JP6152631B2 - Purification method for contaminated soil - Google Patents

Purification method for contaminated soil Download PDF

Info

Publication number
JP6152631B2
JP6152631B2 JP2012191735A JP2012191735A JP6152631B2 JP 6152631 B2 JP6152631 B2 JP 6152631B2 JP 2012191735 A JP2012191735 A JP 2012191735A JP 2012191735 A JP2012191735 A JP 2012191735A JP 6152631 B2 JP6152631 B2 JP 6152631B2
Authority
JP
Japan
Prior art keywords
soil
nutrient
microorganisms
chlorinated ethylene
bacteria
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012191735A
Other languages
Japanese (ja)
Other versions
JP2014046269A (en
Inventor
渉 田村
渉 田村
徳也 奥津
徳也 奥津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2012191735A priority Critical patent/JP6152631B2/en
Publication of JP2014046269A publication Critical patent/JP2014046269A/en
Application granted granted Critical
Publication of JP6152631B2 publication Critical patent/JP6152631B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、塩素化エチレン等の有機塩素化合物で汚染された土壌を原位置バイオオーグメンテーション法によって浄化する方法に係り、特に、嫌気性の塩素化エチレン分解菌を土壌に注入して浄化する方法に関する。   The present invention relates to a method for purifying soil contaminated with an organic chlorine compound such as chlorinated ethylene by an in-situ bioaugmentation method, and in particular, purifies by injecting anaerobic chlorinated ethylene-degrading bacteria into the soil. Regarding the method.

揮発性有機塩素化合物等によって汚染された土壌などの浄化方法として、汚染現場に揮発性有機塩素化合物を分解する土着の微生物が存在する場合、汚染浄化対象領域に微生物の栄養源等を加え、土着の微生物を活性化することで汚染物質の分解を促進するバイオスティミュレーション工法が実用化されている。また、揮発性有機塩素化合物に対する分解能力の高い微生物を培養し、汚染現場等に投与して浄化を行うバイオオーグメンテーション工法も行われている。   As a method for remediating soil contaminated with volatile organic chlorine compounds, etc., if there are indigenous microorganisms that decompose volatile organic chlorine compounds at the contaminated site, add nutrient sources for the microorganisms to the target areas for contamination purification. Biostimulation methods that promote the degradation of pollutants by activating these microorganisms have been put into practical use. In addition, a bioaugmentation method in which microorganisms having a high decomposing ability for volatile organic chlorine compounds are cultured and administered to a contaminated site or the like for purification is also performed.

揮発性有機塩素化合物の微生物による脱塩素化方法としては、好気性微生物による脱塩素化方法と嫌気性微生物による脱塩素化方法とがある。   Methods for dechlorination of volatile organochlorine compounds by microorganisms include dechlorination methods by aerobic microorganisms and dechlorination methods by anaerobic microorganisms.

好気性微生物による脱塩素化では、地中に電子供与体としてのトルエンやフェノール、メタンと電子受容体としての酸素を供給することにより、共代謝を起こすことができる。好気性微生物による脱塩素化は、脱塩素化の速度は大きいが、微生物の増殖と脱塩素化が独立しているため、脱塩素化とは別に微生物を増殖させるための余分なエネルギーを獲得するための炭素源が必要となる。   In dechlorination by an aerobic microorganism, co-metabolism can be caused by supplying toluene, phenol, methane as an electron donor and oxygen as an electron acceptor to the ground. Dechlorination by aerobic microorganisms has a high rate of dechlorination, but because microbial growth and dechlorination are independent, it acquires extra energy to grow microorganisms apart from dechlorination A carbon source is needed.

嫌気性微生物による脱塩素化の場合は、ハロゲン呼吸による脱塩素化と連動してエネルギーを獲得するので、共代謝のように増殖のための余分なエネルギーを獲得するための炭素源がいらないため、効率がよい。   In the case of dechlorination by anaerobic microorganisms, energy is acquired in conjunction with dechlorination by halogen respiration, so there is no need for a carbon source to acquire extra energy for growth like co-metabolism, Efficiency is good.

嫌気性微生物は、酸素によって生存あるいは成長が阻害されるため、嫌気性微生物の生存あるいは成長には遊離酸素の除去が必要となる。好気性菌は遊離酸素の有毒物質を分解するのに必要なカタラーゼやSuperoxide
dismutaseなどの酵素をもっているが、嫌気性菌はこれらの酵素をもたず、活性酸素が致死的に作用する。そこで、バイオオーグメンテーションを実施するのに先立って、糖や有機酸を地中に加え、地中に存在する土着の嫌気性微生物の還元的脱塩素反応によりテトラクロロエチレンやトリクロロエチレンを分解して嫌気状態をつくりだすことが行われている(特許文献1)。
Since anaerobic microorganisms have their survival or growth inhibited by oxygen, it is necessary to remove free oxygen for the survival or growth of anaerobic microorganisms. Aerobic bacteria are the catalase and superoxide needed to break down the toxic substances of free oxygen.
It has enzymes such as dismutase, but anaerobic bacteria do not have these enzymes, and active oxygen acts lethally. Therefore, prior to bioaugmentation, sugars and organic acids are added to the ground, and tetrachloroethylene and trichlorethylene are decomposed by the reductive dechlorination reaction of indigenous anaerobic microorganisms existing in the ground. Has been made (Patent Document 1).

特開2012−86191JP2012-86191

特許文献1の方法では、土壌の還元処理期間は土壌中の有機物の種類、濃度、土着の微生物の種類、濃度などに影響され、還元処理期間を短くしたい場合であってもそのための効果的な手段がなかった。   In the method of Patent Document 1, the soil reduction treatment period is affected by the type and concentration of organic matter in the soil, the type and concentration of indigenous microorganisms, and even if it is desired to shorten the reduction treatment period, it is effective for that purpose. There was no means.

本発明は塩素化エチレン等の有機塩素化合物で汚染された土壌を原位置バイオオーグメンテーション法により短期間で効率よく浄化することができる汚染土壌の浄化方法を提供することを目的とする。   An object of the present invention is to provide a method for purifying contaminated soil that can efficiently purify soil contaminated with an organic chlorine compound such as chlorinated ethylene in a short period of time by an in-situ bioaugmentation method.

本発明の汚染土壌の浄化方法は、有機塩素化合物で汚染された土壌に栄養剤溶液を注入して土壌を嫌気性とする栄養剤注入工程と、その後、該土壌に塩素化エチレン分解菌含有水を注入する塩素化エチレン分解菌注入工程とを有する汚染土壌の浄化方法において、該栄養剤注入工程の前、後又は同時に、該栄養剤を分解可能な通性嫌気性微生物を10 〜10 cell/mL濃度で含む通性嫌気性微生物の含有水を、該土壌に注入する通性嫌気性微生物含有水注入工程を行うことを特徴とするものである。 The method for purifying contaminated soil according to the present invention comprises a nutrient injection step for injecting a nutrient solution into soil contaminated with an organic chlorine compound to make the soil anaerobic, and then water containing chlorinated ethylene-decomposing bacteria into the soil. In a method for purifying contaminated soil having a chlorinated ethylene-decomposing bacteria injection step for injecting 10 6 to 10 9, facultative anaerobic microorganisms capable of decomposing the nutrient before, after or simultaneously with the nutrient injection step. the water containing facultative anaerobic microorganisms comprising at cell / mL concentration, and is characterized in carrying out the facultative anaerobic microorganisms containing water injection step of injecting into the soil.

性嫌気性微生物としては、特にトリココッカス属細菌が好ましい。 The passing anaerobic microorganisms, particularly Trichoderma genus bacteria is preferred.

栄養剤注入工程及び栄養剤分解微生物注入工程によって土壌又は地下水のORPが−100mV以下となった後、塩素化エチレン分解菌注入工程を行うことが好ましい。   It is preferable to perform the chlorinated ethylene-decomposing bacteria injection step after the ORP of soil or groundwater becomes −100 mV or less by the nutrient injection step and the nutrient-degrading microorganism injection step.

栄養剤注入工程で注入される栄養剤溶液の栄養剤の濃度は炭素として100〜10000mg/Lであり、該栄養剤溶液のpHは6〜8であることが好ましい。   The concentration of the nutrient in the nutrient solution injected in the nutrient injection step is 100 to 10,000 mg / L as carbon, and the pH of the nutrient solution is preferably 6 to 8.

有機塩素化合物で汚染された土壌に栄養剤及び栄養剤分解微生物を注入すると、この微生物が栄養剤を分解し、この際に土壌中の酸素が消費され、土壌が嫌気性となる。特に、微生物としてトリココッカス属細菌などの通性嫌気性微生物を用いると土壌が短期間で嫌気性となる。このように土壌が嫌気性となった後、塩素化エチレン分解菌を注入すると、塩素化エチレン分解菌の増殖速度が大きくなり、効率の良い浄化を行うことができる。   When a nutrient and a nutrient-degrading microorganism are injected into soil contaminated with an organochlorine compound, the microorganism decomposes the nutrient, and oxygen in the soil is consumed at this time, and the soil becomes anaerobic. In particular, when facultative anaerobic microorganisms such as Trichococcus bacteria are used as microorganisms, the soil becomes anaerobic in a short period of time. When the chlorinated ethylene-decomposing bacteria are injected after the soil becomes anaerobic in this way, the growth rate of the chlorinated ethylene-decomposing bacteria increases and efficient purification can be performed.

実施の形態の説明図である。It is explanatory drawing of embodiment. 実施例及び比較例の説明図である。It is explanatory drawing of an Example and a comparative example.

以下、本発明についてさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail.

本発明において、処理対象となる土壌(土壌内の地下水であってもよい。)は、塩素化エチレン等の有機塩素化合物で汚染された土壌または地下水である。塩素化エチレンとしては、テトラクロロエチレン(PCE)、トリクロロエチレン(TCE)、シス−1,2−ジクロロエチレン(cis−DCE)、トランス−1,2−ジクロロエチレン(trans−DCE)、1,1−ジクロロエチレン(1,1−DCE)、塩化ビニル(VC)およびこれらの脱塩素化中間体などが例示される。   In the present invention, the soil to be treated (may be groundwater in the soil) is soil or groundwater contaminated with an organic chlorine compound such as chlorinated ethylene. Examples of chlorinated ethylene include tetrachloroethylene (PCE), trichlorethylene (TCE), cis-1,2-dichloroethylene (cis-DCE), trans-1,2-dichloroethylene (trans-DCE), 1,1-dichloroethylene (1, 1-DCE), vinyl chloride (VC), and their dechlorinated intermediates.

本発明では、浄化対象となる土壌に予め栄養剤及び栄養剤分解微生物を添加し、嫌気状態に保つことにより、土壌を還元性雰囲気(好ましくは土壌または地下水のORPが−100mV以下)とする。   In the present invention, nutrients and nutrient-degrading microorganisms are added to the soil to be purified in advance and kept in an anaerobic state, thereby making the soil a reducing atmosphere (preferably the ORP of the soil or groundwater is −100 mV or less).

栄養剤分解微生物としては嫌気性微生物、特に通性嫌気性微生物が好適であり、とりわけトリココッカス属細菌が好適である。この栄養剤分解微生物は濃度10cell/mL以上例えば10〜10cell/mLの微生物含有水として土壌に注入されることが望ましい。 As the nutrient-degrading microorganism, anaerobic microorganisms, particularly facultative anaerobic microorganisms are preferable, and Trichococcus bacteria are particularly preferable. The nutrient-degrading microorganism is desirably injected into the soil as microorganism-containing water having a concentration of 10 6 cells / mL or more, for example, 10 6 to 10 9 cells / mL.

栄養剤分解微生物は、栄養剤の注入前、注入時又は注入後のいずれで注入されてもよい。通性嫌気性微生物以外の嫌気性微生物の場合は、栄養剤の注入時又は注入後とするのが好ましい。   The nutrient-degrading microorganisms may be injected either before, during or after the nutrient injection. In the case of anaerobic microorganisms other than facultative anaerobic microorganisms, it is preferable to be at the time of or after the injection of the nutrient.

栄養剤としては、グルコース等の糖類、でんぷん、酢酸やクエン酸又はその塩、メタノール、エタノール、ペプトン、酵母エキスのほか、ポリ乳酸等の生分解性ポリマー、トリグリセリド、脂肪酸等が好適であるが、特に酢酸やクエン酸又はその塩が好適である。   Suitable nutrients include sugars such as glucose, starch, acetic acid, citric acid or salts thereof, methanol, ethanol, peptone, yeast extract, biodegradable polymers such as polylactic acid, triglycerides, fatty acids, etc. Particularly preferred is acetic acid, citric acid or a salt thereof.

栄養剤注入工程で注入する栄養剤溶液の容量は栄養剤分解微生物含有水注入量の0.1〜10倍の範囲が望ましい。栄養剤溶液の容量が過度に少量の場合、栄養剤分解微生物を広範囲に分散させることができない。また、栄養剤溶液の容量が過度に多すぎると、栄養剤分解微生物が土壌内でドーナツ状に拡がってしまい、処理効率にムラが発生してしまう。   The volume of the nutrient solution to be injected in the nutrient injection step is preferably in the range of 0.1 to 10 times the amount of the nutrient-containing microorganism-containing water injection amount. If the volume of the nutrient solution is too small, the nutrient-degrading microorganisms cannot be dispersed widely. In addition, when the volume of the nutrient solution is excessively large, nutrient-degrading microorganisms spread in a donut shape in the soil, resulting in uneven processing efficiency.

栄養剤注入工程に用いる栄養剤溶液の栄養剤濃度は、炭素として100〜10000mg/L特に1000〜3000mg/Lの範囲が良い。栄養剤濃度が低すぎると栄養剤分解微生物が栄養剤を分解する際に必要とする水素が不足し、栄養剤濃度が高すぎると栄養剤分解菌の活性を阻害してしまう。また、この栄養剤溶液のpHは6〜8の範囲が望ましい。   The nutrient solution concentration of the nutrient solution used in the nutrient solution injection step is preferably in the range of 100 to 10,000 mg / L, particularly 1000 to 3000 mg / L as carbon. When the nutrient concentration is too low, the hydrogen required for the nutrient-degrading microorganisms to degrade the nutrient is insufficient, and when the nutrient concentration is too high, the activity of the nutrient-degrading bacteria is inhibited. The pH of this nutrient solution is preferably in the range of 6-8.

このように栄養剤及び栄養剤分解微生物注入後、土中のORPが塩素化エチレン分解菌の生育に適した条件、好ましくはORPが−100mV以下、例えば−100〜−200mVであることを確認したうえで、塩素化エチレン分解菌を注入することにより、塩素化エチレン分解菌が速やかに増殖し、塩素化エチレン等の有機塩素化合物が効率よく分解される。   Thus, after injection of nutrients and nutrient-degrading microorganisms, it was confirmed that the ORP in the soil was suitable for the growth of chlorinated ethylene-degrading bacteria, preferably the ORP was -100 mV or less, for example, -100 to -200 mV. In addition, by injecting chlorinated ethylene-decomposing bacteria, the chlorinated ethylene-degrading bacteria grow rapidly, and organic chlorine compounds such as chlorinated ethylene are efficiently decomposed.

塩素化エチレンの分解菌としては、塩素化エチレン分解活性を有するデハロコッコイデス属細菌が好適である。   As a chlorinated ethylene-degrading bacterium, a Dehalococcides bacterium having a chlorinated ethylene-degrading activity is suitable.

塩素化エチレン分解菌を土壌に注入する場合、デハロコッコイデス属細菌を単独で注入してもよく、デハロコッコイデス属細菌を他の細菌とともに培養した培養液を注入してもよい。土壌に注入する培養液中のデハロコッコイデス属細菌の濃度は、10〜1012cell/L程度が好ましく、このような培養液を土壌中に、10〜10cell/L程度の濃度となるように注入することが好ましい。 When injecting chlorinated ethylene-decomposing bacteria into soil, dehalococcides bacteria may be injected alone, or a culture solution obtained by culturing dehalococcides bacteria with other bacteria may be injected. The concentration of the bacterium belonging to the genus Dehalococcides in the culture solution to be injected into the soil is preferably about 10 9 to 10 12 cells / L. Such a culture solution is about 10 7 to 10 9 cells / L in the soil. It is preferable to inject so that it may become a density | concentration.

塩素化エチレン分解菌を土壌に注入するにあたっては、酸素との接触による微生物の活性低下を防ぐことが好ましい。酸素との接触による微生物の活性低下を防ぐために、塩素化エチレン分解菌含有水(以下、培養液ということがある。)を貯蔵するタンク内を窒素ガス雰囲気とすることが好ましい。   In injecting chlorinated ethylene-decomposing bacteria into the soil, it is preferable to prevent a decrease in the activity of microorganisms due to contact with oxygen. In order to prevent a decrease in the activity of microorganisms due to contact with oxygen, it is preferable to make the inside of a tank storing chlorinated ethylene-decomposing bacteria-containing water (hereinafter sometimes referred to as a culture solution) a nitrogen gas atmosphere.

以下、本発明方法による土壌浄化方法の一例を図1を参照して説明する。   Hereinafter, an example of a soil purification method according to the method of the present invention will be described with reference to FIG.

地表1から所定深さに不透水層3あるいは難透水層が存在し、その上側に帯水層2が存在する。4は地下水水位である。汚染地下水の存在域Wの地下水流れ方向最上流部付近に不透水層3に達するように注入井戸6を設け、栄養剤溶液や通性嫌気性微生物、塩素化エチレン分解菌の培養液を土壌中に注入する。   An impermeable layer 3 or a hardly permeable layer exists at a predetermined depth from the ground surface 1, and an aquifer 2 exists above the impermeable layer 3. 4 is the groundwater level. An injection well 6 is provided to reach the impermeable layer 3 near the most upstream part of the groundwater flow direction in the contaminated groundwater existing area W, and nutrient solution, facultative anaerobic microorganisms, and chlorinated ethylene-decomposing bacteria culture medium are placed in the soil. Inject.

以下、実施例1、参考例1、比較例1について説明する。この実施例1、参考例1、比較例1では図2に示す試験装置を用いた。この試験装置では、幅5m、奥行き5m、高さ5mのコンテナCに自然土壌を充填し、中央にφ25mmの塩ビパイプPを縦に(鉛直に)設置してある。このコンテナC内に市水を25m注ぎ、現場模擬土壌を作製した。なお、塩ビパイプの下部3〜5mにはスリットを設けてあり、水(模擬地下水)をサンプリングできるようにしてある。また、水温を20℃に調整できるようにしてある。 Hereinafter, Example 1, Reference Example 1, and Comparative Example 1 will be described. In Example 1, Reference Example 1, and Comparative Example 1, the test apparatus shown in FIG. 2 was used. In this test apparatus, a natural soil is filled in a container C having a width of 5 m, a depth of 5 m, and a height of 5 m, and a vinyl chloride pipe P having a diameter of 25 mm is installed vertically (vertically) in the center. In this container C, 25 m 3 of city water was poured to prepare on-site simulated soil. A slit is provided in the lower 3 to 5 m of the PVC pipe so that water (simulated groundwater) can be sampled. The water temperature can be adjusted to 20 ° C.

試験に用いた栄養剤水溶液、通性嫌気性微生物、塩素化エチレン分解菌の条件は次の通りである。   The conditions of the aqueous nutrient solution solution, facultative anaerobic microorganism, and chlorinated ethylene-degrading bacterium used in the test are as follows.

栄養剤水溶液:クエン酸三ナトリウム二水和物(濃度1wt%)とリン酸2水素アンモニウム(濃度0.05%)とを含む
通性嫌気性微生物:トリココッカス属細菌
塩素化エチレン分解菌:デハロコッコイデス属細菌
Aqueous nutrient solution: trisodium citrate dihydrate (concentration 1 wt%) and ammonium dihydrogen phosphate (concentration 0.05%) facultative anaerobic microorganisms: Trichococcus bacteria Chlorinated ethylene-decomposing bacteria: Halococcoides bacteria

[実施例1]
パイプより地下水を100mL採取し、ORPを測定したところ+80mVであった。次に、1mの栄養剤水溶液を中央のパイプから100L/hで注入し、それに引き続いて通性嫌気性微生物培養液(菌濃度10cell/L)をパイプから1L注入した。
[Example 1]
When 100 mL of groundwater was collected from the pipe and ORP was measured, it was +80 mV. Next, 1 m 3 of an aqueous nutrient solution was injected at 100 L / h from the central pipe, and subsequently 1 L of a facultative anaerobic microorganism culture solution (bacterial concentration of 10 6 cells / L) was injected from the pipe.

2時間後にパイプより模擬地下水を100mL採取してORPを分析したところ、−100mVであった。また、パイプより地下水を100mL採取し、上記栄養剤水溶液1mLを添加すると共に、1mg/Lのレサズリンを滴下して、150mL容バイアル瓶にとり、ヘッドスペースをNガスで置換した後ブチルゴムで密栓した。次いで、デハロコッコイデス属細菌を1011cell/mL含む培養液1mLを接種し、ただちにクロロエチレンガス0.22mL(6.0mg/Lに相当)をヘッドスペースに注入した。 Two hours later, 100 mL of simulated groundwater was collected from the pipe and analyzed for ORP. As a result, it was -100 mV. In addition, 100 mL of groundwater was collected from the pipe, 1 mL of the above nutrient solution was added, 1 mg / L resazurin was dropped, taken into a 150 mL vial, the headspace was replaced with N 2 gas, and then sealed with butyl rubber. . Next, 1 mL of a culture solution containing 10 11 cells / mL of dehalococcides was inoculated, and 0.22 mL of chloroethylene gas (corresponding to 6.0 mg / L) was immediately injected into the headspace.

30℃で1週間培養を継続し、ヘッドスペースのクロロエチレン濃度を測定し、バイアル瓶内の水中のクロロエチレン濃度と、クロロエチレン分解率を算出した。結果を表1に示す。   The culture was continued at 30 ° C. for 1 week, the chloroethylene concentration in the headspace was measured, and the chloroethylene concentration in the water in the vial and the chloroethylene decomposition rate were calculated. The results are shown in Table 1.

[参考例1]
注入する通性嫌気性微生物培養液として菌濃度10cell/Lのものを用いたこと以外は実施例1と同様にして試験を行った。
[Reference Example 1]
The test was conducted in the same manner as in Example 1 except that a facultative anaerobic microorganism culture solution to be injected was used having a bacterial concentration of 10 4 cells / L.

実施例1と同様に2時間経過後に測定した模擬地下水のORPは+20mVであった。   Similar to Example 1, the ORP of the simulated groundwater measured after 2 hours was +20 mV.

1週間後に実施例1と同様にして測定したヘッドスペースのクロロエチレン濃度の測定結果に基づくバイアル瓶内の水中のクロロエチレン濃度と、クロロエチレン分解率の算出値を表1に示す。   Table 1 shows the chloroethylene concentration in the water in the vial and the calculated value of the chloroethylene decomposition rate based on the measurement result of the chloroethylene concentration in the headspace measured after one week in the same manner as in Example 1.

[比較例1]
通性嫌気性微生物培養液を全く注入しなかったこと以外は実施例1と同様にして試験を行った。
[Comparative Example 1]
The test was conducted in the same manner as in Example 1 except that no facultative anaerobic microorganism culture solution was injected.

実施例1と同様に2時間経過後に測定した模擬地下水のORPは+80mVであった。   Similar to Example 1, the ORP of the simulated groundwater measured after 2 hours was +80 mV.

1週間後に実施例1と同様にして測定したヘッドスペースのクロロエチレン濃度の測定結果に基づくバイアル瓶内の水中のクロロエチレン濃度と、クロロエチレン分解率の算出値を表1に示す。   Table 1 shows the chloroethylene concentration in the water in the vial and the calculated value of the chloroethylene decomposition rate based on the measurement result of the chloroethylene concentration in the headspace measured after one week in the same manner as in Example 1.

Figure 0006152631
Figure 0006152631

表1の通り、通性嫌気性微生物10cell/mL以上含む培養液を、塩素化エチレン分解菌を含む培養液の注入前に、栄養剤とともに注入する実施例によると、短期間で地下水を嫌気化することが可能であり、酸素との接触による塩素化エチレン分解菌の活性低下を防止し、良好に原位置バイオオーグメンテーションをおこなうことができる。 As shown in Table 1, according to an example in which a culture solution containing 10 6 cells / mL or more of facultative anaerobic microorganisms is injected together with a nutrient before injecting a culture solution containing chlorinated ethylene-decomposing bacteria, It can be anaerobic, can prevent a decrease in the activity of chlorinated ethylene-decomposing bacteria due to contact with oxygen, and can perform in-situ bioaugmentation well.

1 地表
6 注入井戸
1 Ground 6 Injection well

Claims (2)

有機塩素化合物で汚染された土壌に栄養剤溶液を注入して土壌を嫌気性とする栄養剤注入工程と、
その後、該土壌に塩素化エチレン分解菌含有水を注入する塩素化エチレン分解菌注入工程と
を有する汚染土壌の浄化方法において、
該栄養剤注入工程の前、後又は同時に、該栄養剤を分解可能な通性嫌気性微生物を10 〜10 cell/mL濃度で含む通性嫌気性微生物の含有水を、該土壌に注入する通性嫌気性微生物含有水注入工程を行うことを特徴とする汚染土壌の浄化方法。
A nutrient injection process for injecting a nutrient solution into soil contaminated with organochlorine compounds to make the soil anaerobic,
Then, in the purification method of contaminated soil having a chlorinated ethylene-decomposing bacteria injection step of injecting chlorinated ethylene-decomposing bacteria-containing water into the soil,
Previous the nutrients implantation step, after or simultaneously, the water containing facultative anaerobic microorganisms containing the nutrient degradable facultative anaerobic microorganisms at 10 6 ~10 9 cell / mL concentration, injected into the soil A method for purifying contaminated soil, comprising performing a step of injecting water containing facultative anaerobic microorganisms.
請求項1において、該通性嫌気性微生物がトリココッカス属細菌であることを特徴とする汚染土壌の浄化方法。   The method for purifying contaminated soil according to claim 1, wherein the facultative anaerobic microorganism is a genus Trichococcus.
JP2012191735A 2012-08-31 2012-08-31 Purification method for contaminated soil Active JP6152631B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012191735A JP6152631B2 (en) 2012-08-31 2012-08-31 Purification method for contaminated soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012191735A JP6152631B2 (en) 2012-08-31 2012-08-31 Purification method for contaminated soil

Publications (2)

Publication Number Publication Date
JP2014046269A JP2014046269A (en) 2014-03-17
JP6152631B2 true JP6152631B2 (en) 2017-06-28

Family

ID=50606502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012191735A Active JP6152631B2 (en) 2012-08-31 2012-08-31 Purification method for contaminated soil

Country Status (1)

Country Link
JP (1) JP6152631B2 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3347596B2 (en) * 1996-08-01 2002-11-20 キヤノン株式会社 A novel microorganism, a method for biodegrading aromatic compounds and / or organic chlorine compounds, and a method for purifying a medium
JP3401191B2 (en) * 1997-08-06 2003-04-28 株式会社荏原製作所 Method for purifying contaminants by halogenated organic compounds
JP3695292B2 (en) * 2000-06-22 2005-09-14 栗田工業株式会社 Method for decomposing organochlorine compounds in soil and / or groundwater
JP2007222823A (en) * 2006-02-24 2007-09-06 Kubota Corp Cleaning method of soil polluted with chloroorganic compound
JP2007229646A (en) * 2006-03-02 2007-09-13 Matsushita Electric Ind Co Ltd Cleaning method of ground water
JP2008272572A (en) * 2006-12-28 2008-11-13 Nippon Flour Mills Co Ltd Soil-groundwater purging composition and purifying method of soil-groundwater
JP2008289379A (en) * 2007-05-22 2008-12-04 Aisin Seiki Co Ltd Method for determining putrefaction of water-soluble cutting oil utilizing detection of sulfate-reducing bacterium, and method for determining purifying ability of soil or underground water
JP5724217B2 (en) * 2010-05-28 2015-05-27 栗田工業株式会社 Method for preparing dehalococcides bacterium culture solution, chlorinated ethylene purification agent and purification method
JP5668916B2 (en) * 2010-10-21 2015-02-12 栗田工業株式会社 Soil and groundwater purification methods

Also Published As

Publication number Publication date
JP2014046269A (en) 2014-03-17

Similar Documents

Publication Publication Date Title
CA1332082C (en) Microbiological decomposition of chlorinated aliphatic hydrocarbons
JP5877918B1 (en) Method for culturing 1,4-dioxane degrading bacteria, medium, 1,4-dioxane treatment method using 1,4-dioxane degrading bacteria
JP6117450B1 (en) Constitutive 1,4-dioxane degrading bacteria
JP5186169B2 (en) Purification method of soil and groundwater in aquifer
JP6103518B2 (en) Novel microorganism capable of dechlorinating volatile organochlorine compounds and use thereof
Aulenta et al. Anaerobic bioremediation of groundwater containing a mixture of 1, 1, 2, 2-tetrachloroethane and chloroethenes
JP4770767B2 (en) Soil and groundwater purification methods
JP6152631B2 (en) Purification method for contaminated soil
JP2011194307A (en) Method and apparatus for treating soil
JP5066901B2 (en) Method for culturing vinyl chloride-degrading bacteria, groundwater and / or soil purification agent and purification method
JP2020131136A (en) Anaerobic water flowing system and water flowing anaerobic bio system
JP6212842B2 (en) Purification method for contaminated soil
WO2021125039A1 (en) Method for purifying contaminated soil and groundwater
EP1352977A2 (en) Novel Desulfitobacterium strain for the degradation of chloroalkenes
JP2008271786A (en) Method for isolating genus dehalococcoides bacterium having vinyl chloride-decomposing ability, and agent for purifying underground water and/or soil and method for purifying the same
JP4099893B2 (en) In-situ anaerobic treatment method for organochlorine compounds in soil and / or groundwater
JP4577352B2 (en) Novel clostridium species KD13 and purification method using the same
US20080194007A1 (en) Methods for in Situ Acceleration of Biological Degradation of Chlorohydrocarbon in a Soil
JP2009034073A (en) Method for culturing microorganism, and method for cleaning polluted soil and underground water
JP5001187B2 (en) Purification method for contaminated soil and groundwater
JP2003275739A (en) Method for degrading metal cyano complex
JP2006026553A (en) Decontaminating means deciding method
Moss MICROCOSM EVALUATION OF ENHANCED BIOREMEDIATION FOR AN INDUSTRIAL SITE CONTAMINATED WITH CHLORINATED ETHENES, CHLORINATED BENZENES, AND BENZENE
US20100184170A1 (en) Development of a Fermentative Enrichment Culture and Two Pure Isolates that Biotransform High Concentrations of Chloroform and Other Halomethanes
JPH07308693A (en) Method and device for treating organic compound of chlorine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170502

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170515

R150 Certificate of patent or registration of utility model

Ref document number: 6152631

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150