be described.

本発明のプリプレグは、(A)下記一般式(1)で表される多官能エポキシ樹脂、(B)フェノールノボラック型シアネート樹脂、(C)硬化剤、(D)無機充填材を必須成分とする樹脂組成物を基材に含浸することにより得ることができる。

Figure 2010024417
[式中、m、nは1.0以上2.0以下あり、m+nが2.0より大きく4.0以下である。また、Xは単結合、エーテル基、炭素数1〜4の炭化水素基のいずれかである。] The prepreg of the present invention comprises (A) a polyfunctional epoxy resin represented by the following general formula (1), (B) a phenol novolac-type cyanate resin, (C) a curing agent, and (D) an inorganic filler as essential components. It can be obtained by impregnating the resin composition into the substrate.
Figure 2010024417
[Wherein, m and n are 1.0 or more and 2.0 or less, and m + n is greater than 2.0 and 4.0 or less. X is any one of a single bond, an ether group, and a hydrocarbon group having 1 to 4 carbon atoms. ]

前記(A)一般式(1)で表される多官能エポキシ樹脂のエポキシ基の数は2.0より多く、4.0以下である。2.0以下であるとガラス転移温度が低くなり、4.0より大きいと吸湿性、硬化性が低下したりする場合がある。 The number of epoxy groups in the polyfunctional epoxy resin represented by the general formula (1) is more than 2.0 and 4.0 or less. If it is 2.0 or less, the glass transition temperature is low, and if it is more than 4.0, the hygroscopicity and curability may be lowered.

前記(A)一般式(1)で表される多官能エポキシ樹脂を用いることにより、ガラス転移温度がその他エポキシ樹脂(例えば、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビフェニルアラルキル型ノボラックエポキシ樹脂、ナフタレンアラルキル型ノボラックエポキシ樹脂、ジシクロペンタジエン型ノボラックエポキシ樹脂などのノボラック型エポキシ樹脂、ビスフェノールAエポキシ樹脂、ビスフェノールFエポキシ樹脂、ビスフェノールSエポキシ樹脂等のビスフェノール型エポキシ樹脂、ビフェニル型2官能エポキシ樹脂、ナフタレン型2官能エポキシ樹脂、アントラセン型(誘導体も含む)2官能エポキシ樹脂などの2官能エポキシ樹脂など)を用いた場合と比べてガラス転移温度が上昇し、実装温度(230〜260℃)領域よりも高いガラス転移温度にすることができるため常温から実装温度までの熱膨張率を低く抑えることができる。 (A) By using the polyfunctional epoxy resin represented by the general formula (1), the glass transition temperature of other epoxy resins (for example, phenol novolak type epoxy resin, cresol novolak type epoxy resin, biphenyl aralkyl type novolak epoxy resin) , Novolac epoxy resins such as naphthalene aralkyl type novolac epoxy resin, dicyclopentadiene type novolac epoxy resin, bisphenol type epoxy resin such as bisphenol A epoxy resin, bisphenol F epoxy resin, bisphenol S epoxy resin, biphenyl type bifunctional epoxy resin, Compared with naphthalene-type bifunctional epoxy resins and anthracene-type (including derivatives) bifunctional epoxy resins, etc.), the glass transition temperature is increased and the mounting temperature is increased. (230 to 260 ° C.) can be suppressed low thermal expansion coefficient from room temperature to the mounting temperature it is possible to a higher glass transition temperature than the region.

前記(B)フェノールノボラック型シアネート樹脂は、エポキシ樹脂のみでは達成することのできない耐熱性及び低熱膨張性を付与することができる。(B)フェノールノボラック型シアネート樹脂を含有しない場合は十分な耐熱性、低熱膨張性が得られず、信頼性が低下するため、好ましくない。ここで、(B)フェノールノボラック型シアネート樹脂は、例えばハロゲン化シアン化合物とフェノール類とを反応させ、必要に応じて加熱等の方法でプレポリマー化することにより得ることができる。具体的には、フェノールノボラック型シアネート樹脂、クレゾールノボラック型シアネート樹脂、ビフェニルアラルキル型ノボラックシアネート樹脂、ジシクロペンタジエン型ノボラックシアネート樹脂などのフェノールノボラック型シアネート樹脂等を挙げることができる。これらのフェノールノボラック型シアネート樹脂を使用した樹脂組成物よりなるプリント配線板は、特に加熱時における剛性に優れるので、半導体素子実装時の信頼性に優れる。 The (B) phenol novolac-type cyanate resin can impart heat resistance and low thermal expansibility that cannot be achieved with an epoxy resin alone. (B) When no phenol novolac-type cyanate resin is contained, sufficient heat resistance and low thermal expansion cannot be obtained, and the reliability is lowered. Here, the (B) phenol novolac-type cyanate resin can be obtained by, for example, reacting a cyanogen halide compound with phenols, and prepolymerizing by a method such as heating as necessary. Specific examples include phenol novolac type cyanate resins, cresol novolak type cyanate resins, biphenyl aralkyl type novolak cyanate resins, and dicyclopentadiene type novolak cyanate resins. Since a printed wiring board made of a resin composition using these phenol novolac-type cyanate resins is excellent in rigidity particularly during heating, it is excellent in reliability when mounting a semiconductor element.

前記(B)フェノールノボラック型シアネート樹脂の重量平均分子量は、特に限定されないが、重量平均分子量5.0×102〜4.5×103が好ましく、特に6.0×102〜3.0×103が好ましい。重量平均分子量が下限値未満であるとプリプレグを作製した場合にタック性が生じ、プリプレグ同士が接触したとき互いに付着したり、樹脂の転写が生じたりする場合がある。また、重量平均分子量が上限値を超えると反応が速くなりすぎ、特に積層板に用いた場合、成形不良が生じることがある。
前記(B)シアネート樹脂の重量平均分子量は、例えばGPC(ゲルパーミエーションクロマトグラフィー、標準物質:ポリスチレン換算)で測定することができる。
Although the weight average molecular weight of the (B) phenol novolac type cyanate resin is not particularly limited, the weight average molecular weight is preferably 5.0 × 10 2 to 4.5 × 10 3 , particularly 6.0 × 10 2 to 3.0. × 10 3 is preferred. If the weight average molecular weight is less than the lower limit, tackiness may occur when the prepreg is produced, and the prepreg may adhere to each other or transfer of the resin may occur. Moreover, when a weight average molecular weight exceeds an upper limit, reaction will become quick too much, and when it uses for a laminated board especially, a shaping | molding defect may arise.
The weight average molecular weight of the (B) cyanate resin can be measured, for example, by GPC (gel permeation chromatography, standard substance: converted to polystyrene).

なお、前記(B)フェノールノボラック型シアネート樹脂としては、プレポリマー化したものも用いることができる。すなわち、フェノールノボラック型シアネート樹脂を単独で用いてもよいし、重量平均分子量の異なるフェノールノボラック型シアネート樹脂を併用したり、シアネート樹脂とそのプレポリマーとを併用したりすることもできる。
ここでプレポリマーとは、通常、上記シアネート樹脂を加熱反応などにより、例えば3量化することで得られるものであり、エポキシ樹脂組成物の成形性、流動性を調整するために好ましく使用されるものである。
プレポリマーは、特に限定されないが、例えば、3量化率が20〜50重量%であるものを用いることが好ましい。この3量化率は、例えば赤外分光分析装置を用いて求めることができる。
また、前記(B)フェノールノボラック型シアネート樹脂は、特に限定されないが、1種類を単独で用いることもできるし、異なる重量平均分子量を有する2種類以上を併用したり、1種類または2種類以上のシアネート樹脂と、それらのプレポリマーを併用したりすることもできる。
In addition, as said (B) phenol novolak-type cyanate resin, the thing prepolymerized can also be used. That is, a phenol novolac type cyanate resin may be used alone, a phenol novolac type cyanate resin having a different weight average molecular weight may be used in combination, or a cyanate resin and its prepolymer may be used in combination.
Here, the prepolymer is usually obtained by, for example, trimerizing the cyanate resin by a heat reaction or the like, and is preferably used for adjusting the moldability and fluidity of the epoxy resin composition. It is.
Although a prepolymer is not specifically limited, For example, it is preferable to use what a trimerization rate is 20 to 50 weight%. This trimerization rate can be determined using, for example, an infrared spectroscopic analyzer.
The (B) phenol novolac-type cyanate resin is not particularly limited, but one kind can be used alone, two or more kinds having different weight average molecular weights can be used in combination, one kind or two kinds or more. Cyanate resins and their prepolymers can also be used in combination.

前記(B)フェノールノボラック型シアネート樹脂の含有量は、特に限定されないが、樹脂組成物全体の5〜42重量%が好ましく、特に10〜40重量%が好ましい。含有量が前記下限値未満であると熱膨張率が高くなってしまう場合があり、前記上限値を超えると耐湿性が低下する場合がある。   Although content of the said (B) phenol novolak-type cyanate resin is not specifically limited, 5-42 weight% of the whole resin composition is preferable, and 10-40 weight% is especially preferable. If the content is less than the lower limit, the coefficient of thermal expansion may increase, and if the content exceeds the upper limit, the moisture resistance may be reduced.

前記(C)硬化剤は、特に限定されないが、フェノール樹脂、一級、二級、又は三級アミンなどのアミン化合物、ジシアンジアミド化合物、イミダゾール化合物を用いることができる。これらの中でも特に、イミダゾール化合物や三級アミン化合物は、配合量が少なくとも優れた硬化性、及び絶縁信頼性を有する点で好ましい。また、イミダゾール化合物や三級アミン化合物を用いた場合、特に、高いガラス転移温度を有し、吸湿耐熱性に優れた積層板を得ることができる。 The (C) curing agent is not particularly limited, and phenol resins, amine compounds such as primary, secondary, and tertiary amines, dicyandiamide compounds, and imidazole compounds can be used. Among these, an imidazole compound and a tertiary amine compound are particularly preferable in terms of having at least excellent curability and insulation reliability. Moreover, when an imidazole compound or a tertiary amine compound is used, a laminate having a high glass transition temperature and excellent moisture absorption heat resistance can be obtained.

