JP2005279399A - Cleaning method - Google Patents

Cleaning method Download PDF

Info

Publication number
JP2005279399A
JP2005279399A JP2004095202A JP2004095202A JP2005279399A JP 2005279399 A JP2005279399 A JP 2005279399A JP 2004095202 A JP2004095202 A JP 2004095202A JP 2004095202 A JP2004095202 A JP 2004095202A JP 2005279399 A JP2005279399 A JP 2005279399A
Authority
JP
Japan
Prior art keywords
soil
groundwater
well
nutrient
nutrient salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004095202A
Other languages
Japanese (ja)
Inventor
Yoshitaka Ito
善孝 伊藤
Shigekazu Suzuki
繁和 鈴木
Koji Shimizu
巧治 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004095202A priority Critical patent/JP2005279399A/en
Publication of JP2005279399A publication Critical patent/JP2005279399A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B41/00Equipment or details not covered by groups E21B15/00 - E21B40/00
    • E21B41/005Waste disposal systems
    • E21B41/0057Disposal of a fluid by injection into a subterranean formation
    • E21B41/0064Carbon dioxide sequestration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Processing Of Solid Wastes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polluted soil and ground water cleaning method constituted so that anaerobic microorganism living in soil or ground water are stably propagated and activated over long period of time (always) to optimize the original position cleaning treatment or control of pollution, a DC current is applied to a well of both electrodes in order to effectively put hydrogen ions caused by electrolysis to practical use in anaerobic microorganisms and a nutrient is injected in the periphery on an anode side by using the flow of hydrogen ions generated by the electrolysis of water to the anode side to simplify each cleaning treatment equipment or facilities. <P>SOLUTION: A nutrient tank 7, which stores a nutrient based on a 6C or higher carbon straight saturated monocarboxylic acid, and a vertical injection well, which injects the nutrient salt in the soil and ground water of the polluted part 1 and the diffusion region 2 thereof by an injection machine 8 to clean the polluted part 1 and the diffusion region 2, are provided to propagate and activate anaerobic microorganisms by the injected nutrient salt using electrolysis and an organochlorine compound of the polluted part 1 and the diffusion region 2 due to the organochlorine compound. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明はバイオレメデエーション法を用いて嫌気性微生物を活性化し、有機塩素系化合物で汚染された土壌及び地下水の浄化を促進して、汚染領域を原位置で短期間に浄化する技術に関するものである。   The present invention relates to a technique for activating anaerobic microorganisms using a bioremediation method, promoting the purification of soil and groundwater contaminated with organochlorine compounds, and purifying contaminated areas in situ in a short period of time. is there.

従来、土壌及び地下水の汚染の浄化設備とその浄化方法として、真空抽出法、揚水曝気法、石灰法、鉄粉法、土壌掘削置換法、土壌湿気式洗浄法、不溶化処理法、気・液混合井戸方法、エアースパージング方式、バイオレメディエーション法と、浄化に関して様々な方法が用いられるが、短期間で、土壌及び地下水の汚染の浄化ができる方法は、鉄粉法とバイオレメディエーション法である。   Conventionally, soil and groundwater contamination purification equipment and methods include vacuum extraction method, pumped water aeration method, lime method, iron powder method, soil excavation replacement method, soil moisture cleaning method, insolubilization treatment method, gas / liquid mixing Various methods are used for the well method, the air sparging method, the bioremediation method, and the purification, and the methods that can purify the soil and groundwater in a short period of time are the iron powder method and the bioremediation method.

原位置での電気分解による汚染領域の浄化方法については汚染物質等を移動させて、真空中抽出する方法が知られている(例えば特許文献1参照)。
また、原位置での生物学的処理が可能で、炭素数が10以上の脂肪酸、炭素数が12以上のアルコール、炭素数が14以上の直鎖状飽和脂肪酸と1価アルコールのエステル、炭素数が14以上の直鎖状飽和脂肪酸と多価アルコールのエステル、炭素数が16以上の脂肪酸とグリセリンのエステルなどを土壌中に埋設して、土壌や地下水の硝酸態窒素及び揮発性有機化合物を低減させる方法が知られている(例えば、特許文献2参照)。
炭素数が6以上の直鎖状飽和モノカルボン酸を主成分とし、特に粒径100mm以内の粒子状に成形し、主に廃水処理に用いる脱窒素促進剤およびこの脱窒素促進剤を用いた水処理方法が知られている(例えば、特許文献3参照)。
特開平5−10083号公報 特開2002−370085号公報 特開2000−334492号公報
As a method for purifying a contaminated region by electrolysis at an in-situ position, a method is known in which contaminants and the like are moved and extracted in a vacuum (see, for example, Patent Document 1).
In-situ biological treatment is possible, fatty acid having 10 or more carbon atoms, alcohol having 12 or more carbon atoms, ester of linear saturated fatty acid having 14 or more carbon atoms and monohydric alcohol, carbon number Reduces nitrate nitrogen and volatile organic compounds in soil and groundwater by embedding esters of linear saturated fatty acids and polyhydric alcohols with 14 or more, esters of fatty acids with 16 or more carbon atoms and glycerin The method of making it known is known (for example, refer to Patent Document 2).
A denitrification accelerator mainly composed of a straight-chain saturated monocarboxylic acid having 6 or more carbon atoms and formed into particles having a particle diameter of 100 mm or less, and mainly used for wastewater treatment, and water using this denitrification accelerator A processing method is known (see, for example, Patent Document 3).
Japanese Patent Laid-Open No. 5-10083 JP 2002-370085 A JP 2000-334492 A

しかしながら、このような従来の土壌及び地下水の汚染の浄化設備とその浄化方法では、鉄粉法は土壌を掘削してゼロ化鉄粉を注入する方法で、化学反応により短期間に土壌浄化するが、現状では汚染領域を絞って掘削する方法が主流の為、汚染領域全てを最適期間内に浄化することができなく、しかも高額な施工費用がかかる。   However, in such conventional soil and groundwater contamination purification equipment and methods, the iron powder method is a method of excavating the soil and injecting zeroized iron powder, and the soil is purified in a short time by chemical reaction. However, at present, the method of excavating the contaminated area is mainly used, and therefore, it is not possible to purify the entire contaminated area within the optimum period, and the construction cost is high.

また電気分解による汚染領域の浄化方法についてはかなりの時間と電気エネルギーを
莫大に使用することから電気使用量のランニングコストがかかる。
更にバイオレメデエーション法は、環境に左右され最適期間内に浄化することができな
い場合もあり不安定である。
In addition, the method for purifying the contaminated area by electrolysis requires a considerable amount of time and a large amount of electric energy, which requires a running cost of electricity usage.
Furthermore, the bioremediation method is unstable because it depends on the environment and may not be purified within the optimum period.

また、浄化処理剤についても、従来の栄養塩類では、(例えばポリ乳酸エステル)水に対する溶解度が高く、この場合供給した栄養塩(の消費量)の地下水への溶出が早く(多く)、したがって頻繁に栄養塩の追加(継続)投与が必要であった。また、炭素数が10以上の脂肪酸は地下水への溶出が遅く、汚染部での最適量の溶出が管理できなく、地下水の流速が、例えば地下水が1日8センチも流れる場所では対応が難しく、地下水が年に数センチ程度の流れの場所での浄化に限られる。したがって、地下水の流速が遅い場所での栄養塩の過剰注入が最適ではあるが、湖沼や内海などの閉鎖系水系等では、過剰栄養化によるプランクトン、藻、赤潮等の異常発生をまねく問題を生じることになり、管理システムの混乱・煩雑さをまねく等々の課題も発生することになる。そこで浄化処理剤の溶解度が最適で、常時処理が安定し、メンテナンスが楽なものが切望されていた。   In addition, as for the purification treatment agent, conventional nutrient salts have high solubility in water (for example, polylactic acid ester), and in this case, the supplied nutrient salt (consumption amount) is rapidly eluted into the ground water (many) and therefore frequently. Additional (continuous) administration of nutrients was required. Also, fatty acids with 10 or more carbon atoms are slow to elute into groundwater, the optimal amount of elution in the contaminated part cannot be controlled, and the groundwater flow rate is difficult to handle in places where the groundwater flows 8 centimeters a day, It is limited to purification in places where groundwater flows several centimeters a year. Therefore, it is optimal to over-inject nutrients in places where the flow rate of groundwater is slow. As a result, problems such as confusion and complexity of the management system may occur. Accordingly, there has been a strong demand for a purifying agent having an optimum solubility, a stable treatment, and easy maintenance.

本発明は、このような従来の課題を解決するものであり、土壌や地下水中に生息する嫌気性微生物を長期(常時)に安定して増殖・活性化させて、汚染の原位置浄化処理・管理を最適化するために、電気分解により発生する水素イオンを嫌気性微生物に有効活用する為に、直流電流を両極の井戸に通電して水の電気分解で生じた水素イオンが陽極側に流れることを利用して、陽極側の周囲に栄養塩を注入し、かつ各浄化処理の設備・施設を簡略化した汚染土壌及び地下水の浄化方法を提供することを目的とする。
つまり、施工費用が比較的安いバイオレメデエーション法と電気分解による浄化法に注目し、直流電流を用いた電気分解により水分及び汚染物資をイオン化せしめ、かつ、土壌及び地下水に含まれている水分から水素イオンを放出させることにより、嫌気状態をつくりだし、陽極側の周囲に特定の栄養塩を選定・注入することにより嫌気性微生物の働きを活性化させ原位置での土壌及び地下水の汚染の浄化を促進せしめるものである。
栄養塩は炭素数が6以上の直鎖状飽和モノカルボン酸を主成分とした栄養塩(カプロン酸、ペンタンカルボン酸、ブチル酢酸、エナント酸、エナンチル酸、ヘキサンカルボン酸、ペンチル酢酸、カプリル酸、ヘプタンカルボン酸、ヘキシル酢酸、ペラルゴン酸、オクタンカルボン酸、ヘプチル酢酸等)を前記した電気分解する陽極側の周囲の汚染領域に注入することにより、汚染領域全てを最適期間内に安定して浄化でき、たとえ長期に亘る工期であってもメンテナンスフリーな工法を用いた浄化方法を提供する。
The present invention solves such a conventional problem, and anaerobic microorganisms that inhabit soil and groundwater are stably grown and activated for a long time (always), and the in-situ purification treatment of pollution / In order to optimize the management, hydrogen ions generated by electrolysis of water flow by flowing DC current through the wells of both electrodes to effectively utilize the hydrogen ions generated by electrolysis for anaerobic microorganisms. It is an object of the present invention to provide a method for purifying contaminated soil and groundwater by injecting nutrient salts around the anode side and simplifying the facilities and facilities for each purification treatment.
In other words, focusing on bioremediation methods and electrolysis purification methods that are relatively inexpensive to construct, ionize moisture and pollutants by electrolysis using direct current, and from moisture contained in soil and groundwater. By releasing hydrogen ions, anaerobic conditions are created, and by selecting and injecting specific nutrients around the anode side, the action of anaerobic microorganisms is activated and purification of in situ soil and groundwater contamination is achieved. It is to promote.
The nutrient salt is composed of a linear saturated monocarboxylic acid having 6 or more carbon atoms as a main component (caproic acid, pentanecarboxylic acid, butylacetic acid, enanthic acid, enanthylic acid, hexanecarboxylic acid, pentylacetic acid, caprylic acid, By injecting heptane carboxylic acid, hexyl acetic acid, pelargonic acid, octane carboxylic acid, heptyl acetic acid, etc.) into the contaminated area around the anode side to be electrolyzed, the entire contaminated area can be stably purified within the optimum period. Even if the construction period is long, a purification method using a maintenance-free construction method is provided.

本発明の汚染土壌及び地下水の浄化方法は、上記目的を達成するために、汚染部拡散域の外側に鉛直井戸を設け、鉛直井戸の配管の内周を半透過性の膜で覆い、鉛直井戸には陽極及び陰極の電極部材を具備し、土壌及び地下水を電気分解するとともに、陽極側の井戸の周囲に微生物活性用の栄養塩を注入する栄養塩注入井戸を設け、前記電気分解と前記栄養塩により、前記汚染部拡散域の土壌及び地下水を嫌気状態化にせしめ、含有する揮発性有機化合物や水分等を帯電・イオン化させ電極に引付けられるため前記揮発性有機化合物や水分等の物質移動による流れが形成され、かつ陽極側には水素イオンが引付けられ、陽極側の周囲に設けられた前記栄養塩注入井戸から溶出する栄養塩の基質成分により嫌気性微生物が増殖かつ活性化しやすくなり、汚染部および汚染拡散域の揮発性有機化合物を分解処理する工法を用いたものである。   In order to achieve the above object, the method for purifying contaminated soil and groundwater according to the present invention provides a vertical well outside the contaminated part diffusion area, covers the inner circumference of the pipe of the vertical well with a semipermeable membrane, Has an anode and a cathode electrode member, and electrolyzes soil and groundwater, and a nutrient injection well for injecting a nutrient salt for microbial activity is provided around the well on the anode side. Salt makes the soil and groundwater in the diffusion zone of the contaminated area anaerobic, charges and ionizes the volatile organic compounds and moisture contained therein, and attracts them to the electrode, so that the mass transfer of the volatile organic compounds and moisture Is formed, and hydrogen ions are attracted to the anode side, and anaerobic microorganisms are easily grown and activated by the substrate component of the nutrient salt eluted from the nutrient salt injection well provided around the anode side. It is intended that the volatile organic compound contaminated portion and pollution diffusion zone with a method to decompose.

本発明は、汚染領域を掘削等により状況把握した後、当該汚染領域の地下水の流れる方向を確認し、帯水層を難透水層に達するまで掘削して地下水の下流側の汚染部拡散域の外側に電流を流す陽極側の鉛直井戸を設置し、その陽極側の鉛直井戸の配管の内周を半透過性の膜で覆うことで陰イオン物質が透過しないようにし、地下水の上流側の汚染部拡散域の外側に電流を流す陰極側の鉛直井戸を設置し、その陰極側の鉛直井戸の配管の内周を半透過性の膜で覆うことで陽イオン物質が透過しないように井戸を設置し、陽極側の鉛直井戸の周囲に炭素数が6以上の直鎖状飽和モノカルボン酸を主成分とした栄養塩を注入する注入井戸を設け、陰極側の鉛直井戸の周囲に観測井戸を配置する構成にして、電流を流すことにより、注入された栄養塩と発生する水素イオンによって、土壌及び帯水層中に自然条件(溶存酸素濃度DO値の極めて低い嫌気性環境)下で生態している嫌気性微生物を増殖かつ活性化させ、つまり揮発性有機化合物による汚染領域の汚染物質をバイオ的に安定して分解(還元的脱塩素化反応による浄化、無害化)処理することができ、最適の工期間で汚染領域全体を浄化することができる。   In the present invention, after grasping the situation of the contaminated area by excavation or the like, the direction of groundwater flow in the contaminated area is confirmed, and the aquifer is excavated until it reaches the hardly permeable layer. An anode-side vertical well that allows current to flow outside is installed, and the inner periphery of the anode-side vertical well pipe is covered with a semi-permeable membrane so that anion substances do not permeate and contamination of the upstream side of groundwater A vertical well on the cathode side that conducts current is installed outside the partial diffusion area, and the inner periphery of the vertical well piping on the cathode side is covered with a semi-permeable membrane so that the cation material does not penetrate. An injection well for injecting nutrients mainly composed of straight-chain saturated monocarboxylic acids with 6 or more carbon atoms is provided around the vertical well on the anode side, and an observation well is placed around the vertical well on the cathode side In a configuration that allows the injected nutrients and The generated hydrogen ions grow and activate anaerobic microorganisms that are ecological under natural conditions (anaerobic environment with extremely low dissolved oxygen concentration DO value) in the soil and aquifer, that is, by volatile organic compounds The pollutant in the contaminated area can be biodegradably decomposed (purified by reductive dechlorination reaction, detoxified), and the entire contaminated area can be purified in an optimum construction period.

本発明によれば、帯水層を難透水層に達するまで掘削して電極井戸、注入井戸、観測井戸を適宜に設け、汚染領域に電流を流すことと特定の栄養塩を注入することにより、汚染領域を嫌気状態にでき、かつ、電流が流れることによる熱発生により汚染領域を加温することになり、嫌気性微生物を増殖かつ活性化させ、汚染物質である揮発性有機化合物の塩素と水素を置換しやすく低分子に分解できる。この場合、栄養塩を炭素数が6以上の直鎖状飽和モノカルボン酸を主成分として特定することによって、この原位置での最適の浄化処理が常に安定して行われる汚染土壌及び地下水の浄化方法を提供できる。   According to the present invention, the aquifer is drilled until it reaches the poorly permeable layer, and electrode wells, injection wells, observation wells are provided as appropriate, by flowing current to the contaminated area and injecting specific nutrients, The contaminated area can be made anaerobic, and the contaminated area is heated by the generation of heat due to the flow of electric current, causing anaerobic microorganisms to grow and activate, and the pollutants volatile organic compounds chlorine and hydrogen Can be easily substituted and decomposed into low molecules. In this case, by specifying the nutrient salt as a main component of a straight-chain saturated monocarboxylic acid having 6 or more carbon atoms, the optimal purification treatment at this location is always performed stably. Can provide a method.

本発明によれば、現地の汚染状況や周辺の各種状況に応じて、汚染部拡散域の外側に鉛直井戸を設け、前記鉛直井戸の配管の内周を半透過性の膜で覆い、前記鉛直井戸には陽極及び陰極の電極部材を具備し、土壌及び地下水を電気分解するとともに、陽極側の井戸の周囲に微生物活性用の栄養塩を注入する栄養塩注入井戸を設け、前記電気分解と前記栄養塩により、前記汚染部拡散域の土壌及び地下水に含有る揮発性有機化合物を嫌気性微生物により分解処理する工法を用いることにより、直流電流を30アンペアから50アンペア土壌中に流れるようにし、電気浸透することで水分が移動することにより嫌気状態を作り出し、陽極側に水素イオンが集まり、陽極側の鉛直井戸の周囲に特定の栄養塩(炭素数が6以上の直鎖状飽和モノカルボン酸を主成分とした栄養塩)を選定・注入することにより、原位置での土壌及び地下水の汚染領域の浄化処理を促進せしめ、汚染領域全体を最適期間内に安定して浄化でき、たとえ長期に亘る工期であったとしてもメンテナンスフリー、かつ安価格の浄化工法とすることができる。   According to the present invention, a vertical well is provided outside the contaminated part diffusion area according to the local pollution situation and various surrounding situations, the inner circumference of the pipe of the vertical well is covered with a semipermeable membrane, and the vertical well is provided. The well is provided with anode and cathode electrode members, and electrolyzes the soil and groundwater, and is provided with a nutrient salt injection well for injecting a nutrient salt for microbial activity around the well on the anode side. By using a method of decomposing volatile organic compounds contained in soil and groundwater of the contaminated part diffusion area with anaerobic microorganisms using nutrient salts, direct current flows from 30 amperes to 50 amperes of soil. By permeating, moisture moves, creating an anaerobic state, hydrogen ions gather on the anode side, and specific nutrients (linear saturated monocarbohydrate having 6 or more carbon atoms) around the vertical well on the anode side By selecting and injecting acid-based nutrient salts), it is possible to promote the purification process of the contaminated area of soil and groundwater in situ, and to stably purify the entire contaminated area within the optimum period, even for long-term Even if the construction period is long, it can be a maintenance-free and inexpensive purification method.

つまり、炭素数が6以上の直鎖状飽和モノカルボン酸を主成分とする栄養塩(例えば、カプロン酸、ペンタンカルボン酸、ブチル酢酸、エナント酸、エナンチル酸、ヘキサンカルボン酸、ペンチル酢酸、カプリル酸、ヘプタンカルボン酸、ヘキシル酢酸、ペラルゴン酸、オクタンカルボン酸、ヘプチル酢酸等)は、地下水に対して徐々に溶解する除放性効果を有する(富栄養塩化にならない)ものであり、長期に亘るような場合においても常に安定して注入・供給ができ、したがって、嫌気性微生物の活性化・増殖による揮発性有機化合物の分解を長期に安定・最適化できるものとなる。   That is, nutrient salts mainly composed of linear saturated monocarboxylic acid having 6 or more carbon atoms (for example, caproic acid, pentanecarboxylic acid, butylacetic acid, enanthic acid, enanthylic acid, hexanecarboxylic acid, pentylacetic acid, caprylic acid , Heptanecarboxylic acid, hexylacetic acid, pelargonic acid, octanecarboxylic acid, heptylacetic acid, etc.) have a sustained release effect that dissolves gradually in groundwater (does not become eutrophic chloride) Even in such a case, the injection and supply can always be stably performed. Therefore, the degradation of the volatile organic compound due to the activation and growth of the anaerobic microorganisms can be stably and optimized over a long period of time.

また、本発明によれば、鉛直の注入井戸、観測井戸によって、常に上記栄養塩の注入による浄化処理の効果を観測・監視を継続しているので、汚染物質の浄化が完了するまでの間、最適の処理条件を維持すること等ができ、また汚染状況の急変等にも対応ができる。   In addition, according to the present invention, since the vertical injection well and the observation well are constantly observing and monitoring the effect of the purification treatment by injecting the nutrient salt, until the pollutant purification is completed, It is possible to maintain optimum processing conditions and cope with sudden changes in the contamination status.

以下、本発明の汚染土壌及び地下水の浄化方法の各実施例について、図面を用いて説明する。   Hereinafter, each Example of the purification method of the contaminated soil and groundwater of this invention is described using drawing.

図1は、本発明の汚染土壌及び地下水の浄化工法の概要を示す模擬的断面図である。
図1において、1は有機塩素化合物で汚染された汚染部(汚染源)を示し、その汚染(汚染部1)の拡散域2は、地下水流のある帯水層5の地下水流(水流方向を→印で示す、以下同じとする)や浸透・溶解等によってその汚染(汚染部1)が拡散された領域を示し、前記帯水層5を中心として土壌4にも及んでいる状態を示す。なお、以降の説明において、前記汚染部1及びその前記拡散域2を汚染領域(仮に定義する。以下同じとする)と称する。
FIG. 1 is a schematic cross-sectional view showing an outline of a method for purifying contaminated soil and groundwater according to the present invention.
In FIG. 1, 1 indicates a contaminated part (contamination source) contaminated with an organic chlorine compound, and the diffusion region 2 of the contaminated (contaminated part 1) is a groundwater flow (the direction of the waterflow) of the aquifer 5 with the groundwater flow → It shows a region where the contamination (contaminated part 1) is diffused by infiltration / dissolution and the like, and shows a state where it reaches the soil 4 with the aquifer 5 as the center. In the following description, the contaminated part 1 and the diffusion region 2 thereof are referred to as a contaminated region (which is tentatively defined; hereinafter the same).

汚染物質である有機塩素化合物(又は、揮発性有機化合物VOC)には、トリクロロエチレン、テトラクロロエチレン、ホルムアルデヒド、トルエン、ベンゼン、キシレンなどさまざまな物質がある。これらは化学的に安定していて分解しにくい性質があり、産業界で種々の用途に普及した反動として、今や特に土壌及び地下水の汚染の原因ともなっている。   There are various substances such as trichlorethylene, tetrachloroethylene, formaldehyde, toluene, benzene, and xylene as organic chlorine compounds (or volatile organic compounds VOC) that are pollutants. These are chemically stable and difficult to decompose, and as a reaction that has become widespread for various uses in industry, it is now a cause of contamination of soil and groundwater.

7は栄養塩槽を示し、例えば地上に設置して、栄養塩を内部に貯留する。その栄養塩としては、炭素数が6以上の直鎖状飽和モノカルボン酸を主成分とした栄養塩を特定し、汚染領域内の嫌気性微生物群(嫌気性菌群であって、シュドモナス属の嫌気性微生物など)を増殖かつ活性化させる栄養源となる。   Reference numeral 7 denotes a nutrient salt tank, which is installed on the ground, for example, and stores the nutrient salt therein. As the nutrient salt, a nutrient salt mainly composed of a linear saturated monocarboxylic acid having 6 or more carbon atoms is specified, and an anaerobic microorganism group (anaerobic bacteria group in the contaminated area, An anaerobic microorganism, etc.) to grow and activate.

炭素数が6以上の直鎖状飽和モノカルボン酸には、例えばカプロン酸、ペンタンカルボン酸、ブチル酢酸、エナント酸、エナンチル酸、ヘキサンカルボン酸、ペンチル酢酸、カプリル酸、ヘプタンカルボン酸、ヘキシル酢酸、ペラルゴン酸、オクタンカルボン酸、ヘプチル酢酸等が上げられる   Examples of the linear saturated monocarboxylic acid having 6 or more carbon atoms include caproic acid, pentanecarboxylic acid, butylacetic acid, enanthic acid, enanthic acid, hexanecarboxylic acid, pentylacetic acid, caprylic acid, heptanecarboxylic acid, hexylacetic acid, Pelargonic acid, octane carboxylic acid, heptyl acetic acid, etc. are raised

9は栄養塩を注入(供給)する注入井戸を示し、その設置は前記土壌4及び前記帯水層5を鉛直に掘削して、その先端は難透水層(一般的に言われている不透水層、又は不透水性岩体等も含む)6に達している。そしてその配置(設置)は、汚染領域の地下水流の下流側の陽極井戸12の周囲に設置される。好ましくは、前記陽極井戸12の周囲に前記注入井戸9を設けることにより、直流電源13から流れる電流により陽極板(陽極棒)14に水素イオンを含む陽イオンが引付けられることにより還元雰囲気となり、嫌気性微生物群が生息しやすい環境下で嫌気性微生物群の栄養源である炭素数が6以上の直鎖状飽和モノカルボン酸を主成分とする栄養塩が前記注入井戸9に注入されていることより、嫌気性微生物群が増殖・活性化を促進することができる。さらに前記直流電源13から流れる電流により前記陽極井戸12の前記陽極板(陽極棒)14及び陰極井戸15の陰極板(陰極棒)18近傍に熱を生じることになり、前記土壌4及び前記帯水層5が加温されることにより、更に嫌気性微生物群が増殖・活性化して、嫌気性微生物群の作用により、汚染物質である有機塩素化合物を低分子化することができる。   Reference numeral 9 denotes an injection well for injecting (supplying) nutrient salts. The installation well is formed by excavating the soil 4 and the aquifer 5 vertically, and the tip thereof is a non-permeable layer (generally known impervious water). (Including layers or impervious rocks). And the arrangement | positioning (installation) is installed in the circumference | surroundings of the anode well 12 of the downstream of the groundwater flow of a contamination area | region. Preferably, by providing the injection well 9 around the anode well 12, a reducing atmosphere is obtained by attracting positive ions containing hydrogen ions to the anode plate (anode bar) 14 by the current flowing from the DC power supply 13. In an environment in which anaerobic microorganisms are liable to live, nutrient salts mainly composed of linear saturated monocarboxylic acids having 6 or more carbon atoms, which are nutrient sources for anaerobic microorganisms, are injected into the injection well 9. Thus, the anaerobic microorganism group can promote the growth and activation. Further, the current flowing from the DC power source 13 generates heat in the vicinity of the anode plate (anode rod) 14 of the anode well 12 and the cathode plate (cathode rod) 18 of the cathode well 15, and the soil 4 and the water When the layer 5 is heated, the anaerobic microorganism group is further proliferated and activated, and the organic chlorine compound as a contaminant can be reduced in molecular weight by the action of the anaerobic microorganism group.

前記陽極井戸12及び前記陰極井戸15は塩化ビニルクロライトでできた配管の配管内周に半透過性膜16で覆われていることにより、前記陽極井戸12には陽イオンのみが透過し、逆に前記陰極井戸15には陰イオンのみが透過する。また、前記陽極板(陽極棒)14は特には指定しないが白金で構成したものが安定して使用できる。更に前記陽極井戸12及び前記陰極井戸15には電気分解を効率良く行うように、電解液17を調整槽(図示しない)で調整され注入される。   The anode well 12 and the cathode well 15 are covered with a semipermeable membrane 16 on the inner circumference of a pipe made of vinyl chloride chlorite, so that only positive ions are transmitted through the anode well 12 and vice versa. In addition, only negative ions permeate the cathode well 15. The anode plate (anode rod) 14 is not particularly specified, but a plate made of platinum can be used stably. Furthermore, an electrolytic solution 17 is adjusted and injected into the anode well 12 and the cathode well 15 in a regulating tank (not shown) so as to perform electrolysis efficiently.

前記陰極井戸15の周囲に、揚水ポンプ(図示しない)を備えた観測井戸(モニタリング)10を設置することにより、前記汚染領域の浄化の状態が判断できる。   By installing an observation well (monitoring) 10 having a pumping pump (not shown) around the cathode well 15, the state of purification of the contaminated area can be determined.

また、前記栄養塩槽7内に貯留された栄養塩は、注入機8、開閉弁(図示しない)等の操作によって、前記注入井戸9から汚染領域の前記土壌4及び前記帯水層5全体に行きわたるように注入/供給(注入井戸9、及び帯水層5内の注入方向を→印で示す、以下同じとする)され、地下水流(又は/および溶解性)や浸透・溶解等を利用して全体に均一に行きわたるようにする。すなわち図1に示すように、栄養塩が前記汚染部1、前記拡散域2を通過する方向の(地下水の水量・流速が加速された)流れとなり、前記汚染領域を大きく囲って(図示は省略するが、平面的にも大きく囲って)形成され、汚染の浄化処理がなされる。   The nutrient salt stored in the nutrient salt tank 7 is transferred from the injection well 9 to the soil 4 and the entire aquifer 5 in the contaminated area by operation of an injector 8, an on-off valve (not shown), and the like. Injection / supply (injection well 9 and injection direction in the aquifer 5 are indicated by →, the same shall apply hereinafter), and groundwater flow (or / and solubility), infiltration / dissolution, etc. are used. And evenly spread throughout. That is, as shown in FIG. 1, the nutrient salt flows in the direction passing through the contaminated part 1 and the diffusion region 2 (the amount of groundwater is increased and the flow velocity is accelerated), and greatly surrounds the contaminated region (not shown). However, it is formed so as to be surrounded by a large plane, and the contamination is purified.

すなわち注入された栄養塩によって、前記土壌4及び前記帯水層5中に自然条件(溶存酸素濃度DO値の極めて低い嫌気性環境)下で生態している嫌気性微生物を増殖かつ活性化させ、つまり有機塩素化合物による前記汚染領域の汚染物質を、電気分解を利用したバイオ的に安定して分解(還元的脱塩素化反応による浄化、無害化)処理する工法となる。   That is, by the injected nutrient salt, anaerobic microorganisms that are ecological under natural conditions (anaerobic environment with extremely low dissolved oxygen concentration DO value) in the soil 4 and the aquifer 5 are grown and activated, In other words, this is a construction method in which the pollutants in the contaminated area due to the organic chlorine compound are stably decomposed (purification and detoxification by reductive dechlorination reaction) using electrolysis.

前記観測井戸10は、前記汚染領域の上流に鉛直に設置(前述の注入井戸9と同様に掘削)し、栄養塩の注入(供給・投入)による汚染の浄化の効果判定や処理条件の設定、汚染物質の状態変化の検知等を行う。その配置は現場(原位置)の汚染状況に応じて適宜設置する。そして、改めて言うまでもないが、前記観測井戸10は、帯水層5の地下水を採取又は揚水(揚水方向を→印で示す、以下同じとする)等によって種々の測定を行う。
例えば、
1)ORP計(酸化還元電位計)を用いて酸化・還元電位を測定し、栄養塩の注入量の適否(浄化効果)の測定・判定が為される。
The observation well 10 is installed vertically upstream of the contaminated area (excavated in the same manner as the injection well 9 described above), and the effect of purifying the contamination by injecting (supplying / injecting) nutrients is set and the processing conditions are set. Detect changes in the state of pollutants. The arrangement will be set as appropriate according to the contamination status at the site (original position). Needless to say, the observation well 10 performs various measurements by collecting or pumping groundwater from the aquifer 5 (pumping direction is indicated by →, the same shall apply hereinafter).
For example,
1) The oxidation / reduction potential is measured using an ORP meter (oxidation-reduction potentiometer), and the suitability (purification effect) of the injection amount of nutrient salt is measured and judged.

2)また経時的には、有機塩素化合物(汚染物質)について、テトラクロロエチレン(PCE)、トリクロロエチレン(TCE)、ジクロロエチレン(cis−1,2−DCE)、ジクロロエチレン(1,1−DCE)、塩化ビニル(VC)等を各現場に応じて選定し、その各濃度(mg/l)の経日変化(減少状況)を観測(測定や監視)したりする。
また、詳細な説明は省略するが、別に制御装置を設けて、上述のデータ検知・測定(入力)部、演算・分析・判定(出力)部等によって、最適な栄養塩の種別(や配合)や供給・注入量(や流量)、注入時期、後述の揚水量(流量)、地下水の返送量、工期推定、メンテナンス時期等の制御ができることは自明のことである。このことは当然に、無人化の遠隔制御、管理化への展開・拡大が容易となる。
2) In addition, over time, organochlorine compounds (contaminants) of tetrachlorethylene (PCE), trichlorethylene (TCE), dichloroethylene (cis-1,2-DCE), dichloroethylene (1,1-DCE), vinyl chloride ( VC) etc. are selected according to each site, and the daily change (decrease state) of each concentration (mg / l) is observed (measured or monitored).
In addition, although detailed explanation is omitted, a separate control device is provided, and the optimum type (or blending) of nutrient salts is determined by the above-described data detection / measurement (input) unit, calculation / analysis / judgment (output) unit, etc. It is obvious that it is possible to control the supply / injection amount (or flow rate), injection time, pumping amount (flow rate) described later, groundwater return amount, construction period estimation, maintenance time, etc. Naturally, this makes it easy to expand and expand to unmanned remote control and management.

なお、前記汚染領域に対する前記注入井戸9、観測井戸10、の配置は、上述のとおり、地下水流方向の下流に前記注入井戸9、上流に揚水ポンプを備えた前記観測井戸10を基本とするが、これだけに限定せず(詳細な記述はしない)、現場の汚染状況に応じて自在に為される(必ずしも、上流〜下流を基本としない任意の配置)ことは自明のことである。例えば、汚染領域の広がりや汚染状況に応じて、複数の各井戸で囲んで並べて設置したりする。この場合、各井戸の注入・揚水の量・時期を個々の井戸毎に設定・制御すれば、浄化処理がより一層最適化されることは自明である。   In addition, although arrangement | positioning of the said injection well 9 and the observation well 10 with respect to the said contaminated area is based on the said observation well 10 provided with the said injection well 9 in the downstream of a groundwater flow direction and the pumping pump upstream, as mentioned above. However, the present invention is not limited to this (detailed description is not given), and it is obvious that it can be made freely according to the state of contamination on the site (not necessarily an arbitrary arrangement based on upstream to downstream). For example, depending on the extent of the contaminated area and the state of contamination, they are placed side by side surrounded by a plurality of wells. In this case, it is obvious that the purification treatment can be further optimized by setting and controlling the amount and timing of injection and pumping of each well for each well.

本願の栄養塩のカルボン酸としては、炭素数が6以上であることが必須であり、長期間にわたって安定した栄養塩の付与ができる。つまり、炭素数が6未満(例えば、ギ酸、酪酸)では水に対する溶解度が大きすぎ、このことは短期間の供給・消費となり、また、この一時的過剰な溶解は短期間で過剰な栄養塩を付与することとなり、前述の(課題のところで述べた)ような嫌気性環境や嫌気性菌に対して悪影響をもたらすこととなる。   As the carboxylic acid of the nutrient salt of the present application, it is essential that the number of carbon atoms is 6 or more, and a stable nutrient salt can be provided over a long period of time. In other words, when the number of carbon atoms is less than 6 (for example, formic acid, butyric acid), the solubility in water is too high, which leads to a short-term supply and consumption, and this temporary excessive dissolution results in a short period of excess nutrients. This will give an adverse effect on the anaerobic environment and anaerobic bacteria as described above (described in the section of the problem).

また、炭素数の上限は特に設ける必要はないが、工業的に大量に入手可能なものとしては炭素数が18程度までと考えられる(が必ずしも、炭素数が18以下のものに限られるものではないことは言うまでもない)。炭素数が大き過ぎると、水溶解性が更に悪く(溶解に時間がかかり)なり、栄養塩としての効果(実効性)が低くなる。   In addition, although it is not necessary to set the upper limit of the carbon number, it is considered that the carbon number is about 18 as industrially available in large quantities (but not necessarily limited to those having 18 or less carbon atoms). Needless to say that there is nothing.) If the carbon number is too large, water solubility is further deteriorated (it takes time to dissolve), and the effect (effectiveness) as a nutrient salt is lowered.

また、本願のカルボン酸は、直鎖状構造を有し、さらには、飽和モノカルボン酸であることが好ましい(これらの基本的な内容等については、特開2000−334492号公報に記載されている)。   In addition, the carboxylic acid of the present application has a linear structure, and is preferably a saturated monocarboxylic acid (the basic contents thereof are described in JP 2000-334492 A). )

本願の栄養塩は、炭素数が6以上の直鎖状飽和モノカルボン酸を主成分としたもので、粒状〜ペレット状等の固体(成形の固形品)を基本としている。
前記帯水層5の地下水は硝酸態窒素が多いため、嫌気性微生物の栄養塩となるが、窒素成分だけでは活性できなく、C成分である炭素数が6以上の直鎖状飽和モノカルボン酸を適量投入することで、嫌気性微生物(分解菌)の活性化が促進され、微生物による水素と塩素の交換が活発になり、安定して汚染領域を浄化(無害化処理)できる(適量投入の判断はORP計の測定等による)。
The nutrient salt of the present application is mainly composed of linear saturated monocarboxylic acid having 6 or more carbon atoms, and is based on a solid (molded solid product) such as granular to pellet.
Since the groundwater in the aquifer 5 is rich in nitrate nitrogen, it becomes a nutrient salt for anaerobic microorganisms, but it cannot be activated only by the nitrogen component, and is a linear saturated monocarboxylic acid having 6 or more carbon atoms as the C component. , The activation of anaerobic microorganisms (degrading bacteria) is promoted, the exchange of hydrogen and chlorine by the microorganisms becomes active, and the contaminated area can be stably purified (detoxification treatment). (Judgment is based on measurement of ORP meter).

前述のとおり炭素数が大きい場合、地下水への溶解に時間がかかり(難水溶・浸透性)、栄養塩としての効果が低くなる(遅効性)が、例えば、本願のカルボン酸(高級脂肪酸)にアルコール(グリセリン)を加えてエステル(油脂)としても良い。つまり、カルボン酸をグリセリンによってエステル結合となし、カルボン酸の水溶性が増すことになり、カルボン酸による浄化の補助的な寄与が期待できることになる(これらの内容等については、特開2002−370085号公報に記載されている)。
したがって、前記注入機8は、前記栄養塩槽7から前記注入井戸9を経て、上記のような栄養塩を選定・供給することになる。
As described above, when the number of carbon atoms is large, it takes time to dissolve in groundwater (poor water solubility and permeability), and the effect as a nutrient salt is low (slow effect). For example, the carboxylic acid (higher fatty acid) of the present application Alcohol (glycerin) may be added to form an ester (oil or fat). That is, the carboxylic acid is converted to an ester bond with glycerin, so that the water solubility of the carboxylic acid is increased, and an auxiliary contribution to the purification by the carboxylic acid can be expected (for these contents and the like, see JP-A-2002-370085). Is described in the publication number).
Therefore, the injector 8 selects and supplies the nutrient salt as described above from the nutrient tank 7 through the injection well 9.

仮に、端的に汚染の浄化処理期間の観点から見れば、短期〜中期〜長期等があり、例えば、短期とすれば、炭素数が小さくカルボン酸、かつ、カルボン酸をグリセリンによってエステル化した栄養塩とすることが考えられる。逆に長期とすれば、炭素数が大きいカルボン酸(例えば、ステアリン酸)、グリセリンを使用しない栄養塩とすること等が考えられる。つまり、カルボン酸の炭素数やグリセリンの添加量を自在に選択し、その注入量・時期等を絡ませて決めれば最適の浄化処理条件、処理期間等が決定・制御でき、現位置での対応が自在にできることになる。   Temporarily, from the viewpoint of the pollution purification treatment period, there are short-term to medium-term to long-term, etc. For example, if it is short-term, a carboxylic acid having a small carbon number and a carboxylic acid esterified with glycerin It can be considered. On the contrary, if it is long-term, it can be considered to use a carboxylic acid having a large number of carbons (eg, stearic acid) or a nutrient salt that does not use glycerin. In other words, if the carbon number of carboxylic acid and the amount of glycerin added can be freely selected and determined by involving the amount and timing of injection, the optimum purification treatment conditions and treatment period can be determined and controlled, and the response at the current position can be achieved. It can be done freely.

以上の説明により、単に電気分解とバイオ工法を組み合わせた鉛直井戸による浄化処理工法ではなく、本願の特徴は、前記注入井戸9と揚水ポンプを備えた観測井戸を地下水の流れに逆行させることで地下水の流れに障害をもたせ緩やかにすることと、電気分解を用い前記陽極井戸12を地下水の流れの下流側に設置して、土壌及び地下水を電気分解することによる水素イオンを引付けると同時に前記陽極井戸12の周囲に特定の栄養塩注入することにより嫌気性微生物の作用と電気分解での水素と塩素の置換を安定して持続させて汚染物質である有機塩素化合物を短期間で低分子化する無害化(水と二酸化炭素に分解)処理を行うことで、特定の栄養塩を選択することにより新たに特異な効果を生じることになる。   From the above explanation, it is not a purification treatment method using a vertical well that is simply a combination of electrolysis and biotechnologies, but the feature of the present application is that groundwater can be obtained by reversing the injection well 9 and the observation well equipped with a pump to the groundwater flow. The anode well 12 is placed downstream of the flow of groundwater using electrolysis, and attracts hydrogen ions by electrolyzing the soil and groundwater, and at the same time the anode By injecting specific nutrients around the well 12, the action of anaerobic microorganisms and the replacement of hydrogen and chlorine by electrolysis are stably maintained, and the organic chlorine compounds that are pollutants are reduced in molecular weight in a short period of time. By detoxifying (decomposing into water and carbon dioxide), a specific effect is newly produced by selecting a specific nutrient salt.

以上、嫌気性微生物の作用と電気分解での1実施例について述べたが、現場の汚染状況に対応させて、夫々の実施例を適宜に組み合せたりして、多様化して展開することは自明のことである。   In the above, one embodiment in the action and electrolysis of anaerobic microorganisms has been described. However, it is obvious that each embodiment can be appropriately combined and expanded in accordance with the pollution situation in the field. That is.

この発明はバイオレメデエーション法を用いて嫌気性微生物を活性化し、有機塩素系化合物で汚染された土壌及び地下水の浄化を促進して、汚染領域を原位置で短期間に浄化する装置に適用できる。 The present invention can be applied to an apparatus that activates anaerobic microorganisms using a bioremediation method, promotes purification of soil and groundwater contaminated with organochlorine compounds, and purifies a contaminated area in situ in a short period of time. .

本発明の汚染土壌及び地下水の浄化工法の概要を示す模擬的断面図Simulated sectional view showing the outline of the purification method of contaminated soil and groundwater of the present invention

符号の説明Explanation of symbols

1 汚染部
2 拡散域
4 土壌
5 帯水層
6 難透水層
7 栄養塩槽
8 注入機
9 注入井戸
10 観測(モニタリング)井戸
12 陽極井戸
13 直流電源
14 陽極板(陽極棒)
15 陰極井戸
16 半透過性膜
17 電解液
18 陰極板(陰極棒)
DESCRIPTION OF SYMBOLS 1 Polluted part 2 Diffusion zone 4 Soil 5 Aquifer 6 Difficult-permeable layer 7 Nutrient tank 8 Injection machine 9 Injection well 10 Observation (monitoring) well 12 Anode well 13 DC power supply 14 Anode plate (anode rod)
15 Cathode well 16 Semi-permeable membrane 17 Electrolyte 18 Cathode plate (cathode bar)

Claims (3)

汚染部拡散域の外側に鉛直井戸を設け、前記鉛直井戸の配管の内周を半透過性の膜で覆い、前記鉛直井戸には陽極及び陰極の電極部材を具備し、土壌及び地下水を電気分解するとともに、陽極側の井戸の周囲に微生物活性用の栄養塩を注入する栄養塩注入井戸を設け、前記電気分解と前記栄養塩により、前記汚染部拡散域の土壌及び地下水に含有する揮発性有機化合物を嫌気性微生物により分解処理する工法を用いた汚染土壌及び地下水の浄化方法。 A vertical well is provided outside the diffusion zone of the contaminated part, the inner periphery of the vertical well pipe is covered with a semi-permeable membrane, and the vertical well is provided with anode and cathode electrode members to electrolyze soil and groundwater. In addition, a nutrient salt injection well for injecting a nutrient salt for microbial activity is provided around the well on the anode side, and the volatile organic contained in the soil and groundwater of the contaminated part diffusion area by the electrolysis and the nutrient salt A method for purifying contaminated soil and groundwater using a method of decomposing compounds with anaerobic microorganisms. 前記栄養塩が炭素数6以上の直鎖状飽和モノカルボン酸を主成分とした栄養塩であることを特徴とした請求項1記載の汚染土壌及び地下水の浄化方法。 The method for purifying contaminated soil and groundwater according to claim 1, wherein the nutrient salt is a nutrient salt mainly composed of a linear saturated monocarboxylic acid having 6 or more carbon atoms. 前記栄養塩の注入によって前記土壌及び前記地下水の浄化状態を監視する鉛直の観測井戸を、前記陰極の電極部材を具備した前記鉛直井戸の周囲に設置することを特徴とした
請求項1記載の汚染土壌及び地下水の浄化方法。
2. The contamination according to claim 1, wherein a vertical observation well for monitoring a purification state of the soil and the groundwater by injecting the nutrient salt is installed around the vertical well having the cathode electrode member. Soil and groundwater purification methods.
JP2004095202A 2004-03-29 2004-03-29 Cleaning method Pending JP2005279399A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004095202A JP2005279399A (en) 2004-03-29 2004-03-29 Cleaning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004095202A JP2005279399A (en) 2004-03-29 2004-03-29 Cleaning method

Publications (1)

Publication Number Publication Date
JP2005279399A true JP2005279399A (en) 2005-10-13

Family

ID=35178357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004095202A Pending JP2005279399A (en) 2004-03-29 2004-03-29 Cleaning method

Country Status (1)

Country Link
JP (1) JP2005279399A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101162498B1 (en) 2011-10-05 2012-07-05 에이치플러스에코 주식회사 Method for remediation oily clay soil using electrical resistance heating and direct ground boring-high pressure injecting
CN113062712A (en) * 2021-04-13 2021-07-02 太原理工大学 Deep stratum CO sequestration2Biological anti-dissipation method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101162498B1 (en) 2011-10-05 2012-07-05 에이치플러스에코 주식회사 Method for remediation oily clay soil using electrical resistance heating and direct ground boring-high pressure injecting
CN113062712A (en) * 2021-04-13 2021-07-02 太原理工大学 Deep stratum CO sequestration2Biological anti-dissipation method
CN113062712B (en) * 2021-04-13 2022-04-12 太原理工大学 Deep stratum CO sequestration2Biological anti-dissipation method

Similar Documents

Publication Publication Date Title
CN102583712B (en) Method and system by using micro-nano bubbles to perform reinforcement in-situ remediation on polluted ground water
CN106044960B (en) A method of liquid being concentrated using three-diemsnional electrode processing landfill leachate
JP6327718B2 (en) Microbial electrolysis cell
JP2009006304A (en) Cleaning system and cleaning method for oil contaminated soil
CN106311738A (en) In-situ oxidation-reduction repair system
JP5186169B2 (en) Purification method of soil and groundwater in aquifer
JP2013188727A (en) Method and system for controlling microbial reaction in water bottom soil
JP4281551B2 (en) Soil and groundwater contamination purification equipment and purification method
JP2012125665A (en) Method for purifying soil pollution
JP2007268401A (en) In-situ cleaning method and in-situ cleaning system of contaminated soil and/or ground water
CN108328856A (en) A kind of in-situ immobilization technique of low concentration organic contamination underground water and its application
JP2005279399A (en) Cleaning method
JP2005279392A (en) Method for cleaning polluted soil and ground water
JP4547962B2 (en) Method for purifying contaminated soil and groundwater
JPH0910752A (en) Method and apparatus for purifying contaminated soil using soil bacteria
JP5165930B2 (en) Purification method for groundwater contamination
JP4788105B2 (en) Purification method for contaminated soil
JP3694294B2 (en) In-situ purification method for contaminated soil and / or groundwater
JP5053127B2 (en) Method for confirming suitability of microorganisms for contaminated soil
JP3834808B2 (en) Organochlorine compound processing apparatus and system
JP6212842B2 (en) Purification method for contaminated soil
JP2005279394A (en) Method for cleaning polluted soil and ground water
JP4099893B2 (en) In-situ anaerobic treatment method for organochlorine compounds in soil and / or groundwater
CN111977754A (en) Composite efficient reinforced remediation equipment for soil groundwater and water body organic pollution and application
JP2007105594A (en) Restoration method for oil-contaminated soil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070208

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091006