JP5165930B2 - Purification method for groundwater contamination - Google Patents

Purification method for groundwater contamination Download PDF

Info

Publication number
JP5165930B2
JP5165930B2 JP2007147224A JP2007147224A JP5165930B2 JP 5165930 B2 JP5165930 B2 JP 5165930B2 JP 2007147224 A JP2007147224 A JP 2007147224A JP 2007147224 A JP2007147224 A JP 2007147224A JP 5165930 B2 JP5165930 B2 JP 5165930B2
Authority
JP
Japan
Prior art keywords
groundwater
drug
toc
orp
organic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007147224A
Other languages
Japanese (ja)
Other versions
JP2008296176A (en
Inventor
圭一 鈴木
卓也 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2007147224A priority Critical patent/JP5165930B2/en
Publication of JP2008296176A publication Critical patent/JP2008296176A/en
Application granted granted Critical
Publication of JP5165930B2 publication Critical patent/JP5165930B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • Y02W10/12

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Processing Of Solid Wastes (AREA)

Description

本発明は、地下水汚染の浄化方法に関する。   The present invention relates to a method for purifying groundwater contamination.

現在、揮発性有機化合物による土壌・地下水汚染に対して、バイオレメディエーション法を用いた汚染浄化対策が広く行われるようになり、その適用性が広範囲に認められつつある。バイオレメディエーション法のなかに、原位置の微生物を活性化するバイオスティミュレーション法がある。この方法は、薬剤が拡散して分解することで地下水質を嫌気性に移行させ、微生物相の変化に伴い揮発性有機化合物の嫌気性微生物分解が進行させる方法である。   At present, pollution control measures using the bioremediation method have been widely carried out against soil and groundwater contamination by volatile organic compounds, and its applicability has been widely recognized. Among bioremediation methods, there is a biostimulation method that activates in situ microorganisms. This method is a method in which the chemical is diffused and decomposed to transfer the groundwater quality to anaerobic and the anaerobic microbial decomposition of the volatile organic compound proceeds along with the change of the microflora.

バイオスティミュレーション法においては、地下水汚染部の水質をモニタリングし、薬剤の投入量、投入間隔、投入場所を決定する試みが行われている(特許文献1及び2参照)。
特開2005−279394号公報 特開2007−98330号公報
In the biostimulation method, an attempt has been made to monitor the water quality of a groundwater contaminated portion and determine the amount, interval, and location of a drug (see Patent Documents 1 and 2).
JP 2005-279394 A JP 2007-98330 A

しかしながら、従来のモニタリングは、設定した薬剤量を設定した周期で投入した結果の水質変化(汚染物質の濃度変化)を確認するものに過ぎなかった。とりわけ、バイオスティミュレーション法はその浄化効率や浄化期間が汚染部の環境に左右されやすいという問題があるため、浄化期間の短縮化、浄化効率の向上、コストの削減などを実現できる新たな方法が望まれている。   However, the conventional monitoring only confirms the change in water quality (concentration change of the pollutant) as a result of adding the set amount of drug in the set cycle. In particular, the biostimulation method has the problem that its purification efficiency and purification period are easily affected by the environment of the contaminated part, so a new method that can shorten the purification period, improve the purification efficiency, reduce costs, etc. Is desired.

本発明は、汚染浄化能力を有する嫌気性微生物を利用する地下水汚染の浄化方法であって、前記嫌気性微生物のための薬剤を投入すること、及び、地下水の総有機炭素量(TOC)、pH、溶存酸素(DO)及び酸化還元電位(ORP)を含む項目をモニタリングすることを含み、前記モニタリングの結果から地下水汚染部における地下水質変化サイクルを判定して前記薬剤の投入条件を設定することを含み、前記地下水質変化サイクルが、前記薬剤の投入・到達に伴うTOCの上昇が生じる薬剤投入・到達過程と、前記薬剤の分解と有機酸の生成とに伴うTOC、DO及びpHの低下が生じる有機酸生成過程と、前記有機酸の分解と還元性物質の生成とに伴うTOC及びORPの低下とpHの上昇が生じる有機酸分解過程と、還元性物質の消費と酸化性物質の流入に伴うORP及びDOの上昇が生じる還元性物質消費・酸化性物質流入過程とを含む地下水汚染の浄化方法である。 The present invention relates to a groundwater contamination purification method using anaerobic microorganisms having the ability to purify contamination, and the introduction of a chemical for the anaerobic microorganisms, and the total organic carbon content (TOC), pH of the groundwater Monitoring the items including dissolved oxygen (DO) and oxidation-reduction potential (ORP), and determining the groundwater quality change cycle in the groundwater contaminated part from the results of the monitoring to set the injection condition of the drug In addition, the groundwater quality change cycle causes a decrease in TOC, DO, and pH due to a drug input / arrival process in which the TOC increases due to the input / arrival of the drug and a decomposition of the drug and generation of an organic acid. The organic acid generation process, the organic acid decomposition process in which the TOC and ORP decrease and the pH increase due to the decomposition of the organic acid and the generation of the reducing substance, and the reducing substance Costs that the purification method of groundwater contamination and a reducing material consumption and oxidizer inflow processes increase occurs in ORP and DO accompanying inflow of oxidizing substances.

本発明においては、TOC、pH、DO及びORPをモニタリングすることにより、例えば、地下水質変化サイクルを考慮して薬剤の投入量、投入間隔、投入場所を決定することができるようになり、好ましくは、浄化期間の短縮化、浄化効率の向上、コストの削減などを実現できるようになる。   In the present invention, by monitoring TOC, pH, DO, and ORP, for example, it becomes possible to determine the dose, interval, and location of the drug in consideration of the groundwater quality change cycle, preferably In addition, the purification period can be shortened, the purification efficiency can be improved, and the cost can be reduced.

(地下水質のモニタリング)
本発明の地下水汚染の浄化方法におけるモニタリングは、地下水汚染部、その周辺(上流、下流を含む)におけるモニタリングを含み、その項目として、少なくとも、地下水の総有機炭素量(TOC)、pH、溶存酸素(DO)及び酸化還元電位(ORP)を含む。これらの測定方法は特に制限されず、従来公知の方法でよい。その他のモニタリング項目としては、投入した薬剤濃度や、汚染濃度を含んでもよい。本発明において、地下水汚染の汚染物質としては、特に制限されないが、例えば、トリクロロエチレン、テトラクロロエチレンなどの有機塩素化合物や廃油などが挙げられる。本発明の地下水汚染の浄化方法は、これらの汚染物質を分解可能な嫌気性微生物を利用する方法に係る。汚染物質分解可
能な嫌気性微生物としては、それぞれの汚染物質に対応した微生物を利用できる。したがって、上記モニタリング項目は、汚染物質を分解可能な嫌気性微生物の存在量を含んでもよい。なお、嫌気性微生物の活性化や増殖には、一般的にORPが0未満の環境が好ましい。
(Monitoring groundwater quality)
Monitoring in the method for purifying groundwater contamination of the present invention includes monitoring in a groundwater contaminated part and its surroundings (including upstream and downstream), and includes at least the total organic carbon content (TOC), pH, dissolved oxygen of groundwater. (DO) and redox potential (ORP). These measuring methods are not particularly limited, and may be conventionally known methods. Other monitoring items may include the concentration of the injected drug and the concentration of contamination. In the present invention, the contaminant of groundwater contamination is not particularly limited, and examples thereof include organic chlorine compounds such as trichloroethylene and tetrachloroethylene, waste oil, and the like. The purification method for groundwater contamination according to the present invention relates to a method using anaerobic microorganisms capable of decomposing these pollutants. As anaerobic microorganisms capable of degrading pollutants, microorganisms corresponding to the respective pollutants can be used. Therefore, the monitoring item may include an abundance of anaerobic microorganisms that can decompose the pollutant. In addition, for activation and growth of anaerobic microorganisms, an environment where the ORP is generally less than 0 is preferable.

(薬剤)
本発明の地下水汚染の浄化方法において、投入する薬剤は、特に制限されず、前記嫌気性微生物の活性化や増殖を促進できる栄養源が挙げられ、例えば、高級脂肪酸、糖類、有機酸エステル類、植物油などが挙げられる。
(Drug)
In the groundwater contamination purification method of the present invention, the agent to be added is not particularly limited, and examples thereof include nutrient sources that can promote the activation and growth of the anaerobic microorganisms, such as higher fatty acids, saccharides, organic acid esters, Examples include vegetable oils.

(地下水質変化サイクルモデル)
従来のバイオスティミュレーション法においてモニタリングされていたのは、主に対象汚染物質の分解・濃度低下であった。本発明は、上述のとおり、少なくともTOC、pH、DO及びORPをモニタリングした結果に基づき地下水質変化サイクルモデルを構築又は利用すれば、薬剤投入の効果予測制度が向上し、薬剤の投入量、投入間隔、投入場所をより適切に決定することができるようになり、好ましくは、浄化期間の短縮化、浄化効率の向上、コストの削減などを実現できるようになる、という知見に基づく。
(Groundwater quality change cycle model)
What was monitored in the conventional biostimulation method was mainly the degradation and concentration reduction of the target pollutants. As described above, if the groundwater quality change cycle model is constructed or used based on the results of monitoring at least TOC, pH, DO, and ORP, the present invention improves the drug input effect prediction system, and the drug input amount, input It is based on the knowledge that it becomes possible to more appropriately determine the interval and the input place, and that it is possible to preferably realize shortening of the purification period, improvement of purification efficiency, cost reduction, and the like.

本発明における地下水質変化サイクルモデルとしては、下記I〜IV相を含むものが挙げられる。
第I相:薬剤投入・到達過程
薬剤投入・到達に伴いTOCが上昇する。
第II相:有機酸生成過程
薬剤分解に伴いTOCが低下する。
Examples of the groundwater quality change cycle model in the present invention include those including the following phases I to IV.
Phase I: Drug input / reach process TOC increases with drug input / reach.
Phase II: Organic acid production process TOC decreases with chemical degradation.

薬剤分解に伴いDOが低下する。   DO decreases with drug degradation.

有機酸生成に伴いPHが低下する。   PH decreases with organic acid production.

有機酸生成・還元性物質生成の併発。(ORPの変化は軽微)
第III相:有機酸分解過程
有機酸分解に伴いTOCが減少する。
Simultaneous generation of organic acids and reducing substances. (Change in ORP is minor)
Phase III: Organic acid decomposition process TOC decreases with organic acid decomposition.

有機酸分解に伴いPHが上昇する。   PH increases with organic acid decomposition.

有機酸分解及び還元性物質生成に伴いORPが低下する。
第IV相:還元性物質消費・酸化性物質流入過程
還元性物質の消費に伴いORPが上昇する。
The ORP decreases with the decomposition of organic acids and the generation of reducing substances.
Phase IV: Reducing substance consumption / oxidizing substance inflow process ORP increases with consumption of reducing substances.

酸化性物質の流入に伴いORP及びDOが上昇する。   The ORP and DO increase with the inflow of the oxidizing substance.

上記地下水質変化サイクルモデルの数式モデルとしては、下記式が挙げられる。下記式は、薬剤としてソルビトールを投入した場合の式である。なお、嫌気性バイオスティミュレーションでは、薬剤分解により生成する水素が還元剤として作用すると考えられている。   Examples of the mathematical model of the groundwater quality change cycle model include the following formulas. The following formula is a formula when sorbitol is added as a drug. In anaerobic biostimulation, it is considered that hydrogen generated by drug decomposition acts as a reducing agent.

Figure 0005165930
Figure 0005165930

[上記式において、C6146はソルビトールを表し、EAは電子受容体(Electron Accepter)を表し、OXは酸化型を表し、Redは還元型を表し、[ ]
0は初期濃度を表し、kは反応速度を表す。]
上記式を解析することにより、図1に示すような薬剤を投入した後の地下水におけるTOC、pH、DO及びORPについての地下水質変化サイクルモデルを得ることができる。同図において、TOCは、上記式における[C6146]と生成される有機酸の炭素濃度を表し、ORPは、上記式におけるE−E0に該当する。また、同図におけるI〜IVは、上記I〜IV相のサイクルに相当する。図1のグラフの横軸は、薬剤の単回投与後の時間を表すとともに、薬剤の連続投与における投与部位からの距離を表す。すなわち、同図は、投与部から下流における地下水質変化を表すこともできる。なお、図1のグラフ中の数値は、一例であって、投与する薬剤量や投与周期によって変化しうる。
[In the above formula, C 6 H 14 O 6 represents sorbitol, EA represents an electron acceptor, OX represents an oxidized form, Red represents a reduced form, and []
0 represents the initial concentration and k represents the reaction rate. ]
By analyzing the above equation, a groundwater quality change cycle model can be obtained for TOC, pH, DO, and ORP in the groundwater after the drug is injected as shown in FIG. In the figure, TOC represents [C 6 H 14 O 6 ] in the above formula and the carbon concentration of the generated organic acid, and ORP corresponds to EE 0 in the above formula. Further, I to IV in the figure correspond to the cycle of the I to IV phase. The horizontal axis of the graph of FIG. 1 represents the time after a single administration of the drug and the distance from the administration site in the continuous administration of the drug. That is, this figure can also represent groundwater quality changes downstream from the administration section. In addition, the numerical value in the graph of FIG. 1 is an example, Comprising: It may change with the amount of chemical | medical agents to administer and an administration period.

図1で表される地下水質変化サイクルモデルを三次元相関図で表したのが図2である。図2Aは、図1におけるTOC、pH、DOの三次元相関モデルの一例を示し、図2Bは、ORP、pH、DOの三次元相関モデルの一例を示す。   FIG. 2 shows a three-dimensional correlation diagram of the groundwater quality change cycle model shown in FIG. 2A shows an example of a three-dimensional correlation model of TOC, pH, and DO in FIG. 1, and FIG. 2B shows an example of a three-dimensional correlation model of ORP, pH, and DO.

本発明の地下水汚染の浄化方法においては、地下水質モニタリングと図1及び2の地下水質変化サイクルを考慮することで、例えば、薬剤量の過不足を明確に把握することができ、適切な薬剤の投入量や投入周期、投入部位を設定することができる。   In the groundwater contamination purification method of the present invention, by considering the groundwater quality monitoring and the groundwater quality change cycle shown in FIGS. 1 and 2, for example, it is possible to clearly grasp the excess or deficiency of the drug amount, An input amount, an input cycle, and an input part can be set.

例えば、ある浄化対象部の地下水において、TOCがやや高く、pHが低く、ORPが高い水質であり、分解対象となる汚染物質の濃度変化が低い場合、従来であれば薬剤量や周期を増やすことでORPを低下させ分解対象となる汚染物質の濃度変化を促進することが一般的に考えられた。しかしながら、上述した地下水質変化サイクルを考慮するとこの浄化対象部は、地下水質変化サイクルの第II相(有機酸生成過程)にあり、ORPを低下させるためには、薬剤量投入周期を伸ばすこと、又は、薬剤量を減らすことが考えられる(図1,2参照)。したがって、本発明の地下水汚染の浄化方法は、一実施形態として、地下水汚染部へ前記薬剤の投入を、前記地下水汚染部の酸化還元電位の低下を確認して行うことを含む。ここで、酸化還元電位の低下とは、例えば、酸化還元電位が嫌気性微生物に適した電位により近づくこという。嫌気性微生物に適した酸化還元電位とは、例えば、0mV未満であって、より好ましくは、−50mV以下であって、より好ましくは−100mVであって、さらにより好ましくは−200mVである。   For example, in the groundwater of a part to be purified, when the TOC is slightly high, the pH is low, the ORP is high, and the concentration change of the pollutant to be decomposed is low, the amount of chemicals and the cycle are increased conventionally. In general, it was considered to reduce the ORP and promote the concentration change of the pollutant to be decomposed. However, in consideration of the groundwater quality change cycle described above, this purification target part is in the phase II (organic acid generation process) of the groundwater quality change cycle. Alternatively, it is conceivable to reduce the drug amount (see FIGS. 1 and 2). Therefore, the groundwater contamination purification method of the present invention includes, as one embodiment, charging the chemical into the groundwater contaminated part while confirming a reduction in the oxidation-reduction potential of the groundwater contaminated part. Here, the reduction of the redox potential means that the redox potential approaches a potential suitable for an anaerobic microorganism, for example. The redox potential suitable for an anaerobic microorganism is, for example, less than 0 mV, more preferably −50 mV or less, more preferably −100 mV, and even more preferably −200 mV.

あるいは、前記の場合において浄化対象部のORPを低下は、当該地点から離れた上流に薬剤を投入することで達成することもできる。図1のモデルに記載のとおり、薬剤投入部の下流においては、薬剤が拡散しない(すなわち、TOCがほとんどない)領域においても、ORPの低下が認められるからである。これにより、浄化対象部のORPを低下させ、浄化処理をより促進することが可能となる。したがって、本発明の地下水汚染の浄化方法は、その他の実施形態として、地下水汚染部の酸化還元電位を低下させるために前記地下水汚染部の上流部に薬剤を投入することを含む。また、前記薬剤の投入は、前記薬剤自身が前記地下水汚染部まで到達しない上流部で行われてもよい。上述のとおり、投入した薬剤の拡散する領域は、例えば、TOCをモニタリングすることで決定できる。   Alternatively, in the above case, the ORP of the purification target part can be reduced by putting the medicine upstream from the point. This is because, as described in the model of FIG. 1, a decrease in ORP is recognized in the region where the drug does not diffuse (that is, there is almost no TOC) downstream of the drug input part. As a result, the ORP of the purification target part can be reduced, and the purification process can be further promoted. Therefore, as another embodiment, the groundwater contamination purification method of the present invention includes introducing a chemical into the upstream portion of the groundwater contaminated portion in order to reduce the oxidation-reduction potential of the groundwater contaminated portion. Moreover, the injection of the medicine may be performed in an upstream part where the medicine itself does not reach the groundwater contaminated part. As described above, the region where the injected medicine diffuses can be determined by monitoring the TOC, for example.

本発明の地下水汚染の浄化方法は、上述したように、地下水質モニタリングの結果から地下水汚染部における地下水質変化サイクルを判定して前記薬剤の投入条件を設定することを含む。すなわち、浄化対象地下水が上述した地下水質変化サイクルモデルのいずれの相にあるかを知ることができれば、当業者であれば、容易に前記薬剤の投入条件を設定できる。   As described above, the groundwater contamination purification method of the present invention includes determining the groundwater quality change cycle in the groundwater contaminated part from the result of groundwater quality monitoring and setting the injection condition of the chemical. In other words, if it is possible to know which phase of the groundwater quality change cycle model described above is in the groundwater quality change cycle model, those skilled in the art can easily set the injection conditions of the drug.

本発明の地下水汚染の浄化方法に含まれるその他の工程としては特に制限されず、当業者が地下水質モニタリングの結果と上述の地下水質変化サイクルモデルとに基づき適宜選
択できる工程を含む。このようにモニタリングとモデルとを併用することにより、例えば、薬剤投入の過不足を回避することができ、より効率的な地下水のバイオスティミュレーションが可能となる。
Other steps included in the groundwater contamination purification method of the present invention are not particularly limited, and include steps that can be appropriately selected by those skilled in the art based on the results of groundwater quality monitoring and the above-described groundwater quality change cycle model. Thus, by using monitoring and a model together, for example, the excess and deficiency of chemical | medical agent injection | pouring can be avoided, and the biostimulation of more efficient groundwater is attained.

PCEを主体とした地下水汚染部にソルビトールを投入して地下水質のモニタリングを行った。具体的には、図3で示す井戸A、AR及びALに、薬剤として40Lのソルビトール水溶液(100〜500g/L)をそれぞれ投入し、下流井戸B及びC、上流井戸DにおいてTOC、DO、pH及びORPのモニタリングを行った。前記薬剤の投入は、14日ごとに定期的に行った。なお、AとAR間及びAとAL間の距離は1mであった。 Sorbitol was introduced into the groundwater contamination section mainly composed of PCE to monitor the groundwater quality. Specifically, 40 L of sorbitol aqueous solution (100 to 500 g / L) is added as chemicals to the wells A, A R and A L shown in FIG. 3, and TOC, DO in the downstream wells B and C and the upstream well D, respectively. , PH and ORP were monitored. The drug was introduced periodically every 14 days. The distance between A and A R and between A and A L was 1 m.

(TOCのモニタリング)
地下水の総有機炭素量(TOC)のモニタリング結果を図4に示す。投入井戸AでのTOC濃度は、採水直後に定期的な薬剤投入を行っているため調整濃度まで上昇した後減少し、一定時間経過後には約100mg/l〜1000mg/lとなった。一方、下流井戸Bでは約1000mg/lのピークを示した後徐々に100mg/l程度まで減少した。また、下流井戸Cではモニタリング期間中に顕著なTOCの上昇は認められなかった。投入井戸Aへの投入は断続的なものであるため投入後の濃度減少は分解による減少と移流による減少が合成されているが、下流井戸BでのTOCの上昇は薬剤の到達によるものであり、その後の低下は投入井戸A・下流B間での薬剤の分解によるものであると考えられる。同様に下流井戸CでTOCの上昇が認められなかったのは、下流井戸Bに到達した薬剤が下流井戸B・下流井戸C間で吸着・分解したためであると考えられる。このことから投入井戸Aからの薬剤自体の拡散は投入井戸Aから下流井戸C間の距離以内であり、下流井戸Cより遠方への薬剤自体の拡散がないことが確認された。なお、TOCの測定方法としては、JIS K0102 22.1(燃焼酸化−赤外線式TOC法)を採用した。
(TOC monitoring)
The monitoring result of the total organic carbon content (TOC) of groundwater is shown in FIG. The TOC concentration in the input well A was decreased after increasing to the adjusted concentration because the chemical was regularly input immediately after sampling, and became about 100 mg / l to 1000 mg / l after a certain period of time. On the other hand, the downstream well B showed a peak of about 1000 mg / l and then gradually decreased to about 100 mg / l. Further, in the downstream well C, no significant increase in TOC was observed during the monitoring period. Since the input to the input well A is intermittent, the decrease in concentration after the input is composed of the decrease due to decomposition and the decrease due to advection, but the increase in TOC in the downstream well B is due to the arrival of chemicals. The subsequent decrease is considered to be due to the decomposition of the drug between the input well A and the downstream B. Similarly, the reason why no increase in TOC was observed in the downstream well C is thought to be because the chemical that reached the downstream well B was adsorbed and decomposed between the downstream well B and the downstream well C. From this, it was confirmed that the diffusion of the drug itself from the input well A was within the distance between the input well A and the downstream well C, and there was no diffusion of the drug itself farther from the downstream well C. In addition, as a measuring method of TOC, JIS K0102 22.1 (combustion oxidation-infrared TOC method) was adopted.

(DOのモニタリング)
地下水の溶存酸素(DO)のモニタリング結果を図5に示す。上流井戸Dでは概ね2mg/Lで安定して推移しているのに対し、投入井戸A、下流井戸B及び下流井戸Cでは速やかに約0.5mg/Lまで低下した。DOはその後低位安定していることから、上流側から流入しているDOが薬剤分解に伴い消費されているものと考えられる。なお、TOCの上昇が認められない下流井戸CでのDOの低下は低DO地下水の流入によるもののほかに生成した還元性物質との反応の進行が考えられる。なお、DOの測定方法としては、JIS K0102 32.3(隔膜電極法)を採用した。
(DO monitoring)
The monitoring result of dissolved oxygen (DO) of groundwater is shown in FIG. The upstream well D was stable at about 2 mg / L, whereas the input well A, the downstream well B, and the downstream well C quickly decreased to about 0.5 mg / L. Since DO is stable at a low level thereafter, it is considered that DO flowing from the upstream side is consumed as a result of drug decomposition. In addition, the fall of DO in the downstream well C in which the rise of TOC is not recognized may be due to the progress of the reaction with the reducing substance generated in addition to the inflow of low DO groundwater. In addition, JIS K0102 32.3 (diaphragm electrode method) was employ | adopted as a measuring method of DO.

(pHのモニタリング)
地下水のpHのモニタリング結果を図6に示す。今回使用した薬剤ソルビトールはラクトースを経てピルビン酸及び乳酸、さらに酢酸などの低級脂肪酸、最終的には炭酸に分解されていく。この有機酸生成過程において生成する有機酸の影響がpHモニタリング結果を示しているものと考えられる。上流井戸DのpHは約7.0で安定しているのに対して、投入井戸AではpH4.5〜5.0で、下流井戸BではpH6.0〜7.0、下流井戸Cでは上流井戸Aよりやや低いpH6.5〜7.0で推移していた。なお、pHの測定方法としては、JIS K0102 12.1(ガラス電極法)を採用した。
(PH monitoring)
The monitoring result of pH of groundwater is shown in FIG. The drug sorbitol used this time is decomposed into lactate, pyruvate and lactic acid, lower fatty acids such as acetic acid, and finally carbonic acid. It is thought that the influence of the organic acid produced | generated in this organic acid production | generation process has shown the pH monitoring result. The pH of the upstream well D is stable at about 7.0, whereas the pH of the input well A is 4.5 to 5.0, the downstream well B is pH 6.0 to 7.0, and the downstream well C is upstream. The pH was slightly lower than that of well A at 6.5 to 7.0. In addition, JIS K0102 12.1 (glass electrode method) was employ | adopted as the measuring method of pH.

(ORPのモニタリング)
地下水の酸化還元電位(ORP)のモニタリング結果を図7に示す。ORPモニタリング結果は、上流井戸Dで0mV〜100mVであるのに対し、投入井戸Aで−100mV〜0mV、下流井戸Bで−200mV〜−100mV、下流井戸Cで−150mV〜−50mVであった。上流井戸Dを除き還元性雰囲気となっていた。下流井戸CでもORPの低下が認められることから、薬剤自体の拡散は下流井戸Cまで達していないが、バイオス
ティミュレーション法としての浄化効果は達していると想定される。なお、ORPの具体的な測定方法としては、下水試験方法2編3章5節(白金電極法)(社団法人 日本下水道協会 発行)を採用した。
(ORP monitoring)
The monitoring result of the oxidation-reduction potential (ORP) of groundwater is shown in FIG. The ORP monitoring results were 0 mV to 100 mV in the upstream well D, -100 mV to 0 mV in the input well A, -200 mV to -100 mV in the downstream well B, and -150 mV to -50 mV in the downstream well C. A reducing atmosphere was formed except for the upstream well D. Since a decrease in ORP is also observed in the downstream well C, the diffusion of the drug itself does not reach the downstream well C, but it is assumed that the purification effect as a biostimulation method has been reached. In addition, as a specific measuring method of ORP, sewage test method 2 volume 3 chapter 5 section (platinum electrode method) (issued by Japan Sewerage Association) was adopted.

これらのTOC、DO、pH及びORPのモニタリングの結果は、図1及び図2に示す地下水質変化サイクルモデルとよく一致した。   These TOC, DO, pH and ORP monitoring results agreed well with the groundwater quality change cycle model shown in FIGS.

以上説明したとおり、本発明は、例えば、バイオスティミュレーションを含む環境浄化及び環境保全の分野で有用である。   As described above, the present invention is useful, for example, in the field of environmental purification including biostimulation and environmental conservation.

図1は、上記式を解析して得られた地下水質変化サイクルモデルの一例を示すグラフである。FIG. 1 is a graph showing an example of a groundwater quality change cycle model obtained by analyzing the above equation. 図2Aは、地下水質変化サイクルにおけるTOC、pH、DOの三次元相関モデルの一例を示し、図2Bは、地下水質変化サイクルにおけるORP、pH、DOの三次元相関モデルの一例を示す。FIG. 2A shows an example of a three-dimensional correlation model of TOC, pH, and DO in a groundwater quality change cycle, and FIG. 2B shows an example of a three-dimensional correlation model of ORP, pH, and DO in a groundwater quality change cycle. 図3は、実施例において薬剤を投入した井戸A、AR及びAL、並びに、モニタリングを行った井戸B、C及びDの配置の概略を示す図である。FIG. 3 is a diagram showing an outline of the arrangement of the wells A, A R and A L into which the chemicals are introduced and the wells B, C and D in which the monitoring is performed in the examples. 図4は、TOCのモニタリング結果の一例を示すグラフである。FIG. 4 is a graph showing an example of the TOC monitoring result. 図5は、DOのモニタリング結果の一例を示すグラフである。FIG. 5 is a graph illustrating an example of a DO monitoring result. 図6は、pHのモニタリング結果の一例を示すグラフである。FIG. 6 is a graph showing an example of a monitoring result of pH. 図7は、ORPのモニタリング結果の一例を示すグラフである。FIG. 7 is a graph showing an example of an ORP monitoring result.

Claims (4)

汚染浄化能力を有する嫌気性微生物を利用する地下水汚染の浄化方法であって、
前記嫌気性微生物のための薬剤を投入すること、及び、
地下水の総有機炭素量(TOC)、pH、溶存酸素(DO)及び酸化還元電位(ORP)を含む項目をモニタリングすることを含み、
前記モニタリングの結果から地下水汚染部における地下水質変化サイクルを判定して前記薬剤の投入条件を設定することを含み、前記地下水質変化サイクルが、
前記薬剤の投入・到達に伴うTOCの上昇が生じる薬剤投入・到達過程と、
前記薬剤の分解と有機酸の生成とに伴うTOC、DO及びpHの低下が生じる有機酸生成過程と、
前記有機酸の分解と還元性物質の生成とに伴うTOC及びORPの低下とpHの上昇が生じる有機酸分解過程と、
還元性物質の消費と酸化性物質の流入に伴うORP及びDOの上昇が生じる還元性物質消費・酸化性物質流入過程とを含む地下水汚染の浄化方法。
A method for the purification of groundwater contamination using anaerobic microorganisms having the ability to purify pollution,
Introducing a drug for the anaerobic microorganism; and
Monitoring items including total organic carbon content (TOC), pH, dissolved oxygen (DO) and redox potential (ORP) in groundwater,
Determining the groundwater quality change cycle in the groundwater contaminated part from the results of the monitoring and setting the injection conditions of the drug, the groundwater quality change cycle,
Drug input / reaching process in which the TOC increases with the drug input / arrival,
An organic acid generation process in which the TOC, DO, and pH are lowered due to the decomposition of the drug and the generation of the organic acid;
An organic acid decomposition process in which a decrease in TOC and ORP and an increase in pH occur due to the decomposition of the organic acid and the generation of a reducing substance;
Consumption and oxidizing ORP and DO reducing purification method for a substance consumption and oxidizer inflow process and including groundwater contaminate the increase occurs in accompanying the inflow of material reducing materials.
地下水汚染部へ前記薬剤の投入が、前記地下水汚染部の酸化還元電位の低下を確認して行うことを含む、請求項1記載の地下水汚染の浄化方法。 The method for purifying groundwater contamination according to claim 1, wherein the injection of the chemical into the groundwater contaminated portion includes confirming a decrease in oxidation-reduction potential of the groundwater contaminated portion. 地下水汚染部の酸化還元電位を低下させるために、前記地下水汚染部の上流部に前記薬剤を投入することを含む、請求項1又は2に記載の地下水汚染の浄化方法。 The method for purifying groundwater contamination according to claim 1 or 2, comprising introducing the chemical into an upstream portion of the groundwater contaminated portion in order to reduce a redox potential of the groundwater contaminated portion. 前記薬剤の投入が、前記薬剤自身が前記地下水汚染部まで到達しない上流部で行われる、
請求項3記載の地下水汚染の浄化方法。
The injection of the drug is performed in the upstream part where the drug itself does not reach the groundwater contaminated part,
The method for purifying groundwater contamination according to claim 3.
JP2007147224A 2007-06-01 2007-06-01 Purification method for groundwater contamination Active JP5165930B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007147224A JP5165930B2 (en) 2007-06-01 2007-06-01 Purification method for groundwater contamination

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007147224A JP5165930B2 (en) 2007-06-01 2007-06-01 Purification method for groundwater contamination

Publications (2)

Publication Number Publication Date
JP2008296176A JP2008296176A (en) 2008-12-11
JP5165930B2 true JP5165930B2 (en) 2013-03-21

Family

ID=40170205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007147224A Active JP5165930B2 (en) 2007-06-01 2007-06-01 Purification method for groundwater contamination

Country Status (1)

Country Link
JP (1) JP5165930B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011148509A1 (en) * 2010-05-28 2011-12-01 エコサイクル株式会社 Agent and method for purifying medium contaminated with organic chlorine compound
CN114956294B (en) * 2022-06-14 2024-02-09 山东新日电气设备有限公司 Intelligent dosing system and method based on artificial neural network

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3640286B2 (en) * 1998-03-17 2005-04-20 株式会社荏原製作所 Purification method for soil, etc. in situ
JP4099893B2 (en) * 1999-03-23 2008-06-11 栗田工業株式会社 In-situ anaerobic treatment method for organochlorine compounds in soil and / or groundwater
JP3564573B2 (en) * 2002-03-01 2004-09-15 エコサイクル株式会社 Biological remediation methods for contaminated soil and groundwater
JP2004130184A (en) * 2002-10-09 2004-04-30 Kubota Corp Method and apparatus for decontaminating soil
JP4065226B2 (en) * 2003-11-13 2008-03-19 新日本製鐵株式会社 Method for purifying contaminated soil and contaminated groundwater
JP4281551B2 (en) * 2003-12-22 2009-06-17 パナソニック株式会社 Soil and groundwater contamination purification equipment and purification method
JP4547962B2 (en) * 2004-03-29 2010-09-22 パナソニック株式会社 Method for purifying contaminated soil and groundwater
JP2005279392A (en) * 2004-03-29 2005-10-13 Matsushita Electric Ind Co Ltd Method for cleaning polluted soil and ground water
JP2006150278A (en) * 2004-11-30 2006-06-15 Ohbayashi Corp Method for decontaminating contaminated soil

Also Published As

Publication number Publication date
JP2008296176A (en) 2008-12-11

Similar Documents

Publication Publication Date Title
Chai et al. Enhanced simultaneous nitrification and denitrification in treating low carbon-to-nitrogen ratio wastewater: Treatment performance and nitrogen removal pathway
Hu et al. Microbial nitrogen removal pathways in integrated vertical-flow constructed wetland systems
Sopaj et al. Effect of cathode material on electro-Fenton process efficiency for electrocatalytic mineralization of the antibiotic sulfamethazine
Okabe et al. N2O emission from a partial nitrification–anammox process and identification of a key biological process of N2O emission from anammox granules
Bernet et al. Nitrification at low oxygen concentration in biofilm reactor
Park et al. Nitrate reduction using an electrode as direct electron donor in a biofilm-electrode reactor
Sun et al. Aerobic methane oxidation coupled to denitrification in a membrane biofilm reactor: treatment performance and the effect of oxygen ventilation
US7384556B2 (en) Methods of enhancing biodegradation of groundwater contaminants
Huang et al. A stable simultaneous anammox, denitrifying anaerobic methane oxidation and denitrification process in integrated vertical constructed wetlands for slightly polluted wastewater
Ribera-Guardia et al. Distinctive NO and N2O emission patterns in ammonia oxidizing bacteria: effect of ammonia oxidation rate, DO and pH
Gong et al. Formation of nitrous oxide in a gradient of oxygenation and nitrogen loading rate during denitrification of nitrite and nitrate
Ma et al. Quantitative response of nitrogen dynamic processes to functional gene abundances in a pond-ditch circulation system for rural wastewater treatment
Lv et al. Effect of the dissolved oxygen concentration on the N2O emission from an autotrophic partial nitritation reactor treating high-ammonium wastewater
JP5854258B2 (en) Soil / groundwater purification by aerobic microorganisms
JP5186169B2 (en) Purification method of soil and groundwater in aquifer
Chen et al. Microcystis blooms aggravate the diurnal alternation of nitrification and nitrate reduction in the water column in Lake Taihu
Xu et al. Insights into complete nitrate removal in one-stage nitritation-anammox by coupling heterotrophic denitrification
Bekele et al. Sensor‐mediated granular sludge reactor for nitrogen removal and reduced aeration demand using a dilute wastewater
JP5165930B2 (en) Purification method for groundwater contamination
CN103449673B (en) Treatment method of wastewater containing chlorinated organic pollutants
CN103922475B (en) Biological degradation method of nitrogen-containing heterocyclic compound wastewater
Xiong et al. Water quality improvement and consequent N2O emission reduction in hypoxic freshwater utilizing green oxygen-carrying biochar
Qiu et al. N2O generation via nitritation at different volumetric oxygen transfer levels in partial nitritation-anammox process
Qu et al. Perchlorate removal by a combined heterotrophic and bio-electrochemical hydrogen autotrophic system
JP2011173037A (en) Method for cleaning soil or underground water and method for confirming concentration of microbial nutritive composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121220

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5165930

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150