前記イミダゾール化合物は、特に限定されないが、例えば、2−メチルイミダゾール、2−フェニルイミダゾール、2−フェニル−4−メチルイミダゾール、2−エチル−4−エチルイミダゾール、1−ベンジルー2−メチルイミダゾール、1−ベンジルー2−フェニルイミダゾール、2−ウンデシルイミダゾール、1−シアノエチルー2−エチルー4−メチルイミダゾール、1−シアノエチルー2−ウンデシルイミダゾール、2−フェニル−4−メチル−5−ヒドロキシイミダゾール、2−フェニル−4,5−ジヒドロキシイミダゾール、2,3−ジヒドロー1H−ピロロ(1,2−a)ベンズイミダゾールが挙げられるが、これに限定するものではない。また、硬化剤は1種類でも、複数の2種類以上の硬化剤を用いてもよい。   The imidazole compound is not particularly limited. For example, 2-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 2-ethyl-4-ethylimidazole, 1-benzyl-2-methylimidazole, 1- Benzyl-2-phenylimidazole, 2-undecylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-undecylimidazole, 2-phenyl-4-methyl-5-hydroxyimidazole, 2-phenyl-4 , 5-dihydroxyimidazole, 2,3-dihydro-1H-pyrrolo (1,2-a) benzimidazole, but are not limited thereto. Further, one type of curing agent may be used, or a plurality of two or more types of curing agents may be used.

前記(D)無機充填材は、特に限定されないが、例えば、タルク、焼成タルク、焼成クレー、未焼成クレー、マイカ、ガラス等のケイ酸塩、酸化チタン、アルミナ、シリカ、溶融シリカ等の酸化物、炭酸カルシウム、炭酸マグネシウム、ハイドロタルサイト等の炭酸塩、水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウム等の水酸化物、硫酸バリウム、硫酸カルシウム、亜硫酸カルシウム等の硫酸塩または亜硫酸塩、ホウ酸亜鉛、メタホウ酸バリウム、ホウ酸アルミニウム、ホウ酸カルシウム、ホウ酸ナトリウム等のホウ酸塩、窒化アルミニウム、窒化ホウ素、窒化ケイ素、窒化炭素等の窒化物、チタン酸ストロンチウム、チタン酸バリウム等のチタン酸塩等を挙げることができる。無機充填材として、これらの中の1種類を単独で用いることもできるし、2種類以上を併用したりすることもできる。これらの中でも水酸化マグネシウム、水酸化アルミニウム、シリカ、溶融シリカ、タルク、焼成タルク、アルミナが好ましく、特に溶融シリカが低熱膨張性に優れる点で好ましい。その形状は破砕状、球状があるが、繊維基材への含浸性を確保するために樹脂組成物の溶融粘度を下げるには球状シリカを使う等、その目的にあわせた使用方法が採用される。 The (D) inorganic filler is not particularly limited. For example, talc, calcined talc, calcined clay, uncalcined clay, mica, silicate such as glass, oxide such as titanium oxide, alumina, silica, and fused silica , Carbonates such as calcium carbonate, magnesium carbonate and hydrotalcite, hydroxides such as aluminum hydroxide, magnesium hydroxide and calcium hydroxide, sulfates or sulfites such as barium sulfate, calcium sulfate and calcium sulfite, boric acid Borate salts such as zinc, barium metaborate, aluminum borate, calcium borate and sodium borate, nitrides such as aluminum nitride, boron nitride, silicon nitride and carbon nitride, titanic acid such as strontium titanate and barium titanate A salt etc. can be mentioned. As the inorganic filler, one of these can be used alone, or two or more can be used in combination. Among these, magnesium hydroxide, aluminum hydroxide, silica, fused silica, talc, calcined talc, and alumina are preferable, and fused silica is particularly preferable in terms of excellent low thermal expansion. The shape is crushed and spherical, but in order to reduce the melt viscosity of the resin composition in order to ensure the impregnation of the fiber substrate, a method of use that suits the purpose, such as using spherical silica, is adopted. .

また前記(D)無機充填材は、特に限定されないが、粒度分布が単分散の無機充填材を用いることもできるし、多分散の無機充填材を用いることができる。さらに粒度分布が単分散及び/または、多分散の無機充填材を1種類または2種類以上とを併用したりすることもできる。 The (D) inorganic filler is not particularly limited, but a monodisperse inorganic filler having a particle size distribution can be used, or a polydisperse inorganic filler can be used. Furthermore, one type or two or more types of inorganic fillers having a monodispersed and / or polydispersed particle size distribution may be used in combination.

前記(D)無機充填材の平均粒子径は、特に限定されないが、0.005〜10μmが好ましく、特に0.01〜5μmが好ましい。無機充填材の粒径が前記下限値未満であるとワニスの粘度が高くなるため、プリプレグ作製時の作業性に影響を与える場合がある。また、前記上限値を超えると、ワニス中で無機充填材の沈降等の現象が起こる場合がある。
更に平均粒子径5.0μm以下の球状シリカが好ましく、特に平均粒子径0.01〜2μmの球状溶融シリカが好ましい。これにより、無機充填材の充填性を向上させることができる。尚、平均粒子径は、例えば粒度分布計(HORIBA製、LA−500)により測定することができる。
The average particle diameter of the (D) inorganic filler is not particularly limited, but is preferably 0.005 to 10 μm, particularly preferably 0.01 to 5 μm. If the particle size of the inorganic filler is less than the lower limit, the viscosity of the varnish becomes high, which may affect the workability during prepreg production. When the upper limit is exceeded, phenomena such as sedimentation of the inorganic filler may occur in the varnish.
Furthermore, spherical silica having an average particle diameter of 5.0 μm or less is preferable, and spherical fused silica having an average particle diameter of 0.01 to 2 μm is particularly preferable. Thereby, the filling property of an inorganic filler can be improved. The average particle diameter can be measured, for example, by a particle size distribution meter (manufactured by HORIBA, LA-500).

前記(D)無機充填材の含有量は、特に限定されないが、(A)一般式(1)で表される多官能エポキシ樹脂、(B)フェノールノボラック型シアネート樹脂、(C)硬化剤、(D)無機充填材を必須成分する樹脂組成物全体の20〜80重量%が好ましく、特に30〜75重量%が好ましい。含有量が前記範囲内であると、特に低吸水性で、低熱膨張性のプリプレグを得ることができる。   The content of the (D) inorganic filler is not particularly limited, but (A) a polyfunctional epoxy resin represented by the general formula (1), (B) a phenol novolac type cyanate resin, (C) a curing agent, ( D) 20 to 80% by weight of the entire resin composition containing the inorganic filler as an essential component is preferable, and 30 to 75% by weight is particularly preferable. When the content is within the above range, a prepreg having particularly low water absorption and low thermal expansion can be obtained.

前記樹脂組成物は、導体回路層との密着性が向上するような成分を添加しても良い。例えば、フェノキシ樹脂、ポリビニルアルコール系樹脂、導体回路層を構成する金属との密着性を向上させるカップリング剤等が挙げられ、これらの中でも特に密着性に優れ、硬化反応速度に与える影響が少ないという点でフェノキシ樹脂が好ましい。   The resin composition may be added with a component that improves adhesion to the conductor circuit layer. For example, a phenoxy resin, a polyvinyl alcohol resin, a coupling agent that improves the adhesion with the metal constituting the conductor circuit layer, and the like are mentioned. Among these, the adhesion is particularly excellent, and the influence on the curing reaction rate is small. A phenoxy resin is preferable at this point.

前記フェノキシ樹脂は、例えばビスフェノール骨格を有するフェノキシ樹脂、ノボラック骨格を有するフェノキシ樹脂、ナフタレン骨格を有するフェノキシ樹脂、ビフェニル骨格を有するフェノキシ樹脂等が挙げられる。また、これらの骨格を複数種類有した構造のフェノキシ樹脂を用いることもできる。 Examples of the phenoxy resin include a phenoxy resin having a bisphenol skeleton, a phenoxy resin having a novolak skeleton, a phenoxy resin having a naphthalene skeleton, and a phenoxy resin having a biphenyl skeleton. A phenoxy resin having a structure having a plurality of these skeletons can also be used.

また、前記樹脂組成物は、必要に応じて、着色剤、消泡剤、レベリング剤、紫外線吸収剤、発泡剤、酸化防止剤、難燃剤、イオン捕捉剤等の上記成分以外の添加物を添加しても良い。   In addition, the resin composition may contain additives other than the above components such as a colorant, an antifoaming agent, a leveling agent, an ultraviolet absorber, a foaming agent, an antioxidant, a flame retardant, and an ion scavenger as necessary. You may do it.

前記樹脂組成物を含浸させる基材は、特に限定されないが、ガラス織布、ガラス不織布等のガラス繊維基材、ポリアミド樹脂繊維、芳香族ポリアミド樹脂繊維、全芳香族ポリアミド樹脂繊維等のポリアミド系樹脂繊維、ポリエステル樹脂繊維、芳香族ポリエステル樹脂繊維、全芳香族ポリエステル樹脂繊維等のポリエステル系樹脂繊維、ポリイミド樹脂繊維、フッ素樹脂繊維等を主成分とする織布または不織布で構成される合成繊維基材、クラフト紙、コットンリンター紙、リンターとクラフトパルプの混抄紙等を主成分とする紙基材等の有機繊維基材等が挙げられる。これらの中でもガラス繊維基材が好ましい。これにより、低吸水性で、高強度、低熱膨張性のプリプレグを得ることができる。  The base material impregnated with the resin composition is not particularly limited, but a glass fiber base material such as a glass woven fabric or a glass non-woven fabric, a polyamide resin such as a polyamide resin fiber, an aromatic polyamide resin fiber, or a wholly aromatic polyamide resin fiber Synthetic fiber substrate composed of woven or non-woven fabric mainly composed of fiber, polyester resin fiber, aromatic polyester resin fiber, polyester resin fiber such as wholly aromatic polyester resin fiber, polyimide resin fiber, fluororesin fiber, etc. And organic fiber base materials such as paper base materials mainly composed of kraft paper, cotton linter paper, mixed paper of linter and kraft pulp, and the like. Among these, a glass fiber base material is preferable. Thereby, a prepreg having low water absorption, high strength, and low thermal expansion can be obtained.

前記ラス繊維基材を構成するガラスは、例えばEガラス、Cガラス、Aガラス、Sガラス、Dガラス、NEガラス、Tガラス、Hガラス等が挙げられる。これらの中でもEガラス、またはTガラスが好ましい。これにより、プルプレグの高弾性化を達成することができ、またプリプレグの熱膨張係数を小さくすることができる。  Examples of the glass constituting the lath fiber substrate include E glass, C glass, A glass, S glass, D glass, NE glass, T glass, and H glass. Among these, E glass or T glass is preferable. Thereby, the high elasticity of a pull prepreg can be achieved and the thermal expansion coefficient of a prepreg can be made small.

前記樹脂組成物を基材に含浸させる方法は、例えば、本発明の樹脂組成物を用いて樹脂ワニスを調製し、基材を樹脂ワニスに浸漬する方法、各種コーターにより塗布する方法、スプレーにより吹き付ける方法等が挙げられる。これらの中でも、基材を樹脂ワニスに浸漬する方法が好ましい。これにより、繊維基材に対する樹脂組成物の含浸性を向上することができる。なお、繊維基材を樹脂ワニスに浸漬する場合、通常の含浸塗布設備を使用することができる。   The method of impregnating the base material with the resin composition includes, for example, preparing a resin varnish using the resin composition of the present invention, immersing the base material in the resin varnish, applying with various coaters, and spraying by spraying. Methods and the like. Among these, the method of immersing the base material in the resin varnish is preferable. Thereby, the impregnation property of the resin composition with respect to the fiber base material can be improved. In addition, when a fiber base material is immersed in a resin varnish, a normal impregnation coating equipment can be used.

前記樹脂ワニスに用いられる溶媒は、前記樹脂組成物中の樹脂成分に対して良好な溶解性を示すことが望ましいが、悪影響を及ぼさない範囲で貧溶媒を使用しても構わない。良好な溶解性を示す溶媒は、例えばアセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、シクロペンタノン、テトラヒドロフラン、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、エチレングリコール、セルソルブ系、カルビトール系等が挙げられる。   The solvent used in the resin varnish desirably exhibits good solubility in the resin component in the resin composition, but a poor solvent may be used within a range that does not adversely affect the resin varnish. Examples of the solvent exhibiting good solubility include acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, cyclopentanone, tetrahydrofuran, dimethylformamide, dimethylacetamide, dimethyl sulfoxide, ethylene glycol, cellosolve, and carbitol.

前記樹脂ワニスの固形分は、特に限定されないが、前記樹脂組成物の固形分50〜80重量%が好ましく、特に60〜78重量% が好ましい。これにより、樹脂ワニスの繊維基材への含浸性を更に向上できる。前記繊維基材に前記樹脂組成物を含浸させる所定温度、特に限定されないが、例えば90〜220℃等で乾燥させることによりプリプレグを得ることが出来る。   The solid content of the resin varnish is not particularly limited, but the solid content of the resin composition is preferably 50 to 80% by weight, and particularly preferably 60 to 78% by weight. Thereby, the impregnation property to the fiber base material of the resin varnish can further be improved. Although it does not specifically limit the predetermined temperature which makes the said fiber base material impregnate the said resin composition, For example, a prepreg can be obtained by drying at 90-220 degreeC etc.

次に、積層板について説明する。     Next, a laminated board is demonstrated.

本発明の積層板は、前記プリプレグを少なくとも1枚もしくは複数枚積層したものの、上下両面に、金属箔あるいはフィルムを重ね、加熱、加圧することで積層板を得ることができる。前記加熱する温度は、特に限定されないが、120〜230℃が好ましく、特に150〜210℃が好ましい。また、前記加圧する圧力は、特に限定されないが、1〜5MPaが好ましく、特に2〜4MPaが好ましい。これにより、誘電特性、高温多湿化での機械的、電気的接続信頼性に優れた積層板を得ることができる。   Although the laminated board of this invention laminated | stacked the said prepreg at least 1 sheet or multiple sheets, a laminated sheet can be obtained by superimposing metal foil or a film on both upper and lower surfaces, and heating and pressurizing. The heating temperature is not particularly limited, but is preferably 120 to 230 ° C, particularly preferably 150 to 210 ° C. Moreover, the pressure to pressurize is not particularly limited, but is preferably 1 to 5 MPa, and particularly preferably 2 to 4 MPa. Thereby, the laminated board excellent in the dielectric property and the mechanical and electrical connection reliability in high temperature and high humidity can be obtained.

前記金属箔は、例えば銅及び銅系合金、アルミ及びアルミ系合金、銀及び銀系合金、金及び金系合金、亜鉛及び亜鉛系合金、ニッケル及びニッケル系合金、錫及び錫系合金、鉄および鉄系合金等の金属箔が挙げられる。   The metal foil includes, for example, copper and a copper alloy, aluminum and an aluminum alloy, silver and a silver alloy, gold and a gold alloy, zinc and a zinc alloy, nickel and a nickel alloy, tin and a tin alloy, iron and Metal foils, such as an iron-type alloy, are mentioned.

次に、多層プリント配線板について説明する。 Next, a multilayer printed wiring board will be described.

多層プリント配線板は、前記積層板を用いて製造することができる。製造方法は、特に限定されないが、例えば、前記両面に銅箔を有する積層板を用い、ドリル機で所定のところを開孔して、無電解めっきにより、内層回路基板の両面の導通を図る。そして、前記銅箔をエッチングすることにより内層回路を形成する。
なお、内層回路部分は、黒化処理等の粗化処理を施したものを好適に用いることができる。また開口部は、導体ペースト、または樹脂ペーストで適宜埋めることができる。
次に前記プリプレグ、またはフィルム付き樹脂シートを用い、前記内層回路を覆うように、積層し、絶縁層を形成する。積層(ラミネート)方法は、特に限定されないが、真空プレス、常圧ラミネーター、および真空下で加熱加圧するラミネーターを用いて積層する方法が好ましく、更に好ましくは、真空下で加熱加圧するラミネーターを用いる方法である。
A multilayer printed wiring board can be manufactured using the said laminated board. Although a manufacturing method is not specifically limited, For example, the laminated board which has a copper foil on the said both surfaces is used, A predetermined place is opened with a drill machine, and conduction | electrical_connection of both surfaces of an inner-layer circuit board is aimed at by electroless plating. Then, an inner layer circuit is formed by etching the copper foil.
Note that the inner layer circuit portion can be suitably used after being subjected to roughening processing such as blackening processing. The opening can be appropriately filled with a conductor paste or a resin paste.
Next, the prepreg or the resin sheet with a film is laminated so as to cover the inner layer circuit to form an insulating layer. The lamination method is not particularly limited, but a lamination method using a vacuum press, a normal pressure laminator, and a laminator that is heated and pressurized under vacuum is preferable, and a method using a laminator that is heated and pressurized under vacuum is more preferable. It is.

その後、前記絶縁層を加熱することにより硬化させる。硬化させる温度は、特に限定されないが、例えば、100℃〜250℃の範囲で硬化させることができる。好ましくは150℃〜200℃で硬化させることである。 Thereafter, the insulating layer is cured by heating. Although the temperature to harden | cure is not specifically limited, For example, it can be made to harden | cure in the range of 100 to 250 degreeC. Preferably it is made to harden | cure at 150 to 200 degreeC.

次に、絶縁層に、レーザーを照射して、開口部を形成し、レーザー照射後の樹脂残渣等は過マンガン酸塩、重クロム酸塩等の酸化剤などにより除去することが好ましい。また、平滑な絶縁樹脂層の表面を同時に粗化することができ、続く金属メッキにより形成する導電配線回路の密着性を上げることができる。樹脂層は、前記粗化工程において微細な凹凸形状を均一に施すことができる。また、樹脂層表面の平滑性が高いため微細な配線回路を精度よく形成することができる。
その後、最外層にソルダーレジストを形成し、露光・現像により半導体素子が実装できるよう接続用電極部を露出させ、ニッケル金メッキ処理を施し、所定の大きさに切断し、多層プリント配線板を得ることができる。
Next, it is preferable to irradiate the insulating layer with a laser to form an opening, and to remove the resin residue after the laser irradiation with an oxidizing agent such as permanganate or dichromate. Further, the surface of the smooth insulating resin layer can be simultaneously roughened, and the adhesion of the conductive wiring circuit formed by subsequent metal plating can be improved. The resin layer can be uniformly provided with fine irregularities in the roughening step. Moreover, since the smoothness of the resin layer surface is high, a fine wiring circuit can be formed with high accuracy.
After that, a solder resist is formed on the outermost layer, the connection electrode part is exposed so that a semiconductor element can be mounted by exposure / development, nickel gold plating treatment is performed, and it is cut into a predetermined size to obtain a multilayer printed wiring board. Can do.

次に、半導体装置について説明する。
半導体装置は、上述した方法にて製造された多層プリント配線板に半導体素子を実装し、製造することができる。半導体素子の実装方法、封止方法は特に限定されない。例えば、次のような方法で製造することができる。
Next, a semiconductor device will be described.
A semiconductor device can be manufactured by mounting a semiconductor element on a multilayer printed wiring board manufactured by the method described above. The mounting method and the sealing method of the semiconductor element are not particularly limited. For example, it can be manufactured by the following method.

まずフリップチップボンダーなどを用いて多層プリント配線板上の接続用電極部と半導体素子の半田バンプとの位置合わせを行う。次に、IRリフロー装置、熱板、その他加熱装置を用いて半田バンプを融点以上に加熱し、多層プリント配線板と半田バンプとを溶融接合することにより接続する。最後に、多層プリント配線板と半導体素子との間に液状封止樹脂を充填し、硬化させることで半導体装置を得ることができる。  First, using a flip chip bonder or the like, the connection electrode portion on the multilayer printed wiring board and the solder bump of the semiconductor element are aligned. Next, the solder bump is heated to the melting point or higher by using an IR reflow device, a hot plate, or other heating device, and the multilayer printed wiring board and the solder bump are connected by fusion bonding. Finally, a liquid sealing resin is filled between the multilayer printed wiring board and the semiconductor element and cured to obtain a semiconductor device.

以下、本発明の内容を実施例により詳細に説明するが、本発明は、その要旨を越えない限り以下の例に限定されるものではない。   Hereinafter, the contents of the present invention will be described in detail by way of examples. However, the present invention is not limited to the following examples unless it exceeds the gist.

(実施例1)
(1)プリプレグの作製
(A)下記一般式(1)で表される多官能エポキシ樹脂としてエポキシ基を4.0個有し、ナフタレン環がメチレン結合で繋がったナフタレンエポキシ樹脂(DIC社製、HP−4700)19.5重量部、(B)ノボラック型シアネート樹脂(ロンザジャパン株式会社製、プリマセットPT−30)15.0重量部、(C)硬化剤として1−ベンジルー2−メチルイミダゾール(四国化成社製、キュアゾール1B2PZ)0.2重量部をメチルエチルケトンに溶解、分散させた。さらに、(D)無機充填材として球状溶融シリカ(アドマテックス社製、SO−25R、平均粒径0.5μm)65.0重量部とカップリング剤(日本ユニカー社製、A187)0.3重量部を添加して、高速攪拌装置を用いて10分間攪拌して、固形分50重量%の樹脂ワニスを調製した。
Example 1
(1) Preparation of prepreg (A) A naphthalene epoxy resin having 4.0 epoxy groups as a polyfunctional epoxy resin represented by the following general formula (1) and having a naphthalene ring connected by a methylene bond (manufactured by DIC, (HP-4700) 19.5 parts by weight, (B) 15.0 parts by weight of a novolac-type cyanate resin (Lonza Japan Co., Ltd., Primaset PT-30), (C) 1-benzyl-2-methylimidazole ( 0.2 part by weight of Shikoku Kasei Co., Ltd., Curazole 1B2PZ) was dissolved and dispersed in methyl ethyl ketone. Furthermore, (D) 65.0 parts by weight of spherical fused silica (manufactured by Admatechs, SO-25R, average particle size 0.5 μm) as an inorganic filler and a coupling agent (Nihon Unicar Co., A187) 0.3 wt. A resin varnish having a solid content of 50% by weight was prepared by stirring for 10 minutes using a high-speed stirrer.

次に、前記樹脂ワニスをガラス織布(ユニチカ社製、E10Tクロス 90μm)に含浸し、150℃の加熱炉で2分間乾燥して、厚さ100μmのプリプレグを作製した。また、厚さ27umガラス織布(ユニチカ社製、E03Eクロス)を用いて厚さ40umのプリプレグを作製した。 Next, the resin varnish was impregnated into a glass woven fabric (E10T cloth 90 μm, manufactured by Unitika Ltd.) and dried in a heating furnace at 150 ° C. for 2 minutes to prepare a prepreg having a thickness of 100 μm. Further, a prepreg having a thickness of 40 um was prepared using a 27 um glass woven fabric (E03E cloth manufactured by Unitika Ltd.).

(2)積層板の作製
前記で得られた厚さ100umのプリプレグを、両面に12μmの銅箔(三井金属社製、3EC−M3−VLP箔)を重ねて、圧力3MPa、温度220℃で2時間加熱加圧成形することによって、厚さ0.1mmの両面銅箔を有する積層板を得た。
(2) Production of laminated plate The prepreg having a thickness of 100 μm obtained above was overlapped with 12 μm copper foil (manufactured by Mitsui Kinzoku Co., Ltd., 3EC-M3-VLP foil) on both sides, and the pressure was 3 MPa and the temperature was 220 ° C. A laminated board having a double-sided copper foil with a thickness of 0.1 mm was obtained by time heating and pressing.

(3)多層プリント配線板の作製
前記で得られた積層板に、0.1mmのドリルビットを用いてスルーホール加工を行った後、メッキによりスルーホールを充填した。さらに、両面をエッチングにより回路形成し、内層回路基板として用いた。前記内層回路基板の表裏に、前記で得られた厚さ40μmのプリプレグを重ね合わせ、これを、真空加圧式ラミネーター装置を用いて、温度100℃、圧力1MPaにて真空加熱加圧成形させた。これを、熱風乾燥装置にて170℃で60分間加熱し硬化させて、多層プリント配線板を得た。
(3) Production of multilayer printed wiring board The laminated board obtained above was subjected to through hole processing using a 0.1 mm drill bit, and then filled with through holes by plating. Further, a circuit was formed on both sides by etching and used as an inner layer circuit board. The 40 μm-thick prepreg obtained above was superimposed on the front and back of the inner layer circuit board, and this was vacuum heated and pressed at a temperature of 100 ° C. and a pressure of 1 MPa using a vacuum pressurizing laminator apparatus. This was heated and cured at 170 ° C. for 60 minutes in a hot air drying apparatus to obtain a multilayer printed wiring board.

(4)半導体装置の作製
前記で得られた多層プリント配線板の絶縁層に炭酸レーザー装置を用いて開口部を設け、電解銅めっきにより絶縁層表面に外層回路形成を行い、外層回路と内層回路との導通を図った。なお、外層回路は、半導体素子を実装するための接続用電極部を設けた。
その後、最外層にソルダーレジスト(太陽インキ社製、PSR4000/AUS308)を形成し、露光・現像により半導体素子が実装できるよう接続用電極部を露出させ、ニッケル金メッキ処理を施し、多層プリント配線板を50mm×50mmの大きさに切断した。
(4) Fabrication of semiconductor device An opening is provided in the insulating layer of the multilayer printed wiring board obtained above using a carbonic acid laser device, and an outer layer circuit is formed on the surface of the insulating layer by electrolytic copper plating. Continuation with was planned. Note that the outer layer circuit was provided with a connection electrode part for mounting a semiconductor element.
Then, a solder resist (manufactured by Taiyo Ink, PSR4000 / AUS308) is formed on the outermost layer, the connection electrode part is exposed so that a semiconductor element can be mounted by exposure and development, nickel gold plating is performed, and a multilayer printed wiring board is formed. It cut | disconnected to the magnitude | size of 50 mm x 50 mm.

その後、半導体素子(TEGチップ、サイズ15mm×15mm、厚み0.8mm)は、半田バンプはSn/Pb組成の共晶で形成され、回路保護膜はポジ型感光性樹脂(住友ベークライト社製CRC−8300)で形成されたものを使用した。半導体装置の組み立ては、まず、半田バンプにフラックス材を転写法により均一に塗布し、次にフリップチップボンダー装置を用い、上記多層プリント配線板上に加熱圧着により搭載した。次に、IRリフロー炉で半田バンプを溶融接合した後、液状封止樹脂(住友ベークライト社製、CRP−4152S)を充填し、液状封止樹脂を、温度150℃、120分の条件下で硬化させることにより半導体装置を得た。尚、半導体素子と多層プリント配線板とは、300個の半田バンプを介して接続され、得られた半導体装置は、デイジーチェーンを有し、接続部の導通を確認することができる。 Thereafter, in the semiconductor element (TEG chip, size 15 mm × 15 mm, thickness 0.8 mm), the solder bump is formed of a eutectic of Sn / Pb composition, and the circuit protective film is a positive photosensitive resin (CRC- manufactured by Sumitomo Bakelite Co., Ltd.). 8300) was used. In assembling the semiconductor device, first, a flux material was uniformly applied to the solder bumps by a transfer method, and then mounted on the multilayer printed wiring board by thermocompression bonding using a flip chip bonder device. Next, after melt-bonding the solder bumps in an IR reflow furnace, a liquid sealing resin (manufactured by Sumitomo Bakelite Co., Ltd., CRP-4152S) is filled, and the liquid sealing resin is cured at a temperature of 150 ° C. for 120 minutes. Thus, a semiconductor device was obtained. The semiconductor element and the multilayer printed wiring board are connected via 300 solder bumps, and the obtained semiconductor device has a daisy chain and can confirm the continuity of the connecting portion.

(実施例2)
(A)下記一般式(1)で表される多官能エポキシ樹脂としてエポキシ基を4.0個有し、ナフタレン環がメチレン結合で繋がったナフタレンエポキシ樹脂(DIC社製、HP−4700)19.4重量部、(B)ノボラック型シアネート樹脂(ロンザジャパン株式会社製、プリマセットPT−30)10.0重量部、(C)硬化剤として1−ベンジルー2−メチルイミダゾール(四国化成社製、キュアゾール1B2PZ)0.3重量部をメチルエチルケトンに溶解、分散させた。さらに、(D)無機充填材として球状溶融シリカ(アドマテックス社製、SO−25R、平均粒径0.5μm)70.0重量部とカップリング剤(日本ユニカー社製、A187)0.3重量部を添加して、高速攪拌装置を用いて10分間攪拌して、固形分50重量%の樹脂ワニスを調製し、その後、実施例1と同様にして、プリプレグ、積層板、多層プリント配線板、及び半導体装置を作製した。
(Example 2)
(A) Naphthalene epoxy resin (made by DIC, HP-4700) having 4.0 epoxy groups as a polyfunctional epoxy resin represented by the following general formula (1) and having a naphthalene ring connected by a methylene bond. 4 parts by weight, (B) novolak-type cyanate resin (Lonza Japan Co., Ltd., Primaset PT-30) 10.0 parts by weight, (C) 1-benzyl-2-methylimidazole (manufactured by Shikoku Kasei Co., Ltd., Curazole) as a curing agent 1B2PZ) 0.3 parts by weight was dissolved and dispersed in methyl ethyl ketone. Furthermore, (D) 70.0 parts by weight of spherical fused silica (manufactured by Admatechs, SO-25R, average particle size 0.5 μm) as an inorganic filler and a coupling agent (Nihon Unicar Co., A187) 0.3 wt. Part and the mixture was stirred for 10 minutes using a high-speed stirrer to prepare a resin varnish with a solid content of 50% by weight. Thereafter, in the same manner as in Example 1, a prepreg, a laminate, a multilayer printed wiring board, A semiconductor device was manufactured.

(実施例3)
(A)下記一般式(1)で表される多官能エポキシ樹脂としてエポキシ基を4.0個有し、ナフタレン環がメチレン結合で繋がったナフタレンエポキシ樹脂(DIC社製、HP−4700)19.4重量部、(B)ノボラック型シアネート樹脂(ロンザジャパン株式会社製、プリマセットPT−30)30.0重量部、(C)硬化剤として1−ベンジルー2−メチルイミダゾール(四国化成社製、キュアゾール1B2PZ)0.3重量部をメチルエチルケトンに溶解、分散させた。さらに、(D)無機充填材として球状溶融シリカ(アドマテックス社製、SO−25R、平均粒径0.5μm)50.0重量部とカップリング剤(日本ユニカー社製、A187)0.3重量部を添加して、高速攪拌装置を用いて10分間攪拌して、固形分50重量%の樹脂ワニスを調製し、その後、実施例1と同様にして、プリプレグ、積層板、多層プリント配線板、及び半導体装置を作製した。
(Example 3)
(A) Naphthalene epoxy resin (made by DIC, HP-4700) having 4.0 epoxy groups as a polyfunctional epoxy resin represented by the following general formula (1) and having a naphthalene ring connected by a methylene bond. 4 parts by weight, (B) 30.0 parts by weight of a novolak-type cyanate resin (Lonza Japan Co., Ltd., Primaset PT-30), (C) 1-benzyl-2-methylimidazole (manufactured by Shikoku Kasei Co., Ltd., Curazole) as a curing agent 1B2PZ) 0.3 parts by weight was dissolved and dispersed in methyl ethyl ketone. Further, (D) 50.0 parts by weight of spherical fused silica (manufactured by Admatechs, SO-25R, average particle size 0.5 μm) as an inorganic filler and a coupling agent (Nihon Unicar Co., A187) 0.3 wt. Part and the mixture was stirred for 10 minutes using a high-speed stirrer to prepare a resin varnish with a solid content of 50% by weight. Thereafter, in the same manner as in Example 1, a prepreg, a laminate, a multilayer printed wiring board, A semiconductor device was manufactured.

(実施例4)
(A)下記一般式(1)で表される多官能エポキシ樹脂としてエポキシ基を4.0個有し、ナフタレン環がメチレン結合で繋がったナフタレンエポキシ樹脂(DIC社製、HP−4700)19.5重量部、(B)ノボラック型シアネート樹脂(ロンザジャパン株式会社製、プリマセットPT−30)15.0重量部、(C)硬化剤として1−ベンジルー2−メチルイミダゾール(四国化成社製、キュアゾール1B2PZ)0.2重量部をメチルエチルケトンに溶解、分散させた。さらに、(D)無機充填材として水酸化アルミニウム(日本軽金属社製、BE033、平均粒径3μm)65.0重量部とカップリング剤(日本ユニカー社製、A187)0.3重量部を添加して、高速攪拌装置を用いて10分間攪拌して、固形分50重量%の樹脂ワニスを調製し、その後、実施例1と同様にして、プリプレグ、積層板、多層プリント配線板、及び半導体装置を作製した。
Example 4
(A) Naphthalene epoxy resin (made by DIC, HP-4700) having 4.0 epoxy groups as a polyfunctional epoxy resin represented by the following general formula (1) and having a naphthalene ring connected by a methylene bond. 5 parts by weight, (B) 15.0 parts by weight of a novolac-type cyanate resin (Lonza Japan Co., Ltd., Primaset PT-30), (C) 1-benzyl-2-methylimidazole (manufactured by Shikoku Kasei Co., Ltd., Curazole) as a curing agent 1B2PZ) 0.2 parts by weight was dissolved and dispersed in methyl ethyl ketone. Furthermore, (D) 65.0 parts by weight of aluminum hydroxide (Nihon Light Metal Co., Ltd., BE033, average particle size 3 μm) and 0.3 parts by weight of a coupling agent (Nihon Unicar Co., Ltd., A187) were added as inorganic fillers. The resin varnish having a solid content of 50% by weight is prepared by stirring for 10 minutes using a high-speed stirrer. Thereafter, in the same manner as in Example 1, the prepreg, the laminate, the multilayer printed wiring board, and the semiconductor device are prepared. Produced.

(実施例5)
(A)下記一般式(1)で表される多官能エポキシ樹脂としてエポキシ基を4.0個有し、ナフタレン環がメチレン結合で繋がったナフタレンエポキシ樹脂(DIC社製、HP−4700)19.4重量部、(B)ノボラック型シアネート樹脂(ロンザジャパン株式会社製、プリマセットPT−30)5.0重量部、(C)硬化剤として1−ベンジルー2−メチルイミダゾール(四国化成社製、キュアゾール1B2PZ)0.2重量部をメチルエチルケトンに溶解、分散させた。さらに、(D)無機充填材として球状溶融シリカ(アドマテックス社製、SO−25R、平均粒径0.5μm)75.0重量部とカップリング剤(日本ユニカー社製、A187)0.4重量部を添加して、高速攪拌装置を用いて10分間攪拌して、固形分50重量%の樹脂ワニスを調製し、その後、実施例1と同様にして、プリプレグ、積層板、多層プリント配線板、及び半導体装置を作製した。
(Example 5)
(A) Naphthalene epoxy resin (made by DIC, HP-4700) having 4.0 epoxy groups as a polyfunctional epoxy resin represented by the following general formula (1) and having a naphthalene ring connected by a methylene bond. 4 parts by weight, (B) novolak type cyanate resin (Lonza Japan Co., Ltd., Primaset PT-30) 5.0 parts by weight, (C) 1-benzyl-2-methylimidazole (manufactured by Shikoku Kasei Co., Ltd., Curazole) as a curing agent 1B2PZ) 0.2 parts by weight was dissolved and dispersed in methyl ethyl ketone. Furthermore, (D) 75.0 parts by weight of spherical fused silica (manufactured by Admatechs, SO-25R, average particle size 0.5 μm) as an inorganic filler and a coupling agent (Nihon Unicar Co., A187) 0.4 weight Part and the mixture was stirred for 10 minutes using a high-speed stirrer to prepare a resin varnish with a solid content of 50% by weight. Thereafter, in the same manner as in Example 1, a prepreg, a laminate, a multilayer printed wiring board, A semiconductor device was manufactured.

(実施例6)
(A)下記一般式(1)で表される多官能エポキシ樹脂としてエポキシ基を4.0個有し、ナフタレン環がメチレン結合で繋がったナフタレンエポキシ樹脂(DIC社製、HP−4700)9.7重量部、(B)ノボラック型シアネート樹脂(ロンザジャパン株式会社製、プリマセットPT−30)15.0重量部、(C)硬化剤としてビフェニルアラルキルフェノール樹脂(日本化薬社製、GPH−103)10.0重量部をメチルエチルケトンに溶解、分散させた。さらに、(D)無機充填材として球状溶融シリカ(アドマテックス社製、SO−25R、平均粒径0.5μm)65.0重量部とカップリング剤(日本ユニカー社製、A187)0.3重量部を添加して、高速攪拌装置を用いて10分間攪拌して、固形分50重量%の樹脂ワニスを調製し、その後、実施例1と同様にして、プリプレグ、積層板、多層プリント配線板、及び半導体装置を作製した。
(Example 6)
(A) Naphthalene epoxy resin having 4.0 epoxy groups as a polyfunctional epoxy resin represented by the following general formula (1) and having a naphthalene ring connected by a methylene bond (manufactured by DIC, HP-4700) 9. 7 parts by weight, (B) 15.0 parts by weight of novolak-type cyanate resin (Lonza Japan Co., Ltd., Primaset PT-30), (C) biphenylaralkylphenol resin (manufactured by Nippon Kayaku Co., Ltd., GPH-103) as a curing agent ) 10.0 parts by weight were dissolved and dispersed in methyl ethyl ketone. Furthermore, (D) 65.0 parts by weight of spherical fused silica (manufactured by Admatechs, SO-25R, average particle size 0.5 μm) as an inorganic filler and a coupling agent (Nihon Unicar Co., A187) 0.3 wt. Part and the mixture was stirred for 10 minutes using a high-speed stirrer to prepare a resin varnish with a solid content of 50% by weight. Thereafter, in the same manner as in Example 1, a prepreg, a laminate, a multilayer printed wiring board, A semiconductor device was manufactured.

