JP3458688B2 - Method and apparatus for repairing groundwater contamination - Google Patents

Method and apparatus for repairing groundwater contamination

Info

Publication number
JP3458688B2
JP3458688B2 JP01023698A JP1023698A JP3458688B2 JP 3458688 B2 JP3458688 B2 JP 3458688B2 JP 01023698 A JP01023698 A JP 01023698A JP 1023698 A JP1023698 A JP 1023698A JP 3458688 B2 JP3458688 B2 JP 3458688B2
Authority
JP
Japan
Prior art keywords
water
injection
injected
ozone
dissolved
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01023698A
Other languages
Japanese (ja)
Other versions
JPH11207375A (en
Inventor
亮三 牛尾
明子 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP01023698A priority Critical patent/JP3458688B2/en
Publication of JPH11207375A publication Critical patent/JPH11207375A/en
Application granted granted Critical
Publication of JP3458688B2 publication Critical patent/JP3458688B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Treatment Of Biological Wastes In General (AREA)
  • Activated Sludge Processes (AREA)
  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Biological Treatment Of Waste Water (AREA)
  • Processing Of Solid Wastes (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、有機化合物の浸透
により汚染された地下水を、好気性微生物もしくは通性
嫌気性微生物の好気的微生物活動による汚染物質の分解
除去によって修復する方法、及びそのための修復装置に
関する。
TECHNICAL FIELD The present invention relates to a method for repairing groundwater contaminated by permeation of organic compounds by decomposing and removing pollutants by aerobic microbial activity of aerobic microorganisms or facultative anaerobic microorganisms, and therefore Repair device.

【0002】[0002]

【従来の技術】有機化合物による地下水汚染の修復方法
としては、揚水曝気と活性炭吸着との組合せ法、簡易的
な揚水処理法、又はエアースパージング法等の物理的修
復方法が一般的に用いられている。また最近では、これ
らの物理的修復方法に加えて、微生物による汚染物質の
分解を利用する生物学的修復方法、即ちバイオレメディ
エーションによる浄化処理が検討されている。
2. Description of the Related Art As a method for repairing groundwater pollution by organic compounds, a physical repair method such as a combination method of pumping aeration and adsorption of activated carbon, a simple pumping method, or an air sparging method is generally used. There is. Recently, in addition to these physical repair methods, biological repair methods utilizing the decomposition of pollutants by microorganisms, that is, purification treatment by bioremediation have been investigated.

【0003】特に、汚染地下水を地上まで揚水せずに、
地下で処理する原位置処理としてのバイオレメディエー
ションでは、地下水中の汚染物質を原位置において恒久
的に分解除去することを目指している。この方法は、揚
水曝気と活性炭吸着との組合せ法のように、低濃度域に
なるまで修復が進んでから修復スピードが低下すること
が無く、エアースパージング法に比べてもより簡便なシ
ステムで広い修復対象域をカバーできる点で優れてい
る。
In particular, without pumping polluted groundwater to the ground,
Bioremediation as an in-situ treatment for underground treatment aims to permanently decompose and remove pollutants in groundwater in-situ. Unlike the combined method of pumped water aeration and activated carbon adsorption, this method does not decrease the repair speed after the repair progresses to a low concentration range, and is a simpler system than the air sparging method and has a wider range. It is excellent in that it can cover the area to be restored.

【0004】[0004]

【発明が解決しようとする課題】上記原位置処理のバイ
オレメディエーションでは、汚染箇所である地下領域に
汚染物質の分解能力を持つ微生物を増殖させる必要があ
るため、地上より注入井戸を通して地下水に栄養物質を
補給する必要がある。
In the above-mentioned in-situ treatment bioremediation, it is necessary to grow microorganisms capable of decomposing pollutants in the underground area, which is a contaminated site. Need to be replenished.

【0005】ところが、微生物が必要とする栄養物質を
含む注入水を地中に注水すると、地下水に注入された栄
養物質や酸素等の注入物質は一般には自然に四方に拡散
していったり、地下水流がある場合には、その流れに乗
って周囲に広がりながら拡散していく。従って、注入物
質の濃度は、注入地点で最も高いが、一般に注入地点か
ら離れれるほど低くなり、拡散性が良ければ距離の2乗
以上に比例して低減していく。
However, when injecting water containing nutrients required by microorganisms into the ground, the nutrients injected into the groundwater and the injecting substances such as oxygen generally diffuse naturally in all four directions, and If there is a flow, it will spread along the flow and spread. Therefore, the concentration of the injected substance is highest at the injection point, but generally becomes lower as the distance from the injection point increases, and if the diffusivity is good, it decreases in proportion to the square of the distance or more.

【0006】更に、このような拡散による注入物質の濃
度低下に加えて、地中に広く分布する微生物によって注
入物質が摂取される。このため、注入地点からの距離に
応じた注入物質の濃度減少率は、この摂取量が加わる分
だけ、より一層大きなものとなる。この結果、注入され
た栄養物質濃度の高い注入地点近くでは微生物の活発な
増殖により汚染物質が分解されるが、注入地点から離れ
るほど微生物による汚染分解の分解が急速に低下すると
いう欠点があった。
Further, in addition to the concentration decrease of the injected substance due to such diffusion, the injected substance is ingested by microorganisms widely distributed in the ground. Therefore, the rate of decrease in the concentration of the injected substance depending on the distance from the injection point is further increased due to the addition of this intake amount. As a result, pollutants are decomposed due to active growth of microorganisms near the injection point where the concentration of injected nutrients is high, but there is a drawback that the decomposition of pollutant decomposition by microorganisms rapidly decreases as the distance from the injection point increases. .

【0007】このような注入物質の地中での濃度減少を
少なくし、注入地点から遠方まで注入物質を到達させや
すくして、所定の修復対象範囲において注入物質が一定
の濃度以上を保って行き渡るようにするための方法とし
ては、次に挙げるような方法が考えられる。
[0007] Such a decrease in the concentration of the injected substance in the ground is reduced to make it easier for the injected substance to reach far from the injection point, and the injected substance is kept at a certain concentration or more in a predetermined restoration target range. As a method for doing so, the following method can be considered.

【0008】第1は、注入水中の栄養物質類の濃度を高
くするか、又は注入水量自体を大きくする方法である。
しかし、これらの方法により注入物質量を増やしたとし
ても、上記の理由により、注入物質の濃度分布は注入地
点を頂点として距離的に離れるほど漸減していくことが
容易に推測される。そこで、一定の注入物質濃度を遠方
にまで到達させるためには、注入物質量の設定に際し
て、修復対象範囲に均一に分散するという仮定で計算さ
れる当量分よりも相当に過剰な量を設定して注入するこ
とが必要になる。この過剰量分は汚染修復規模が大きく
なるに従って増加するので、これによるランニングコス
トの上昇は修復規模が大きいほど顕在化してくる。
The first method is to increase the concentration of nutrients in the injected water or increase the amount of injected water itself.
However, even if the amount of the injected substance is increased by these methods, it is easily inferred that the concentration distribution of the injected substance gradually decreases with distance from the injection point as the apex due to the above reasons. Therefore, in order to reach a certain concentration of the injected substance to a distant place, when setting the amount of the injected substance, set an amount that is considerably excessive over the equivalent amount calculated on the assumption that the substance is uniformly dispersed in the restoration target range. Need to be injected. Since this excess amount increases as the scale of pollution restoration increases, the increase in running cost due to this becomes more apparent as the scale of restoration increases.

【0009】更に重要なことは、一般的に注入地点近く
の領域ほど微生物の増殖が先行して起こる傾向がある
が、この注入地点近傍での微生物の増殖が大きな弊害を
もたらすことである。一般に地下環境中では地下水の流
動速度は速い場所でも1日当たり数m以下であるので、
地下環境を微生物反応槽と考えたときの地下水流の空間
移動速度は、地上のいかなる種類の微生物反応槽よりも
十分に小さいと言うことができる。つまり、水処理能力
的な比較として考えると、注入地点付近の地下環境は、
注入地点から投入される栄養成分濃度が低減される際の
低減化効率が理想的となっている。
More importantly, the growth of microorganisms tends to occur earlier in the region near the injection point, but the growth of the microorganisms near the injection point causes a great adverse effect. Generally, in the underground environment, the flow velocity of groundwater is a few meters or less per day even in a fast place,
It can be said that the spatial movement velocity of groundwater flow when considering the underground environment as a microbial reaction tank is sufficiently smaller than that of any type of microbial reaction tank on the ground. In other words, considering as a comparison of water treatment capacity, the underground environment near the injection point is
The reduction efficiency is ideal when the concentration of nutrients input from the injection point is reduced.

【0010】従って、注入地点の近くで微生物濃度が先
行して上昇した場合、例えば半径2m以内の地下帯水層
内において好気性従属栄養細菌数で10の9乗個/ml
以上の微生物濃度に達した場合には、仮にどのように多
くの栄養物質を注入したとしても、地下水中での極めて
低速な物質移動速度下にある限り、注入地点から十分に
遠くの周辺域まで拡散する以前の段階で、例えば2m以
内の比較的に注入地点に近い領域において、栄養物質は
増殖した微生物により十分な時間的余裕を持って補足吸
収されてしまう。その結果、注入地点から数メートルも
離れていない範囲内で、既に注入物質の殆どが消費尽く
されてしまうという事態の発生さえ起こりうるのであ
る。
Therefore, when the microbial concentration rises near the injection point in advance, for example, in the aquifer within a radius of 2 m, the number of aerobic heterotrophic bacteria is 10 9 / ml.
When the above microbial concentration is reached, no matter how much nutrient material is injected, as long as it is at an extremely low mass transfer rate in groundwater, it will be sufficiently far from the injection point to the surrounding area. Before the diffusion, the nutrients are supplementally absorbed by the grown microorganisms with sufficient time margin in a region relatively close to the injection point, for example, within 2 m. As a result, it may even happen that most of the injected material is already exhausted within a few meters of the injection point.

【0011】第2の解決策としては、注入地点の分散化
を図ることである。多数の注入地点から分散して注入で
きれば、修復対象領域のほぼ全体で均等な注入物質濃度
を実現することが容易なはずである。しかし、注入地点
を多数増やせるかどうかは、修復場所の立地条件に大き
く左右され、常に採用できる解決方法とは限らない。特
に日本の都市部のように、建築物が密集して建て込んで
いるような場所で微生物利用による原位置修復を行う場
合などには、注入物質の入り口である注入井戸の設置場
所を確保するに際して既存の建築物による大きな位置的
制約を受け、施工が困難となる場合が多い。
The second solution is to disperse the injection points. If it is possible to disperse and inject from a large number of injection points, it should be easy to achieve a uniform injection material concentration in almost the entire region to be repaired. However, it is not always the solution that can be adopted because it depends greatly on the location conditions of the restoration site whether the number of injection points can be increased. In particular, when performing in-situ repair by using microorganisms in places where buildings are densely built, such as in urban areas of Japan, secure a place for the injection well that is the entrance of the injection substance. At that time, construction is often difficult due to the large positional restrictions of existing buildings.

【0012】本発明は、このような従来の事情に鑑み、
地中へ注入する酸素や栄養物質等の注入物質が注入地点
から遠距離にまで拡散することを促し、修復対象領域の
ほぼ全体で微生物の増殖活動に必要な注入物質濃度を維
持して汚染物質の効率的な分解を起こすことのできる地
下水汚染の修復方法、及びそのための装置を提供するこ
とを目的とする。
The present invention has been made in view of such conventional circumstances.
It promotes diffusion of injected substances such as oxygen and nutrients that are injected into the ground to a long distance from the injection point, and maintains the concentration of injected substances necessary for microbial growth activity in almost all areas to be repaired and pollutants. It is an object of the present invention to provide a method for repairing groundwater pollution that can cause efficient decomposition of water, and an apparatus therefor.

【0013】[0013]

【課題を解決するための手段】上記目的を達成するた
め、本発明は、微生物用栄養組成物を含む注入水を注入
井戸より汚染地下水帯に注水し、微生物により汚染物質
を分解する地下水汚染の修復方法において、前記注入水
にオゾンを溶存させて注水するか、又は前記注入水と溶
存オゾン水とを注水することを特徴とする。
In order to achieve the above object, the present invention provides a method of injecting water containing a nutrient composition for microorganisms into a contaminated groundwater zone from an injection well to decompose pollutants by microorganisms. In the restoration method, ozone is dissolved in the injected water to inject it, or the injected water and dissolved ozone water is injected.

【0014】この地下水汚染の修復方法においては、前
記注入水と溶存オゾン水とを、別の注入井戸より注水す
るか、又は時間間隔を置いて交互に注入井戸より注水す
ることができる。また、注入井戸より注水する際の初期
溶存オゾン濃度が0.2〜10mg/lであることが好
ましい。
In this groundwater pollution remediation method, the injection water and the dissolved ozone water can be injected from another injection well, or can be injected alternately from the injection well at time intervals. The initial dissolved ozone concentration when water is injected from the injection well is preferably 0.2 to 10 mg / l.

【0015】上記地下水汚染の修復方法を実施するため
の本発明の装置は、前記注入水又は前記注入水以外の水
にオゾンを溶存させる溶存オゾン製造器を備え、少なく
ともオゾンが溶存した注入水又は溶存オゾン水を注入井
戸に供給する送水設備が気密構造になっていることを特
徴とするものである。
The apparatus of the present invention for carrying out the method for repairing groundwater pollution comprises a dissolved ozone generator for dissolving ozone in the injected water or water other than the injected water, and at least the injected water in which ozone is dissolved or The water supply equipment for supplying the dissolved ozone water to the injection well has an airtight structure.

【0016】[0016]

【発明の実施の形態】本発明が修復対象とする汚染物質
は特に限定されるものではないが、例えばガソリン、軽
油、灯油、重油、原油、機械油、潤滑油、有機塩素系洗
浄剤等の石油化学製品があり、それらの成分としてはベ
ンゼン、トルエン、エチルベンゼン、キシレン、ケトン
類などの非塩素系有機化合物、あるいはトリクロロエチ
レン、テトラクロロエチレン、ジクロロエチレン、ダイ
オキシン、PCB、PCP(ペンタクロロフェノール)
等の塩素系有機化合物が含まれる。
BEST MODE FOR CARRYING OUT THE INVENTION The pollutants to be restored by the present invention are not particularly limited, and examples thereof include gasoline, light oil, kerosene, heavy oil, crude oil, machine oil, lubricating oil, and organic chlorine-based cleaning agents. There are petrochemical products, and their components are non-chlorine organic compounds such as benzene, toluene, ethylbenzene, xylene, ketones, or trichloroethylene, tetrachloroethylene, dichloroethylene, dioxins, PCBs, PCP (pentachlorophenol).
Chlorine-based organic compounds such as

【0017】また、微生物用栄養組成物とは、従来から
地下水汚染の微生物学的修復法に利用されている栄養組
成物であってよく、窒素源やリン源となる無機化合物を
含む塩類、pH調節剤等を含んでいる。修復対象汚染物
質を微生物による共代謝作用で分解する場合には、上記
の窒素源やリン源等の他に、更にその微生物が主に代謝
する炭化水素類を含める。
The nutritional composition for microorganisms may be a nutritional composition conventionally used in a microbiological remediation method for groundwater contamination, and it may be a salt containing an inorganic compound serving as a nitrogen source or a phosphorus source, pH. Contains regulators. In the case of decomposing the pollutant to be restored by co-metabolic action by microorganisms, in addition to the above-mentioned nitrogen source, phosphorus source, etc., hydrocarbons mainly metabolized by the microorganisms are also included.

【0018】本発明では、微生物用栄養組成物を含む注
入水以外に、溶存オゾンをこの注入水に含ませるか又は
溶存オゾン水として汚染地下水に注水する。そのため、
地上部に溶存オゾン製造器を設置し、溶存オゾンが外気
に逃げないように気密構造の送水設備を使用して注入井
戸から注水する。溶存オゾン製造器はオゾン発生器と溶
存オゾン化槽を備えたものでも良い。溶存オゾン製造器
又はオゾン発生器のオゾン発生方式には紫外線式、放電
式、水電解式の3つがあるが、任意の方式を採用でき
る。比較的低コストな紫外線式のものでも良いし、大規
模な放電式のオゾナイザーを用いても良い。
In the present invention, in addition to injecting water containing the nutrient composition for microorganisms, dissolved ozone is contained in this injecting water or is injected as polluted groundwater as dissolved ozone water. for that reason,
A dissolved ozone generator will be installed above the ground, and water will be injected from the injection well using an airtight water supply system so that dissolved ozone does not escape to the outside air. The dissolved ozone generator may be equipped with an ozone generator and a dissolved ozonization tank. There are three ozone generation methods of the dissolved ozone generator or the ozone generator, that is, an ultraviolet method, a discharge method, and a water electrolysis method, but any method can be adopted. A relatively low-cost ultraviolet type may be used, or a large-scale discharge type ozonizer may be used.

【0019】栄養組成物を含む注入水と溶存オゾン水と
を注水する場合、両者を同時に注水しても良いし、必要
に応じて時間的に間を置いて交互に地中に注入する方式
をとることもできる。また、注入ポイントを2箇所以上
とれる場合には、溶存オゾン水と注入水を別々の注入井
戸から地中に注入することも可能である。尚、溶存オゾ
ン水と注入水との注水を分けて行う場合については、そ
の注入間隔等に関する条件は、汚染修復対象領域内での
個々の注入物質の地下帯水層中での最適な混合状態を実
現できるように、予め地下データの解析やシミュレーシ
ョン等を利用して決定すると良い。
When injecting the injecting water containing the nutritional composition and the dissolved ozone water, both may be infused at the same time, or a method of injecting them into the ground alternately with a time interval as required. It can also be taken. In addition, when two or more injection points can be set, it is possible to inject the dissolved ozone water and the injection water into the ground through separate injection wells. In addition, when the injection of the dissolved ozone water and the injection water are performed separately, the conditions regarding the injection interval, etc. are the optimum mixing state of the individual injection substances in the subterranean aquifer in the pollution remediation target area. In order to realize the above, it is preferable to determine in advance by using analysis of underground data, simulation, or the like.

【0020】修復対象である汚染物質を分解する微生物
に必要な栄養物質の全てが、溶存オゾンにより化学反応
を起こさない種類である場合には、溶存オゾンとそれら
の栄養物質とを分けて注入する必要はなく、栄養組成物
を含む注入水と溶存オゾン水を同じ注入井戸から同時に
注水したり、注入水に更に溶存オゾンを含ませることも
可能である。
When all the nutrients necessary for the microorganisms that decompose the pollutant to be restored are of a type that does not cause a chemical reaction by dissolved ozone, the dissolved ozone and those nutrients are injected separately. It is not necessary that the injected water containing the nutritional composition and the dissolved ozone water can be simultaneously injected from the same injection well, or the injected water can further contain dissolved ozone.

【0021】地下水中での微生物の増殖のためには、上
記の栄養組成物以外に酸素が必要である。地下水に送り
込む注入水のうち、特に溶存オゾン水と分けて注水する
注入水については、微生物の増殖に必要な酸素量を確保
するため、予め溶存酸素濃度を人為的に増加させておく
ことが望ましい。ただし、注入水の貯水槽中で、大気か
らの酸素分圧を受けて自然に飽和させるだけでもかまわ
ない。
Oxygen is required in addition to the above nutritional composition for the growth of microorganisms in groundwater. Of the injected water that is sent to the groundwater, it is desirable to artificially increase the dissolved oxygen concentration in advance for the injected water that is injected separately from the dissolved ozone water in order to secure the oxygen amount necessary for the growth of microorganisms. . However, in the water tank for the injected water, the oxygen partial pressure from the atmosphere may be only naturally saturated.

【0022】また、溶存オゾン水や溶存オゾンを含む注
入水の製造が、各種のオゾナイザーで発生させた気体オ
ゾンを溶存オゾン化槽により溶存化させる方式である場
合には、オゾナイザーの能力によっては曝気時の溶存酸
素濃度が曝気前に比べ低下するケースもありうる。その
場合でも、溶存酸素から置き換わった溶存オゾンは、地
下水に注入された後、拡散する過程で徐々に分解して酸
素に変わるので、供給する実質の酸素量が低下すること
にはならない。
When the dissolved ozone water or the injected water containing the dissolved ozone is produced by a method in which gaseous ozone generated by various ozonizers is dissolved by a dissolved ozonization tank, depending on the capacity of the ozonizer, aeration is performed. In some cases, the dissolved oxygen concentration at that time may be lower than that before aeration. Even in that case, the dissolved ozone, which is replaced with the dissolved oxygen, is gradually decomposed into oxygen in the process of being diffused after being injected into the groundwater, so that the actual amount of oxygen supplied does not decrease.

【0023】本発明の修復装置の一具体例として、図1
に栄養組成物を含む注入水と溶存オゾン水とを注入井戸
に注水する場合を示した。地下の不飽和帯水層A又は飽
和帯水層Bに達する注入井戸1を設け、この注入井戸1
に注入水及び溶存オゾン水を注水する注水管2を挿入し
てある。地上には、栄養組成物等を溶解した注入水を調
整し且つ蓄える注入水貯溜槽3と共に、溶存オゾン製造
器4と貯水槽5が設置してあり、貯水槽5から供給した
水にオゾンを溶存させて溶存オゾン水を製造するように
なっている。注入水及び溶存オゾン水は、各送水ポンプ
6a、6bにより各送水管7a、7bを通って注水管2
に供給され、注入井戸1から地下水中に注水される。
尚、この装置では、溶存オゾン水が通る送水管7b等の
送水設備は気密構造になっている。
As a specific example of the restoration device of the present invention, FIG.
The case where the injection water containing the nutrient composition and the dissolved ozone water are injected into the injection well is shown in FIG. The injection well 1 reaching the unsaturated aquifer A or the saturated aquifer B under the ground is provided.
A water injection pipe 2 for injecting injected water and dissolved ozone water is inserted into the. A dissolved ozone generator 4 and a water storage tank 5 are installed on the ground, together with an injection water storage tank 3 for adjusting and storing injection water in which a nutrient composition is dissolved, and ozone is added to water supplied from the water storage tank 5. Dissolved ozone water is produced by dissolving it. The injected water and the dissolved ozone water pass through the water supply pipes 7a and 7b by the water supply pumps 6a and 6b, respectively, and the water injection pipe 2
And is injected into the groundwater from the injection well 1.
In this apparatus, the water supply equipment such as the water supply pipe 7b through which the dissolved ozone water passes has an airtight structure.

【0024】本発明においては、栄養組成物や酸素等の
通常の注入物質と共に溶存オゾンを注入することによっ
て、注入地点から離れた領域でも溶存酸素濃度の低下が
抑制される。即ち、一般に溶存酸素濃度は地中での拡散
により注入地点から離れるほど減少するが、拡散に伴っ
てオゾンが徐々に分解するので、拡散により減少する酸
素と相殺されるように酸素が生成される。このため、従
来方法での溶存酸素分布と比較して、注入地点から離れ
た周辺部で溶存酸素濃度の低下を抑制した分布状況を作
り出すことができる。
In the present invention, by injecting the dissolved ozone together with the nutrient composition and the usual injecting substances such as oxygen, the decrease in the dissolved oxygen concentration is suppressed even in the region away from the injection point. That is, the dissolved oxygen concentration generally decreases as it moves away from the injection point due to diffusion in the ground, but since ozone gradually decomposes with diffusion, oxygen is generated so as to be offset by the oxygen that decreases due to diffusion. . Therefore, compared to the dissolved oxygen distribution obtained by the conventional method, it is possible to create a distribution state in which the decrease in the dissolved oxygen concentration is suppressed in the peripheral portion away from the injection point.

【0025】また同時に、地下でオゾン濃度が存在する
範囲では、微生物はオゾンの強い酸化作用の影響を受け
て増殖活動が抑制され、当然のことながら窒素やリン等
の栄養成分の摂取も抑えられる。この傾向は溶存オゾン
の拡散が少ない注入地点に近いほど大きいため、注入地
点の近くほど酸素及び栄養物質の消費が抑制される。こ
れはバイオレメディエーションの実施においては逆説的
に聞こえるかもしれないが、本発明では、この性質を利
用することによって、注入水に由来する酸素及び注入水
に含まれる栄養組成物の遠距離到達性を高め、広い範囲
で微生物による汚染物質の分解を促進させることができ
る。
At the same time, in the range where ozone concentration exists underground, microorganisms are affected by the strong oxidizing action of ozone and their growth activity is suppressed, and naturally, intake of nutrients such as nitrogen and phosphorus is also suppressed. . This tendency is greater as the diffusion point of dissolved ozone is closer to the injection point, so that the consumption of oxygen and nutrients is suppressed closer to the injection point. This may sound paradoxical in the practice of bioremediation, but in the present invention, by utilizing this property, oxygen derived from the infused water and long-range reachability of the nutritional composition contained in the infused water are obtained. It can enhance the decomposition of pollutants by microorganisms in a wide range.

【0026】注入井戸への注入時における溶存オゾン濃
度は、修復環境や修復規模に応じて任意に変化させるこ
とができるが、初期溶存オゾン濃度で0.2〜10mg
/lの範囲内にあることが望ましい。注入時の溶存オゾ
ン濃度が0.2mg/l未満では上記したオゾン注入の
効果が殆ど得られず、逆に10mg/lを越える高濃度
では、注入水量によっては、注入地点を中心として地中
での微生物活動をぼ完全に停止させてしまう範囲が過度
に拡大し、かえって修復効率を低下させる恐れがあるた
めである。また、初期溶存オゾン濃度の設定を高めるほ
ど、必要なオゾン関連機材の設備コストが高くなり不経
済である。
The dissolved ozone concentration at the time of injection into the injection well can be arbitrarily changed according to the restoration environment and restoration scale, but the initial dissolved ozone concentration is 0.2 to 10 mg.
It is desirable to be in the range of / l. When the dissolved ozone concentration at the time of injection is less than 0.2 mg / l, the above-mentioned ozone injection effect is hardly obtained, and conversely, at a high concentration of more than 10 mg / l, depending on the amount of water injected, the injection point is centered in the ground. This is because the range of completely stopping the microbial activity of the above is excessively expanded, which may rather reduce the repair efficiency. In addition, the higher the setting of the initial dissolved ozone concentration, the higher the equipment cost of necessary ozone-related equipment, which is uneconomical.

【0027】年間を通じて15℃程度の水温に保たれて
いる地下水中では、オゾンが酸素に変わる半減期は温度
変化の大きい地表環境と比べて安定しているが、注入水
や溶存オゾン水のpHを中性域中でも可能な限り低く調
整することにより、溶存オゾンの半減期を更に延ばし、
酸素や栄養組成物の遠距離到達性を一層高めることが可
能である。逆に、注入井戸近傍でのオゾン分解を促進さ
せたい場合には、注入水や溶存オゾン水を可能な限りア
ルカリ性側にpH調整すると良い。これらいずれの場合
でも、pHは微生物の生理条件に適合する範囲内で調整
されていることが必要である。
In groundwater kept at a water temperature of about 15 ° C. throughout the year, the half-life of ozone conversion to oxygen is more stable than in the surface environment where temperature changes greatly, but the pH of injected water or dissolved ozone water is low. By adjusting as low as possible even in the neutral range, the half-life of dissolved ozone is further extended,
It is possible to further improve long-distance reachability of oxygen and nutritional compositions. On the contrary, when it is desired to promote the ozone decomposition in the vicinity of the injection well, the pH of the injected water or the dissolved ozone water should be adjusted to the alkaline side as much as possible. In any of these cases, the pH needs to be adjusted within a range compatible with the physiological conditions of the microorganism.

【0028】尚、地下水に注入された溶存オゾンは、地
中でやがて完全に酸素に変化するので、それ以降の流域
の微生物活動や汚染修復対象領域の外の地下環境に影響
を及ぼすことはない。また、オゾンの酸素への分解反応
に伴っては、他の種類の酸化剤での反応のような大きな
pH変化を誘発することもない。
The dissolved ozone injected into the groundwater will be completely converted into oxygen in the ground, so that it will not affect the subsequent microbial activity in the watershed or the underground environment outside the pollution remediation target area. . In addition, the decomposition reaction of ozone into oxygen does not induce a large pH change like the reaction with other types of oxidizing agents.

【0029】更に、本発明では、水に溶けた状態でのオ
ゾンを環境中に作用させるため、気体としてのオゾンが
地上で放出されることはない。従って、汚染現場付近の
地表空気中のオゾン濃度を、日本での作業安全基準で設
定されている0.1ppmあるいはWHOでの基準0.0
5ppm以下に保つことは容易である。また、気体とし
てのオゾンと比較して、水に溶けた溶存オゾンは周囲の
水が介在する分だけ大気中よりも速く分解反応が進むた
め、地下水中の溶存オゾンが再びオゾンガスとして地表
に上昇して悪影響を及ぼすことはない。
Further, in the present invention, ozone dissolved in water is allowed to act on the environment, so that ozone as a gas is not released on the ground. Therefore, the ozone concentration in the surface air near the polluted site is set to 0.1 ppm, which is set in the Japan Work Safety Standard, or the WHO standard, which is 0.0 ppm.
It is easy to keep below 5 ppm. In addition, compared to ozone as a gas, dissolved ozone dissolved in water decomposes faster than atmospheric air due to the presence of surrounding water, so dissolved ozone in groundwater again rises to the surface as ozone gas. There is no adverse effect.

【0030】修復ケースによっては、汚染物質自体がオ
ゾンにより直接化学作用を受け、易分解性物質に変化す
ることが期待できる。例えば、エチレン結合を持つ不飽
和炭化水素類が汚染物質となっている場合には、その二
重結合部分にオゾンが付加した後、この箇所が水との作
用により切れてケトン又はアルデヒドが生成する。ただ
し、例えば多環芳香族系化合物の一部の種類では、オゾ
ンの化学作用により更に毒性の高い水溶性中間物質が副
次的に発生する場合がある。このような場合には本発明
方法の適用は慎重に行うべきであるが、その中間生成物
が化学反応的に速やかに次の段階に変化していくような
場合は、この限りではない。
In some repair cases, it can be expected that the pollutant itself will be directly subjected to a chemical action by ozone and will be transformed into a readily decomposable substance. For example, when unsaturated hydrocarbons having an ethylene bond are pollutants, ozone is added to the double bond part and then this part is broken by the action with water to produce a ketone or aldehyde. . However, for example, in some types of polycyclic aromatic compounds, a more toxic water-soluble intermediate substance may be secondarily generated by the chemical action of ozone. In such a case, the application of the method of the present invention should be carried out carefully, but this is not the case when the intermediate product rapidly changes to the next step by chemical reaction.

【0031】本発明の地下水汚染の修復では、注入井戸
近くの地下領域が未修復のまま残る場合がある。そのよ
うな場合には、周辺部の修復が完了した後に、溶存オゾ
ン水の注入を停止するか、注入する溶存オゾン濃度を減
少させることにより、注入井戸付近で微生物活動を再開
させれば良い。もともと永続的な毒性物質を地中に注入
しているわけではないので、注入地点近傍での微生物の
増殖環境を復活させることは、これらの操作のみで容易
に行い得る。
In the repair of groundwater pollution of the present invention, the underground region near the injection well may remain unrepaired. In such a case, after the restoration of the peripheral portion is completed, the injection of the dissolved ozone water is stopped or the concentration of the injected dissolved ozone is reduced to restart the microbial activity in the vicinity of the injection well. Since a permanent toxic substance is not originally injected into the ground, it is possible to easily restore the microbial growth environment in the vicinity of the injection point by only these operations.

【0032】尚、修復処理終了以降は、地下で増殖した
微生物も栄養注入が絶たれるため、1〜3ケ月程度で数
を減じて元の微生物状態に戻る。しかし、何らかの理由
によって、修復作業の終了直後に、増殖した微生物を急
速に死滅に追いやりたい場合には、修復終了時に溶存オ
ゾン濃度を最大にして注入井戸に投入することによりあ
る程度対応することが可能である。
After the completion of the repairing treatment, the nutrients of microorganisms grown underground are also cut off, and the number of microorganisms is reduced to the original state in about 1 to 3 months. However, if for some reason you want to quickly kill the proliferated microorganisms immediately after the completion of the repair work, it is possible to deal with it to some extent by putting the dissolved ozone concentration at the end of the repair into the injection well. Is.

【0033】[0033]

【実施例】実施例1 飽和炭化水素系化合物により地下4mの帯水層部分が汚
染されているサイトを模して、全深さで帯水層を形成す
るようなライシメータ実験設備において、以下のような
実験を行った。即ち、微生物用栄養組成物として窒素及
びリンを含む無機塩類を所定濃度で添加した注入水を調
整し、この注入液に更にオゾンを溶存させたうえで、汚
染源の中心部に設置した注入井戸より連続的に注水し
て、地下水汚染の微生物学的修復を試みた。
Example 1 In a lysimeter experimental facility for forming an aquifer at a full depth, simulating a site in which an aquifer part 4 m underground is contaminated with a saturated hydrocarbon compound, Such an experiment was conducted. That is, an injection water prepared by adding inorganic salts containing nitrogen and phosphorus at a predetermined concentration as a nutritional composition for microorganisms is prepared, and ozone is further dissolved in the injection liquid, and then an injection well installed in the center of the pollution source is used. We tried to remediate the groundwater contamination by microbiologically injecting water continuously.

【0034】注入水の組成は、溶存オゾン濃度が初期濃
度で2.0mg/l、硝酸カリウム濃度が25mg/
l、リン酸水素二カリウム濃度が40mg/lとした。
この溶存オゾンを含む注入水を、毎時20リットルの注
水速度で注入井戸より地下4mの帯水層内に連続注水
し、定期的に各注入成分の拡散の程度を注入井戸周辺に
設置した複数の観測井戸からの採水により調査した。
尚、注入前の地下水中の溶存酸素濃度は平均で1.8m
g/lであった。また、注入井戸内及び観測井戸内にお
ける好気性従属栄養細菌数については、それぞれからサ
ンプル水を採取して別途行った標準寒天培地による平板
希釈培地法により計測した。
The composition of the injected water was such that the dissolved ozone concentration was 2.0 mg / l in the initial concentration and the potassium nitrate concentration was 25 mg / l.
1 and the concentration of dipotassium hydrogen phosphate was 40 mg / l.
The injected water containing this dissolved ozone was continuously injected into the aquifer 4 m underground from the injection well at a water injection rate of 20 liters per hour, and the degree of diffusion of each injected component was regularly set around the injection well. The water was collected from the observation well.
The average dissolved oxygen concentration in groundwater before injection is 1.8m.
It was g / l. The numbers of aerobic heterotrophic bacteria in the injection well and the observation well were measured by the plate dilution medium method using standard agar medium, which was separately performed by collecting sample water from each.

【0035】実験開始前の各観測井戸での地下4mにお
ける総好気性従属栄養細菌数は、注入井戸から水平距離
でそれぞれ1m、3m、6m離れた地点の3つの観測井
戸内では、いずれも1ml当たり10の6乗個台で一致
していた。
Before the start of the experiment, the total number of aerobic heterotrophic bacteria in each observation well 4 m underground was 1 ml in each of the three observation wells at the horizontal distances of 1 m, 3 m and 6 m from the injection well. There was a match of 10 6 per unit.

【0036】実験の結果、注入開始から4週間後の時点
での各観測井戸での総好気性従属栄養細菌数は、注入井
戸から水平距離でそれぞれ1m、3m、6m離れた地点
の3つの観測井戸内で、それぞれ1ml当たり10の6
乗個台、10の8乗個台、10の7乗個台となってい
た。また、溶存酸素濃度は、同様にそれぞれ4.0mg
/l、4.5mg/l、4.0mg/lでほぼ均等であっ
た。この結果、微生物による汚染物質の分解は、修復対
象地下領域である注入井戸から半径6m以内においてほ
ぼ均等に進行していることが解った。
As a result of the experiment, the total number of aerobic heterotrophic bacteria in each observation well at 4 weeks after the start of injection was three observations at the horizontal distances of 1 m, 3 m, and 6 m from the injection well, respectively. 10 in each well, 6 per ml
The number of units was 10 8 units, 10 7 units. Similarly, the dissolved oxygen concentration was 4.0 mg each.
/ L, 4.5 mg / l, 4.0 mg / l were almost even. As a result, it was found that the decomposition of pollutants by microorganisms proceeded almost uniformly within a radius of 6 m from the injection well, which is the underground area to be repaired.

【0037】実施例2 汚染物質を有機塩素系化合物とし、このため注入する栄
養組成物にメタンを加え、更にオゾンが直接メタンを酸
化しないように、栄養組成物を含む注入水とは別に溶存
オゾン水を調整して、注入水と溶存オゾン水を時間をず
らして8時間毎に交互に注水した。これらの条件変更を
行った以外は実施例1と同様にして、再度修復実験を行
った。尚、注入水中の溶存酸素濃度は、大気中酸素によ
る飽和により、平均で8.5mg/lであった。
Example 2 The pollutant was an organochlorine compound, and therefore methane was added to the nutrient composition to be injected, and dissolved ozone was separated from the injected water containing the nutrient composition so that ozone would not directly oxidize methane. The water was adjusted, and the injected water and the dissolved ozone water were alternately poured every 8 hours at different times. A repair experiment was conducted again in the same manner as in Example 1 except that these conditions were changed. The dissolved oxygen concentration in the injected water was 8.5 mg / l on average due to saturation with atmospheric oxygen.

【0038】注入井戸内及び観測井戸内での微生物濃度
の計測は、総好気性従属栄養細菌数については実施例1
と同様に平板希釈培地法により行い、メタン資化性菌に
ついては各段階希釈試料におけるメタン資化増殖の判定
を行った上で、それぞれ5−5−5MPN法により計測
した。
The measurement of the microorganism concentration in the injection well and the observation well was carried out according to Example 1 for the total number of aerobic heterotrophic bacteria.
The plate-diluted culture medium method was used in the same manner as described above. For methanotrophic bacteria, the methanotrophic growth in each serially diluted sample was determined and then measured by the 5-5-5 MPN method.

【0039】実験開始前の各観測井戸での地下4mの地
下水中における総好気性従属栄養細菌数は、注入井戸か
ら水平距離でそれぞれ1m、3m、6m離れた地点の各
観測井戸で、それぞれ共に1ml当たり10の6乗個台
で一致していた。また、メタン資化性菌については、同
様に水平距離1m、3m、6m離れた各地点で、それぞ
れで共に1ml当たり10の1乗個以下の検出限界以下
であった。
The total number of aerobic heterotrophic bacteria in the groundwater of 4 m underground in each observation well before the start of the experiment was 1 m, 3 m, and 6 m horizontally from the injection well. The agreement was on the order of 10 6 per 1 ml. Regarding the methanotrophic bacteria, similarly, at each of the horizontal distances of 1 m, 3 m, and 6 m, the detection limit was not more than 10 1 per 1 ml, respectively.

【0040】実験の結果、注入開始から4週間後の時点
での各観測井戸での総好気性従属栄養最菌数は、注入井
戸からの水平距離でそれぞれ1m、3m、6mの各観測
井戸内で、それぞれ1ml当たり10の6乗個台、10
の8乗個台、10の7乗個台となっていた。また、注入
開始から2週間後の時点での各観測井戸でのメタン資化
性菌数は、同様に1m、3m、6mの地点で、それぞれ
1ml当たり10の3乗個台、10の4乗個台、10の
4乗個台となっていた。
As a result of the experiment, the maximum number of total aerobic heterotrophic bacteria in each observation well at 4 weeks after the start of injection was 1 m, 3 m, and 6 m in horizontal distance from the injection well, respectively. Then, 10 6 units per 1 ml, 10
It was the 8th power unit and the 10th power unit. In addition, the number of methane-utilizing bacteria in each observation well at 2 weeks after the start of the injection was the same as that of 1m, 3m, and 6m at 10 3 powers per 1 ml, and 10 4 powers. It was an individual unit, 10 4th unit.

【0041】また同様に、溶存酸素濃度は、注入井戸か
らの水平距離1m、3m、6mの各観測井戸の地下4m
水で、それぞれ4.5mg/l、5.0mg/l、4.5
mg/lであり、ほぼ均等であった。これらの結果か
ら、微生物による汚染物質の分解は、修復対象地下領域
である半径6m以内で、ほぼ均等に分解が進行している
ことが解った。
Similarly, the dissolved oxygen concentration is 4 m below the observation wells with horizontal distances of 1 m, 3 m, and 6 m from the injection well.
With water, 4.5 mg / l, 5.0 mg / l, 4.5, respectively
It was mg / l, which was almost uniform. From these results, it was found that the decomposition of the pollutants by the microorganisms proceeded almost uniformly within the radius of 6 m, which is the underground area to be repaired.

【0042】比較例1 前記実施例1の条件中で、栄養組成物を含む注入水にオ
ゾンを溶存させずに酸素だけを溶存させておき、その他
の条件は実施例1と全く同様にして修復実験を行った。
尚、注入前の地下水の溶存酸素濃度は実施例1と同じ地
下4m部分で平均で1.8mg/lであり、注入前の注
入水中の溶存酸素濃度は平均で8.5mg/lであっ
た。
Comparative Example 1 Under the conditions of Example 1 described above, only the oxygen was dissolved in the injected water containing the nutritional composition without dissolving ozone, and other conditions were restored in the same manner as in Example 1. An experiment was conducted.
The dissolved oxygen concentration in the ground water before injection was 1.8 mg / l on average in the same 4 m underground as in Example 1, and the dissolved oxygen concentration in the injected water before injection was 8.5 mg / l on average. .

【0043】実験開始前の各観測井戸での地下4mにお
ける総好気性従属栄養最菌数は、注入井戸から水平距離
でそれぞれ1m、3m、6m離れた地点の各観測井戸内
で、それぞれで共に1ml当たり10の6乗個台で一致
し、これも実施例1と同じ条件であった。
Before the start of the experiment, the total number of aerobic heterotrophic bacteria at 4 m underground in each observation well was 1 m, 3 m, and 6 m horizontally from the injection well. The agreement was in the 10 6 power range per 1 ml, which was also the same condition as in Example 1.

【0044】実験の結果、注入開始から4週間後の時点
での各観測井戸の地下4m部分での総好気性従属栄養細
菌数は、注入井戸から水平距離1m、3m、6mの各地
点で、それぞれ1ml当たり10の8乗個台、10の6
乗個台、10の6乗個台となっており、水平距離で3m
以上離れた各地点では微生物分解活性が高まっていなか
った。
As a result of the experiment, the total number of aerobic heterotrophic bacteria in the 4m underground part of each observation well at 4 weeks after the start of the injection was as follows: 10 8 powers per 10 ml, 10 6
The number of units is 10 6 units and the horizontal distance is 3m.
The biodegradation activity was not increased at each of the above-mentioned points.

【0045】また、溶存酸素濃度は、同様に各地点でそ
れぞれ4.0mg/l、1.9mg/l、1.8mg/l
であり、水平距離3m以上の各地点ではバックグラウン
ドの溶存酸素濃度のままであった。この結果から、微生
物による汚染物質の分解は、注入井戸から半径1m程度
の範囲内でしか進んでいないことが解った。
Similarly, the dissolved oxygen concentration was 4.0 mg / l, 1.9 mg / l and 1.8 mg / l at each point.
The dissolved oxygen concentration in the background remained at each point with a horizontal distance of 3 m or more. From this result, it was found that the decomposition of pollutants by microorganisms proceeded only within a radius of about 1 m from the injection well.

【0046】比較例2 比較例1の条件中で、地上での注入水の調整時に純酸素
ガスの使用により酸素溶存量を初期濃度20mg/lに
上昇させ、その他の条件は実施例1と全く同様にして修
復実験を行った。
Comparative Example 2 Under the conditions of Comparative Example 1, the oxygen concentration was raised to an initial concentration of 20 mg / l by using pure oxygen gas when adjusting the injection water on the ground, and other conditions were completely the same as in Example 1. A repair experiment was conducted in the same manner.

【0047】尚、注入前の地下水の溶存酸素濃度は、実
施例1及び比較例1と同じく地下4m部分において平均
で1.8mg/lであった。また、実験開始前の各観測
井戸での地下4mにおける総好気性従属栄養菌数も、注
入井戸から水平距離でそれぞれ1m、3m、6m離れた
地点の観測井戸で、共に1ml当たり10の6乗個台で
あり、実施例1及び比較例1と同じであった。
The dissolved oxygen concentration of groundwater before the injection was 1.8 mg / l on average in the 4 m portion underground as in Example 1 and Comparative Example 1. In addition, the total aerobic heterotrophic bacteria number 4m underground in each observation well before the start of the experiment was 10 6 per 1 ml for each observation well at horizontal distances of 1 m, 3 m, and 6 m from the injection well. It was a unit and was the same as Example 1 and Comparative Example 1.

【0048】実験の結果、注入開始から4週間後の時点
での各観測井戸の地下4m部分での総好気性従属栄養細
菌数は、注入井戸から水平距離でそれぞれ1m、3m、
6m離れた各観測井戸で、それぞれ1ml当たり10の
8乗個台、10の7乗個台、10の6乗個台となってお
り、水平距離6mの地点では微生物分解活性が高まって
いなかった。
As a result of the experiment, the total number of aerobic heterotrophic bacteria in the 4 m underground part of each observation well at 4 weeks after the start of injection was 1 m and 3 m at the horizontal distance from the injection well, respectively.
In each observation well 6 m apart, there were 10 8 powers, 10 7 powers, 10 6 powers per ml, and the microbial degrading activity did not increase at the horizontal distance of 6 m. .

【0049】また、溶存酸素濃度は、同様に各地点でそ
れぞれ8.0mg/l、2.8mg/l、1.8mg/l
であり、水平距離6mの地点ではバックグラウンドの溶
存酸素濃度と一致し、それ以上には高まっていなかっ
た。これらの結果から、微生物による汚染物質の分解
は、注入井戸から半径3m程度の範囲内でしか促進され
ないことが解った。
Similarly, the dissolved oxygen concentration was 8.0 mg / l, 2.8 mg / l and 1.8 mg / l at each point.
That is, at a point with a horizontal distance of 6 m, it was in agreement with the dissolved oxygen concentration in the background and did not increase further. From these results, it was found that the decomposition of pollutants by microorganisms was promoted only within the range of a radius of about 3 m from the injection well.

【0050】更に悪いことには、実験期間中に注入井戸
内における総好気性従属栄養細菌数が1ml当たり10
の9乗個以上に増加したため、これが原因と見られる土
壌の閉塞化現象が注入井戸近傍の帯水層中土壌で進行し
た。その結果、注入水が帯水層最上部流域に一旦上昇し
てから流れるなど注入水の不均一な流れが起こり、それ
以降の注入水の地下分散状態に悪影響が生じた。
To make matters worse, the total number of aerobic heterotrophic bacteria in the injection well was 10 per ml during the experiment.
Since the number of soils in the aquifer increased to more than the 9th power, the soil blockage phenomenon, which is considered to be the cause, progressed in the soil in the aquifer near the injection well. As a result, the non-uniform flow of the injected water occurred, such as once the injected water rose to the uppermost basin of the aquifer and then flowed, which adversely affected the underground dispersion of the injected water thereafter.

【0051】[0051]

【発明の効果】本発明によれば、地中に注入した溶存オ
ゾンが拡散に伴って徐々に分解されるため、注入井戸か
ら離れた地点で溶存酸素の発生が得られ、且つオゾンの
持つ微生物増殖抑制効果により注入地点の近くほど微生
物濃度の増加が抑制され、注入地点での酸素消費量の極
端な上昇が防止される。また、同じくオゾンの微生物増
殖抑制効果によって、酸素以外の注入物質である栄養塩
類等の栄養組成物についても、注入地点近傍での微生物
による比較的早期の摂取が抑えられる。
EFFECTS OF THE INVENTION According to the present invention, since dissolved ozone injected into the ground is gradually decomposed with diffusion, generation of dissolved oxygen can be obtained at a point apart from the injection well, and microorganisms possessed by ozone can be obtained. Due to the growth inhibitory effect, an increase in the microbial concentration is suppressed closer to the injection point, and an extreme increase in oxygen consumption at the injection point is prevented. Similarly, due to the effect of ozone to suppress the growth of microorganisms, it is possible to suppress the relatively early ingestion of nutrient compositions such as nutrient salts, which is an injecting substance other than oxygen, by the microorganisms in the vicinity of the injecting point.

【0052】従って、本発明によれば、注入井戸から距
離的に離れるに従って溶存酸素濃度及び栄養組成物濃度
が急速に低下することを防止でき、これらの地下での遠
距離到達性を大きく改善することができる。その結果、
より広い地下範囲において、微生物を利用して汚染物質
を分解除去するバイオレメディエーションの適用が可能
となる。しかも、地上障害物等の場所的制約により、少
ない本数の注入井戸しか設置できない場合でも、広い修
復範囲を容易に確保することができる。
Therefore, according to the present invention, it is possible to prevent the dissolved oxygen concentration and the nutrient composition concentration from rapidly decreasing with distance from the injection well, and to greatly improve the reachability of these underground underground. be able to. as a result,
In a wider underground area, it becomes possible to apply bioremediation, which decomposes and removes pollutants by utilizing microorganisms. Moreover, even if only a small number of injection wells can be installed due to the location restrictions such as ground obstacles, a wide repair range can be easily secured.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の地下水汚染修復装置の一具体例を示す
概略の断面図である。
FIG. 1 is a schematic sectional view showing a specific example of a groundwater pollution restoration device of the present invention.

【符号の説明】[Explanation of symbols]

1 注入井戸 2 注水管 3 注入水貯溜槽 4 溶存オゾン製造器 5 貯水槽 6a、6b 送水ポンプ 7a、7b 送水管 1 injection well 2 Water injection pipe 3 Infused water storage tank 4 Dissolved ozone maker 5 water tank 6a, 6b Water pump 7a, 7b Water pipe

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C02F 3/12 C02F 3/00 C02F 7/00 B09C 1/10 WPI(DIALOG)Front page continued (58) Fields surveyed (Int.Cl. 7 , DB name) C02F 3/12 C02F 3/00 C02F 7/00 B09C 1/10 WPI (DIALOG)

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 微生物用栄養組成物を含む注入水を注入
井戸より汚染地下水帯に注水し、微生物により汚染物質
を分解する地下水汚染の修復方法において、前記注入水
にオゾンを溶存させて注水するか、又は前記注入水と溶
存オゾン水とを注水することを特徴とする地下水汚染の
修復方法。
1. A method of repairing groundwater pollution, in which injected water containing a nutritional composition for microorganisms is injected from an injection well into a contaminated groundwater zone to decompose pollutants by microorganisms, and ozone is dissolved in the injected water for injection. Alternatively, a method for repairing groundwater contamination, which comprises injecting the injected water and dissolved ozone water.
【請求項2】 前記注入水と溶存オゾン水とを、別の注
入井戸より注水するか、又は時間間隔を置いて交互に注
入井戸より注水することを特徴とする、請求項1に記載
の地下水汚染の修復方法。
2. The groundwater according to claim 1, wherein the injection water and the dissolved ozone water are injected from different injection wells or alternately from the injection wells at time intervals. How to remediate pollution.
【請求項3】 注入井戸より注水する際の初期溶存オゾ
ン濃度が0.2〜10mg/lであることを特徴とす
る、請求項1又は2に記載の地下水汚染の修復方法。
3. The method for repairing groundwater contamination according to claim 1, wherein the initial dissolved ozone concentration when water is injected from the injection well is 0.2 to 10 mg / l.
【請求項4】 微生物用栄養組成物を含む注入水を注入
井戸より汚染地下水帯に注水して、微生物により汚染物
質を分解する装置であって、前記注入水又は前記注入水
以外の水にオゾンを溶存させる溶存オゾン製造器を備
え、少なくともオゾンが溶存した注入水又は溶存オゾン
水を注入井戸に供給する送水設備が気密構造になってい
ることを特徴とする地下水汚染の修復装置。
4. An apparatus for decomposing pollutants by microorganisms by injecting injecting water containing a nutrient composition for microorganisms into an injured contaminated groundwater zone from an injecting well, wherein ozone is added to the infused water or water other than the infused water. An apparatus for repairing groundwater pollution, comprising a dissolved ozone generator for dissolving water, and at least an injectable water in which ozone is dissolved or a water supply facility for supplying dissolved ozone water to an injection well has an airtight structure.
JP01023698A 1998-01-22 1998-01-22 Method and apparatus for repairing groundwater contamination Expired - Fee Related JP3458688B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01023698A JP3458688B2 (en) 1998-01-22 1998-01-22 Method and apparatus for repairing groundwater contamination

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01023698A JP3458688B2 (en) 1998-01-22 1998-01-22 Method and apparatus for repairing groundwater contamination

Publications (2)

Publication Number Publication Date
JPH11207375A JPH11207375A (en) 1999-08-03
JP3458688B2 true JP3458688B2 (en) 2003-10-20

Family

ID=11744673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01023698A Expired - Fee Related JP3458688B2 (en) 1998-01-22 1998-01-22 Method and apparatus for repairing groundwater contamination

Country Status (1)

Country Link
JP (1) JP3458688B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4671073B2 (en) * 2001-02-28 2011-04-13 清水建設株式会社 In-situ repair method for soil contaminated with organic matter
JP2010240594A (en) * 2009-04-07 2010-10-28 Shimizu Corp Decomposition treatment method of contaminated soil and contaminated ground water
WO2011148509A1 (en) * 2010-05-28 2011-12-01 エコサイクル株式会社 Agent and method for purifying medium contaminated with organic chlorine compound
JP6031705B2 (en) * 2011-05-16 2016-11-30 学校法人福岡大学 Environmental restoration device and environmental restoration method
CN105731628A (en) * 2016-02-05 2016-07-06 环境保护部环境规划院 In-situ chemical oxidation repair system and method for underground water polluted by hydrochloric ether
CN114850201B (en) * 2022-05-26 2024-02-06 北京博诚立新环境科技股份有限公司 In-situ bioremediation method for combined treatment of gas-coated belt and saturated belt

Also Published As

Publication number Publication date
JPH11207375A (en) 1999-08-03

Similar Documents

Publication Publication Date Title
Englert et al. Bioremediation of petroleum products in soil
ES2417010T3 (en) Compositions for removing hydrocarbons and halogenated hydrocarbons from contaminated environments
Lee et al. Biorestoration of aquifers contaminated with organic compounds
Spain et al. Excessive bacterial decomposition of H2O2 during enhanced biodegradation
US5560737A (en) Pneumatic fracturing and multicomponent injection enhancement of in situ bioremediation
CA1332082C (en) Microbiological decomposition of chlorinated aliphatic hydrocarbons
CN106495318B (en) A kind of permeating reaction wall system and method using petroleum hydrocarbon in reinforced anaerobic biotechnology in-situ remediation of underground water
JP5205010B2 (en) In-situ purification method for contaminated groundwater
CN213763431U (en) Pollute good oxygen biological repair system of soil normal position
JP3458688B2 (en) Method and apparatus for repairing groundwater contamination
JP3565476B2 (en) Method and apparatus for purifying contaminated groundwater and / or contaminated stratum
CN108328856B (en) In-situ remediation process for low-concentration organic polluted underground water and application thereof
CN113290035A (en) In-situ low-consumption combined relay repairing device for soil and underground water pollution
US7255791B2 (en) In situ method and apparatus for biodegradation of alkyl ethers and tertiary butyl alcohol
JPH10216696A (en) Method for supplying air in reconditioning contaminated soil and device therefor
JP2007268401A (en) In-situ cleaning method and in-situ cleaning system of contaminated soil and/or ground water
JP3051047B2 (en) Purification method and purification system for contaminated soil using soil microorganisms
Brown et al. The evolution of a technology: hydrogen peroxide in in situ bioremediation
JP2004025158A (en) Cleaning method of polluted stratum and apparatus therefor
JP2009136767A (en) Groundwater remediation method and apparatus therefor
JP3623080B2 (en) Purification method and apparatus for contaminated groundwater and contaminated formation
JP3374228B2 (en) How to restore contaminated groundwater and soil
JP6212842B2 (en) Purification method for contaminated soil
JPH11216457A (en) Purification of contaminated soil
JP2009154057A (en) Method of purifying oil-polluted soil and ground water

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080808

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090808

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100808

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100808

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees