JP2009136767A - Groundwater remediation method and apparatus therefor - Google Patents

Groundwater remediation method and apparatus therefor Download PDF

Info

Publication number
JP2009136767A
JP2009136767A JP2007315640A JP2007315640A JP2009136767A JP 2009136767 A JP2009136767 A JP 2009136767A JP 2007315640 A JP2007315640 A JP 2007315640A JP 2007315640 A JP2007315640 A JP 2007315640A JP 2009136767 A JP2009136767 A JP 2009136767A
Authority
JP
Japan
Prior art keywords
injection
ozone
water
nutrient
dissolved
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007315640A
Other languages
Japanese (ja)
Inventor
Yuzo Sakamoto
雄三 坂本
Ryozo Ushio
亮三 牛尾
Shingo Sudo
真悟 須藤
Akiko Kitagawa
明子 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumikon Serutekku KK
Original Assignee
Sumikon Serutekku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumikon Serutekku KK filed Critical Sumikon Serutekku KK
Priority to JP2007315640A priority Critical patent/JP2009136767A/en
Publication of JP2009136767A publication Critical patent/JP2009136767A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Biological Wastes In General (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a groundwater remediation method which enables the decomposition of contaminants using microorganisms, and diffusion injected substances, such as oxygen, nutritive substances, and the like, promotion of the growth of the microorganisms to far from an injection point in an injection well. <P>SOLUTION: Ozone-dissolved water and nutrient water containing a nutrient composition for microorganisms are fed into one injection well 2 through respective injection pipes 14, 24 to be injected into contaminated ground water in an aquifer from discharge ports 14a, 24a separated from each other in the depth direction. Preferably, the distance between both discharge ports 14a, 24a is 1-3 m in the depth direction. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、有機化合物の浸透により汚染された地下水を、好気性微生物もしくは通性嫌気性微生物の好気的微生物活動による汚染物質の分解除去によって修復する方法に関する。   The present invention relates to a method for repairing groundwater contaminated by infiltration of organic compounds by decomposing and removing contaminants by aerobic microbial activity of aerobic microorganisms or facultative anaerobic microorganisms.

有機化合物による地下水汚染の修復方法としては、揚水曝気と活性炭吸着との組合せ法、簡易的な揚水処理法、又はエアースパージング法等の物理的修復方法が一般的に用いられている。しかし、揚水曝気と活性炭吸着との組合せ法は、汚染が低濃度域になるまでは効率良く修復が進むものの、それ以降では修復スピードが低下する。また、エアースパージング法は、システムが複雑であるうえ、修復可能な領域が狭いという問題がある。   As a method for repairing groundwater contamination by organic compounds, a physical repairing method such as a combination of pumping aeration and activated carbon adsorption, a simple pumping treatment method, or an air sparging method is generally used. However, in the combined method of pumped water aeration and activated carbon adsorption, the repair proceeds efficiently until the contamination reaches a low concentration range, but thereafter, the repair speed decreases. In addition, the air sparging method has a problem that the system is complicated and the repairable area is narrow.

また最近では、微生物による汚染物質の分解を利用する生物学的修復方法、即ちバイオレメディエーション法が検討されている。特に、汚染地下水を地上まで揚水せずに地下の帯水層で処理するバイオレメディエーションでは、地下水中の汚染物質を原位置においてほぼ完全に分解除去することを目指している。そのためには、汚染箇所である地下領域(以下、修復対象領域と称する)において汚染物質の分解能力を持つ微生物を増殖させる必要があることから、微生物が必要とする栄養組成物や酸素等を含む注入水を、地上から注入井戸を通して地下の帯水層に補給することが行われている。   Recently, biological repair methods utilizing biodegradation of contaminants by microorganisms, ie, bioremediation methods, have been studied. In particular, in bioremediation in which contaminated groundwater is treated in an underground aquifer without pumping to the ground, the goal is to almost completely decompose and remove contaminants in the groundwater in situ. To that end, it is necessary to grow microorganisms capable of degrading pollutants in the underground area (hereinafter referred to as the area to be repaired), which is a contaminated location, and therefore contain nutrient compositions, oxygen, etc. that the microorganisms require. Injected water is replenished to the underground aquifer from the ground through an injection well.

ところが、このようにして注入水を地中に注入した場合、注入水に含まれる栄養物質や酸素等の注入物質は地下水を媒体として一般的には三次元的に拡散し、また地下水流がある場合には、その流れに乗って周囲に広がりながら拡散していく。従って、注入物質の濃度は、注入地点で最も高いが、注入地点から離れるほど低くなり、距離の3乗に比例して濃度は低下する。   However, when injected water is injected into the ground in this way, the injected substances such as nutrients and oxygen contained in the injected water generally diffuse three-dimensionally using groundwater as a medium, and there is a groundwater flow. In some cases, it spreads around the flow and spreads. Therefore, the concentration of the injected substance is highest at the injection point, but decreases as the distance from the injection point increases, and the concentration decreases in proportion to the cube of the distance.

更に、このような拡散による注入物質の濃度低下に加えて、地中に広く分布する既存の微生物によって注入物質が摂取されるため、注入地点から一定の距離を隔てた地点の注入物質の濃度減少率は、上記した拡散のみならず、この微生物摂取が加わって一層大きなものとなる。その結果、注入物質濃度の高い注入地点近くでは微生物の活発な増殖により汚染物質が分解されるが、注入地点から離れるほど微生物による汚染物質の分解能力は急激に低下するという欠点があった。   Furthermore, in addition to the decrease in the concentration of the injected substance due to such diffusion, the injected substance is ingested by existing microorganisms widely distributed in the ground, so the concentration of the injected substance at a certain distance from the injection point is reduced. The rate is even greater with the addition of this microbial uptake, as well as the diffusion described above. As a result, the pollutant is decomposed by the active growth of microorganisms near the injection point where the injection substance concentration is high, but there is a drawback that the ability of the microorganisms to decompose pollutants decreases rapidly as the distance from the injection point increases.

このような注入位置から離れた地点で汚染物質分解能力が低下する問題に対しては、注入地点から遠方まで注入物質を到達させ、所定の修復対象領域内において注入物質が所定の濃度以上を保って行き渡るようにすることで対処できると考えられる。そのための方法としては、次に挙げる方法が考えられる。   To solve the problem of degradation of the pollutant decomposing capability at a point away from the injection position, the injection material reaches far from the injection point, and the injection material is kept at a predetermined concentration or more in a predetermined repair target region. It is thought that it can be coped with by making it spread. As a method for that purpose, the following methods can be considered.

即ち、注入水中の注入物質の濃度を高くするか、又は単位時間当たりの注入水量を大きくすることにより、注入物質量を増やす対処法がある。しかし、この方法は、上記の分解能力の低下に対する抜本的な解決策とはいえず、依然として注入物質の濃度分布は注入地点を頂点として距離的に離れるほど急減していくことが容易に推測される。更に、この方法では注入地点の近くほど微生物の増殖が著しくなるため、この注入地点近傍では、増殖した微生物による土壌の目詰まり、いわゆるバイオファウリングが発生し、注入水の拡散が阻害されるという弊害を生じやすい。   That is, there is a countermeasure for increasing the amount of injected material by increasing the concentration of the injected material in the injected water or increasing the amount of injected water per unit time. However, this method is not a drastic solution to the above degradation of decomposition ability, and it is still presumed that the concentration distribution of the injected substance still decreases rapidly as the distance from the injection point increases. The Furthermore, in this method, the growth of microorganisms becomes more prominent near the injection point. Therefore, in the vicinity of the injection point, clogging of the soil by the grown microorganisms, so-called biofouling occurs, and the diffusion of the injected water is inhibited. Prone to harmful effects.