(実施例7)
(A)下記一般式(1)で表される多官能エポキシ樹脂としてエポキシ基を2.6個有し、ナフタレン環が単結合で繋がったナフタレンエポキシ樹脂(DIC社製、HP−4770)19.5重量部、(B)ノボラック型シアネート樹脂(ロンザジャパン株式会社製、プリマセットPT−30)15.0重量部、(C)硬化剤として1−ベンジルー2−メチルイミダゾール(四国化成社製、キュアゾール1B2PZ)0.2重量部をメチルエチルケトンに溶解、分散させた。さらに、(D)無機充填材として球状溶融シリカ(アドマテックス社製、SO−25R、平均粒径0.5μm)65.0重量部とカップリング剤(日本ユニカー社製、A187)0.3重量部を添加して、高速攪拌装置を用いて10分間攪拌して、固形分50重量%の樹脂ワニスを調製し、その後、実施例1と同様にして、プリプレグ、積層板、多層プリント配線板、及び半導体装置を作製した。
(Example 7)
(A) Naphthalene epoxy resin (manufactured by DIC, HP-4770) having 2.6 epoxy groups as a polyfunctional epoxy resin represented by the following general formula (1) and having a naphthalene ring connected by a single bond. 5 parts by weight, (B) 15.0 parts by weight of a novolac-type cyanate resin (Lonza Japan Co., Ltd., Primaset PT-30), (C) 1-benzyl-2-methylimidazole (manufactured by Shikoku Kasei Co., Ltd., Curazole) as a curing agent 1B2PZ) 0.2 parts by weight was dissolved and dispersed in methyl ethyl ketone. Furthermore, (D) 65.0 parts by weight of spherical fused silica (manufactured by Admatechs, SO-25R, average particle size 0.5 μm) as an inorganic filler and a coupling agent (Nihon Unicar Co., A187) 0.3 wt. Part and the mixture was stirred for 10 minutes using a high-speed stirrer to prepare a resin varnish with a solid content of 50% by weight. Thereafter, in the same manner as in Example 1, a prepreg, a laminate, a multilayer printed wiring board, A semiconductor device was manufactured.

(実施例8)
(A)下記一般式(1)で表される多官能エポキシ樹脂としてエポキシ基を2.6個有し、ナフタレン環が単結合で繋がったナフタレンエポキシ樹脂(DIC社製、EXA−7690)19.5重量部、(B)ノボラック型シアネート樹脂(ロンザジャパン株式会社製、プリマセットPT−30)15.0重量部、(C)硬化剤として1−ベンジルー2−メチルイミダゾール(四国化成社製、キュアゾール1B2PZ)0.2重量部をメチルエチルケトンに溶解、分散させた。さらに、(D)無機充填材として球状溶融シリカ(アドマテックス社製、SO−25R、平均粒径0.5μm)65.0重量部とカップリング剤(日本ユニカー社製、A187)0.3重量部を添加して、高速攪拌装置を用いて10分間攪拌して、固形分50重量%の樹脂ワニスを調製し、その後、実施例1と同様にして、プリプレグ、積層板、多層プリント配線板、及び半導体装置を作製した。
(Example 8)
(A) A naphthalene epoxy resin (EXA-7690, manufactured by DIC) having 2.6 epoxy groups as a polyfunctional epoxy resin represented by the following general formula (1) and having a naphthalene ring connected by a single bond. 5 parts by weight, (B) 15.0 parts by weight of a novolac-type cyanate resin (Lonza Japan Co., Ltd., Primaset PT-30), (C) 1-benzyl-2-methylimidazole (manufactured by Shikoku Kasei Co., Ltd., Curazole) as a curing agent 1B2PZ) 0.2 parts by weight was dissolved and dispersed in methyl ethyl ketone. Furthermore, (D) 65.0 parts by weight of spherical fused silica (manufactured by Admatechs, SO-25R, average particle size 0.5 μm) as an inorganic filler and a coupling agent (Nihon Unicar Co., A187) 0.3 wt. Part and the mixture was stirred for 10 minutes using a high-speed stirrer to prepare a resin varnish with a solid content of 50% by weight. Thereafter, in the same manner as in Example 1, a prepreg, a laminate, a multilayer printed wiring board, A semiconductor device was manufactured.

(比較例1)
エポキシ樹脂としてビフェニルアラルキルノボラックエポキシ樹脂(日本化薬社製、NC−3000)19.5重量部、ノボラック型シアネート樹脂(ロンザジャパン株式会社製、プリマセットPT−30)15.0重量部、硬化剤として1−ベンジルー2−メチルイミダゾール(四国化成社製、キュアゾール1B2PZ)0.2重量部をメチルエチルケトンに溶解、分散させた。さらに、無機充填材として球状溶融シリカ(アドマテックス社製、SO−25R、平均粒径0.5μm)65.0重量部とカップリング剤(日本ユニカー社製、A187)0.3重量部を添加して、高速攪拌装置を用いて10分間攪拌して、固形分50重量%の樹脂ワニスを調製し、その後、実施例1と同様にして、プリプレグ、積層板、多層プリント配線板、及び半導体装置を作製した。
(Comparative Example 1)
As epoxy resin, 19.5 parts by weight of biphenylaralkyl novolac epoxy resin (Nippon Kayaku Co., Ltd., NC-3000), 15.0 parts by weight of novolak cyanate resin (Lonza Japan Co., Ltd., Primaset PT-30), curing agent As a solution, 0.2 part by weight of 1-benzyl-2-methylimidazole (manufactured by Shikoku Kasei Co., Ltd., Curazole 1B2PZ) was dissolved and dispersed in methyl ethyl ketone. Further, 65.0 parts by weight of spherical fused silica (manufactured by Admatechs, SO-25R, average particle size 0.5 μm) and 0.3 part by weight of a coupling agent (Nihon Unicar Co., A187) are added as inorganic fillers. Then, the resin varnish having a solid content of 50% by weight was prepared by stirring for 10 minutes using a high-speed stirrer. Thereafter, in the same manner as in Example 1, a prepreg, a laminate, a multilayer printed wiring board, and a semiconductor device were prepared. Was made.

(比較例2)
エポキシ樹脂としてビフェニルアラルキルノボラックエポキシ樹脂(日本化薬社製、NC−3000)17.5重量部、メトキシナフタレンアラルキルエポキシ樹脂(DIC社製、HP−5000)2.0重量部、ノボラック型シアネート樹脂(ロンザジャパン株式会社製、プリマセットPT−30)15.0重量部、硬化剤として1−ベンジルー2−メチルイミダゾール(四国化成社製、キュアゾール1B2PZ)0.2重量部をメチルエチルケトンに溶解、分散させた。さらに、無機充填材として球状溶融シリカ(アドマテックス社製、SO−25R、平均粒径0.5μm)65.0重量部とカップリング剤(日本ユニカー社製、A187)0.3重量部を添加して、高速攪拌装置を用いて10分間攪拌して、固形分50重量%の樹脂ワニスを調製し、その後、実施例1と同様にして、プリプレグ、積層板、多層プリント配線板、及び半導体装置を作製した。
(Comparative Example 2)
As epoxy resin, 17.5 parts by weight of biphenylaralkyl novolak epoxy resin (Nippon Kayaku Co., Ltd., NC-3000), 2.0 parts by weight of methoxynaphthalene aralkyl epoxy resin (DIC, HP-5000), novolac type cyanate resin ( 15.0 parts by weight of Lonza Japan Co., Ltd., Primaset PT-30), 0.2 parts by weight of 1-benzyl-2-methylimidazole (manufactured by Shikoku Kasei Co., Ltd., Curazole 1B2PZ) as a curing agent were dissolved and dispersed in methyl ethyl ketone. . Further, 65.0 parts by weight of spherical fused silica (manufactured by Admatechs, SO-25R, average particle size 0.5 μm) and 0.3 part by weight of a coupling agent (Nihon Unicar Co., A187) are added as inorganic fillers. Then, the resin varnish having a solid content of 50% by weight was prepared by stirring for 10 minutes using a high-speed stirrer. Thereafter, in the same manner as in Example 1, a prepreg, a laminate, a multilayer printed wiring board, and a semiconductor device were prepared. Was made.

(比較例3)
エポキシ樹脂としてナフタレン環がメチレン結合で繋がったエポキシ基を4.0個有するナフタレンエポキシ樹脂(DIC社製、HP−4700)34.5重量部、硬化剤として1−ベンジルー2−メチルイミダゾール(四国化成社製、キュアゾール1B2PZ)0.2重量部をメチルエチルケトンに溶解、分散させた。さらに、無機充填材として球状溶融シリカ(アドマテックス社製、SO−25R、平均粒径0.5μm)65.0重量部とカップリング剤(日本ユニカー社製、A187)0.3重量部を添加して、高速攪拌装置を用いて10分間攪拌して、固形分50重量%の樹脂ワニスを調製し、その後、実施例1と同様にして、プリプレグ、積層板、多層プリント配線板、及び半導体装置を作製した。
(Comparative Example 3)
34.5 parts by weight of a naphthalene epoxy resin (manufactured by DIC, HP-4700) having 4.0 epoxy groups in which naphthalene rings are connected by a methylene bond as an epoxy resin, and 1-benzyl-2-methylimidazole (Shikoku Chemicals) as a curing agent 0.2 parts by weight (Corazole 1B2PZ, manufactured by the company) was dissolved and dispersed in methyl ethyl ketone. Further, 65.0 parts by weight of spherical fused silica (manufactured by Admatechs, SO-25R, average particle size 0.5 μm) and 0.3 part by weight of a coupling agent (Nihon Unicar Co., A187) are added as inorganic fillers. Then, the resin varnish having a solid content of 50% by weight was prepared by stirring for 10 minutes using a high-speed stirrer. Thereafter, in the same manner as in Example 1, a prepreg, a laminate, a multilayer printed wiring board, and a semiconductor device were prepared. Was made.

(比較例4)
エポキシ樹脂としてエポキシ基を2.0個有し、ナフタレン環が単結合で繋がったナフタレンエポキシ樹脂(DIC社製、HP−4032)19.5重量部、フェノールノボラック型シアネート樹脂(ロンザジャパン株式会社製、プリマセットPT−30)15.0重量部、硬化剤として1−ベンジルー2−メチルイミダゾール(四国化成社製、キュアゾール1B2PZ)0.2重量部をメチルエチルケトンに溶解、分散させた。さらに、無機充填材として球状溶融シリカ(アドマテックス社製、SO−25R、平均粒径0.5μm)65.0重量部とカップリング剤(日本ユニカー社製、A187)0.3重量部を添加して、高速攪拌装置を用いて10分間攪拌して、固形分50重量%の樹脂ワニスを調製し、その後、実施例1と同様にして、プリプレグ、積層板、多層プリント配線板、及び半導体装置を作製した。
(Comparative Example 4)
19.5 parts by weight of a naphthalene epoxy resin (DIC, HP-4032) having 2.0 epoxy groups and a single bond of naphthalene rings as an epoxy resin, phenol novolac-type cyanate resin (Lonza Japan Co., Ltd.) In addition, 15.0 parts by weight of Primaset PT-30 and 0.2 parts by weight of 1-benzyl-2-methylimidazole (manufactured by Shikoku Kasei Co., Ltd., Curazole 1B2PZ) as a curing agent were dissolved and dispersed in methyl ethyl ketone. Further, 65.0 parts by weight of spherical fused silica (manufactured by Admatechs, SO-25R, average particle size 0.5 μm) and 0.3 part by weight of a coupling agent (Nihon Unicar Co., A187) are added as inorganic fillers. Then, the resin varnish having a solid content of 50% by weight was prepared by stirring for 10 minutes using a high-speed stirrer. Thereafter, in the same manner as in Example 1, a prepreg, a laminate, a multilayer printed wiring board, and a semiconductor device were prepared. Was made.

各実施例、および比較例で得られたプリプレグ、積層板、多層プリント配線板、及び半導体装置について、以下の評価を行った。評価内容を項目と共に示す。得られた結果を表1、及び表2に示す。 The following evaluation was performed about the prepreg, laminated board, multilayer printed wiring board, and semiconductor device which were obtained by each Example and the comparative example. The evaluation contents are shown together with the items. The obtained results are shown in Tables 1 and 2.

Figure 2010024417
Figure 2010024417

Figure 2010024417
Figure 2010024417

(1)ガラス転移温度
厚さ0.1mmの両面銅張積層板を全面エッチングし、得られた積層板から6mm×25mmのテストピースを切り出し、TAインスツルメント社製動的粘弾性測定装置DMA983を用いて5℃/分で昇温し、tanδのピーク位置をガラス転移温度とした。
(1) A double-sided copper-clad laminate having a glass transition temperature thickness of 0.1 mm is etched all over, a 6 mm × 25 mm test piece is cut out from the obtained laminate, and a dynamic viscoelasticity measuring device DMA983 manufactured by TA Instruments Co., Ltd. The temperature was increased at a rate of 5 ° C./min using tan δ, and the peak position of tan δ was defined as the glass transition temperature.

(2)熱膨張係数
厚さ0.1mmの積層板の銅箔を全面エッチングし、得られた積層板から5mm×20mmのテストピースを切り出し、TMA装置(TAインスツルメント社製)を用いて5℃/分の条件で、面方向(X方向)の線膨張係数を測定した。50℃から150℃までの線膨張係数をα1とした。また、25℃から300℃まで25℃刻みで線膨張係数を各々算出し、その中で最も線膨張係数が大きい温度範囲の線膨張係数を最大αとした。
(2) Coefficient of thermal expansion The copper foil of the 0.1 mm thick laminated board was etched on the entire surface, a test piece of 5 mm × 20 mm was cut out from the obtained laminated board, and a TMA apparatus (manufactured by TA Instruments) was used. The linear expansion coefficient in the plane direction (X direction) was measured under the condition of 5 ° C./min. The linear expansion coefficient from 50 ° C. to 150 ° C. was defined as α1. Further, the linear expansion coefficient was calculated in increments of 25 ° C. from 25 ° C. to 300 ° C., and the linear expansion coefficient in the temperature range in which the linear expansion coefficient was the largest among them was taken as the maximum α.

(4)多層プリント配線板の反り測定
得られた多層プリント配線板の反り量を、温度可変レーザー三次元測定機(日立テクノロジーアンドサービス社製 形式LS220−MT100MT50)を用いて高さ方向の変位を測定し、変位差の最も大きい値を反り量とした。測定温度は25℃と260℃で行った。評価基準は以下のとおりとした。
◎:反りの値が200μm以下
○:反りの値が200μm超400μm以下
△:反りの値が400μm超600μm以下
×:反りの値が600μm超800μm以下
(4) Measurement of warpage of multilayer printed wiring board The amount of warpage of the obtained multilayer printed wiring board was measured using a temperature variable laser three-dimensional measuring machine (model LS220-MT100MT50 manufactured by Hitachi Technology & Service Co., Ltd.) in the height direction. Measured, and the value with the largest displacement difference was taken as the amount of warpage. Measurement temperatures were 25 ° C. and 260 ° C. The evaluation criteria were as follows.
◎: Warp value is 200 μm or less ○: Warp value is more than 200 μm and 400 μm or less Δ: Warp value is more than 400 μm and 600 μm or less ×: Warp value is more than 600 μm and less than 800 μm

(5)接続信頼性
前記で得られた半導体装置の接続部不良の有無を評価した。半導体装置の評価結果は、半導体装置10個の導通を確認し、半導体装置10個すべて導通した場合は『問題なし』とし、半導体装置1個でも接続部不良があった場合は、『不良あり』とした。
(5) Connection reliability The presence / absence of a defective connection portion of the semiconductor device obtained above was evaluated. As a result of the evaluation of the semiconductor device, the continuity of 10 semiconductor devices is confirmed. If all 10 semiconductor devices are conducted, “no problem” is indicated. If even one semiconductor device has a defective connection part, “defect” is indicated. It was.

実施例1〜8は、本発明の樹脂組成物を用いたものであり、熱膨張係数もα1が7.5ppm以下、最大αも10ppm以下と小さいため、多層プリント配線板の反りも小さく、接続信頼性も良好であった。 In Examples 1 to 8, the resin composition of the present invention was used, and since the thermal expansion coefficient α1 was 7.5 ppm or less and the maximum α was 10 ppm or less, the warp of the multilayer printed wiring board was small, and the connection Reliability was also good.

一方、比較例1〜2はナフタレン骨格を持たないエポキシ樹脂を用いた例、比較例4はエポキシ基を2つ有するナフタレン型エポキシ樹脂を用いた例、比較例3はフェノールノボラック型シアネート樹脂を用いない例であるが、いずれもα1が7.5ppm以上、最大αが10ppm以上となり、多層プリント配線板の反りも大きく、接続信頼性評価において接続不良が発生した。  On the other hand, Comparative Examples 1 and 2 are examples using an epoxy resin having no naphthalene skeleton, Comparative Example 4 is an example using a naphthalene type epoxy resin having two epoxy groups, and Comparative Example 3 is a phenol novolac type cyanate resin. In all cases, α1 was 7.5 ppm or more, and the maximum α was 10 ppm or more, and the warp of the multilayer printed wiring board was large, resulting in poor connection in the connection reliability evaluation.

本発明のプリプレグ、及び積層板は、高いガラス転移温度を有し、かつ熱膨張係数が低く、耐熱性にも優れる。特に、実装温度領域の熱膨張係数の増大を抑えることができる。これにより、実装時の基板の反りを低減させることができるので、特に薄型のシステム・イン・パッケージ基板、半導体装置に有用に用いることができる。 The prepreg and laminate of the present invention have a high glass transition temperature, a low coefficient of thermal expansion, and excellent heat resistance. In particular, an increase in the thermal expansion coefficient in the mounting temperature region can be suppressed. Thereby, since the curvature of the board | substrate at the time of mounting can be reduced, it can use useful especially for a thin system-in-package board | substrate and a semiconductor device.

Claims (9)

(A)下記一般式(1)で表される多官能エポキシ樹脂、(B)フェノールノボラック型シアネート樹脂、(C)硬化剤、(D)無機充填材を必須成分とする樹脂組成物を基材に含浸してなることを特徴とするプリプレグ。
Figure 2010024417
[式中、m、nは1.0以上2.0以下あり、m+nが2.0より大きく4.0以下である。また、Xは単結合、エーテル基、炭素数1〜4の炭化水素基のいずれかである。]
(A) A polyfunctional epoxy resin represented by the following general formula (1), (B) a phenol novolac cyanate resin, (C) a curing agent, and (D) a resin composition containing an inorganic filler as essential components A prepreg characterized by being impregnated.
Figure 2010024417
[Wherein, m and n are 1.0 or more and 2.0 or less, and m + n is greater than 2.0 and 4.0 or less. X is any one of a single bond, an ether group, and a hydrocarbon group having 1 to 4 carbon atoms. ]
前記樹脂組成物の硬化物は、動的粘弾性装置によるガラス転移温度が290℃以上である請求項1に記載のプリプレグ。 The prepreg according to claim 1, wherein the cured product of the resin composition has a glass transition temperature of 290 ° C. or higher by a dynamic viscoelastic device. 前記(B)フェノールノボラック型シアネート樹脂は、樹脂組成物全体の5〜42重量%である請求項1または2に記載のプリプレグ。 The prepreg according to claim 1 or 2, wherein the (B) phenol novolac-type cyanate resin is 5 to 42% by weight of the entire resin composition. 前記(C)硬化剤は、イミダゾール化合物である請求項1ないし3のいずれかに記載のプリプレグ。 The prepreg according to any one of claims 1 to 3, wherein the curing agent (C) is an imidazole compound. 前記(D)無機充填材は、水酸化マグネシウム、水酸化アルミニウム、シリカ、タルク、焼成タルク、及びアルミナからなる群より選ばれた少なくとも1種類である請求項1ないし4のいずれかに記載のプリプレグ。 The prepreg according to any one of claims 1 to 4, wherein the inorganic filler (D) is at least one selected from the group consisting of magnesium hydroxide, aluminum hydroxide, silica, talc, fired talc, and alumina. . 前記(D)無機充填材の含有量は、樹脂組成物全体の20〜80重量%である請求項1ないし5のいずれかに記載のプリプレグ。 The prepreg according to any one of claims 1 to 5, wherein the content of the inorganic filler (D) is 20 to 80% by weight of the entire resin composition. 請求項1ないし6のいずれかに記載のプリプレグを1枚以上成形してなる積層板。 A laminate obtained by molding one or more prepregs according to any one of claims 1 to 6. 請求項1ないし6のいずれかに記載のプリプレグ、及び/または請求項7に記載の積層板を用いてなる多層プリント配線板。 A multilayer printed wiring board using the prepreg according to any one of claims 1 to 6 and / or the laminated board according to claim 7. 請求項8に記載の多層プリント配線板に半導体素子を搭載してなる半導体装置。   A semiconductor device comprising a semiconductor element mounted on the multilayer printed wiring board according to claim 8.
JP2008191154A 2008-07-24 2008-07-24 Prepreg, laminated board, multilayer printed wiring board, and semiconductor device Expired - Fee Related JP5428232B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008191154A JP5428232B2 (en) 2008-07-24 2008-07-24 Prepreg, laminated board, multilayer printed wiring board, and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008191154A JP5428232B2 (en) 2008-07-24 2008-07-24 Prepreg, laminated board, multilayer printed wiring board, and semiconductor device

Publications (2)

Publication Number Publication Date
JP2010024417A true JP2010024417A (en) 2010-02-04
JP5428232B2 JP5428232B2 (en) 2014-02-26

Family

ID=41730531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008191154A Expired - Fee Related JP5428232B2 (en) 2008-07-24 2008-07-24 Prepreg, laminated board, multilayer printed wiring board, and semiconductor device

Country Status (1)

Country Link
JP (1) JP5428232B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011162622A (en) * 2010-02-08 2011-08-25 Sumitomo Bakelite Co Ltd Resin composition for printed wiring board, prepreg, laminated board, resin sheet, printed wiring board, and semiconductor device
JP2011213784A (en) * 2010-03-31 2011-10-27 Sumitomo Bakelite Co Ltd Epoxy resin precursor composition, prepreg, laminated board, resin sheet, printed wiring board, and semiconductor device
JP2012131945A (en) * 2010-12-24 2012-07-12 Sumitomo Bakelite Co Ltd Resin composition for printed wiring board, prepreg, laminate, resin sheet, printed wiring board, and semiconductor device
JPWO2011138865A1 (en) * 2010-05-07 2013-07-22 住友ベークライト株式会社 Epoxy resin composition for circuit board, prepreg, laminate, resin sheet, laminate substrate for printed wiring board, printed wiring board, and semiconductor device
JP2013185081A (en) * 2012-03-08 2013-09-19 Dic Corp Curable resin composition, cured product and printed wiring board
JP2014032979A (en) * 2012-08-01 2014-02-20 Sumitomo Bakelite Co Ltd Resin substrate, prepreg, printed wiring board, and semiconductor device
WO2014136773A1 (en) 2013-03-06 2014-09-12 Dic株式会社 Epoxy resin composition, cured product, heat radiating material, and electronic member
JP2014189640A (en) * 2013-03-27 2014-10-06 Dic Corp Curable composition, cured product and printed circuit board
KR20150042251A (en) 2012-09-28 2015-04-20 디아이씨 가부시끼가이샤 Epoxy compound and method for production thereof, and epoxy resin composition and cured product thereof
WO2016010152A1 (en) * 2014-07-17 2016-01-21 日本化薬株式会社 Liquid crystal sealing agent and liquid crystal display cell using same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007002071A (en) * 2005-06-22 2007-01-11 Sumitomo Bakelite Co Ltd Prepreg, circuit board and semiconductor device
WO2007037500A1 (en) * 2005-09-30 2007-04-05 Sumitomo Bakelite Co., Ltd. Epoxy resin composition and semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007002071A (en) * 2005-06-22 2007-01-11 Sumitomo Bakelite Co Ltd Prepreg, circuit board and semiconductor device
WO2007037500A1 (en) * 2005-09-30 2007-04-05 Sumitomo Bakelite Co., Ltd. Epoxy resin composition and semiconductor device

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011162622A (en) * 2010-02-08 2011-08-25 Sumitomo Bakelite Co Ltd Resin composition for printed wiring board, prepreg, laminated board, resin sheet, printed wiring board, and semiconductor device
JP2011213784A (en) * 2010-03-31 2011-10-27 Sumitomo Bakelite Co Ltd Epoxy resin precursor composition, prepreg, laminated board, resin sheet, printed wiring board, and semiconductor device
JPWO2011138865A1 (en) * 2010-05-07 2013-07-22 住友ベークライト株式会社 Epoxy resin composition for circuit board, prepreg, laminate, resin sheet, laminate substrate for printed wiring board, printed wiring board, and semiconductor device
JP2012131945A (en) * 2010-12-24 2012-07-12 Sumitomo Bakelite Co Ltd Resin composition for printed wiring board, prepreg, laminate, resin sheet, printed wiring board, and semiconductor device
JP2013185081A (en) * 2012-03-08 2013-09-19 Dic Corp Curable resin composition, cured product and printed wiring board
JP2014032979A (en) * 2012-08-01 2014-02-20 Sumitomo Bakelite Co Ltd Resin substrate, prepreg, printed wiring board, and semiconductor device
KR20150042251A (en) 2012-09-28 2015-04-20 디아이씨 가부시끼가이샤 Epoxy compound and method for production thereof, and epoxy resin composition and cured product thereof
US10329231B2 (en) 2012-09-28 2019-06-25 Dic Corporation Epoxy compound, method for producing the same, epoxy resin composition, and cured product thereof
WO2014136773A1 (en) 2013-03-06 2014-09-12 Dic株式会社 Epoxy resin composition, cured product, heat radiating material, and electronic member
KR20150127648A (en) 2013-03-06 2015-11-17 디아이씨 가부시끼가이샤 Epoxy resin composition, cured product, heat radiating material, and electronic member
EP3243855A1 (en) 2013-03-06 2017-11-15 DIC Corporation Epoxy resin composition, cured product, heat dissipation material, and electronic material
US10047256B2 (en) 2013-03-06 2018-08-14 Dic Corporation Epoxy resin composition, cured product, heat radiating material, and electronic member
JP2014189640A (en) * 2013-03-27 2014-10-06 Dic Corp Curable composition, cured product and printed circuit board
WO2016010152A1 (en) * 2014-07-17 2016-01-21 日本化薬株式会社 Liquid crystal sealing agent and liquid crystal display cell using same
JPWO2016010152A1 (en) * 2014-07-17 2017-04-27 日本化薬株式会社 Liquid crystal sealant and liquid crystal display cell using the same

Also Published As

Publication number Publication date
JP5428232B2 (en) 2014-02-26

Similar Documents

Publication Publication Date Title
JP5428232B2 (en) Prepreg, laminated board, multilayer printed wiring board, and semiconductor device
JP5522051B2 (en) Multilayer printed wiring board and semiconductor device
JP5493853B2 (en) Epoxy resin composition, prepreg, laminate, multilayer printed wiring board, semiconductor device, insulating resin sheet, and method for producing multilayer printed wiring board
JP5353241B2 (en) Multilayer printed wiring board and semiconductor device
JP5293598B2 (en) Resin composition, prepreg, laminate, multilayer printed wiring board, and semiconductor device
JP5206600B2 (en) Epoxy resin composition, prepreg, laminate, resin sheet, multilayer printed wiring board, and semiconductor device
JP5533657B2 (en) Laminate board, circuit board and semiconductor device
JP2010174242A (en) Biphenyl aralkyl type cyanate ester resin, resin composition containing biphenyl aralkyl type cyanate ester resin, and prepreg, laminated plate, resin sheet, multilayer printed wiring board, and semiconductor device obtained using the resin composition
JP5445442B2 (en) Resin composition for printed wiring board, prepreg, laminate, resin sheet, printed wiring board, and semiconductor device
KR20090100388A (en) Insulating resin sheet multilayer body, multilayer printed wiring board obtained by laminating the insulating resin sheet multilayer bodies
JP5381869B2 (en) Epoxy resin precursor composition, prepreg, laminate, resin sheet, printed wiring board, and semiconductor device
JP6186977B2 (en) Resin composition, resin sheet, prepreg, laminate, printed wiring board, and semiconductor device
JP2012131947A (en) Resin composition for printed wiring board, prepreg, metal-clad laminate, resin sheet, printed wiring board, and semiconductor device
JP5849390B2 (en) Epoxy resin precursor composition, prepreg, laminate, resin sheet, printed wiring board, and semiconductor device
JP2010285523A (en) Resin composition, prepreg, laminated board, multilayer printed wiring, and semiconductor device
JP5056787B2 (en) Laminated board, multilayer printed wiring board, and semiconductor device
JP5594128B2 (en) Resin composition for printed wiring board, prepreg, laminate, resin sheet, printed wiring board, and semiconductor device
JP2012131946A (en) Resin composition for printed wiring board, prepreg, laminate, resin sheet, printed wiring board, and semiconductor device
JP2011135034A (en) Semiconductor package and semiconductor device
JP5256681B2 (en) Semiconductor device, printed wiring board for semiconductor device, and copper-clad laminate
JP2012153755A (en) Epoxy resin composition, prepreg, laminate, resin sheet, printed circuit board and semiconductor device
JP2009067852A (en) Insulation resin sheet impregnated with glass fiber woven fabric, laminated plate, multilayered printed wiring board, and semiconductor device
JP2005209489A (en) Insulation sheet
JP2012158645A (en) Epoxy resin composition for printed wiring board, prepreg, metal-clad laminate, resin sheet, printed wiring board, and semiconductor device
JP5929639B2 (en) Cyanate ester compound, resin composition, prepreg, laminate, resin sheet, multilayer printed wiring board, and semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121016

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20121105

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20121213

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20121218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131118

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5428232

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees