JP6212842B2 - Purification method for contaminated soil - Google Patents

Purification method for contaminated soil Download PDF

Info

Publication number
JP6212842B2
JP6212842B2 JP2012191736A JP2012191736A JP6212842B2 JP 6212842 B2 JP6212842 B2 JP 6212842B2 JP 2012191736 A JP2012191736 A JP 2012191736A JP 2012191736 A JP2012191736 A JP 2012191736A JP 6212842 B2 JP6212842 B2 JP 6212842B2
Authority
JP
Japan
Prior art keywords
soil
nutrient
chlorinated ethylene
nutrient solution
injected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012191736A
Other languages
Japanese (ja)
Other versions
JP2013139020A (en
Inventor
徳也 奥津
徳也 奥津
隆行 星野
隆行 星野
渉 田村
渉 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2012191736A priority Critical patent/JP6212842B2/en
Publication of JP2013139020A publication Critical patent/JP2013139020A/en
Application granted granted Critical
Publication of JP6212842B2 publication Critical patent/JP6212842B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Processing Of Solid Wastes (AREA)

Description

本発明は、塩素化エチレン等の有機塩素化合物で汚染された土壌や、さらには該土壌内の地下水を原位置バイオオーグメンテーション法によって浄化する方法に係り、特に、嫌気性の塩素化エチレン分解菌を土壌に注入して浄化する方法に関する。   The present invention relates to a soil contaminated with an organic chlorine compound such as chlorinated ethylene, and further to a method of purifying groundwater in the soil by an in-situ bioaugmentation method, and in particular, anaerobic chlorinated ethylene decomposition The present invention relates to a method for injecting bacteria into soil for purification.

揮発性有機塩素化合物等によって汚染された土壌や地下水などの浄化方法として、揮発性有機塩素化合物に対する分解能力の高い微生物を培養し、汚染現場等に投与して浄化を行うバイオオーグメンテーションと呼ばれる技術がある(特許文献1)。   As a purification method for soil and groundwater contaminated with volatile organic chlorine compounds, it is called bioaugmentation, in which microorganisms with high degradability for volatile organic chlorine compounds are cultured and administered to the contaminated site for purification. There is technology (Patent Document 1).

この特許文献1の方法は、脱酸素処理した水(水道水、地下水、工業用水など)で嫌気性微生物と栄養剤を希釈して土中に注入することにより、微生物を広範囲に分散し、有機塩素化合物の分解効率を向上させることを企図したものである。この特許文献1の方法によれば、嫌気性微生物の活性を低下させることなく土壌中に注入して、良好なバイオオーグメンテーションを行うことができる。   In the method of Patent Document 1, anaerobic microorganisms and nutrients are diluted with deoxygenated water (tap water, groundwater, industrial water, etc.) and injected into the soil to disperse the microorganisms over a wide area. It is intended to improve the decomposition efficiency of chlorine compounds. According to the method of this patent document 1, it can inject | pour into soil, without reducing the activity of anaerobic microorganisms, and can perform favorable bioaugmentation.

特開2011−194307JP2011-194307

特許文献1の方法では、希釈水を脱酸素処理するための好気生物膜処理装置が必要であるため、本装置の立ち上げや現場への設置、撤去作業、産廃処理など必要な工程が多岐にわたり煩雑である、という問題があった。   The method of Patent Document 1 requires an aerobic biofilm treatment apparatus for deoxygenating diluted water, and therefore there are a variety of necessary processes such as start-up of this apparatus, installation on the site, removal work, and industrial waste treatment. There was a problem that it was complicated.

本発明は塩素化エチレン等の有機塩素化合物で汚染された土壌や、さらには該土壌内の地下水を原位置バイオオーグメンテーション法により効率よく浄化することができる汚染土壌の浄化方法を提供することを目的とする。   The present invention provides a method for purifying contaminated soil capable of efficiently purifying soil contaminated with an organic chlorine compound such as chlorinated ethylene, and further groundwater in the soil by an in-situ bioaugmentation method. With the goal.

本発明の汚染土壌の浄化方法は、有機塩素化合物で汚染された土壌に栄養剤溶液を注入して土壌を嫌気性とする第1の栄養剤溶液注入工程と、その後、該土壌に塩素化エチレン分解菌含有水を注入する塩素化エチレン分解菌注入工程と、その後、該土壌に栄養剤溶液を注入する第2の栄養剤注入工程とを有し、前記第1の栄養剤溶液注入工程及び第2の栄養剤溶液注入工程で注入する栄養剤がクエン酸及び/又はその塩であり、前記塩素化エチレン分解菌がデハロコッコイデス属細菌であり、前記第1の栄養剤注入工程によって土壌又は地下水のORPが−100mV以下となった後、塩素化エチレン分解菌注入工程を行い、前記第2の栄養剤注入工程で注入される栄養剤溶液の栄養剤の濃度は炭素として100〜10000mg/Lであり、該栄養剤溶液のpHは6〜8であり、該栄養剤溶液の注入量は前記塩素化エチレン分解菌注入工程で注入した塩素化エチレン分解菌含有水の100〜10000倍であるものである。 The method for purifying contaminated soil according to the present invention includes a first nutrient solution injection step for injecting a nutrient solution into soil contaminated with an organic chlorine compound to make the soil anaerobic, and then chlorinated ethylene in the soil. a chlorinated ethylene-decomposing bacteria implantation step of implanting degrading bacteria containing water, then have a second nutrient injection step of injecting a nutrient solution into the soil, the first nutrient solution injection step and the The nutrient solution to be injected in the nutrient solution injection step of 2 is citric acid and / or a salt thereof, the chlorinated ethylene-degrading bacterium is a bacterium belonging to the genus Dehalococcides, and soil or After the ORP of the groundwater becomes -100 mV or less, a chlorinated ethylene-decomposing bacteria injection step is performed, and the concentration of the nutrient in the nutrient solution injected in the second nutrient injection step is 100 to 10,000 mg / L as carbon. And PH of the nutrient solution is 6-8, but the injection amount of the nutrient solution is 100 to 10000 times the chlorinated ethylene-decomposing bacteria-containing water injected by the chlorinated ethylene-decomposing bacteria injection process.

有機塩素化合物で汚染された土壌に栄養剤を注入すると、テトラクロロエチレンやトリクロロエチレンは、土着の一般的な嫌気微生物によって還元的脱塩素化反応により分解され、シス−1,2−ジクロロエチレン(以下、cis−DCEという場合がある。)が生成し、cis−DCEの濃度が高くなる。このようにcis−DCEの濃度が高くなった土壌に塩素化エチレン分解菌を注入すると、塩素化エチレン分解活性を有するデハロコッコイデス属細菌の増殖速度が大きくなり、効率の良い浄化を行うことができる。   When nutrients are injected into soil contaminated with organochlorine compounds, tetrachloroethylene and trichlorethylene are decomposed by a reductive dechlorination reaction by indigenous general anaerobic microorganisms, and cis-1,2-dichloroethylene (hereinafter cis-). May be referred to as DCE), and the concentration of cis-DCE increases. When chlorinated ethylene-decomposing bacteria are injected into the soil having a high cis-DCE concentration, the growth rate of dehalococcides bacteria having chlorinated ethylene-degrading activity is increased, and efficient purification is performed. Can do.

この塩素化エチレン分解菌注入後に再度栄養剤を注入すると、土壌を嫌気性に保ち、塩素化エチレン分解菌を増殖させることができる。また、塩素化エチレン分解菌注入直後に栄養剤の注入を開始した場合には、塩素化エチレン分解菌を土壌中で拡散させる効果も奏される。   When the nutrient is injected again after the injection of the chlorinated ethylene-decomposing bacteria, the soil can be kept anaerobic and the chlorinated ethylene-decomposing bacteria can be grown. Moreover, when the injection of nutrients is started immediately after the injection of chlorinated ethylene-decomposing bacteria, the effect of diffusing the chlorinated ethylene-decomposing bacteria in the soil is also exhibited.

なお、嫌気性の塩素化エチレン分解菌を使用するにあたっては、酸素との接触による微生物の活性低下を防ぐ必要があるが、本発明によれば栄養剤を予め土壌に注入することにより、希釈水を脱酸素処理するための好気生物膜処理装置を使用せずに、嫌気性の塩素化エチレン分解菌の活性を低下させることなく土壌中に注入して土壌中で増殖させることができるので、良好なバイオオーグメンテーションを行うことが可能となる。   In using an anaerobic chlorinated ethylene-degrading bacterium, it is necessary to prevent a decrease in the activity of microorganisms due to contact with oxygen. According to the present invention, diluting water can be obtained by injecting nutrients into the soil in advance. Without using an aerobic biofilm treatment device for deoxygenating, it can be injected into the soil and grown in the soil without reducing the activity of anaerobic chlorinated ethylene-degrading bacteria, Good bioaugmentation can be performed.

実施の形態の説明図である。It is explanatory drawing of embodiment. 参考例1の説明図である。It is explanatory drawing of the reference example 1. FIG. 参考例2の説明図である。It is explanatory drawing of the reference example 2. FIG.

以下、本発明についてさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail.

本発明において、処理対象となる土壌または地下水は、塩素化エチレン等の有機塩素化合物で汚染された土壌または地下水である。塩素化エチレンとしては、テトラクロロエチレン(PCE)、トリクロロエチレン(TCE)、シス−1,2−ジクロロエチレン(cis−DCE)、トランス−1,2−ジクロロエチレン(trans−DCE)、1,1−ジクロロエチレン(1,1−DCE)、塩化ビニル(VC)およびこれらの脱塩素化中間体などが例示されるが、本発明では特にテトラクロロエチレンおよび/またはトリクロロエチレンを高濃度で、例えば主成分として含み、シス−1,2−ジクロロエチレンの濃度が低い、特に増殖維持濃度より低い土壌や、さらには該土壌内の地下水が処理対象として適している。   In the present invention, the soil or groundwater to be treated is soil or groundwater contaminated with an organic chlorine compound such as chlorinated ethylene. Examples of chlorinated ethylene include tetrachloroethylene (PCE), trichlorethylene (TCE), cis-1,2-dichloroethylene (cis-DCE), trans-1,2-dichloroethylene (trans-DCE), 1,1-dichloroethylene (1, 1-DCE), vinyl chloride (VC), and their dechlorinated intermediates are exemplified. In the present invention, tetrachloroethylene and / or trichlorethylene is particularly contained at a high concentration, for example, as a main component, and cis-1,2 -Soil with a low concentration of dichloroethylene, particularly lower than the growth maintenance concentration, and further groundwater in the soil are suitable as treatment targets.

本発明においてこのような塩素化エチレンの分解に用いられる微生物は、塩素化エチレン分解活性を有するデハロコッコイデス属細菌が好適であるが、特に塩化ビニル(VC)を単独でエチレンに分解する活性を有するデハロコッコイデス属細菌が好ましい。   The microorganism used in the present invention for decomposing chlorinated ethylene is preferably a bacterium belonging to the genus Dehalococcides having chlorinated ethylene decomposing activity, and in particular, the activity of decomposing vinyl chloride (VC) alone into ethylene. Dehalococcides bacteria having the above are preferred.

本発明では、浄化対象となる土壌または地下水に予め栄養剤を添加し、嫌気状態に保つことにより、土着の一般的な嫌気微生物の還元的脱塩素化反応により、テトラクロロエチレンやトリクロロエチレンを分解して、cis−DCEを生成させ、還元性雰囲気(好ましくは土壌または地下水のORPが−100mV以下)とする。   In the present invention, by adding a nutrient agent in advance to the soil or groundwater to be purified and keeping it in an anaerobic state, the reductive dechlorination reaction of a general anaerobic microorganism indigenous decomposes tetrachloroethylene and trichlorethylene, cis-DCE is generated and a reducing atmosphere (preferably the ORP of soil or groundwater is −100 mV or less).

テトラクロロエチレンやトリクロロエチレンは、嫌気状態において土着の一般的な嫌気微生物による還元的脱塩素化反応により分解され、シス−1,2−ジクロロエチレン(以下、cis−DCEという場合がある。)が生成し、cis−DCEの濃度が高くなる。このようなcis−DCEの濃度が高く、また嫌気性となっている土壌または地下水では、塩素化エチレン分解活性を有するデハロコッコイデス属細菌の増殖速度が大きくなり、効率の良い浄化を行うことができる。   Tetrachloroethylene and trichlorethylene are decomposed by a reductive dechlorination reaction by an indigenous general anaerobic microorganism in an anaerobic state to produce cis-1,2-dichloroethylene (hereinafter sometimes referred to as cis-DCE), and cis. -The concentration of DCE increases. In soil or groundwater in which the concentration of cis-DCE is high and anaerobic, the growth rate of dehalococcides bacteria having chlorinated ethylene decomposition activity is increased, and efficient purification is performed. Can do.

栄養剤としては、土着の一般的な嫌気微生物による還元的脱塩素化反応によりテトラクロロエチレンやトリクロロエチレンを分解してcis−DCEを生成させる作用を奏するものであればよく、その組成、濃度等は限定されず、各種のものが使用できる。好ましい栄養剤としては、クエン酸、乳酸、プロピオン酸、酪酸、ショ糖およびこれらの塩から選ばれる少なくとも1種を含有し、かつ密度1.05g/mL以上、好ましくは1.2〜1.3mg/mLに調整されたものが挙げられる。このような栄養剤を、土壌又は地下水当たり0.1〜10g/L、好ましくは0.5〜5g/Lの範囲となるように添加するのが好ましい。栄養剤の注入頻度としては、1〜6か月、特に3〜4か月間隔で繰り返し添加することが好ましい。   Any nutrient may be used as long as it has an effect of decomposing tetrachloroethylene or trichloroethylene to produce cis-DCE by a reductive dechlorination reaction by an indigenous general anaerobic microorganism, and its composition and concentration are limited. Various types can be used. Preferred nutrients include at least one selected from citric acid, lactic acid, propionic acid, butyric acid, sucrose, and salts thereof, and have a density of 1.05 g / mL or more, preferably 1.2 to 1.3 mg. The thing adjusted to / mL is mentioned. It is preferable to add such a nutrient to the range of 0.1 to 10 g / L, preferably 0.5 to 5 g / L per soil or groundwater. As a frequency of injecting the nutrient, it is preferable to repeat the addition at intervals of 1 to 6 months, particularly 3 to 4 months.

デハロコッコイデス属細菌の増殖速度はcis−DCE濃度に比例するため、cis−DCE濃度が低い時点でデハロコッコイデス属細菌を注入すると、デハロコッコイデス属細菌の増殖は遅く、土壌中に注入されたデハロコッコイデス属細菌は、上流から流れてくる地下水によって下流に流されて希釈され、デハロコッコイデス属細菌の増殖速度が低くなる。従って、注入したデハロコッコイデス属細菌を浄化対象となるエリアにおいて速やかに増殖させるために、デハロコッコイデス属細菌注入時における土壌中のcis−DCE濃度が、デハロコッコイデス属細菌の増殖維持濃度以上に増加していることが好ましい。このデハロコッコイデス属細菌の増殖維持濃度は、デハロコッコイデス属細菌の増殖量が地下水流れによる希釈流出量よりも大きくなるcis−DCE濃度であるので、このcis−DCE濃度以上となるように栄養剤の注入条件を決定することが望ましい。   Since the growth rate of the genus Dehalococcides is proportional to the cis-DCE concentration, injecting the genus Dehalococcides at a low cis-DCE concentration results in a slow growth of the genus Dehalococcides in the soil. The Dehalococcides bacterium injected into the basin is diluted by being washed downstream by groundwater flowing from the upstream, and the growth rate of the genus Dehalococcides is reduced. Therefore, in order to rapidly inject the injected Dehalococcides bacteria in the area to be purified, the cis-DCE concentration in the soil at the time of the injection of Dehalococcides bacteria is determined by the growth of the Dehalococcides bacteria. It is preferable that the concentration is increased above the maintenance concentration. The growth maintaining concentration of the genus Dehalococcides is a cis-DCE concentration at which the growth amount of the genus Dehalococcides is larger than the diluted effluent amount due to the groundwater flow. It is desirable to determine the conditions for injecting nutrients.

このように栄養剤添加後、土中のORPと基質(cis−DCE)濃度がデハロコッコイデス属細菌等の塩素化エチレン分解菌の生育に適した条件であることを確認したうえで、塩素化エチレン分解菌を注入することにより、塩素化エチレン分解菌が速やかに増殖し、塩素化エチレン等の有機塩素化合物が効率よく分解される。   In this way, after adding nutrients, after confirming that the ORP and substrate (cis-DCE) concentrations in the soil are conditions suitable for the growth of chlorinated ethylene-degrading bacteria such as dehalococcides bacteria, chlorine By injecting a chlorinated ethylene-decomposing bacterium, the chlorinated ethylene-decomposing bacterium rapidly grows and an organic chlorine compound such as chlorinated ethylene is efficiently decomposed.

塩素化エチレン分解菌を土壌に注入する場合、デハロコッコイデス属細菌を単独で注入してもよく、デハロコッコイデス属細菌を他の細菌とともに培養した培養液を注入してもよい。土壌に注入する培養液中のデハロコッコイデス属細菌の濃度は、10〜1012cell/L程度が好ましく、このような培養液を地下水中に、10〜10cell/L程度の濃度となるように注入することが好ましい。 When injecting chlorinated ethylene-decomposing bacteria into soil, dehalococcides bacteria may be injected alone, or a culture solution obtained by culturing dehalococcides bacteria with other bacteria may be injected. The concentration of the bacterium belonging to the genus Dehalococcides in the culture solution to be injected into the soil is preferably about 10 9 to 10 12 cells / L. Such a culture solution is about 10 7 to 10 9 cells / L in groundwater. It is preferable to inject | pour so that it may become a density | concentration.

塩素化エチレン分解活性を有するデハロコッコイデス属細菌は、テトラクロロエチレンやトリクロロエチレンを高濃度で含み、シス−1,2−ジクロロエチレンの濃度が低い土壌または地下水では増殖はするが、増殖速度は小さい。これに対し、デハロコッコイデス属細菌は、シス−1,2−ジクロロエチレンの濃度が高い土壌または地下水では、増殖速度が高い。デハロコッコイデス属細菌の増殖速度はシス−1,2−ジクロロエチレンの濃度に比例するので、シス−1,2−ジクロロエチレンの濃度が高い状態で、デハロコッコイデス属細菌を注入すると、その増殖速度が大きくなり、浄化効率が良くなる。   A bacterium belonging to the genus Dehalococcides having chlorinated ethylene decomposing activity contains tetrachloroethylene and trichloroethylene at a high concentration and grows in soil or groundwater having a low concentration of cis-1,2-dichloroethylene, but has a low growth rate. In contrast, dehalococcides bacteria have a high growth rate in soil or groundwater with a high concentration of cis-1,2-dichloroethylene. Since the growth rate of Dehalococcides bacteria is proportional to the concentration of cis-1,2-dichloroethylene, if the Dehalococcides bacteria is injected with a high concentration of cis-1,2-dichloroethylene, the growth rate is increased. Speed increases and purification efficiency improves.

塩素化エチレン分解菌を土壌に注入するにあたっては、酸素との接触による微生物の活性低下を防ぐことが好ましい。酸素との接触による微生物の活性低下を防ぐためには、下記のように塩素化エチレン分解菌含有水(以下、培養液ということがある。)を注入するのが好ましい。即ち、土壌のORPが−100mV以下であれば、培養液タンクの出口側の注入管(ホースなど)を帯水層の地下水水面下まで入れて培養液を注入する。   In injecting chlorinated ethylene-decomposing bacteria into the soil, it is preferable to prevent a decrease in the activity of microorganisms due to contact with oxygen. In order to prevent a decrease in the activity of microorganisms due to contact with oxygen, it is preferable to inject water containing chlorinated ethylene-decomposing bacteria (hereinafter sometimes referred to as a culture solution) as described below. That is, if the ORP of the soil is -100 mV or less, the culture solution is injected by inserting an injection pipe (such as a hose) on the outlet side of the culture solution tank below the groundwater surface of the aquifer.

帯水層が被圧帯水層の場合は、ホースを使用せずに井戸配管に直接注入してもよい(井戸内に残っている大気はわずかであり、第1の栄養剤注入工程によって酸素は消費されているため)。土壌のORPが−100mV以上であるときには、栄養剤を追加注入してORPが−100mV以下となったことを確認した後、培養液を注入するのが好ましい。   If the aquifer is a confined aquifer, it may be injected directly into the well pipe without using a hose (the air remaining in the well is very small, and the first nutrient injection process is Is consumed). When the ORP of the soil is -100 mV or higher, it is preferable to inject the culture solution after confirming that the nutrient solution is additionally injected and the ORP is -100 mV or lower.

この培養液注入工程の後、第2の栄養剤注入工程を行う。これにより、塩素化エチレン分解菌の活性を維持し、また土壌を嫌気性に保ち、有機塩素化合物を効率よく分解することができる。   After the culture solution injection step, a second nutrient injection step is performed. Thereby, the activity of chlorinated ethylene-decomposing bacteria can be maintained, the soil can be kept anaerobic, and the organic chlorine compounds can be efficiently decomposed.

なお、培養液注入時に井戸を大気開放する必要があるため、大気からの酸素混入の影響を低減するためにできるだけ早く栄養剤の追加注入をすることが望ましい。例えば、この第2の栄養剤注入工程を、培養液注入後、直ちに、例えば3Hr以内特に1Hr以内に開始する。この第2の栄養剤注入工程で注入する栄養剤の容量は培養液注入量の100〜10000倍の範囲が望ましい。栄養剤溶液が過度に少量の場合、微生物を広範囲に分散させることができない。また、栄養剤の容量が過度に多すぎると、微生物が土壌内でドーナツ状に拡がってしまい、処理効率にムラが発生してしまう。   In addition, since it is necessary to open the well to the atmosphere when injecting the culture solution, it is desirable to inject additional nutrients as soon as possible in order to reduce the influence of oxygen contamination from the atmosphere. For example, the second nutrient injection step is started immediately after the culture solution injection, for example, within 3 hours, particularly within 1 hour. The volume of the nutrient to be injected in the second nutrient injection step is desirably in the range of 100 to 10,000 times the amount of the culture fluid injected. If the nutrient solution is too small, the microorganisms cannot be dispersed extensively. Moreover, when there is too much capacity | capacitance of a nutrient, microorganisms will spread in donut shape in soil, and nonuniformity will generate | occur | produce in processing efficiency.

第2の栄養剤注入工程に用いる栄養剤溶液の栄養剤濃度は、炭素として100〜10000mg/Lの範囲が良い。栄養剤濃度が低すぎると塩素化エチレン分解菌が塩素化エチレンを分解する際に必要とする水素が不足し、栄養剤濃度が高すぎると塩素化エチレン分解菌の活性を阻害してしまう。また、この栄養剤溶液のpHは6〜8の範囲が望ましく、ORPは+200mV以下、特に−100mV以下が望ましい。   The nutrient solution concentration of the nutrient solution used in the second nutrient solution injection step is preferably in the range of 100 to 10,000 mg / L as carbon. If the nutrient concentration is too low, the hydrogen required for the chlorinated ethylene-decomposing bacteria to decompose chlorinated ethylene is insufficient, and if the nutrient concentration is too high, the activity of the chlorinated ethylene-degrading bacteria is inhibited. Further, the pH of this nutrient solution is preferably in the range of 6 to 8, and the ORP is preferably +200 mV or less, particularly preferably −100 mV or less.

以下、本発明方法による土壌浄化方法の一例を図1を参照して説明する。   Hereinafter, an example of a soil purification method according to the method of the present invention will be described with reference to FIG.

地表1から所定深さに不透水層3あるいは難透水層が存在し、その上側に帯水層2が存在する。4は地下水水位である。汚染地下水の存在域Wの地下水流れ方向最上流部付近に不透水層3に達するように注入井戸6を設け、栄養剤溶液や嫌気性微生物の培養液を土壌中に注入する。   An impermeable layer 3 or a hardly permeable layer exists at a predetermined depth from the ground surface 1, and an aquifer 2 exists above the impermeable layer 3. 4 is the groundwater level. An injection well 6 is provided so as to reach the impermeable layer 3 in the vicinity of the most upstream portion in the groundwater flow direction of the contaminated groundwater existing area W, and a nutrient solution or an anaerobic microorganism culture solution is injected into the soil.

タンク10内に貯留された栄養剤水溶液は、ポンプ11を介して注入井戸6に供給され、培養液はタンク12から定量ポンプ13を介して注入井戸6に供給される。   The aqueous nutrient solution solution stored in the tank 10 is supplied to the injection well 6 via the pump 11, and the culture solution is supplied from the tank 12 to the injection well 6 via the metering pump 13.

タンク12の頂部には、窒素ガスボンベ14から圧力調整弁(図示略)を介して窒素ガスが導入され、タンク12の上部の雰囲気を窒素雰囲気とする。   Nitrogen gas is introduced into the top of the tank 12 from a nitrogen gas cylinder 14 via a pressure control valve (not shown), and the atmosphere above the tank 12 is changed to a nitrogen atmosphere.

窒素ガスボンベ14から窒素ガスをタンク12内に供給するのは、培養液がタンク12から流出して分散液レベルが低下するのに伴って外部からタンク12内に空気が流入しないようにするためである。   The reason why nitrogen gas is supplied into the tank 12 from the nitrogen gas cylinder 14 is to prevent air from flowing into the tank 12 from the outside as the culture fluid flows out of the tank 12 and the dispersion level decreases. is there.

以下、参考例1及び参考例2について説明する。この参考例1では図2に示す試験装置を用い、参考例2では図3に示す試験装置を用いた。これらの試験装置では、幅5m、奥行き5m、高さ5mのコンテナCに豊浦標準砂を敷き詰め、中央にφ25mmの塩ビパイプPを縦に(鉛直に)設置してある。このコンテナC内に市水を25m注ぎ、現場模擬土壌を作製した。なお、塩ビパイプの下部3〜5mにはスリットを設けてあり、水をサンプリングできるようにしてある。 Hereinafter, Reference Example 1 and Reference Example 2 will be described. In Reference Example 1, the test apparatus shown in FIG. 2 was used, and in Reference Example 2, the test apparatus shown in FIG. 3 was used. In these test apparatuses, Toyoura standard sand is spread on a container C having a width of 5 m, a depth of 5 m, and a height of 5 m, and a vinyl chloride pipe P having a diameter of 25 mm is installed vertically (vertically). In this container C, 25 m 3 of city water was poured to prepare on-site simulated soil. In addition, a slit is provided in the lower 3 to 5 m of the PVC pipe so that water can be sampled.

実施例に相当する参考例1(図2)では、上記のコンテナCに栄養剤水溶液と培養液が各タンクA,Bから注入されるように構成されている。比較例に相当する参考例2(図3)は、栄養剤水溶液を活性炭カラムDに通した後、コンテナCに供給するよう構成されている他は参考例1(図2)と同一構成となっている。   In Reference Example 1 (FIG. 2) corresponding to the embodiment, the nutrient solution and the culture solution are poured into the container C from the tanks A and B. Reference Example 2 (FIG. 3) corresponding to the comparative example has the same configuration as Reference Example 1 (FIG. 2) except that the nutrient solution is passed through the activated carbon column D and then supplied to the container C. ing.

試験に用いた栄養剤水溶液、嫌気性微生物、培養液の条件は次の通りである。   The conditions of the nutrient solution, anaerobic microorganism, and culture solution used in the test are as follows.

栄養剤水溶液:クエン酸三ナトリウム二水和物(濃度10g/L)と窒素及びリンとを含む
嫌気性微生物:デハロコッコイデス属細菌
培養液の菌濃度:10個/L
Nutrient solution: trisodium citrate dihydrate (concentration 10 g / L) and nitrogen and anaerobic microorganisms and a phosphorus: cell concentration of de Haro Cocco y des bacterium cultures: 10 9 / L

[参考例1]
1mの栄養剤水溶液をパイプPから100L/Hrで10HrコンテナCに注入した。1週間後にパイプPから水を100mL採取してORPを分析した結果、地下水ORPは−180mVであった。そこで、1Lの嫌気性微生物培養液をパイプPから注入し、その後、直ちに1mの栄養剤水溶液を100L/Hrで10Hr注入した。
[Reference Example 1]
1 m 3 of the nutrient solution was injected into the 10 Hr container C from the pipe P at 100 L / Hr. One week later, 100 mL of water was collected from the pipe P and analyzed for ORP. As a result, the groundwater ORP was -180 mV. Therefore, 1 L of an anaerobic microorganism culture solution was injected from the pipe P, and immediately thereafter, 1 m 3 of an aqueous nutrient solution was injected at 100 L / Hr for 10 hours.

注入完了後に、パイプPより地下水を100mL採取し、その2mLを下記のように調製された150mLバイアル瓶中の100mLの模擬地下水に注入し、次いで、ただちにクロロエチレンガス0.22mL(6.0mg/Lに相当)をヘッドスペ−スに注入した。30℃で1週間培養を継続し、ヘッドスペ−スのクロロエチレン濃度を測定し、模擬地下水中のクロロエチレン濃度を算出した。   After completion of the injection, 100 mL of groundwater was collected from the pipe P, and 2 mL thereof was injected into 100 mL of simulated groundwater in a 150 mL vial prepared as described below, and then immediately 0.22 mL (6.0 mg / mL) of chloroethylene gas. (Corresponding to L) was injected into the head space. The culture was continued at 30 ° C. for 1 week, the chloroethylene concentration in the head space was measured, and the chloroethylene concentration in the simulated groundwater was calculated.

その結果、模擬地下水中のクロロエチレン濃度は0.01mg/Lであり、クロロエチレン分解率は100%であった。   As a result, the chloroethylene concentration in the simulated groundwater was 0.01 mg / L, and the chloroethylene decomposition rate was 100%.

<模擬地下水の調製方法>
1wt%濃度のクエン酸ナトリウム6水和物、0.05wt%濃度のリン酸2水素アンモニウム、および1mg/Lのレザズリンを市水に溶解したもの100mLを150mL容バイアル瓶にとり、ヘッドスペ−スをNガスで置換した後ブチルゴムで密栓し、30℃で3日間放置しレザズリンが無色となり還元状態になったものを模擬地下水とする。
<Method for preparing simulated groundwater>
100 mL of 1 wt% sodium citrate hexahydrate, 0.05 wt% ammonium dihydrogen phosphate, and 1 mg / L resazurin dissolved in city water was placed in a 150 mL vial, and the head space was changed to N After substituting with 2 gas, it is sealed with butyl rubber and left at 30 ° C. for 3 days. Resazurin is colorless and reduced to form simulated groundwater.

[参考例2]
参考例1において、栄養剤水溶液をコンテナCに供給するに際し、栄養剤水溶液を100L/Hrの通水速度で、30℃に保温した活性炭カラム(活性炭名:三菱カルゴンF400、3kg充填)に連続通水した。カラム出口で採取した水の酸化還元電位が−188mVとなったことを確認した後、パイプPを介してコンテナCに注入した。それ以外はすべて参考例1と同一条件にて試験を行った。そして、参考例1と同じ条件で採取水2mLを模擬地下水に注入し、ただちにクロロエチレンガスをヘッドスペ−スに注入し、30℃で1週間培養を継続し、ヘッドスペ−スのクロロエチレン濃度を測定し、模擬地下水中のクロロエチレン濃度を算出した。
[Reference Example 2]
In Reference Example 1, when supplying the nutrient solution to container C, the nutrient solution was continuously passed through an activated carbon column (activated carbon name: Mitsubishi Calgon F400, 3 kg packed) kept at 30 ° C. at a water flow rate of 100 L / Hr. Watered. After confirming that the redox potential of the water collected at the column outlet was −188 mV, it was injected into the container C via the pipe P. All other tests were performed under the same conditions as in Reference Example 1. Then, 2 mL of sampled water is injected into the simulated groundwater under the same conditions as in Reference Example 1, immediately chloroethylene gas is injected into the head space, and culture is continued at 30 ° C. for one week, and the chloroethylene concentration in the head space is measured. The chloroethylene concentration in the simulated groundwater was calculated.

その結果、模擬地下水中のクロロエチレン濃度は0.01mg/Lであり、クロロエチレン分解率は100%であった。   As a result, the chloroethylene concentration in the simulated groundwater was 0.01 mg / L, and the chloroethylene decomposition rate was 100%.

以上のことから、参考例1によると、活性炭カラムを使用せずに、嫌気性塩素化エチレン分解菌の活性を低下させることなく土壌中に注入できる事が分かった。また、栄養剤水溶液の注入量は参考例1,2で同じ容量であることから、参考例1の方法により、微生物を同程度の範囲に分散させることが可能であり、良好なバイオオーグメンテーションを行うことができることが認められた。   From the above, it was found that according to Reference Example 1, it was possible to inject into the soil without reducing the activity of the anaerobic chlorinated ethylene-decomposing bacteria without using an activated carbon column. Moreover, since the injection volume of the nutrient solution is the same in Reference Examples 1 and 2, it is possible to disperse microorganisms in the same range by the method of Reference Example 1, and good bioaugmentation. It was recognized that can be done.

1 地表
6 注入井戸
1 Ground 6 Injection well

Claims (1)

有機塩素化合物で汚染された土壌に栄養剤溶液を注入して土壌を嫌気性とする第1の栄養剤溶液注入工程と、
その後、該土壌に塩素化エチレン分解菌含有水を注入する塩素化エチレン分解菌注入工程と、
その後、該土壌に栄養剤溶液を注入する第2の栄養剤注入工程と
を有し、
前記第1の栄養剤溶液注入工程及び第2の栄養剤溶液注入工程で注入する栄養剤がクエン酸及び/又はその塩であり、
前記塩素化エチレン分解菌がデハロコッコイデス属細菌であり、
前記第1の栄養剤注入工程によって土壌又は地下水のORPが−100mV以下となった後、塩素化エチレン分解菌注入工程を行い、
前記第2の栄養剤注入工程で注入される栄養剤溶液の栄養剤の濃度は炭素として100〜10000mg/Lであり、該栄養剤溶液のpHは6〜8であり、該栄養剤溶液の注入量は前記塩素化エチレン分解菌注入工程で注入した塩素化エチレン分解菌含有水の100〜10000倍である汚染土壌の浄化方法。
A first nutrient solution injection step for injecting a nutrient solution into soil contaminated with an organic chlorine compound to make the soil anaerobic;
Then, a chlorinated ethylene-decomposing bacteria injection step for injecting chlorinated ethylene-decomposing bacteria-containing water into the soil,
Then, we have a second nutrient injection step of injecting a nutrient solution into the soil,
The nutrient to be injected in the first nutrient solution injection step and the second nutrient solution injection step is citric acid and / or a salt thereof,
The chlorinated ethylene-decomposing bacterium is a genus Dehalococcides
After the ORP of soil or groundwater becomes -100 mV or less by the first nutrient injection process, the chlorinated ethylene-decomposing bacteria injection process is performed,
The concentration of the nutrient in the nutrient solution injected in the second nutrient injection step is 100 to 10,000 mg / L as carbon, and the pH of the nutrient solution is 6 to 8, and the nutrient solution is injected. The method for purifying contaminated soil, wherein the amount is 100 to 10,000 times the chlorinated ethylene-decomposing bacteria-containing water injected in the chlorinated ethylene-decomposing bacteria injection step .
JP2012191736A 2011-12-07 2012-08-31 Purification method for contaminated soil Active JP6212842B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012191736A JP6212842B2 (en) 2011-12-07 2012-08-31 Purification method for contaminated soil

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011267983 2011-12-07
JP2011267983 2011-12-07
JP2012191736A JP6212842B2 (en) 2011-12-07 2012-08-31 Purification method for contaminated soil

Publications (2)

Publication Number Publication Date
JP2013139020A JP2013139020A (en) 2013-07-18
JP6212842B2 true JP6212842B2 (en) 2017-10-18

Family

ID=49036984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012191736A Active JP6212842B2 (en) 2011-12-07 2012-08-31 Purification method for contaminated soil

Country Status (1)

Country Link
JP (1) JP6212842B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109758713B (en) * 2019-01-26 2021-02-05 吉林省农业科学院 Biodegradation method of sulfonylurea herbicide

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3347596B2 (en) * 1996-08-01 2002-11-20 キヤノン株式会社 A novel microorganism, a method for biodegrading aromatic compounds and / or organic chlorine compounds, and a method for purifying a medium
JP3695292B2 (en) * 2000-06-22 2005-09-14 栗田工業株式会社 Method for decomposing organochlorine compounds in soil and / or groundwater
JP2007222823A (en) * 2006-02-24 2007-09-06 Kubota Corp Cleaning method of soil polluted with chloroorganic compound
JP2007229601A (en) * 2006-02-28 2007-09-13 Kubota Corp Cleaning method of viscous soil contaminated with volatile chlorine based organic compound
JP2007229646A (en) * 2006-03-02 2007-09-13 Matsushita Electric Ind Co Ltd Cleaning method of ground water
JP2008289379A (en) * 2007-05-22 2008-12-04 Aisin Seiki Co Ltd Method for determining putrefaction of water-soluble cutting oil utilizing detection of sulfate-reducing bacterium, and method for determining purifying ability of soil or underground water

Also Published As

Publication number Publication date
JP2013139020A (en) 2013-07-18

Similar Documents

Publication Publication Date Title
CA1332082C (en) Microbiological decomposition of chlorinated aliphatic hydrocarbons
US5560737A (en) Pneumatic fracturing and multicomponent injection enhancement of in situ bioremediation
KR101433257B1 (en) Spray Injection Apparatus and Method of Gas and Liquid Mixtures Containing Microbial Growth Substrate and Microbes for In Situ Bioremediation of Contaminated Ground Water
JP5186169B2 (en) Purification method of soil and groundwater in aquifer
JP6103518B2 (en) Novel microorganism capable of dechlorinating volatile organochlorine compounds and use thereof
JP2007268401A (en) In-situ cleaning method and in-situ cleaning system of contaminated soil and/or ground water
JP4770767B2 (en) Soil and groundwater purification methods
JP6212842B2 (en) Purification method for contaminated soil
CN108328856A (en) A kind of in-situ immobilization technique of low concentration organic contamination underground water and its application
JP2006272118A (en) Method for cleaning substance contaminated by organic chlorine compound
KR20140091997A (en) Continuous removal of perchlorate and nitrate using enriched sulfur-oxidizing microorganisms
JP5481846B2 (en) Method for purifying contaminated soil or groundwater
JP3458688B2 (en) Method and apparatus for repairing groundwater contamination
JP5668916B2 (en) Soil and groundwater purification methods
Dutta et al. In situ biofilm barriers: Case study of a nitrate groundwater plume, Albuquerque, New Mexico
JP2011194307A (en) Method and apparatus for treating soil
JP2010022978A (en) Method for purifying contaminated soil or ground water
JP4099893B2 (en) In-situ anaerobic treatment method for organochlorine compounds in soil and / or groundwater
JP2002001304A (en) Method for decomposing organic chlorine compound in soil and/or underground water
JP4483541B2 (en) Additives and methods for purifying contaminated soil and / or contaminated groundwater
JP3695348B2 (en) Soil and / or groundwater contaminant treatment agent and method
JP6152631B2 (en) Purification method for contaminated soil
JP4547962B2 (en) Method for purifying contaminated soil and groundwater
CN204529354U (en) A kind of separation system of vinylidene chloride
JP2005279392A (en) Method for cleaning polluted soil and ground water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170904

R150 Certificate of patent or registration of utility model

Ref document number: 6212842

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150