バイオファウリングにまでは至らなくとも、注入地点の近くで微生物が先行して増殖し、例えば半径2m以内の地下帯水層内において好気性従属栄養細菌数で1ミリリットル当たり10の9乗個以上の微生物濃度に達した場合には、仮にどのように多くの栄養組成物あるいは栄養水を注入したとしても、注入地点から数メートルも離れていない範囲内で、その殆どが増殖した微生物により消費し尽くされてしまう。これは、地下水中では一般的に物質移動速度が極めて低速であることに起因している。即ち、注入された栄養物質が注入地点から離れた周辺域まで拡散するのに時間がかかるため、拡散していく途中の段階で、例えば上記の2m以内の比較的注入地点に近い領域において、栄養物質はその領域内で増殖した微生物により殆ど補足吸収されてしまう。   Even if it does not lead to biofouling, microorganisms proliferate in the vicinity of the injection point, for example, the number of aerobic heterotrophic bacteria in the underground aquifer within a radius of 2 m is 10 9 or more per milliliter However, no matter how many nutritional compositions or nutrient waters are injected, most of them are consumed by the grown microorganisms within a few meters from the injection point. It will be exhausted. This is due to the fact that the mass transfer rate is generally very low in groundwater. That is, since it takes time for the injected nutrients to diffuse to the surrounding area away from the injection point, in the middle of the diffusion, for example, in the region relatively close to the injection point within the above 2 m. The substance is almost supplementarily absorbed by microorganisms grown in the area.

そこで、注入井戸の数を増やすことによって、分解能力の低下に対処することが次に考えられる。多数の注入井戸から分散して注入すれば、理論的には修復対象領域のほぼ全体で、均等な注入物質濃度を実現することが可能である。しかし、注入井戸を増やすことはそのままコストアップにつながり、また修復対象領域の立地条件によっては必ずしもこの方法を採用できるとは限らない。特に日本の都市部のように、建築物が密集して建て込んでいるような場所では、注入物質の入り口である注入井戸の設置場所を確保することが困難となる場合が多い。   Therefore, it is next considered to cope with a decrease in decomposition capability by increasing the number of injection wells. If dispersed from a large number of implantation wells, it is theoretically possible to achieve a uniform implantation material concentration in almost the entire region to be repaired. However, increasing the number of injection wells directly increases the cost, and this method cannot always be adopted depending on the location conditions of the area to be repaired. Particularly in places where buildings are densely built, such as in urban areas of Japan, it is often difficult to secure a place for the injection well, which is the entrance of the injection material.

このような従来の技術の問題点を克服する方法として、特開平11−207375号公報には、注入物質が注入地点から遠距離にまで拡散することを可能とし、修復対象領域のほぼ全体で微生物の増殖活動に必要な注入物質濃度を維持して、汚染物質の効率的な分解を起こすことのできる地下水汚染の修復方法が記載されている。この修復方法では、1つの注入井戸内にオゾン溶存水を栄養水と同時又は交互に注入することにより、微生物の増殖をコントロールすると共に、地中に溶存オゾン由来の酸素を供給するようになっている。
特開平11−207375号公報
As a method for overcoming such problems of the conventional technique, Japanese Patent Application Laid-Open No. 11-207375 discloses that the injected substance can diffuse to a long distance from the injection point, and microorganisms are almost entirely in the repair target region. A method for remediation of groundwater contamination is described that can maintain the concentration of infused material required for the breeding activity of the plant and cause efficient degradation of the pollutant. In this repair method, ozone dissolved water is injected into one injection well simultaneously with nutrient water simultaneously or alternately to control the growth of microorganisms and to supply oxygen derived from dissolved ozone into the ground. Yes.
Japanese Patent Laid-Open No. 11-207375

しかし、オゾン溶存水と栄養水を同時に注入した場合、栄養水に含まれる栄養組成物の種類によってはオゾンの酸化作用で分解されてしまい、栄養組成物が遠距離まで拡散しないという問題があった。一方、オゾンによる栄養組成物の分解を回避するためにオゾン溶存水と栄養水を交互に注入しても、同じ注入位置から同心円状に層を成して地下水内を拡がっていくため、結果的に注入位置付近で栄養水とオゾン水の接触が生じ、栄養組成物がオゾンにより分解され、栄養組成物が遠距離まで拡散しないという問題があった。   However, when ozone-dissolved water and nutrient water were injected at the same time, depending on the type of nutrient composition contained in the nutrient water, it was decomposed by the oxidizing action of ozone, and the nutrient composition did not diffuse to a long distance. . On the other hand, even if ozone-dissolved water and nutrient water are injected alternately to avoid decomposition of the nutrient composition by ozone, concentric layers are formed from the same injection position, and the groundwater is expanded. However, there is a problem that contact between nutrient water and ozone water occurs near the injection position, the nutrient composition is decomposed by ozone, and the nutrient composition does not diffuse to a long distance.

本発明は、このような従来の事情に鑑み、微生物を用いて汚染物質を分解する地下水汚染修復方法において、地中における栄養組成物濃度や酸素・オゾン濃度を特にコントロールすることなく、微生物の増殖を促す酸素や栄養組成物等の注入物質を、注入井戸内の注入地点から遠距離にまで拡散させる方法を提供することを目的とするものである。   In view of such conventional circumstances, the present invention is a groundwater contamination remediation method for decomposing pollutants using microorganisms, and the growth of microorganisms without particularly controlling the nutrient composition concentration and oxygen / ozone concentration in the ground. It is an object of the present invention to provide a method of diffusing an injection substance such as oxygen or a nutritional composition that promotes the above to a long distance from the injection point in the injection well.

上記目的を達成するため、本発明が提供する地下水汚染修復方法は、オゾン溶存水と微生物用栄養組成物を含む栄養水とを1つの注入井戸より汚染地下水帯に注入し、微生物により汚染物質を分解する地下水汚染修復方法において、オゾン溶存水と栄養水とが別々の注入管で注入井戸内に送られ、互いに深さ方向に離間している排出口から注入井戸内に注入されることを特徴とする。   In order to achieve the above object, the groundwater contamination remediation method provided by the present invention injects ozone-dissolved water and nutrient water containing a microbial nutrient composition into a contaminated groundwater zone from one injection well, and pollutants are removed by microorganisms. In the groundwater contamination remediation method that decomposes, ozone-dissolved water and nutrient water are sent into the injection well by separate injection pipes and injected into the injection well from outlets that are spaced apart from each other in the depth direction. And

上記本発明の地下水汚染修復方法においては、前記オゾン溶存水注入管と栄養水注入管の排出口が深さ方向に離間している距離が1〜3mであることが好ましい。   In the groundwater contamination repairing method of the present invention, it is preferable that a distance in which the discharge ports of the ozone-dissolved water injection pipe and the nutrient water injection pipe are separated in the depth direction is 1 to 3 m.

上記本発明の地下水汚染修復方法においては、前記オゾン溶存水と前記栄養水の単位時間当たりの注入量が略等しいことが好ましい。   In the groundwater contamination repairing method of the present invention, it is preferable that the injection amounts per unit time of the ozone-dissolved water and the nutrient water are substantially equal.

上記地下水汚染の修復方法を実施するための地下水汚染修復装置においては、オゾン溶存水と栄養組成物を含む栄養水とを1つの注入井戸より汚染地下水帯に注入し、微生物により汚染物質を分解する地下水汚染修復装置であって、オゾン溶存水製造装置によって製造されたオゾン溶存水を注入管により注入井戸内に供給するオゾン溶存水注入機構と、栄養水を注入管により注入井戸内に供給する栄養水注入機構とを備え、該オゾン溶存水注入管と該栄養水注入管とは互いに独立して構成されており、且つ該オゾン溶存水注入管の排出口の位置と該栄養水注入管の排出口の位置とが前記注入井戸内で深さ方向に離間していることを特徴としている。   In the groundwater contamination remediation apparatus for carrying out the above groundwater contamination remediation method, ozone-dissolved water and nutrient water containing a nutrient composition are injected into a contaminated groundwater zone from one injection well, and the contaminants are decomposed by microorganisms. Ozone dissolved water injection mechanism that supplies ozone dissolved water produced by an ozone dissolved water production device into an injection well through an injection pipe, and nutrition that supplies nutrient water into the injection well through an injection pipe A water injection mechanism, the ozone-dissolved water injection pipe and the nutrient water injection pipe are configured independently of each other, and the position of the discharge port of the ozone-dissolved water injection pipe and the discharge of the nutrient water injection pipe The position of the outlet is spaced apart in the depth direction within the injection well.

上記本発明の地下水汚染修復装置においては、前記オゾン溶存水注入管の排出口の位置及び前記栄養水注入管の排出口の位置の内の少なくとも一方が、前記注入井戸内で深さ方向に変更できても良い。   In the groundwater contamination repair apparatus of the present invention, at least one of the position of the discharge port of the ozone-dissolved water injection pipe and the position of the discharge port of the nutrient water injection pipe is changed in the depth direction in the injection well. You can do it.

本発明によれば、オゾン溶存水の注入位置と栄養水の注入位置とが1つの注入井戸において深さ方向に離間しているので、オゾンと栄養組成物が互いに接触するまでの時間をかせぐことが可能となる。よって、オゾンにより栄養組成物が早い段階で分解される事態が回避され、栄養組成物と酸素の遠距離到達性を大幅に改善することができる。その結果、より広い修復対象領域において、修復期間の短縮化を図ることが可能となるとともに、地上障害物等に制約されることなく、1つの注入井戸で広い修復対象領域を容易に修復することができる。   According to the present invention, since the injection position of ozone-dissolved water and the injection position of nutrient water are separated in the depth direction in one injection well, the time until ozone and the nutritional composition come into contact with each other is gained. Is possible. Therefore, the situation where the nutrient composition is decomposed at an early stage by ozone is avoided, and the reachability of the nutrient composition and oxygen over a long distance can be greatly improved. As a result, it is possible to shorten the repair period in a wider repair target area, and easily repair a wide repair target area with one injection well without being restricted by obstacles on the ground. Can do.

本発明が修復対象とする有機系汚染物質(以下、修復対象汚染物質と称する)としては、特に限定するものではないが、例えばガソリン、軽油、灯油、重油、原油、機械油、潤滑油、有機塩素系洗浄剤等の石油化学製品がある。また、それらの成分としては、ベンゼン、トルエン、エチルベンゼン、キシレン、ケトン類などの非塩素系有機化合物、あるいはトリクロロエチレン、テトラクロロエチレン、ジクロロエチレン、ダイオキシン、PCB、PCP(ペンタクロロフェノール)等の塩素系有機化合物が含まれる。   The organic pollutant to be repaired by the present invention (hereinafter referred to as the pollutant to be repaired) is not particularly limited. For example, gasoline, light oil, kerosene, heavy oil, crude oil, machine oil, lubricating oil, organic There are petrochemical products such as chlorinated detergents. These components include non-chlorine organic compounds such as benzene, toluene, ethylbenzene, xylene, and ketones, or chlorine-based organic compounds such as trichloroethylene, tetrachloroethylene, dichloroethylene, dioxin, PCB, and PCP (pentachlorophenol). included.

また、微生物用の栄養組成物としては、従来から汚染地下水の微生物学的修復法に利用されている一般的な栄養組成物が使用でき、例えば、窒素源やリン源となる無機化合物を含む塩類、pH調節剤等が含まれる。尚、修復対象汚染物質を微生物による共代謝作用で分解する場合には、上記の窒素源やリン源等の他に、その微生物が主に代謝する炭化水素類も上記栄養組成物に含まれる。また、地下水中で微生物が増殖するためには、上記の栄養組成物以外に酸素が必要である。従って上記栄養組成物を含む栄養水には酸素を溶存させることが望ましい。   In addition, as a nutrient composition for microorganisms, a general nutrient composition that has been conventionally used for the microbiological repair method of contaminated groundwater can be used, for example, salts containing inorganic compounds that serve as a nitrogen source or a phosphorus source. , PH adjusters and the like. In addition, when decomposing | disassembling the pollutant to be repaired by the co-metabolism action by microorganisms, in addition to said nitrogen source, a phosphorus source, etc., the hydrocarbons which the microorganisms mainly metabolize are also contained in the said nutrition composition. In addition, oxygen is required in addition to the above nutritional composition in order for microorganisms to grow in groundwater. Therefore, it is desirable to dissolve oxygen in the nutrient water containing the nutrient composition.

本発明では、上記の栄養組成物等を含む栄養水とは別に、オゾン溶存水を同じ注入井戸から汚染地下水帯に注入する。栄養水に酸素を溶存させた場合であっても、一般的に該栄養水中の溶存酸素濃度は、地中での拡散により注入地点から離れるに従って減少する。しかしながら、溶存酸素を含む栄養水とは別に、オゾン溶存水を汚染地下水帯に注入した場合、拡散に伴って当該オゾンが徐々に酸素に分解するので、拡散により減少する溶存酸素を相殺するように酸素が生成される。このため、注入地点から離れた周辺部であっても、溶存オゾン水を注入しない従来の溶存酸素分布と比較して、溶存酸素濃度の低下が抑制された分布状況を作り出すことができる。   In the present invention, ozone-dissolved water is injected into the contaminated groundwater zone from the same injection well separately from the nutrient water containing the nutrient composition and the like. Even when oxygen is dissolved in nutrient water, the dissolved oxygen concentration in the nutrient water generally decreases as the distance from the injection point increases due to diffusion in the ground. However, in addition to nutrient water containing dissolved oxygen, when ozone-dissolved water is injected into the contaminated groundwater zone, the ozone gradually decomposes into oxygen as it diffuses, so that dissolved oxygen that decreases due to diffusion is offset. Oxygen is produced. For this reason, even in the peripheral part away from the injection point, it is possible to create a distribution state in which the decrease in the dissolved oxygen concentration is suppressed as compared with the conventional dissolved oxygen distribution in which the dissolved ozone water is not injected.

更に、所定濃度のオゾンが存在する範囲では、地中の微生物はオゾンの強い酸化作用の影響を受けて増殖活動が抑制される結果、窒素やリン等の栄養成分の摂取も抑えられる。この傾向は溶存オゾンの拡散が少ないほど、即ちオゾン溶存水の注入地点に近いほど大きいため、注入地点の近くほど酸素及び栄養組成物の消費が抑制される。このように微生物の増殖活動を意図的に抑制することは、バイオレメディエーションの原理から考えると一見逆説的かもしれないが、広い範囲にわたって均一にバクテリアを増殖するには有効な方法である。即ち、この方法を利用することによって、オゾン溶存水に由来する酸素及び栄養水に含まれる栄養組成物の遠距離到達性を高め、広い修復対象領域で微生物による汚染物質の分解を促進させることができる。   Furthermore, in the range where ozone of a predetermined concentration exists, the microorganisms in the ground are influenced by the strong oxidizing action of ozone, and as a result, the intake of nutrient components such as nitrogen and phosphorus is suppressed. Since this tendency is greater as the dissolved ozone is less diffused, that is, closer to the injection point of ozone-dissolved water, the consumption of oxygen and nutrient composition is suppressed closer to the injection point. In this way, intentionally suppressing the growth activity of microorganisms may seem paradoxical from the viewpoint of bioremediation, but it is an effective method for uniformly growing bacteria over a wide range. That is, by using this method, it is possible to increase the long-range reach of the nutritional composition contained in oxygen and nutrient water derived from ozone-dissolved water, and to promote the degradation of pollutants by microorganisms in a wide area to be repaired. it can.

修復対象汚染物質の種類によっては、汚染物質自体がオゾンにより直接化学作用を受け、易分解性物質に変化することが期待できる。例えば、エチレン結合を持つ不飽和炭化水素類が修復対象汚染物質である場合は、その二重結合部分にオゾンが付加した後、この箇所が水との作用により切れてケトン又はアルデヒドが生成する。但し、例えば多環芳香族系化合物の一部の種類では、オゾンの化学作用により更に毒性の高い水溶性中間生成物が副次的に発生する場合がある。従って、オゾン溶存水の注入は慎重に行うべきであるが、中間生成物が化学反応的に速やかに次の段階に変化していくような場合はこの限りではない。   Depending on the type of pollutant to be repaired, it can be expected that the pollutant itself will be directly subjected to chemical action by ozone and converted into a readily degradable substance. For example, in the case where unsaturated hydrocarbons having an ethylene bond are pollutants to be repaired, ozone is added to the double bond portion, and then this portion is cut by the action of water to produce a ketone or an aldehyde. However, for example, in some types of polycyclic aromatic compounds, water-soluble intermediate products with higher toxicity may be generated as a secondary by the chemical action of ozone. Therefore, the ozone-dissolved water should be poured carefully, but this is not the case when the intermediate product changes rapidly to the next stage in a chemical reaction.

本発明においては、溶存オゾン水と栄養水とを別々の注入管を通して、同一の注入井戸から汚染地下水帯に注入する。その際、オゾン溶存水の注入管の排出口と栄養水の注入管の排出口とを、注入井戸内で深さ方向(上下方向)に離間させている。即ち、オゾン溶存水と栄養水は、別個に独立且つ異なる深さで汚染地下水帯に注入される。尚、オゾン溶存水と栄養水は、連続的又は間欠的に同時に注入してもよいし、時間的に交互に注入してもよい。   In the present invention, dissolved ozone water and nutrient water are injected into the contaminated groundwater zone from the same injection well through separate injection pipes. At that time, the discharge port of the ozone-dissolved water injection tube and the discharge port of the nutrient water injection tube are separated in the depth direction (vertical direction) within the injection well. That is, ozone-dissolved water and nutrient water are separately injected into the contaminated groundwater zone at different depths. The ozone-dissolved water and the nutrient water may be injected continuously or intermittently at the same time, or alternatively in time.

これによって、掘削する注入井戸の数が少なくて済むうえ、注入井戸内に異なる注入位置で注入されたオゾン溶存水と栄養水は、互いに実質的に混合することなく汚染地下水帯に注入される。その結果、オゾン溶存水と栄養水は、互いの混合や接触を避けながら汚染地下水帯に拡散するので、栄養水に含まれる栄養組成物の栄養成分がオゾンにより早い段階で酸化分解されることが回避される。よって、オゾン溶存水と栄養水を注入地点から遠く離れた地点にまで到達させることが可能となる。ここで、オゾン溶存水と栄養水は互いに実質的に混合することがないとは、互いに全く混ざらない状態のみを想定しているのではなく、各々の境界面近傍において、ある程度拡散が生じるような状態も含んでいる。   Thereby, the number of injection wells to be excavated can be reduced, and ozone-dissolved water and nutrient water injected at different injection positions in the injection well are injected into the contaminated groundwater zone without substantially mixing with each other. As a result, ozone-dissolved water and nutrient water diffuse into the contaminated groundwater zone while avoiding mixing and contact with each other, so the nutrient components of the nutrient composition contained in the nutrient water may be oxidized and decomposed at an early stage by ozone. Avoided. Therefore, it becomes possible to make ozone dissolved water and nutrient water reach the point far from the injection point. Here, the fact that ozone-dissolved water and nutrient water do not substantially mix with each other is not only assumed to be a state in which they are not mixed with each other, but rather is diffused to some extent in the vicinity of each boundary surface. It also includes the state.

オゾン溶存水の注入位置(排出口の位置)と栄養水の注入位置(排出口の位置)は、深さ方向に1〜3m離間していることが望ましい。その理由は、両者の深さ方向の間隔が1m未満では、注入量などによって異なるが、オゾン溶存水と栄養水が、汚染地下水帯に注入されてから約48時間以内に接触する可能性が高いからである。即ち、通常、オゾン溶存水を冷暗所に放置した場合、自然分解により約48時間後に、オゾン濃度は初期オゾン濃度の20%程度にまで低下する。従って、これ以降では酸化分解力も低下して栄養組成物が分解されにくくなることが推定されるため、互いに接触するのに少なくとも48時間を要する間隔である1mを最小距離と定めた。一方、両者の深さ方向の間隔が3mを超えると、オゾン溶存水と栄養水が拡散して接触するのに約1週間以上を要し、これ以降ではオゾン濃度はほぼゼロになり、オゾン溶存水の効果を発揮させることができない。そのため、汚染地下水帯に注入されてから1週間経過するまでに互いに接触し得る距離である3mを最大距離と定めた。尚、ここで示した1m及び3mの値は、プラス・マイナス20%程度の誤差を含むものである。   It is desirable that the ozone-dissolved water injection position (discharge port position) and the nutrient water injection position (discharge port position) be separated by 1 to 3 m in the depth direction. The reason for this is that if the distance between the two in the depth direction is less than 1 m, it differs depending on the amount of injection, etc., but ozone dissolved water and nutrient water are likely to come into contact within about 48 hours after being injected into the contaminated groundwater zone. Because. That is, normally, when ozone-dissolved water is left in a cool and dark place, the ozone concentration drops to about 20% of the initial ozone concentration after about 48 hours due to natural decomposition. Therefore, since it is presumed that the oxidative degradation power also decreases and the nutritional composition becomes difficult to be decomposed thereafter, 1 m, which is an interval that requires at least 48 hours to contact each other, was determined as the minimum distance. On the other hand, if the distance in the depth direction of both exceeds 3m, it takes about one week or more for the ozone-dissolved water and nutrient water to diffuse and come into contact with each other. The effect of water cannot be demonstrated. Therefore, the maximum distance of 3 m, which is a distance that can be contacted with each other until one week has passed since the injection into the contaminated groundwater zone, was determined. The values of 1 m and 3 m shown here include an error of about plus / minus 20%.

オゾン溶存水と栄養水の各々の単位時間当たりの注入量は、修復対象汚染物質の種類や修復対象領域の広さ等に応じて適宜定められる。一般的には、オゾン溶存水と栄養水の注入量は、略等しいことが望ましい。これにより、オゾン溶存水と栄養水の拡散速度を揃えることが可能となる。尚、ここで示した単位時間当たりの注入量の値は、プラス・マイナス20%程度の誤差を含むものである。また、単位時間当たりの注入量は、後述する各送水ポンプにおいて測定した値である。   The injection amount per unit time of ozone-dissolved water and nutrient water is appropriately determined according to the type of contaminant to be repaired, the size of the region to be repaired, and the like. In general, it is desirable that the injection amounts of ozone-dissolved water and nutrient water are substantially equal. Thereby, it becomes possible to arrange | equalize the diffusion rate of ozone dissolved water and nutrient water. Note that the value of the injection amount per unit time shown here includes an error of about plus or minus 20%. Moreover, the injection amount per unit time is a value measured in each water pump described later.

注入時のオゾン溶存水における溶存オゾン濃度には特に制限はないが、修復対象領域の周辺環境や修復対象領域の規模に応じて適宜調整を行うことが好ましい。本発明においては、オゾン溶存水の注入深さと栄養水の注入深さが異なっているため、溶存オゾン濃度がある程度高くても注入井戸付近の微生物が完全に死滅することは無く、およそ半数の微生物は栄養組成物とともに地下水中を拡がっていくことが可能であると考えられる。従って、オゾンは徐々に分解して酸素になることを考えると、注入時の溶存オゾン濃度は高いことが好ましい。但し、注入時の溶存オゾン濃度を高めると、オゾン溶存水製造装置など関連する設備コストは高くなる点に留意すべきである。   Although there is no restriction | limiting in particular in the dissolved ozone density | concentration in the ozone dissolved water at the time of injection | pouring, It is preferable to adjust suitably according to the surrounding environment of the restoration object area | region, and the scale of the restoration object area | region. In the present invention, the injection depth of ozone-dissolved water is different from the injection depth of nutrient water, so even if the dissolved ozone concentration is high to some extent, microorganisms near the injection well are not completely killed, and about half of the microorganisms It is thought that it is possible to expand the groundwater with the nutritional composition. Therefore, considering that ozone gradually decomposes into oxygen, it is preferable that the dissolved ozone concentration at the time of injection is high. However, it should be noted that when the concentration of dissolved ozone at the time of injection is increased, the related equipment costs such as the ozone dissolved water production apparatus increase.

尚、年間を通じて15℃程度の水温に保たれている地下水中では、オゾンが酸素に変わる半減期は温度変化の大きい地表環境と比べて安定しているが、注入水や溶存オゾン水のpHを中性域中でも可能な限り低く調整することにより、溶存オゾンの半減期を更に延ばし、酸素や栄養組成物の遠距離到達性を一層高めることが可能である。逆に、注入井戸近傍でのオゾン分解を促進させたい場合には、注入水やオゾン溶存水を可能な限りアルカリ性側にpH調整すると良い。これらいずれの場合でも、pHは微生物の生理条件に適合する範囲内で調整されていることが必要である。   In groundwater, which is maintained at a water temperature of about 15 ° C throughout the year, the half-life in which ozone is converted to oxygen is more stable than the surface environment where the temperature changes greatly. By adjusting as low as possible even in the neutral range, it is possible to further extend the half-life of dissolved ozone and further improve the long-range reachability of oxygen and nutritional compositions. Conversely, when ozonolysis near the injection well is to be promoted, the pH of the injection water or ozone-dissolved water should be adjusted to the alkaline side as much as possible. In any of these cases, the pH needs to be adjusted within a range compatible with the physiological conditions of the microorganism.

地下水に注入されたオゾン溶存水中のオゾンは、地中でやがて完全に酸素に変化するので、それ以降の流域の微生物活動や修復対象領域の外の地下環境に影響を及ぼすことはない。また、オゾンの酸素への分解反応は、他の種類の酸化剤での反応に見られるような大きなpH変化を誘発することもない。   The ozone in the ozone-dissolved water injected into the groundwater will eventually be completely converted into oxygen in the ground, and will not affect the subsequent microbial activity in the basin and the underground environment outside the area to be repaired. Also, the decomposition reaction of ozone to oxygen does not induce the large pH change as seen in reactions with other types of oxidants.

本発明では、オゾンを水に溶けた状態のオゾン溶存水として地下環境中に作用させるため、オゾンがガスとして地上に放出されることはない。また、大気中でのオゾンガスと比較して、水に溶けた溶存オゾンは周囲に水が介在する分だけ大気中よりも速く分解反応が進むため、地下水中の溶存オゾンが再びオゾンガスとして地表に上昇して悪影響を及ぼすことはない。従って、汚染現場付近の地表空気中のオゾン濃度を、日本での作業安全基準で設定されている0.1質量ppm、あるいはWHOでの基準の0.05質量ppm以下に保つことは容易である。   In the present invention, ozone is not released as a gas to the ground because it acts in the underground environment as ozone-dissolved water in a state where ozone is dissolved in water. Compared with ozone gas in the atmosphere, dissolved ozone dissolved in water undergoes a decomposition reaction faster than in the atmosphere due to the presence of water in the surroundings, so dissolved ozone in groundwater rises again to the surface as ozone gas. And will not adversely affect it. Therefore, it is easy to keep the ozone concentration in the surface air near the pollution site at 0.1 mass ppm set by the work safety standard in Japan or 0.05 mass ppm or less of the standard by WHO. .

尚、オゾン溶存水や栄養水の排出口(注入位置)の地面からの深さ、それぞれの注入量、オゾン溶存水と栄養水を交互に注入する場合はその間隔など、種々の運転条件は、汚染修復対象領域内の地下帯水層中で個々の注入物質が最適な挙動や拡散・混合状態を実現できるように、地下データの解析やシミュレーション等を利用して予め決定しておくのが好ましい。   In addition, various operating conditions, such as the depth from the ground of the discharge port (injection position) of ozone-dissolved water and nutrient water, the respective injection amounts, and the interval when ozone-dissolved water and nutrient water are alternately injected, It is preferable to determine in advance using analysis and simulation of underground data so that individual injected materials can achieve optimal behavior and diffusion / mixing in the aquifer in the target area .

上記の如く、本発明では、栄養水とオゾン溶存水を異なる注入深さで汚染地下水帯に注入することにより、両者の早い段階での混合や接触を回避して栄養成分の分解を抑制し、よって注入地点から離れたところに栄養組成物を届けることができる。また、早い段階でオゾンが栄養成分の分解に消費されることがないので、注入地点から離れたところに高い濃度のままオゾンを届けることができる。これにより、微生物の活動を広範囲に亘って適度に抑制することが可能となるため、微生物による栄養成分の摂取が適度に抑えられる範囲も広くなり、栄養組成物の遠距離到達性を高めることが可能となる。   As described above, in the present invention, by injecting nutrient water and ozone-dissolved water into the contaminated groundwater zone at different injection depths, avoiding mixing and contact at an early stage of both to suppress decomposition of nutrient components, Therefore, the nutritional composition can be delivered to a place away from the injection point. Moreover, since ozone is not consumed for decomposition | disassembly of a nutrient component at an early stage, ozone can be delivered with the high density | concentration in the place away from the injection | pouring point. As a result, the activity of microorganisms can be moderately suppressed over a wide range, so the range in which the intake of nutritional components by microorganisms can be moderately increased is widened, and the reachability of the nutritional composition to a long distance can be increased. It becomes possible.

次に、本発明の修復装置を、その一具体例を示す図1を参照して説明する。図1には、オゾン溶存水と栄養組成物を含む栄養水とを注入井戸に注入する地下水汚染修復装置1が、1つの注入井戸2及びその周りの不飽和帯水層A、及び飽和帯水層Bと共に示されている。また、注入井戸2は、不飽和帯水層Aの下層に位置する飽和帯水層Bに達するように設けられている。   Next, the repair device of the present invention will be described with reference to FIG. In FIG. 1, a groundwater contamination remediation apparatus 1 for injecting ozone-dissolved water and nutrient water containing a nutrient composition into an injection well includes one injection well 2, an unsaturated aquifer A around it, and saturated aquifer. Shown with layer B. Moreover, the injection well 2 is provided so as to reach the saturated aquifer B located below the unsaturated aquifer A.

地下水汚染修復装置1は、オゾン溶存水注入機構10と栄養水注入機構20とから構成されている。オゾン溶存水注入機構10は、オゾン溶存水を製造するオゾン溶存水製造装置12と、オゾン溶存水製造装置12に供給する水を貯める貯水槽11と、オゾン溶存水製造装置12で製造されたオゾン溶存水を昇圧する送水ポンプ13と、先端部に排出口14aを有するオゾン溶存水注入管14とから構成されている。   The groundwater contamination repairing apparatus 1 includes an ozone-dissolved water injection mechanism 10 and a nutrient water injection mechanism 20. The ozone-dissolved water injection mechanism 10 includes an ozone-dissolved water production apparatus 12 that produces ozone-dissolved water, a water tank 11 that stores water to be supplied to the ozone-dissolved water production apparatus 12, and ozone produced by the ozone-dissolved water production apparatus 12. It is comprised from the water supply pump 13 which pressurizes dissolved water, and the ozone dissolved water injection pipe 14 which has the discharge port 14a in the front-end | tip part.

オゾン溶存水製造機構10は、溶存オゾンが外気に逃げないように、全体的に気密構造になっている。オゾン溶存水製造装置10のオゾン発生方式には、紫外線式、放電式、水電解式等の方式があり、設備の規模、コスト等を考慮して適宜選択される。一般的には、設備コストを抑えるときには紫外線式が採用され、大規模な設備になるときは放電式のオゾナイザーが採用される。また、オゾン溶存水に接液するオゾン溶存水注入管14、オゾン溶存水用送水ポンプ13等の材質は、オゾン溶存水に耐える耐薬品性が必要であり、例えば、テフロン(登録商標)や塩化ビニル等を用いるのが望ましい。   The ozone-dissolved water production mechanism 10 has an overall airtight structure so that the dissolved ozone does not escape to the outside air. The ozone generation method of the ozone-dissolved water production apparatus 10 includes an ultraviolet method, a discharge method, a water electrolysis method, and the like, which are appropriately selected in consideration of the scale of equipment, cost, and the like. In general, an ultraviolet type is adopted to reduce the equipment cost, and a discharge type ozonizer is adopted for a large-scale equipment. In addition, materials such as the ozone-dissolved water injection pipe 14 that contacts the ozone-dissolved water and the water pump 13 for ozone-dissolved water must have chemical resistance that can withstand the ozone-dissolved water. For example, Teflon (registered trademark) or chloride It is desirable to use vinyl or the like.

一方、栄養水注入機構20は、栄養組成物等を溶解した栄養水を調整し且つ蓄える栄養水貯溜槽21と、栄養水貯溜槽21内の栄養水を昇圧する送水ポンプ23と、先端部に排出口24aを有する栄養水注入管24とから構成される。   On the other hand, the nutrient water injection mechanism 20 adjusts and stores the nutrient water in which the nutrient composition or the like is dissolved, a water supply pump 23 that boosts the nutrient water in the nutrient water reservoir 21, and a tip portion. It is comprised from the nutrient water injection pipe 24 which has the discharge port 24a.

注入井戸2に挿入されているオゾン溶存水注入管14及び栄養水注入管24は、各々の排出口14a及び24aが注入井戸2内で深さ方向に離間して設けてある。また、この深さ方向に離間する両排出口14a、24a間の距離は、約1〜3mの範囲内であることが望ましい。上記排出口14a及び/又は24aの深さ方向の位置は、固定されていても良いし、変更可能であっても良い。尚、排出口の深さを変更する場合にも、オゾン溶存水注入管の排出口と栄養水注入管の排出口の互いの位置は、深さ方向に常に約1〜3m離間していることが望ましい。   The ozone-dissolved water injection pipe 14 and the nutrient water injection pipe 24 inserted in the injection well 2 are provided with discharge ports 14a and 24a spaced apart in the depth direction in the injection well 2. In addition, the distance between the discharge ports 14a and 24a that are separated in the depth direction is preferably within a range of about 1 to 3 m. The position in the depth direction of the outlets 14a and / or 24a may be fixed or changeable. Even when the depth of the discharge port is changed, the positions of the discharge port of the ozone-dissolved water injection tube and the discharge port of the nutrient water injection tube should always be about 1 to 3 m apart in the depth direction. Is desirable.

更に、排出口の深さを変更しながら連続して注入する場合は、一方の排出口の任意の時点における位置が、当該時点前48時間から当該時点後48時間までの間に移動する他方の排出口のいずれの位置に対しても、常に1m以上離間していることが望ましい。また、排出口の深さを変更しながら交互に注入する場合は、一方の排出口の任意の注入時点における注入位置が、当該注入時点前48時間前から当該注入時点後48時間までの間に他方の排出口から注入が行われるとき、その注入位置に対しても常に、1m以上離間していることが望ましい。なぜなら、この距離が1mより短ければ、前述した理由により栄養成分がオゾンにより分解されてしまうからである。   Furthermore, when continuously injecting while changing the depth of the discharge port, the position of one discharge port at any point in time moves from 48 hours before that point to 48 hours after that point. It is desirable that it is always 1 m or more away from any position of the discharge port. In addition, when alternately injecting while changing the depth of the discharge port, the injection position at an arbitrary injection point of one discharge port is between 48 hours before the injection point and 48 hours after the injection point. When injection is performed from the other discharge port, it is desirable that the injection position is always 1 m or more away. This is because if this distance is shorter than 1 m, the nutrient component is decomposed by ozone for the reason described above.

オゾン溶存水注入管14の排出口14a及び栄養水注入管24の排出口24aの深さ方向の位置の変更は、オゾン溶存水注入管14及び栄養水注入管24の注入井戸2への挿入深さを変えることで可能となる。このとき、図1に示されるように、各注入管14、24と各送水ポンプ13、23の間にベローズやフッ素樹脂ホース等のフレキシブル管14b、24bを設けることによって、容易に排出口14a、24aの位置を変更することが可能となる。また、オゾン溶存水注入機構10及び/又は栄養水注入機構20ごとに、注入井戸2内に排出口の深さ方向の位置が異なる注入管を複数本設け、切替バルブや前述したフレキシブル管等の切替手段を用いて適宜切り替えることで、排出口の深さを変更することもできる。   The change of the depth direction position of the discharge port 14a of the ozone-dissolved water injection tube 14 and the discharge port 24a of the nutrient water injection tube 24 is the insertion depth of the ozone-dissolved water injection tube 14 and the nutrient water injection tube 24 into the injection well 2. It becomes possible by changing the height. At this time, as shown in FIG. 1, by providing flexible pipes 14b, 24b such as bellows or a fluororesin hose between each of the injection pipes 14, 24 and each of the water supply pumps 13, 23, the outlet 14a, It becomes possible to change the position of 24a. Further, for each ozone-dissolved water injection mechanism 10 and / or nutrient water injection mechanism 20, a plurality of injection pipes having different positions in the depth direction of the discharge port are provided in the injection well 2, and a switching valve, the flexible pipe described above, etc. The depth of the discharge port can be changed by appropriately switching using the switching means.

上記の構造により、オゾン溶存水及び栄養水は、各々独立した注入管によって、1つの注入井戸内で互いに異なる深さに位置している排出口まで供給され、そこから帯水層の汚染地下水帯に注入される。これによって、注入井戸及びその近くでのオゾン溶存水と栄養水の混合を妨げることが可能となり、微生物の増殖を促す酸素や栄養物質等の注入物質を、注入地点から遠距離の地中へ拡散させることが可能となる。   With the above structure, ozone-dissolved water and nutrient water are supplied by independent injection pipes to outlets located at different depths in one injection well, from which contaminated groundwater zone of the aquifer Injected into. This makes it possible to prevent mixing of ozone-dissolved water and nutrient water in and near the injection well, and diffuses injection substances such as oxygen and nutrients that promote the growth of microorganisms into the ground at a distance from the injection point. It becomes possible to make it.

尚、図1に示すように、注入井戸2の開口部に、テフロン(登録商標)パッキン等のシール部材3を設けて、オゾン溶存水から抜け出たオゾンガスが注入井戸2の開口部分を経て大気に漏れないようにしても良い。また、両排出口14a、24aの間に、注入井戸2の内径と略一致する円形の邪魔板等のセパレータ(図示せず)を設けて、オゾン溶存水と栄養水とが互いに確実に分離した状態で汚染地下水帯に注入されるようにしても良い。   As shown in FIG. 1, a sealing member 3 such as Teflon (registered trademark) packing is provided at the opening of the injection well 2, and ozone gas that has escaped from the ozone-dissolved water passes through the opening of the injection well 2 into the atmosphere. You may make it not leak. In addition, a separator (not shown) such as a circular baffle substantially matching the inner diameter of the injection well 2 is provided between the discharge ports 14a and 24a, so that ozone-dissolved water and nutrient water are reliably separated from each other. You may make it inject | pour into a contaminated groundwater zone in a state.

全深さで帯水層を形成するライシメータ実験設備を用い、地下4mの帯水層部分が飽和炭化水素系化合物によって汚染されているサイトを模して、以下のような実験を行った。即ち、微生物用栄養組成物として窒素及びリンを含む無機塩類を所定濃度で添加した栄養水、及びオゾンを溶存させたオゾン溶存水をそれぞれ調整し、これら栄養水及びオゾン溶存水を汚染源の中心部に設置した1つの注入井戸より連続的に注入して、地下水汚染の微生物学的修復実験を行った。   Using a lysimeter experimental facility that forms an aquifer at all depths, the following experiment was conducted, simulating a site where the aquifer portion at 4 m underground was contaminated with saturated hydrocarbon compounds. That is, nutrient water to which inorganic salts containing nitrogen and phosphorus are added at a predetermined concentration as a nutrient composition for microorganisms, and ozone-dissolved water in which ozone is dissolved are prepared, respectively. A microbiological remediation experiment for groundwater contamination was conducted by continuously injecting from one injection well installed in the area.

その際、オゾン溶存水は、オゾンの初期濃度が9.1mg/リットルとなるように調整した。一方、栄養水は、硝酸カリウムの濃度が3.0mg/リットル、リン酸水素二カリウムの濃度が35mg/リットルとなるように調整した。このオゾン溶存水と栄養水を別々に同一の注入井戸内に注入したが、その際、オゾン溶存水の注入位置は地下3m、栄養水の注入位置は地下5mとし、それぞれの注入量は毎時30リットルとした。   At that time, the ozone-dissolved water was adjusted so that the initial concentration of ozone was 9.1 mg / liter. On the other hand, the nutrient water was adjusted so that the concentration of potassium nitrate was 3.0 mg / liter and the concentration of dipotassium hydrogen phosphate was 35 mg / liter. The ozone-dissolved water and nutrient water were separately injected into the same injection well. At that time, the injection position of ozone-dissolved water was 3 m underground, the injection position of nutrient water was 5 m underground, and each injection amount was 30 hours per hour. Liters.

注入井戸周辺に複数の観測井戸を設置して定期的に採水を行い、各注入成分の拡散の程度を調査した。尚、注入前の地下水中の溶存酸素濃度は平均で1.6mg/リットルであった。また、観測井戸内における好気性従属栄養細菌数については、それぞれの井戸からサンプル水を採取して、別途行った標準寒天培地による平板希釈培地法により計測した。   Several observation wells were set up around the injection well, and water was collected periodically to investigate the degree of diffusion of each injection component. In addition, the dissolved oxygen concentration in the groundwater before injection was 1.6 mg / liter on average. In addition, the number of aerobic heterotrophic bacteria in the observation wells was measured by collecting a sample water from each well and separately performing a plate dilution medium method using a standard agar medium.

実験開始前の各観測井戸での地下4mにおける総好気性従属栄養細菌数は、注入井戸から水平距離でそれぞれ1m、4m、8m離れた地点の3つの観測井戸内では、いずれも1ミリリットル当たり10の6乗個台で一致していた。   The total number of aerobic heterotrophic bacteria in the 4m underground of each observation well before the start of the experiment was 10 per milliliter for each of the three observation wells at 1m, 4m, and 8m horizontally from the injection well. Of the 6th power unit.

実験の結果、注入開始から8週間後の時点での各観測井戸での総好気性従属栄養細菌数は、注入井戸から水平距離でそれぞれ1m、4m、8m離れた地点の3つの観測井戸内で、それぞれ1ミリリットル当たり、10の6乗個台、10の8乗個台、10の8乗個台となっていた。また、溶存酸素濃度は、同様にそれぞれ、5.0mg/リットル、6.1mg/リットル、5.7mg/リットルとほぼ均等であった。この結果から、微生物による汚染物質の分解は、修復対象地下領域である注入井戸から半径8m以内においてほぼ均等に進行していることが解った。   As a result of the experiment, the total number of aerobic heterotrophic bacteria in each observation well at 8 weeks after the start of injection is within the three observation wells at a distance of 1 m, 4 m, and 8 m respectively from the injection well. , 10 milliliter units, 10 eighth units, and 10 eighth units per milliliter, respectively. Similarly, the dissolved oxygen concentrations were approximately equal to 5.0 mg / liter, 6.1 mg / liter, and 5.7 mg / liter, respectively. From this result, it was found that the decomposition of the pollutants by the microorganisms progressed almost evenly within a radius of 8 m from the injection well, which is the underground region to be repaired.

比較例として、上記実施例と同じ濃度の栄養組成物を含む栄養水に初期濃度3.5mg/リットルとなるようにオゾンを溶存させて、この栄養水を毎時60リットルの注入量で1つの注入井戸地下4mの注入位置で帯水層部分に連続注入し、実施例と同じ条件で微生物学的修復実験を行った。尚、注入前の地下4m部分での地下水の溶存酸素濃度は平均1.8mg/リットルであった。   As a comparative example, ozone is dissolved in nutrient water containing the same concentration of nutrient composition as in the above example so that the initial concentration is 3.5 mg / liter, and this nutrient water is injected at a rate of 60 liters per hour. The aquifer was continuously injected into the aquifer at an injection position 4 m below the well, and a microbiological repair experiment was performed under the same conditions as in the example. In addition, the dissolved oxygen concentration of the groundwater in the underground 4 m part before injection was 1.8 mg / liter on average.

実験の結果、注入開始から8週間後の時点での各観測井戸の地下4m部分での総好気性従属栄養細菌数は、注入井戸から水平距離で1m、4m、8mの各地点で、それぞれ1ミリリットル当たり、10の7乗個台、10の8乗個台、10の6乗台となっており、水平距離で4mの地点では微生物の分解活性が高まっていたが、8m離れた地点では微生物分解活性が高まっていなかった。また、酸素濃度は、同様にそれぞれ4.2mg/リットル、4.8mg/リットル、3.5mg/リットルと距離が離れるほど上記実施例に比べて低い値であった。   As a result of the experiment, the total number of aerobic heterotrophic bacteria in the 4m underground part of each observation well at 8 weeks after the start of injection was 1 at horizontal points of 1m, 4m and 8m respectively. Per 10 milliliters, 10 7 units, 10 8 units, 10 6 units, and the activity of degrading microorganisms increased at a horizontal distance of 4 m, but at 8 m away Degradation activity was not increased. Similarly, the oxygen concentrations were 4.2 mg / liter, 4.8 mg / liter, and 3.5 mg / liter, respectively, and the values were lower as compared with the above examples as the distance increased.

本発明の地下水汚染修復装置の一具体例を示す概略の断面図である。It is general | schematic sectional drawing which shows one specific example of the groundwater contamination repair apparatus of this invention.

符号の説明Explanation of symbols

1 地下水汚染修復装置
2 注入井戸
10 オゾン溶存水注入機構
11 貯水槽
12 オゾン溶存水製造装置
13 オゾン溶存水用送水ポンプ
14 オゾン溶存水注入管
14a 排出口
20 栄養水注入機構
21 栄養水貯溜槽
23 栄養水用送水ポンプ
24 栄養水注入管
24a 排出口
A 不飽和帯水層
B 飽和帯水層
DESCRIPTION OF SYMBOLS 1 Groundwater contamination repair apparatus 2 Injection well 10 Ozone dissolved water injection mechanism 11 Water storage tank 12 Ozone dissolved water manufacturing apparatus 13 Water supply pump for ozone dissolved water 14 Ozone dissolved water injection pipe 14a Outlet 20 Nutrition water injection mechanism 21 Nutrition water storage tank 23 Feeding pump for nutrient water 24 Nutrient water injection pipe 24a Discharge port A Unsaturated aquifer B Saturated aquifer

Claims (5)

オゾン溶存水と微生物用栄養組成物を含む栄養水とを1つの注入井戸より汚染地下水帯に注入し、微生物により汚染物質を分解する地下水汚染修復方法において、オゾン溶存水と栄養水とが別々の注入管で注入井戸内に送られ、互いに深さ方向に離間している排出口から注入井戸内に注入されることを特徴とする地下水汚染修復方法。   In the groundwater pollution remediation method in which ozone-dissolved water and nutrient water containing nutrient composition for microorganisms are injected into a contaminated groundwater zone from one injection well and the pollutants are decomposed by microorganisms, ozone-dissolved water and nutrient water are separated. A method for repairing groundwater contamination characterized by being injected into an injection well through an injection port which is sent into the injection well by an injection pipe and spaced apart in the depth direction. 前記オゾン溶存水注入管と栄養水注入管の排出口が深さ方向に離間している距離が1〜3mであることを特徴とする、請求項1に記載の地下水汚染修復方法。   The groundwater contamination repairing method according to claim 1, wherein a distance in which the discharge ports of the ozone-dissolved water injection pipe and the nutrient water injection pipe are spaced apart in the depth direction is 1 to 3 m. 前記オゾン溶存水と前記栄養水の単位時間当たりの注入量が略等しいことを特徴とする、請求項1又は2に記載の地下水汚染修復方法。   The method for repairing groundwater contamination according to claim 1 or 2, wherein injection amounts per unit time of the ozone-dissolved water and the nutrient water are substantially equal. オゾン溶存水と栄養組成物を含む栄養水とを1つの注入井戸より汚染地下水帯に注入し、微生物により汚染物質を分解する地下水汚染修復装置であって、オゾン溶存水製造装置によって製造されたオゾン溶存水を注入管により注入井戸内に供給するオゾン溶存水注入機構と、栄養水を注入管により注入井戸内に供給する栄養水注入機構とを備え、該オゾン溶存水注入管と該栄養水注入管とは互いに独立して構成されており、且つ該オゾン溶存水注入管の排出口の位置と該栄養水注入管の排出口の位置とが前記注入井戸内で深さ方向に離間していることを特徴とする地下水汚染修復装置。   Ozone dissolved water and nutrient water containing nutrient composition are injected into a contaminated groundwater zone from a single injection well and decomposed by microorganisms. An ozone-dissolved water injection mechanism for supplying dissolved water into the injection well through the injection pipe and a nutrient-water injection mechanism for supplying nutrient water into the injection well through the injection pipe, the ozone-dissolved water injection pipe and the nutrient water injection The tube is configured independently of each other, and the position of the discharge port of the ozone-dissolved water injection tube and the position of the discharge port of the nutrient water injection tube are separated in the depth direction within the injection well. Groundwater contamination repair device characterized by that. 前記オゾン溶存水注入管の排出口の位置及び前記栄養水注入管の排出口の位置の内の少なくとも一方が、前記注入井戸内で深さ方向に変更できることを特徴とする、請求項4に記載の地下水汚染修復装置。   The at least one of the position of the discharge port of the ozone-dissolved water injection pipe and the position of the discharge port of the nutrient water injection pipe can be changed in the depth direction within the injection well. Groundwater pollution repair equipment.
JP2007315640A 2007-12-06 2007-12-06 Groundwater remediation method and apparatus therefor Pending JP2009136767A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007315640A JP2009136767A (en) 2007-12-06 2007-12-06 Groundwater remediation method and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007315640A JP2009136767A (en) 2007-12-06 2007-12-06 Groundwater remediation method and apparatus therefor

Publications (1)

Publication Number Publication Date
JP2009136767A true JP2009136767A (en) 2009-06-25

Family

ID=40867982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007315640A Pending JP2009136767A (en) 2007-12-06 2007-12-06 Groundwater remediation method and apparatus therefor

Country Status (1)

Country Link
JP (1) JP2009136767A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011167646A (en) * 2010-02-19 2011-09-01 Takenaka Komuten Co Ltd Method for decomposing organic halogen compound
CN109650512A (en) * 2018-12-28 2019-04-19 广西博世科环保科技股份有限公司 A kind of underground water in situ chemical oxidation restorative procedure and prosthetic device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011167646A (en) * 2010-02-19 2011-09-01 Takenaka Komuten Co Ltd Method for decomposing organic halogen compound
CN109650512A (en) * 2018-12-28 2019-04-19 广西博世科环保科技股份有限公司 A kind of underground water in situ chemical oxidation restorative procedure and prosthetic device

Similar Documents

Publication Publication Date Title
US5560737A (en) Pneumatic fracturing and multicomponent injection enhancement of in situ bioremediation
ES2417010T3 (en) Compositions for removing hydrocarbons and halogenated hydrocarbons from contaminated environments
US6268205B1 (en) Subsurface decontamination method
NO159485B (en) PROCEDURE FOR TREATING HYDROCARBON-POLLUTED GROUND WATER AND GROUND.
JP4756651B2 (en) Purification system and method for oil-contaminated soil
CN102774965A (en) In-situ repair system for treating pollution of underground water
JP2010269244A (en) Additive and method for cleaning medium contaminated with mineral oil
JP3565476B2 (en) Method and apparatus for purifying contaminated groundwater and / or contaminated stratum
JP2012125665A (en) Method for purifying soil pollution
JP2009045558A (en) In-situ purification method of polluted groundwater
Nimmer et al. In‐Situ ozonation of contaminated groundwater
JPH10216696A (en) Method for supplying air in reconditioning contaminated soil and device therefor
JP2007268401A (en) In-situ cleaning method and in-situ cleaning system of contaminated soil and/or ground water
JP2009136767A (en) Groundwater remediation method and apparatus therefor
JP2005177658A (en) Equipment and method for decontaminating contamination of soil and ground water
JP3458688B2 (en) Method and apparatus for repairing groundwater contamination
JP2007253075A (en) Soil purifying method
JP2008279403A (en) In situ cleaning method of contaminated soil and contaminated underground water
JP2017131802A (en) Underground soil remediation system
JP2011173037A (en) Method for cleaning soil or underground water and method for confirming concentration of microbial nutritive composition
JP2004130166A (en) Method for restoring polluted soil or the like
JP2010240594A (en) Decomposition treatment method of contaminated soil and contaminated ground water
JP2011000567A (en) Method and system for decomposing/purifying soil and groundwater polluting substances
JP2012035181A (en) In situ purification method of contaminated soil and groundwater
JP2006007182A (en) In situ bioremediation construction method accompanied by preculture, and system therefor