JP2005274767A - 光学部材の製造方法 - Google Patents

光学部材の製造方法 Download PDF

Info

Publication number
JP2005274767A
JP2005274767A JP2004085459A JP2004085459A JP2005274767A JP 2005274767 A JP2005274767 A JP 2005274767A JP 2004085459 A JP2004085459 A JP 2004085459A JP 2004085459 A JP2004085459 A JP 2004085459A JP 2005274767 A JP2005274767 A JP 2005274767A
Authority
JP
Japan
Prior art keywords
layer
silicon
group
compound
organic compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004085459A
Other languages
English (en)
Other versions
JP4593949B2 (ja
Inventor
Takashi Mitsuishi
剛史 三石
Hitoshi Kamura
斉 嘉村
Hisao Kawai
久雄 河合
Kenichi Niide
謙一 新出
Terufumi Hamamoto
輝文 濱本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP2004085459A priority Critical patent/JP4593949B2/ja
Publication of JP2005274767A publication Critical patent/JP2005274767A/ja
Application granted granted Critical
Publication of JP4593949B2 publication Critical patent/JP4593949B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

【課題】 反射率が小さく、透過率が高い優れた反射防止膜を有し、かつプラスチック基材上における、耐熱性、及び耐摩耗性に優れ、生産性も良好な反射防止膜を有する光学部材の製造方法を提供すること。
【解決手段】 プラスチック基材に、多層反射防止膜を真空蒸着で形成し、該反射防止膜上に撥水膜を施す光学部材の製造方法であって、該反射防止膜は、特定の7層の構成を有し、該反射防止膜の第7層上にフッ素置換アルキル基含有有機ケイ素化合物を原料として、撥水膜が形成される光学部材の製造方法。
【選択図】 なし

Description

本発明は、反射防止膜を有する光学部材の製造方法に関し、特に、反射率が小さく、透過率が高いという優れた反射防止膜を有するだけでなく、プラスチック基材上における、耐熱性、及び耐摩耗性に優れ、生産性も良好な反射防止膜を有する光学部材の製造方法に関する。
従来から、プラスチック基材に、無機物質を蒸着してなる反射防止膜を設けた光学部材が知られている。また、耐衝撃性、耐熱性、及び耐摩耗性が良好な反射防止膜を有する光学部材として、特許文献1には、プラスチック基材と、真空蒸着で形成された反射防止膜を有する光学部材において、反射防止膜中の少なくとも1層が無機物質及び有機物質よりなるハイブリッド層を用いた技術が開示されている。特許文献1に開示される技術は、ハイブリッド膜の膜厚、特に、有機化合物の量を精密に制御することが望ましいが、さらに簡便に製造する方法が求められていた。また、さらなる耐摩耗性を向上させた光学部材の提案が望まれていた。
特開2003−202407号公報
本発明は上述の状況下、耐摩耗性の優れた反射防止膜を有する光学部材を生産性良く製造する光学部材の製造方法を提供することを目的とする。
本発明者らは、前記の課題を解決すべく鋭意研究を重ねた結果、以下の構成による光学部材の製造方法が前述した課題を解決することを見出し、本発明を完成するに至った。
すなわち本発明の製造方法は、プラスチック基材に、多層反射防止膜を真空蒸着で形成し、該反射防止膜上に撥水膜を施す光学部材の製造方法であって、反射防止膜は、基材側から外気側に向って順に、以下に記す7層構成であり、
第1層:常温、常圧下で液体である有機ケイ素化合物及び/又は常温、常圧下で液体であるケイ素非含有有機化合物と、二酸化ケイ素を含有する無機物質とを蒸着原料として形成されるハイブリッド層
第2層:酸化タンタルが第2層を基準にして、少なくとも50重量%含有している層
第3層:常温、常圧下で液体である有機ケイ素化合物及び/又は常温、常圧下で液体であるケイ素非含有有機化合物と、二酸化ケイ素を含有する無機物質とを蒸着原料として形成されるハイブリッド層
第4層:酸化タンタルが第4層を基準にして、少なくとも50重量%含有している層
第5層:常温、常圧下で液体である有機ケイ素化合物及び/又は常温、常圧下で液体であるケイ素非含有有機化合物と、二酸化ケイ素を含有する無機物質とを蒸着原料として形成されるハイブリッド層
第6層:酸化タンタルが第6層を基準にして、少なくとも50重量%含有している層
第7層:常温、常圧下で液体である有機ケイ素化合物及び/又は常温、常圧下で液体であるケイ素非含有有機化合物と、二酸化ケイ素を含有する無機物質とを蒸着原料として形成されるハイブリッド層
[前記有機ケイ素化合物が、以下の一般式(a)〜(d)で表されるいずれかの構造を有している。
一般式(a):シランまたはシロキサン化合物
Figure 2005274767
一般式(b):シラザン化合物
Figure 2005274767
一般式(c):シクロシロキサン化合物
Figure 2005274767
一般式(d):シクロシラザン化合物
Figure 2005274767
{一般式(a)〜(d)において、式中のm、nは、それぞれ独立に0以上の整数を表す。また、X1〜X8はそれぞれ独立に、水素、炭素数1〜6の炭化水素基(飽和・不飽和双方を含む)、−OR1基、−CH2OR2基、−COOR3基、−OCOR4基、−SR5基、−CH2SR6基、−NR7 2基、または、−CH2NR8 2基(R1〜R8は水素または炭素数1〜6の炭化水素基(炭素原子間の結合において飽和・不飽和双方を含む))を表す}
また、前記ケイ素非含有有機化合物が、以下の一般式(e)〜(g)で表されるいずれかの構造を有している。
一般式(e):片末端にエポキシ基を有する炭素及び水素を必須成分とするケイ素非含有有機化合物
Figure 2005274767
一般式(f):両末端にエポキシ基を有する炭素及び水素を必須成分とするケイ素非含有有機化合物
Figure 2005274767
一般式(g):不飽和結合を含む、炭素及び水素を必須成分とするケイ素非含有有機化合物
CX910=CX1112 ・・・(g)

(一般式(e)、(f)において、R9は水素、または酸素を含んでいてもよい炭素数1〜10の炭化水素基、R10は、酸素を含んでいてもよい炭素数1〜7の二価の炭化水素基を表す。一般式(g)において、X9〜X12はそれぞれ独立に水素、炭素数1〜10の炭化水素基、または炭素数1〜10の炭素及び水素を必須成分とし、さらに酸素及び窒素の少なくとも一方を必須成分とする有機基を表す。)]
撥水膜は、前記反射防止膜の第7層上にフッ素置換アルキル基含有有機ケイ素化合物を原料として形成される光学部材の製造方法である。
本発明の製造方法によれば、反射率が小さく、透過率が高いという優れた反射防止膜を有するだけでなく、プラスチック基材上における、耐熱性、及び耐摩耗性に優れる光学部材が、生産性良く製造することができる。
本発明の反射防止膜の製法は、真空蒸着法で形成される。また、良好な膜強度及び密着性を得るためイオンアシスト法で形成されることが好ましい。該反射防止膜のハイブリッド層以外の膜構成層は、良好な反射防止効果、耐擦傷性等の物性を得るため、高屈折率層として酸化タンタル(Ta25)層とする。該酸化タンタル層は各層中にそれぞれ酸化タンタルを少なくとも50重量%含有し、さらに、80重量%以上含有することが好ましい。
本発明における、ハイブリッド層に使用される無機物質としては、二酸化ケイ素を含有することが必要であり、その他、酸化アルミニウム、酸化チタン、酸化ジルコニウム、酸化タンタル、酸化イットリウム及び酸化ニオブから選ばれる少なくとも1種を含んでいてもよい。複数の無機物質を用いる場合は、それらを物理的に混合してもよいし、また複合酸化物であってもよく、具体的にはSiO2−Al23等がある。これらのうち二酸化ケイ素(SiO2)単独、二酸化ケイ素(SiO2)及び酸化アルミニウム(Al23)から選ばれる少なくとも1種類の無機酸化物が好ましい。
本発明における、ハイブリッド層に使用される有機物質としては、膜厚の制御、蒸着速度の制御の観点から、常温、常圧下で、液体状態にある有機ケイ素化合物及び/又は常温、常圧下で液体であるケイ素非含有有機化合物が用いられる。
前記有機ケイ素化合物としては、例えば、以下の一般式(a)〜(d)で表されるいずれかの構造を有することが好ましい。
一般式(a):シラン・シロキサン化合物
Figure 2005274767
一般式(b):シラザン化合物
Figure 2005274767
一般式(c):シクロシロキサン化合物
Figure 2005274767
一般式(d):シクロシラザン化合物
Figure 2005274767
一般式(a)〜(d)において、式中のm、nは、それぞれ独立に0以上の整数を表す。また、X1〜X8はそれぞれ独立に水素、炭素数1〜6の炭化水素基(飽和・不飽和双方を含む)、−OR1基、−CH2OR2基、−COOR3基、−OCOR4基、−SR5基、−CH2SR6基、−NR7 2基、または、−CH2NR8 2基(R1〜R8は水素または炭素数1〜6の炭化水素基(飽和・不飽和双方を含む))を表し、X1〜X8は上記の任意の官能基であればよく、すべて同じ官能基でも良いし、すべて異なるものでも良く限定されない。
前記R1〜R8で示される炭素数1〜6の炭化水素基の具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、ペンチル基、ヘキシル基、ビニル基、アリル基、エチニル基、フェニル基、シクロヘキシル基、プロピニル基、イソプロペニル基等が挙げられる。
一般式(a)で表せる具体的な化合物としては、トリメチルシラノール、テトラメチルシラン、ジエチルシラン、ジメチルエトキシシラン、ヒドロキシメチルトリメチルシラン、メトキシトリメチルシラン、ジメトキシジメチルシラン、メチルトリメトキシシラン、メルカプトメチルトリメトキシシラン、テトラメトキシシラン、メルカプトメチルトリメチルシラン、アミノメチルトリメチルシラン、ジメチルジメチルアミノシラン、エチニルトリメチルシラン、ジアセトキシメチルシラン、アリルジメチルシラン、トリメチルビニルシラン、メトキシジメチルビニルシラン、アセトキシトリメチルシラン、トリメトキシビニルシラン、ジエチルメチルシラン、エチルトリメチルシラン、エトキシトリメチルシラン、ジエトキシメチルシラン、エチルトリメトキシシラン、ジメチルアミノトリメチルシラン、ビス(ジメチルアミノ)メチルシラン、フェニルシラン、ジメチルジビニルシラン、2-プロピニロキシトリメチルシラン、ジメチルエトキシエチニルシラン、ジアセトキシジメチルシラン、アリルトリメチルシラン、アリロキシトリメチルシラン、エトキシジメチルビニルシラン、イソプロペノキシトリメチルシラン、アリルアミノトリメチルシラン、トリメチルプロピルシラン、トリメチルイソプロピルシラン、トリエチルシラン、ジエチルジメチルシラン、ブチルジメチルシラン、トリメチルプロポキシシラン、トリメチルイソプロポキシシラン、トリエチルシラノール、ジエトキシジメチルシラン、プロピルトリメトキシシラン、ジエチルアミノジメチルシラン、ビス(エチルアミノ)ジメチルシラン、ビス(ジメチルアミノ)ジメチルシラン、トリ(ジメチルアミノ)シラン、メチルフェニルシラン、メチルトリビニルシラン、ジアセトキシメチルビニルシラン、メチルトリアセトキシシラン、アリロキシジメチルビニルシラン、ジエチルメチルビニルシラン、ジエトキシメチルビニルシラン、ビス(ジメチルアミノ)メチルビニルシラン、ブチルジメチルヒドロキシメチルシラン、1-メチルプロポキシトリメチルシラン、イソブトキシトリメチルシラン、ブトキシトリメチルシラン、ブチルトリメトキシシラン、メチルトリエトキシシラン、イソプロピルアミノメチルトリメチルシラン、ジエチルアミノトリメチルシラン、メチルトリ(ジメチルアミノ)シラン、ジメチルフェニルシラン、テトラビニルシラン、トリアセトキシビニルシラン、テトラアセトキシシラン、エチルトリアセトキシシラン、ジアリルジメチルシラン、1,1-ジメチルプロピニロキシトリメチルシラン、ジエトキシジビニルシラン、ブチルジメチルビニルシラン、ジメチルイソブトキシビニルシラン、アセトキシトリエチルシラン、トリエトキシビニルシラン、テトラエチルシラン、ジメチルジプロピルシラン、ジエトキシジエチルシラン、ジメチルジプロポキシシラン、エチルトリエトキシシラン、テトラエトキシシラン、メチルフェニルビニルシラン、フェニルトリメチルシラン、ジメチルヒドロキシメチルフェニルシラン、フェノキシトリメチルシラン、ジメトキシメチルフェニルシラン、フェニルトリメトキシシラン、アニリノトリメチルシラン、1-シクロヘキセニロキシトリメチルシラン、シクロヘキシロキシトリメチルシラン、ジメチルイソペンチロキシビニルシラン、アリルトリエトキシシラン、トリプロピルシラン、ブチルジメチル-3-ヒドロキシプロピルシラン、ヘキシロキシトリメチルシラン、プロピルトリエトキシシラン、ヘキシルトリメトキシシラン、ジメチルフェニルビニルシラン、トリメチルシリルベンゾネート、ジメチルエトキシフェニルシラン、メチルトリイソプロペノキシシラン、メトキシトリプロピルシラン、ジブトキシジメチルシラン、メチルトリプロポキシシラン、ビス(ブチルアミノ)ジメチルシラン、ジビニルメチルフェニルシラン、ジアセトキシメチルフェニルシラン、ジエチルメチルフェニルシラン、ジエトキシメチルフェニルシラン、トリイソプロポキシビニルシラン、2-エチルヘキシロキシトリメチルシラン、ペンチルトリエトキシシラン、ジフェニルシラン、ジフェニルシランジオールフェニルトリビニルシラン、トリエチルフェニルシラン、フェニルトリエトキシシラン、テトラアリロキシシラン、フェニルトリ(ジメチルアミノ)シラン、テトラプロポキシシラン、テトライソプロポキシシラン、ジフェニルメチルシラン、ジアリルメチルフェニルシラン、ジメチルジフェニルシラン、ジメトキシジフェニルシラン、ジアニリノジメチルシラン、ジフェニルエトキシメチルシラン、トリペンチロキシシラン、ジフェニルジビニルシラン、ジアセトキシジフェニルシラン、ジエチルジフェニルシラン、ジエトキシジフェニルシラン、ビス(ジメチルアミノ)ジフェニルシラン、テトラブチルシラン、テトラブトキシシラン、トリフェニルシラン、ジアリルジフェニルシラン、トリヘキシルシラン、トリフェノキシビニルシラン、1,1,3,3-テトラメチルジシロキサン、ペンタメチルジシロキサン、ヘキサメチルジシロキサン、1,3-ジメトキシテトラメチルジシロキサン、1,3-ジエチニル-1,1,3,3-テトラメチルジシロキサン、1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン、1,3-ジエトキシテトラメチルジシロキサン、ヘキサエチルジシロキサン、1,3-ジブチル-1,1,3,3-テトラメチルジシロキサンなどの化合物が挙げられる。
一般式(b)で表される具体的な化合物としては、1,1,3,3-テトラメチルジシラザン、ヘキサメチルジシラザン、1,3-ジビニル-1,1,3,3-テトラメチルジシラザンなどの化合物が挙げられる。
一般式(c)で表される具体的な化合物としては、ヘキサメチルシクロトリシロキサン、ヘキサエチルシクロトリシロキサン、1,3,5,7-テトラメチルシクロテトラシロキサン、オクタメチルシクロテトラシロキサンなどの化合物が挙げられる。
一般式(d)で表される具体的な化合物としては、1,1,3,3,5,5-ヘキサメチルシクロトリシラザン、1,1,3,3,5,5,7,7-オクタメチルシクロテトラシラザンなどの化合物が挙げられる。
これらの有機ケイ素化合物の数平均分子量は、ハイブリッド膜中の有機成分の制御、膜自体の強度の点から、好ましくは、48〜600、特に好ましくは、140〜500である。
さらに、前記ハイブリッド層を構成するケイ素非含有有機化合物は、その側鎖または末端に反応性基を含有する炭素及び水素を必須成分とするものが好ましく、より具体的には一般式(e)〜(g)で表される化合物が好ましく用いられる。
一般式(e):片末端にエポキシ基を有する炭素及び水素を必須成分とするケイ素非含有有機化合物
Figure 2005274767
一般式(f):両末端にエポキシ基を有する炭素及び水素を必須成分とするケイ素非含有有機化合物
Figure 2005274767
一般式(g):二重結合を含む、炭素及び水素を必須成分とするケイ素非含有有機化合物
CX910=CX1112 ・・・(g)
一般式(e)、(f)において、R9は水素、または酸素を含んでいてもよい炭素数1〜10の炭化水素基、R10は、酸素を含んでいてもよい炭素数1〜7の二価の炭化水素基を表す。一般式(g)において、X9〜X12はそれぞれ独立に水素、炭素数1〜10の炭化水素基、または炭素数1〜10の炭素、水素を必須成分とし、さらに酸素及び窒素の少なくとも一方を必須成分とする有機基を表す。
一般式(e)の化合物の具体例としては、メチルグリシジルエーテル、ブチルグリシジルエーテル、2-エチルヘキシルグリシジルエーテル、デジルグリシジルエーテル、ステアリルグリシジルエーテル、アリルグリシジルエーテル、フェニルグリシジルエーテル、p-sec-ブチルフェニルグリシジルエーテル、p-tert-ブチルフェニルグリシジルエーテル、2-メチルオクチルグリシジルエーテル、グリシドール、トリメチロールプロパンポリグリシジルエーテルなどが挙げられる。
一般式(f)の化合物の具体例としては、ネオペンチルグリコールジグリシジルエーテル、グリセロールジグリシジルエーテル、グリセロールトリグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、エチレングリコールジグリシジルエーテル、ジエチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテルなどが挙げられる。
一般式(g)の具体例としてはエチレン、プロピレン、塩化ビニル、フッ化ビニル、アクリルアミド、ビニルピロリドン、ビニルカルバゾール、メチルメタクリレート、エチルメタクリレート、ベンジルメタクリレート、n-ブチルメタクリレート、イソブチルメタクリレート、ジメチルアミノエチルメタクリレート、メタクリル酸、グリシジルメタクリレート、酢酸ビニル、スチレンなどがあげられる。
また、前記一般式(e)〜(g)で表される化合物の数平均分子量は、ハイブリッド膜中の有機成分の制御及びハイブリッドの膜強度を考慮して、好ましくは、28〜400、特に好ましくは、140〜360である。
本発明における常温、常圧下で液体である有機ケイ素化合物及び/又は常温、常圧下で液体であるケイ素非含有有機化合物(以下「有機物質」ということがある)の成膜方法としては、図1に示すように、ハイブリッド層を形成する際には、無機物質、有機物質それぞれを別の蒸着源にて同時に蒸着して成膜するのが好ましい。具体的には、無機物質を電子銃等を用いて加熱することにより気化させ、有機物質を外部タンクに貯蔵し、該タンク内で該有機物質を気化させ、無機物質と有機物質を同時に蒸着させる方法が好ましい。
なお、蒸着速度の制御の観点から、有機物質を貯蔵する外部タンクを加熱・減圧して該有機物質をチャンバー内に供給し、酸素ガス及び/またはアルゴンガスを用いイオンアシスト成膜するのが好ましい。さらに、本発明では有機物質が常温・常圧で液体であり、溶媒を使用する必要がなく、直接加熱して蒸着することができる。また、有機物質の導入口は、図1に示すよう無機物質蒸発源真上に設けるのが対衝撃性、対摩耗性向上に効果的であり、有機ケイ素化合物を下部より、その側鎖または末端に反応性基を含有する炭素及び水素を必須成分とするケイ素非含有有機化合物を上部より供給するのが好ましい。
外部タンクの加熱温度は、その有機物質の蒸発温度により異なるが、30〜200℃、好ましくは50〜150℃とすることが適当な蒸着速度を得るという点から好ましい。
本発明におけるハイブリッド層の有機物質の好ましい膜内含有率は、特に良好な物性改質効果が得られる点を考慮して、0.02〜25重量%である。
本発明における好ましい膜厚及び屈折率の範囲は以下の通りである。なお、ここでλは光の波長を示す。
第1層 0.005λ〜1.25λ 1.41〜1.50
第2層 0.005λ〜0.10λ 2.00〜2.35
第3層 0.005λ〜1.25λ 1.41〜1.50
第4層 0.05λ〜0.45λ 2.00〜2.35
第5層 0.005λ〜0.15λ 1.41〜1.50
第6層 0.05λ〜0.45λ 2.00〜2.35
第7層 0.2λ〜0.29λ 1.41〜1.50
かかる膜構成にすることにより、目的とする物性が容易に得られる。
イオンアシスト法において、出力に関し好ましい範囲は、特に、良好な反応を得る観点から、加速電圧50-700V 加速電流30-250mAである。前記イオンアシスト法を実施する際に使用されるイオン化ガスは、成膜中の反応性、酸化防止の点からアルゴン(Ar)、又はアルゴンと酸素の混合ガスを用いるのが好ましい。
撥水膜は、前記反射防止膜の第7層上にフッ素置換アルキル基含有有機ケイ素化合物を原料として形成される。その原料及び形成方法は、欧州公開公報1351071号公報に記載されている方法が好ましい。その方法としては、溶媒で希釈したフッ素置換アルキル基含有有機ケイ素化合物を減圧下、該有機ケイ素化合物の蒸着開始温度以上から該有機ケイ素化合物の分解温度を超えない範囲で、加熱開始から蒸着を90秒以内、好ましくは10秒以内に完結させることが好ましい。かかる蒸着時間を達成する方法としては、前記有機ケイ素化合物に電子ビームを照射する方法が好ましく用いられる。
フッ素置換アルキル基含有有機ケイ素化合物としては、下記一般式(h)で表されるもの、又は下記単位式(i)で表されるものが好ましい。
Figure 2005274767
(式中、Rfは炭素数1〜16の直鎖状のパーフルオロアルキル基、Xは水素または炭素数1〜5の低級アルキル基、R11は加水分解可能な基、kは1〜50の整数、rは0〜2の整数、pは1〜10の整数)
q2q+1CH2CH2Si(NH23 ・・・(i)
(ただし、qは1以上の整数である)
ここで、上記R11で示される加水分解可能な基としてはアミノ基、アルコキシ基、特にアルキル部が炭素数1〜2であるアルコキシ基、塩素原子等が挙げられる。
また、上記式(i)で表される化合物の具体例としては、n−CF3CH2CH2Si(NH2)3;n−トリフロロ(1,1,2,2−テトラヒドロ)プロピルシラザン、n−C3F7CH2CH2Si(NH2)3;n−ヘプタフロロ(1,1,2,2−テトラヒドロ)ペンチルシラザン、n−C4F9CH2CH2Si(NH2)3;n−ノナフロロ(1,1,2,2−テトラヒドロ)ヘキシルシラザン、n−C6F13CH2CH2Si(NH2)3;n−トリデオフロロ(1,1,2,2−テトラヒドロ)オクチルシラザン、n−C8F17CH2CH2Si(NH2)3;n−ヘプタデカフロロ(1,1,2,2−テトラヒドロ)デシルシラザン等を例示することができる
また、撥水層の原料として、フッ素置換アルキル基含有有機ケイ素化合物と、ケイ素非含有のパ−フルオロポリエ−テルとの2成分を主成分とする原料を用いることもでき、さらにはこれらの原料からなる第1層を形成し、該第1層上に接して、ケイ素非含有のパ−フルオロポリエ−テルを主成分とする原料を用いて第2層を形成することにより、撥水層を形成することも好適である。
ケイ素非含有のパ−フルオロポリエ−テルは、ケイ素を含有しない以下の構造式(j)
−(R12O)− ・・・(j)
(式中、R12は炭素数1〜3のパーフルオロアルキレン基である)
で表される単位からなるものが好ましく用いられ、平均分子量が1000〜10000、特に2000〜10000のものが好ましい。Rは炭素数1〜3のパーフルオロアルキレン基であり、具体的にはCF2,CF2−CF2,CF2CF2CF2,CF(CF3)CF2等の基が挙げられる。これらのパ−フルオロポリエ−テルは常温で液状であり、いわゆるフッ素オイルと称されるものである。
また、本発明の光学部材は、反射防止膜の下に、密着性を向上させるために、下地層として、後述するハイブリッド層形成の際に触媒作用のある金属、例えば、ニッケル(Ni)、銀(Ag)、白金(Pt)、ニオブ(Nb)及びチタニウム(Ti)から選ばれる少なくとも1種類からなる層を施すことができる。特に好ましい下地層は、より良好な耐衝撃性を付与させるために、ニオブからなる金属層である。金属層を下地層として用いた場合、下地層の上に設けられるハイブリッド層の反応が進みやすくなり、分子内編み目構造を有する物質が得られ、耐衝撃性が向上する。
本発明で使用するプラスチック基材の材質は、特に限定されず、例えば、メチルメタクリレ−ト単独重合体、メチルメタクリレ−トと1種以上の他のモノマ−との共重合体、ジエチレングリコ−ルビスアリルカ−ボネ−ト単独重合体、ジエチレングリコ−ルビスアリルカ−ボネ−トと1種以上の他のモノマ−との共重合体、イオウ含有共重合体、ハロゲン共重合体、ポリカ−ボネ−ト、ポリスチレン、ポリ塩化ビニル、不飽和ポリエステル、ポリエチレンテレフタレ−ト、ポリウレタン、ポリチオウレタン、エピチオ基を有する化合物を原料とする重合体などが挙げられる。
エピチオ基を有する化合物の例としては、ビス(β−エピチオプロピルチオ)メタン、1,2−ビス(β−エピチオプロピルチオ)エタン、1,3−ビス(β−エピチオプロピルチオ)プロパン、1,2−ビス(β−エピチオプロピルチオ)プロパン、1−(β−エピチオプロピルチオ)−2−(β−エピチオプロピルチオメチル)プロパン、1,4−ビス(β−エピチオプロピルチオ)ブタン、1,3−ビス(β−エピチオプロピルチオ)ブタン、1−(β−エピチオプロピルチオ)−3−(β−エピチオプロピルチオメチル)ブタン、1,5−ビス(β−エピチオプロピルチオ)ペンタン、1−(β−エピチオプロピルチオ)−4−(β−エピチオプロピルチオメチル)ペンタン、1,6−ビス(β−エピチオプロピルチオ)ヘキサン、1−(β−エピチオプロピルチオ)−5−(β−エピチオプロピルチオメチル)ヘキサン、1−(β−エピチオプロピルチオ)−2−〔(2−β−エピチオプロピルチオエチル)チオ〕エタン、1−(β−エピチオプロピルチオ)−2−[〔2−(2−β−エピチオプロピルチオエチル)チオエチル〕チオ]エタン等の鎖状有機化合物等が挙げられる。また、テトラキス(β−エピチオプロピルチオメチル)メタン、1,1,1−トリス(β−エピチオプロピルチオメチル)プロパン、1,5−ビス(β−エピチオプロピルチオ)−2−(β−エピチオプロピルチオメチル)−3−チアペンタン、1,5−ビス(β−エピチオプロピルチオ)−2,4−ビス(β−エピチオプロピルチオメチル)−3−チアペンタン、1−(β−エピチオプロピルチオ)−2,2−ビス(β−エピチオプロピルチオメチル)−4−チアヘキサン、1,5,6−トリス(β−エピチオプロピルチオ)−4−(β−エピチオプロピルチオメチル)−3−チアヘキサン、1,8−ビス(β−エピチオプロピルチオ)−4−(β−エピチオプロピルチオメチル)−3,6−ジチアオクタン、1,8−ビス(β−エピチオプロピルチオ)−4,5ビス(β−エピチオプロピルチオメチル)−3,6−ジチアオクタン、1,8−ビス(β−エピチオプロピルチオ)−4,4−ビス(β−エピチオプロピルチオメチル)−3,6−ジチアオクタン、1,8−ビス(β−エピチオプロピルチオ)−2,4,5−トリス(β−エピチオプロピルチオメチル)−3,6−ジチアオクタン、1,8−ビス(β−エピチオプロピルチオ)−2,5−ビス(β−エピチオプロピルチオメチル)−3,6−ジチアオクタン、1,9−ビス(β−エピチオプロピルチオ)−5−(β−エピチオプロピルチオメチル)−5−〔(2−β−エピチオプロピルチオエチル)チオメチル〕−3,7−ジチアノナン、1,10−ビス(β−エピチオプロピルチオ)−5,6−ビス〔(2−β−エピチオプロピルチオエチル)チオ〕−3,6,9−トリチアデカン、1,11−ビス(β−エピチオプロピルチオ)−4,8−ビス(β−エピチオプロピルチオメチル)−3,6,9−トリチアウンデカン、1,11−ビス(β−エピチオプロピルチオ)−5,7−ビス(β−エピチオプロピルチオメチル)−3,6,9−トリチアウンデカン、1,11−ビス(β−エピチオプロピルチオ)−5,7−〔(2−β−エピチオプロピルチオエチル)チオメチル〕−3,6,9−トリチアウンデカン、1,11−ビス(β−エピチオプロピルチオ)−4,7−ビス(β−エピチオプロピルチオメチル)−3,6,9−トリチアウンデカン等の分岐状有機化合物およびこれらの化合物のエピスルフィド基の水素の少なくとも1個がメチル基で置換された化合物等が挙げられる。さらには1,3および1,4−ビス(β−エピチオプロピルチオ)シクロヘキサン、1,3および1,4−ビス(β−エピチオプロピルチオメチル)シクロヘキサン、ビス〔4−(β−エピチオプロピルチオ)シクロヘキシル〕メタン、2,2−ビス〔4−(β−エピチオプロピルチオ)シクロヘキシル〕プロパン、ビス〔4−(β−エピチオプロピルチオ)シクロヘキシル〕スルフィド、2,5−ビス(β−エピチオプロピルチオメチル)−1,4−ジチアン、2,5−ビス(β−エピチオプロピルチオエチルチオメチル)−1,4−ジチアン等の環状脂肪族有機化合物およびこれらの化合物のエピスルフィド基の水素の少なくとも1個がメチル基で置換された化合物、および1,3および1,4−ビス(β−エピチオプロピルチオ)ベンゼン、1,3および1,4−ビス(β−エピチオプロピルチオメチル)ベンゼン、ビス〔4−(β−エピチオプロピルチオ)フェニル〕メタン、2,2−ビス〔4−(β−エピチオプロピルチオ)フェニル〕プロパン、ビス〔4−(β−エピチオプロピルチオ)フェニル〕スルフィド、ビス〔4−(β−エピチオプロピルチオ)フェニル〕スルフォン、4,4’−ビス(β−エピチオプロピルチオ)ビフェニル等の芳香族有機化合物およびこれらの化合物のエピスルフィド基の水素の少なくとも1個がメチル基で置換された化合物等が挙げられる。
本発明の光学部材は、前記プラスチック基材と前記下地層との間に、硬化層を有しても良い。
硬化層の形成には、通常、金属酸化物コロイド粒子と下記一般式(k)
(R13a (R14)bSi(OR154-(a+b) ・・・(k)
(式中、R13及びR14は、それぞれ独立に、炭素数1〜8のアルキル基、炭素数2〜8のアルケニル基、炭素数6〜8のアリール基、炭素数1〜8のアシル基、ハロゲン基、グリシドキシ基、エポキシ基、アミノ基、フェニル基、メルカプト基、メタクリロキシ基及びシアノ基の中から選ばれる有機基を示し、R13は炭素数1〜8のアルキル基、炭素数1〜8のアシル基及び炭素数6〜8のフェニル基の中から選ばれる有機基を示し、a及びbは、それぞれ独立に0又は1の整数である)で表される有機ケイ素化合物とからなる組成物が使用される。
前記金属酸化物コロイド粒子としては、例えば、酸化タングステン(WO3)、酸化亜鉛(ZnO)、酸化ケイ素(SiO2)、酸化アルミニウム(Al23)、酸化チタニウム(TiO2)、酸化ジルコニウム(ZrO2)、酸化スズ(SnO2)、酸化ベリリウム(BeO)又は酸化アンチモン(Sb25)等が挙げられ、単独又は2種以上を併用することができる。
前記硬化層を作るコ−ティング液には、従来知られている方法で、液の調製を行うことができる。所望により、硬化触媒、塗布時における濡れ性を向上させ、硬化層の平滑性を向上させる目的で各種の有機溶剤や界面活性剤を含有させることもできる。さらに、紫外線吸収剤、酸化防止剤、光安定剤老化防止剤等もコーティング組成物及び硬化被膜の物性に影響を与えない限り添加することができる。
コ−ティング組成物の硬化は、熱風乾燥または活性エネルギー線照射によって行い、硬化条件としては、70〜200℃の熱風中にて行うのが良く、特に好ましくは90〜150℃である。なお活性エネルギー線としては遠赤外線等があり、熱による損傷を低く抑えることができる。
また、コ−ティング組成物よりなる硬化層を基材上に形成する方法としては、上述したコ−ティング組成物を基材に塗布する方法が挙げられる。塗布手段としてはディッピング法、スピンコーティング法、スプレー法等の通常行われる方法が適用できるが、面精度の面からディッピング法、スピンコーティング法が特に好ましい。
また、プラスチック基材と下地層との密着性確保または蒸着物質の初期膜形成状態の均一化を図るために、硬化層表面にイオン化ガス処理しても良い。イオン銃前処理におけるイオン化ガスは、酸素、アルゴン(Ar)などを用いることができ、出力で好ましい範囲は、特に良好な密着性、耐摩耗性を得る観点から加速電圧50-700V 加速電流50-250mAである。
なお、本発明においては、特開昭63-141001号公報などに記載されている、プラスチック基材と反射防止膜との間に有機化合物よりなるプライマ−層を施すことを否定するものでなく、更なる耐衝撃性向上のため、プラスチック基材と反射防止膜との間、又はプラスチック基材と硬化層との間に、有機化合物を原料とするプライマ−層を施してもよい。
このプライマ−層の例としては、ポリイソシアネートとポリオールを原料として、ウレタン系の膜を形成するものが挙げられる。ポリイソシアネートとしては、ヘキサメチレンジイソシアネート、4,4'-シクロヘキシルメタンジイソシアネート、水添キシリレンジイソシアネートのそれぞれ数分子を種々の方法で結合させた付加物、イソシアヌレート、アロファネート、ビュウレット、カルボジイミドをアセト酢酸、マロン酸、メチルエチルケトオキシムなどでブロックしたものなどが挙げられ、一方、ポリオールとしては、水酸基を1分子内に複数個有するポリエステル、ポリエーテル、ポリカプロラクトン、ポリカーボネート、ポリアクリレートなどが挙げられる。また、プライマー膜の屈折率向上のため、酸化チタン微粒子などの酸化金属微粒子をプライマ−層に含有することができる。
特に、屈折率が1.68〜1.76程度のエピチオ基を有する化合物を原料とするプラスチック基材にプライマ−層を施し、さらに本発明の反射防止膜を施すことにより、基材の中心厚を小さくしても耐衝撃性、密着性、耐擦傷性に優れた光学部材を得ることができる。
以下、実施例により本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
なお、実施例及び比較例において得られた光学部材の物性評価は以下のようにして行った。
(1)視感透過率
プラスチックレンズの視感透過率Y1は、両面に反射防止膜を有するプラスチックレンズをサンプルとして、日立分光光度計U−3410を用い測定した。
(2)視感反射率
プラスチックレンズの視感反射率Y2は、両面に反射防止膜を有するプラスチックレンズをサンプルとして、日立分光光度計U−3410を用い測定した。
(3)耐衝撃性
レンズ中心部厚さ(以下「CT」と記載する)1.0mmまたは2.0mmで、レンズ度数パワ− 0.00D(ディオプタ−)のレンズを作製してFDA(Food and Drug Administration)で定められているドロップボールテストを行い、合格を○、不合格を×とした。なお、ここでのボ−ルの重さは14gであった。更にレンズが破損するまでドロップボールテストを継続し、最大荷重として強度確認を行った。
(4)密着性
プラスチックレンズの表面に剃刀にて1mm×1mmの升目を100個作成し、升目上にセロハンテープ(ニチバン社製造販売)を貼り、一気にテープをはがし、残った升目の数で評価した。表中、残った升目の数/100で記載した。
(5)耐摩耗性
プラスチックレンズの表面にスチールウール(規格#0000,日本スチ−ルウ−ル社製)にて98kPa(1kgf/cm2)の荷重をかけ、10ストローク擦り、表面状態により以下の基準で評価した。
UA:殆ど傷なし
A:細い傷数本あり
B:細い傷多数、太い傷数本あり
C:細い傷多数、太い傷多数あり
D:殆ど膜はげ状態
(6)耐熱性
プラスチックレンズをドライオーブンで60℃から、5℃ずつ上昇させて1時間加熱し、クラックの発生温度を測定した。
(7)耐アルカリ性
プラスチックレンズをNaOH10%水溶液に20℃、1時間浸漬し、表面状態により以下の基準で評価した。
UA:殆ど変化なし
A:点状の膜はげ数個あり
B:点状の膜はげが全面にあり
C:点状のはげが全面、面状のはげ数個あり
D:殆ど全面膜はげ
(8)Bayer値測定
摩耗試験機 BTETM Abrasion Tester(米COLTS社製)及び、ヘイズ値測定装置(村上色彩技術研究所)を使用し、基準レンズとのヘイズ値変化の差によりBayer値を測定した。
(サンプル数、測定方法)
(a)基準レンズ(CR39基材)3枚、サンプルレンズ3枚を用意した。
(b)摩耗テスト前のヘイズ(haze)値の測定を行った。
(c)BTETM Abrasion Testerにて、摩耗性テストを行った。
(砂による表面摩耗600往復)
(d)摩耗テスト後ヘイズ値を測定した。
(e)Bayer値を算出した(3枚分の平均値とする)。ここでBayer値とは、基準レンズの透過率変化/サンプルレンズの透過率変化で表されるものである。
(9)機械的強度試験(JIS静圧試験)
JIS T 7331:2000に準拠して試験を行った。
使用するプラスチックレンズ基材
(a)基材A:ジエチレングリコ−ルビスアリルカ−ボネ−ト、屈折率1.50、中心厚2.0mm、レンズ度数0.00
(b)基材B:EYRY基材(商品名、HOYA(株)製造)屈折率1.70、中心圧1.0mm、レンズ度数0.00
コ−ティング組成物Aの作成
ガラス製容器に、コロイダルシリカ(スノ−テックス−40、日産化学)90重量部、有機ケイ素化合物のメチルトリメトキシシラン81.6重量部、γ−グリシドキシプロピルトリメトキシシラン176重量部、0.5N塩酸2.0重量部、酢酸20重量部、水90重量を加えた液を、室温にて8時間攪拌後、室温にて16時間放置して加水分解溶液を得た。この溶液に、イソプロピルアルコ−ル120重量部、n−ブチルアルコ−ル120重量部、アルミニウムアセチルアセトン16重量部、シリコ−ン系界面活性剤0.2重量部、紫外線吸収剤0.1重量部を加え、室温にて8時間攪拌後、室温にて24時間熟成させコ−ティング液を得た。このコ−ティング組成物で得られた硬化層を以下、「ハ−ドコ−ト層A」と言う場合がある。
コ−ティング組成物Bの作成
ガラス製容器にγ-グリシドキシプロピル(トリメトキシ)シラン1045重量部と、γ-グリシドキシプロピルメチル(ジエトキシ)シラン200重量部とを入れ攪拌しながら0.01モル/リットル塩酸299重量部を添加し、10℃のクリーンルーム内で一昼夜攪拌を続け、シラン加水分解物を得た。
別の容器内で酸化チタン、酸化ジルコニウム、酸化ケイ素を主体とする複合微粒子ゾル(メタノール分散、全固形分30重量%、平均粒子径5〜8ミリミクロン)3998重量部にメチルセロソルブ4018重量部とイソプロパノール830重量部とを加え攪拌混合し、さらに、シリコーン系界面活性剤(日本ユニカー株式会社製「L−7001」)4重量部とアルミニウムアセチルアセトネート100重量部とを加え、上記と同様に10℃のクリーンルーム内で一昼夜攪拌を続けた後、上記加水分解物とを合わせ、さらに一昼夜攪拌した。その後3μmのフィルターでろ過を行いハードコート液Bを得た。このコ−ティング組成物で得られた硬化層を以下、「ハ−ドコ−ト層B」と言う場合がある。
硬化層の形成
アルカリ水溶液で前処理したプラスチックレンズ基板A又はBを、前記コーティング液の中に浸漬させ、浸漬終了後、引き上げ速度20cm/分で引き上げたプラスチックレンズを120℃で2時間加熱して硬化層(ハードコートA層、ハ−ドコ−トB層)を形成した。
イオン銃処理
硬化層上に、表に記載したイオン加速電圧、照射時間、ガス雰囲気下の条件で、イオン銃にてイオン照射を行った。
ハイブリッド膜を有する反射防止膜の形成
前記イオン照射したハードコートA層またはB層の上に、第1表に示した条件で第1〜7層からなる反射防止膜を形成して、プラスチックレンズを得た。
なお、ハイブリッド層は、図1に示す装置を用いて、無機物質の蒸着と有機物質の蒸着との、二元蒸着として、ほぼ同時に蒸着するように条件を設定した。有機物質の蒸着の際は、外部加熱タンクにて気化し、気化した有機物を、ガスバルブ、マスフローコントローラを使用して、蒸着装置内に導入した。ハイブリッド層を形成する際には、アルゴンガス、酸素ガスとの混合ガスの雰囲気下にてイオンアシスト法を用いた。また、表中「−」と記載されているのは、イオンアシスト法を用いず、通常の真空蒸着法にて層を形成した。なお、表中、M1は無機物質、CM1は有機ケイ素化合物、CM2はケイ素非含有有機化合物を表す。
表中に記載されている有機化合物の詳細は次の通りである。
(a) エポライト 70P (プロピレングリコ−ルジグリシジルエ−テル、平均分子量約188、共栄社化学(株)製造)
(b) LS:1371(ジエトキシジメチルシラン 分子量148.3 信越化学工業(株)製造)
(c) エピオールP200(ポリプロピレングリコールグリシジルエーテル、平均分子量約304、日本油脂(株)製造)
(d) デナコールEX920(ポリプロピレングリコールジグリシジルエーテル、平均分子量354、長瀬ケムテックス(株)製造)
また、KY-130は防汚膜形成用の「フッ素置換アルキル基含有有機ケイ素化合物」(信越シリコーン(株)製造)、KP-801は同じく防汚膜形成用の「フッ素置換アルキル基含有有機ケイ素化合物」(信越シリコーン(株)製造)である。
撥水膜の形成
フッ素置換アルキル基含有有機ケイ素化合物を含有したKY-130(信越シリコン株式会社)を0.3mlしみ込ませたステンレス製焼結フィルター(メッシュ80〜100ミクロンm、18φ×3mm)を真空蒸着装置内にセットし、以下の条件で電子銃を用いて該焼結フィルター全体を加熱して、撥水膜を形成した。
(a)真空度:2.3×10-6 〜6.0×10-6 Torr
(b)電子銃の条件
加速電圧:6KV、印加電流:40mA、照射面積:3.5×3.5cm平方、蒸着時間:5秒
なお、実施例5以降においては、基材と硬化層との間にプライマ−層を施した。そのプライマ−層の形成方法は次の通りである。
プライマ−層の形成
ポリエステルタイプのポリオール(住友バイエルウレタン(株)社の商品名、デスモフェンA−670使用)6.65重量部、ブロック型ポリイソシアネート(住友バイエルウレタン(株)社の商品名、BL−3175使用)6.08重量部、硬化触媒としてジブチル錫ジラウレート0.17重量部、レベリング剤としてフッ素系レベリング剤(住友スリーエム(株)社の商品名、フロラードFC−430使用)0.17重量部、および溶媒としてジアセトンアルコール95.71重量部からなる混合物を均一な状態になるまで充分攪拌して得られた。かくして得られた液状のプライマーは、前処理としてのアルカリ処理された基体レンズ上に浸漬法(引き上げ速度:24cm/分)にて塗布され、100℃で40分加熱して硬化され、厚さ2〜3μmのプライマー層を形成した。
実施例1〜16及び比較例1〜4
第1表に示すような構成で、基材上に反射防止膜を設け、物性評価を行った。その結果を第2表に示す。なお、λは光の波長を示す。
Figure 2005274767
Figure 2005274767
Figure 2005274767
Figure 2005274767
Figure 2005274767
Figure 2005274767
Figure 2005274767
Figure 2005274767
Figure 2005274767
Figure 2005274767
Figure 2005274767
Figure 2005274767
Figure 2005274767
Figure 2005274767
Figure 2005274767
Figure 2005274767
Figure 2005274767
Figure 2005274767
Figure 2005274767
Figure 2005274767
本発明の製造方法によれば、反射率が小さく、透過率が高いという優れた性能を有し、かつ耐熱性、及び耐摩耗性に優れた反射防止膜を有する光学部材を生産性良く製造することができ、本方法により製造された光学部材は特に眼鏡用レンズとして特に優れている。
本発明における成膜装置を示す概略図である。
符合の説明
1:光学式膜厚モニター
2:基板
3:基板保持用ドーム
4:有機物質導入口A
5:有機物質導入口B
6:蒸発源
7:RF型イオン銃
8:イオン化ガス導入口
9:排気系への接続部
10:外部モノマー加熱(気化)装置への接続部

Claims (11)

  1. プラスチック基材に、多層反射防止膜を真空蒸着で形成し、該反射防止膜上に撥水膜を施す光学部材の製造方法であって、該反射防止膜は、基材側から外気側に向って順に、以下に記す7層構成であり、
    第1層:常温、常圧下で液体である有機ケイ素化合物及び/又は常温、常圧下で液体であるケイ素非含有有機化合物と、二酸化ケイ素を含有する無機物質とを蒸着原料として形成されるハイブリッド層
    第2層:酸化タンタルが第2層を基準にして、少なくとも50重量%含有している層
    第3層:常温、常圧下で液体である有機ケイ素化合物及び/又は常温、常圧下で液体であるケイ素非含有有機化合物と、二酸化ケイ素を含有する無機物質とを蒸着原料として形成されるハイブリッド層
    第4層:酸化タンタルが第4層を基準にして、少なくとも50重量%含有している層
    第5層:常温、常圧下で液体である有機ケイ素化合物及び/又は常温、常圧下で液体であるケイ素非含有有機化合物と、二酸化ケイ素を含有する無機物質とを蒸着原料として形成されるハイブリッド層
    第6層:酸化タンタルが第6層を基準にして、少なくとも50重量%含有している層
    第7層:常温、常圧下で液体である有機ケイ素化合物及び/又は常温、常圧下で液体であるケイ素非含有有機化合物と、二酸化ケイ素を含有する無機物質とを蒸着原料として形成されるハイブリッド層
    [前記有機ケイ素化合物が、以下の一般式(a)〜(d)で表されるいずれかの構造を有している。
    一般式(a):シランまたはシロキサン化合物
    Figure 2005274767
    一般式(b):シラザン化合物
    Figure 2005274767
    一般式(c):シクロシロキサン化合物
    Figure 2005274767
    一般式(d):シクロシラザン化合物
    Figure 2005274767
    {一般式(a)〜(d)において、式中のm、nは、それぞれ独立に0以上の整数を表す。また、X1〜X8はそれぞれ独立に、水素、炭素数1〜6の炭化水素基(飽和・不飽和双方を含む)、−OR1基、−CH2OR2基、−COOR3基、−OCOR4基、−SR5基、−CH2SR6基、−NR7 2基、または、−CH2NR8 2基(R1〜R8は水素または炭素数1〜6の炭化水素基(炭素原子間の結合において飽和・不飽和双方を含む))を表す。}
    また、前記ケイ素非含有有機化合物が、以下の一般式(e)〜(g)で表されるいずれかの構造を有している。
    一般式(e):片末端にエポキシ基を有する炭素及び水素を必須成分とするケイ素非含有有機化合物
    Figure 2005274767
    一般式(f):両末端にエポキシ基を有する炭素及び水素を必須成分とするケイ素非含有有機化合物
    Figure 2005274767
    一般式(g):不飽和結合を含む、炭素及び水素を必須成分とするケイ素非含有有機化合物
    CX910=CX1112 ・・・(g)
    (一般式(e)、(f)において、R9は水素、または酸素を含んでいてもよい炭素数1〜10の炭化水素基、R10 は、酸素を含んでいてもよい炭素数1〜7の二価の炭化水素基を表す。一般式(g)において、X9〜X12、はそれぞれ独立に水素、炭素数1〜10の炭化水素基、または炭素数1〜10の炭素、水素を必須成分とし、さらに酸素及び窒素の少なくとも一方を必須成分とする有機基を表す。)]
    撥水膜は、前記反射防止膜の第7層上にフッ素置換アルキル基含有有機ケイ素化合物を原料として形成される光学部材の製造方法。
  2. 前記ハイブリッド層は、前記無機物質を、電子銃を用いて加熱することにより気化させ、前記有機ケイ素化合物及び/又はケイ素非含有有機化合物を、タンクに貯蔵し、該タンク内で該有機ケイ素化合物及び/又はケイ素非含有有機化合物を加熱して気化させ、前記無機物質と該有機ケイ素化合物及び/又はケイ素非含有有機化合物を同時に蒸着させることにより形成させる請求項1記載の光学部材の製造方法。
  3. 前記ハイブリッド層が、イオンアシスト法で形成される請求項1または請求項2記載の光学部材の製造方法。
  4. 前記有機ケイ素化合物及び/又はケイ素非含有有機化合物を、溶媒を加えずに加熱して蒸着させる請求項1〜3項のいずれか1項記載の光学部材の製造方法。
  5. 前記有機ケイ素化合物の分子量が、48〜600である請求項1〜4項のいずれか1記載の光学部材の製造方法。
  6. 前記ケイ素非含有有機化合物の分子量が、28〜400である請求項1〜4項のいずれか1項記載の光学部材の製造方法。
  7. 前記ハイブリッド層の有機ケイ素化合物及び/又はケイ素非含有有機化合物の膜内含有率が、0.02〜25重量%である請求項1〜6項のいずれか1項に記載の光学部材の製造方法。
  8. 前記プラスチック基材と反射防止膜との間に、ニッケル(Ni)、銀(Ag)、白金(Pt)、ニオブ(Nb)及びチタニウム(Ti)から選ばれる少なくとも1種類からなる膜厚1〜5nmの下地層を施す請求項1〜7項のいずれか1項に記載の光学部材の製造方法。
  9. プラスチック基材は、ジエチレングリコ−ルビスアリルカ−ボネ−トを原料とする基材である請求項1〜8項のいずれか1項記載の光学部材の製造方法。
  10. プラスチック基材は、エピチオ基を有する化合物を原料とする基材である請求項1〜9項のいずれか1項記載の光学部材の製造方法。
  11. プラスチック基材と反射防止膜との間に、プラスチック基材から順に、プライマ−層、硬化層を施す請求項1〜10項のいずれか1項記載の光学部材の製造方法。

JP2004085459A 2004-03-23 2004-03-23 光学部材の製造方法 Expired - Fee Related JP4593949B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004085459A JP4593949B2 (ja) 2004-03-23 2004-03-23 光学部材の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004085459A JP4593949B2 (ja) 2004-03-23 2004-03-23 光学部材の製造方法

Publications (2)

Publication Number Publication Date
JP2005274767A true JP2005274767A (ja) 2005-10-06
JP4593949B2 JP4593949B2 (ja) 2010-12-08

Family

ID=35174536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004085459A Expired - Fee Related JP4593949B2 (ja) 2004-03-23 2004-03-23 光学部材の製造方法

Country Status (1)

Country Link
JP (1) JP4593949B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021099508A (ja) * 2011-12-28 2021-07-01 コルポラシオン ドゥ レコール ポリテクニーク ドゥ モントリオール 経時的に安定している性質を有する干渉コーティングでコートされた物品

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000009902A (ja) * 1998-06-18 2000-01-14 Mitsubishi Gas Chem Co Inc プラスチックレンズ
JP2002328201A (ja) * 2001-04-27 2002-11-15 Hoya Corp 反射防止膜を有する光学部材
JP2003195004A (ja) * 2001-12-25 2003-07-09 Hoya Corp 反射防止膜を有するプラスチックレンズの製造方法および反射防止膜を有するプラスチックレンズ
JP2003202407A (ja) * 2001-10-25 2003-07-18 Hoya Corp 反射防止膜を有する光学部材及びその製造方法
JP2003329802A (ja) * 2002-05-14 2003-11-19 Hoya Corp 眼鏡レンズの製造方法
JP2004054048A (ja) * 2002-07-22 2004-02-19 Hoya Corp 光学部材及び光学部材用有機蒸着膜

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000009902A (ja) * 1998-06-18 2000-01-14 Mitsubishi Gas Chem Co Inc プラスチックレンズ
JP2002328201A (ja) * 2001-04-27 2002-11-15 Hoya Corp 反射防止膜を有する光学部材
JP2003202407A (ja) * 2001-10-25 2003-07-18 Hoya Corp 反射防止膜を有する光学部材及びその製造方法
JP2003195004A (ja) * 2001-12-25 2003-07-09 Hoya Corp 反射防止膜を有するプラスチックレンズの製造方法および反射防止膜を有するプラスチックレンズ
JP2003329802A (ja) * 2002-05-14 2003-11-19 Hoya Corp 眼鏡レンズの製造方法
JP2004054048A (ja) * 2002-07-22 2004-02-19 Hoya Corp 光学部材及び光学部材用有機蒸着膜

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021099508A (ja) * 2011-12-28 2021-07-01 コルポラシオン ドゥ レコール ポリテクニーク ドゥ モントリオール 経時的に安定している性質を有する干渉コーティングでコートされた物品

Also Published As

Publication number Publication date
JP4593949B2 (ja) 2010-12-08

Similar Documents

Publication Publication Date Title
JP4220232B2 (ja) 反射防止膜を有する光学部材
US11220584B2 (en) Protective coating system for plastic substrate
CA2841414C (en) Method for obtaining optical articles having superior abrasion resistant properties, and coated articles prepared according to such method
EP2199835B1 (en) Optical component and manufacturing method of the optical component
AU2002313976B2 (en) Hybrid film, antireflection film comprising it, optical product, and method for restoring the defogging property of hybrid film
CN107923995B (zh) 具有优化的粘合特性并且包括硅有机层的物品
JP4922393B2 (ja) レンズホルダ
JP4989846B2 (ja) 光学部材及びその製造方法
JP2008152085A (ja) 眼鏡用レンズの製造方法、眼鏡用レンズの成膜装置および眼鏡用レンズ
US20080038483A1 (en) Adhesion of hydrophobic coatings on eyeglass lenses
JP4593949B2 (ja) 光学部材の製造方法
JP4654233B2 (ja) 反射防止膜を有する光学部材
US10732324B2 (en) Method for laminating an interference coating comprising an organic/inorganic layer, and item thus obtained
JP2006276568A (ja) 光学部材
CN107848877B (zh) 具有改进的热机械特性、包括有机-无机层的物品
JP5192164B2 (ja) レンズホルダ
CN109661597B (zh) 具有增加的对湿热环境的耐受性的眼科镜片
EP3185050A1 (en) Optical article comprising a multilayered interferential coating obtained from an organic precursor or a mixture of organic precursors
JP2006201424A (ja) プラスチックレンズおよびその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100907

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100916

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees