JP2005274242A - Method for diagnosing deterioration of rooftop waterproof layer of building - Google Patents

Method for diagnosing deterioration of rooftop waterproof layer of building Download PDF

Info

Publication number
JP2005274242A
JP2005274242A JP2004085620A JP2004085620A JP2005274242A JP 2005274242 A JP2005274242 A JP 2005274242A JP 2004085620 A JP2004085620 A JP 2004085620A JP 2004085620 A JP2004085620 A JP 2004085620A JP 2005274242 A JP2005274242 A JP 2005274242A
Authority
JP
Japan
Prior art keywords
deterioration
electrode
electrodes
degree
building
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004085620A
Other languages
Japanese (ja)
Other versions
JP4442808B2 (en
Inventor
Takeshi Kobayashi
剛 小林
Toshio Motoma
敏雄 源間
Kazumi Nakayama
和美 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oyo Corp
Tokyo Power Technology Ltd
Tokyo Electric Power Co Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Oyo Corp
Toden Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Oyo Corp, Toden Kogyo Co Ltd filed Critical Tokyo Electric Power Co Inc
Priority to JP2004085620A priority Critical patent/JP4442808B2/en
Publication of JP2005274242A publication Critical patent/JP2005274242A/en
Application granted granted Critical
Publication of JP4442808B2 publication Critical patent/JP4442808B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04DROOF COVERINGS; SKY-LIGHTS; GUTTERS; ROOF-WORKING TOOLS
    • E04D13/00Special arrangements or devices in connection with roof coverings; Protection against birds; Roof drainage ; Sky-lights
    • E04D13/006Provisions for detecting water leakage

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Examining Or Testing Airtightness (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To diagnose and evaluate a waterproof capacity (deterioration degree) over a wide range in a non-destuctive manner directly, quantitatively, and inexpensively only by temporarily providing an electrode merely without applying a large-scaled device to the rooftop waterproof layer of an established or existing building. <P>SOLUTION: A large number of electrodes are temporarily provided and arranged on the rooftop waterproof layer of the building through a conductor layer and used to calculate electric characteristics to evaluate the deterioration degree of the waterproof layer from the correlation with water permeability. Typically, an arbitrary one internal current electrode among a large number of electrodes is set to an internal current electrode and one separate electrode is set to a reference electrode and a plurality of electrodes on a measuring line containing the reference electrode are set as measuring electrodes. An external current electrode is installed on the main body of the building to feed a current across the current electrodes and the potential difference between the reference electrode and the measuring electrode is measured to calculate distance potential attenuation characteristics and the degree of the deterioration in the vicinity of a measuring region is evaluated from the correlation with water permeability. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、建物の屋上防水層の劣化度を診断する方法に関し、更に詳しく述べると、電気的手法により非破壊で防水性能あるいは余命を定量的に評価できる建物屋上防水層の劣化診断方法に関するものである。   The present invention relates to a method for diagnosing the degree of deterioration of a rooftop waterproofing layer of a building, and more particularly to a method for diagnosing the deterioration of a waterproofing layer of a building roof that can quantitatively evaluate waterproof performance or life expectancy by an electrical method. It is.

建物、特に各種の大型施設や大型ビルなどでは、雨漏り防止のために、屋上にアスファルトなどによる防水工が施されていることが多い。建物の屋上は、風雨に曝され、直射日光を受け、場合によっては積雪や凍結などが生じ、防水層(アスファルト防水層やシート防水層など)は水や熱、紫外線などの影響により徐々に劣化し、ひび割れができ、甚だしい場合には雨漏りが生じる。そこで、建物の屋上防水層には保証期間が定められ(一般的には10年)、その保証期間が過ぎると一律に全面改修することで雨漏りを未然に防ぐようにしていた。   Buildings, particularly various large facilities and large buildings, are often waterproofed with asphalt on the roof to prevent rain leakage. The roof of the building is exposed to wind and rain, exposed to direct sunlight, and in some cases, snow and freezing occur, and waterproof layers (such as asphalt waterproof layers and sheet waterproof layers) gradually deteriorate due to the effects of water, heat, ultraviolet rays, etc. However, it can crack, and if it is severe, it leaks. Therefore, a guarantee period is set for the roof waterproofing layer of the building (generally 10 years), and when the guarantee period expires, the entire surface is uniformly repaired to prevent rain leaks.

しかし、保証期間が過ぎた時点でも、防水層の大部分が健全である場合も多く、最近では保全費用を削減するため、また産業廃棄物の発生量を低減するため、漏水が生じた場合に部分的に補修するケースも増えている。その場合、現状では、目視などによる外観上の評価により、おおよその見当をつけて広域で補修している。ところが、屋上防水層の上に保護層(例えばコンクリート製のルーフブロック)が敷き詰められていると、それを取り除かない限り防水層の状態を確認できず、また例え外観を確認できても漏水箇所の特定は難しい。   However, even when the warranty period expires, the majority of the waterproof layer is often healthy.Recently, in order to reduce maintenance costs and to reduce the amount of industrial waste generated, if water leakage occurs. The number of cases where partial repairs are increasing. In that case, at present, repairs are made over a wide area with an approximate register by visual evaluation. However, if a protective layer (for example, a concrete roof block) is laid on the rooftop waterproof layer, the state of the waterproof layer cannot be confirmed unless it is removed. Identification is difficult.

防水層の破損などによる漏水については、電気式漏水検知装置により、建物の屋上防水層の漏水箇所を特定する方法が提案されている(特許文献1参照)。ここでは、防水層の上に電極を組み込み、それらを導電媒体で覆う構成となっている。従って、防水層上に保護層が設けられるような屋上防水構造の場合には、屋上防水層の施工時に予め電極を組み込んでおかねばならず、施工に多大な費用を必要とする。また、防水構造の変更を必要とするため、既設の屋上防水層には適用できない場合もある。更に、屋上防水層の劣化が進んで絶縁抵抗値が低い場合には、電気式漏水検知装置の測定原理(電位分布の歪の電気的中心位置を求めて破損位置を推定する)が成り立たないため測定できないという問題もある。つまり、ある程度良好な状態の防水層で発生した破損などによる漏水位置は測定できても、顕著な破損が無ければ良好な防水層と判定されるだけであり、防水層自体の劣化の度合いは評価できない。   With respect to water leakage due to damage to the waterproof layer, a method has been proposed in which a water leak location of a roof waterproof layer on a building is identified by an electric water leak detector (see Patent Document 1). Here, electrodes are incorporated on the waterproof layer and covered with a conductive medium. Therefore, in the case of a rooftop waterproof structure in which a protective layer is provided on the waterproof layer, an electrode must be incorporated in advance when the rooftop waterproof layer is constructed, which requires a great deal of construction cost. In addition, since the waterproof structure needs to be changed, it may not be applicable to the existing roof waterproof layer. In addition, when the roof waterproof layer is further deteriorated and the insulation resistance value is low, the measurement principle of the electric water leakage detection device (estimating the damage position by obtaining the electrical center position of the potential distribution distortion) does not hold. There is also a problem that it cannot be measured. In other words, even if the location of water leakage due to damage that occurs in a waterproof layer that is in good condition to some extent can be measured, it is only determined as a good waterproof layer if there is no significant damage, and the degree of deterioration of the waterproof layer itself is evaluated. Can not.

そこで、現在、屋上アスファルト防水層の防水性能(劣化度)を定量的に評価する方法として、防水層の一部を切り出して材料性能試験(引張り強度、針入度、軟化点など)が実施されている。しかし、この方法は塑性的な試験結果が示されるのみで、必ずしも防水性能を評価するものとはなっていない。また、そのような材料性能試験は、試料を採取した位置での情報が得られるのみであり、面的な評価ができない欠点がある。更に、試験用の材料を現場から切り出す必要があり、必然的に防水層を部分的に破壊してしまうという致命的な問題が生じる。
特開平10−104104号公報
Therefore, as a method to quantitatively evaluate the waterproof performance (degradation level) of the rooftop asphalt waterproof layer, a part of the waterproof layer is cut out and material performance tests (tensile strength, penetration, softening point, etc.) are carried out. ing. However, this method only shows a plastic test result and does not necessarily evaluate the waterproof performance. In addition, such a material performance test has a drawback that only information at the position where the sample is taken can be obtained, and surface evaluation cannot be performed. Furthermore, it is necessary to cut out the test material from the field, which inevitably causes a fatal problem that the waterproof layer is partially broken.
Japanese Patent Laid-Open No. 10-104104

本発明が解決しようとする課題は、従来の技術では的確な防水性能評価ができない点、面的な評価ができない点、試料採取のために屋上防水層が破壊される点、などである。   The problem to be solved by the present invention is that the waterproof performance cannot be accurately evaluated by the conventional technique, the surface evaluation cannot be performed, and the roof waterproof layer is destroyed for sampling.

本発明は、建物屋上防水層の上に、導電体層を介して多数の電極を仮設配列し、それらの電極を用いて電気的特性を求め、電気的特性と透水性との相関から非破壊で防水層の劣化度を評価することを特徴とする建物屋上防水層の劣化診断方法である。ここで透水性を表すファクタとしては、透水率、透水係数、含水率などがあり、いずれを用いてもよい。   In the present invention, a number of electrodes are temporarily arranged on a rooftop waterproofing layer of a building via a conductor layer, and electrical characteristics are obtained using these electrodes, and non-destructive from the correlation between electrical characteristics and water permeability. This is a method for diagnosing deterioration of a waterproofing layer on a building roof, characterized by evaluating the degree of deterioration of the waterproofing layer. Here, factors representing water permeability include water permeability, water permeability coefficient, water content, etc., and any of them may be used.

例えば、多数の電極のうちの任意の1個を内部電流電極、別の1個を基準電極、該基準電極を含む測線上の他の複数個を測定電極とし、建物本体もしくは地盤に外部電流電極を設置して、内部電流電極と外部電流電極との間で通電し、基準電極と測定電極の間の電位差を測定することにより距離的な電位減衰特性を求め、その電位減衰特性と透水性との相関から測定領域近傍の劣化度を評価する。その場合、単位距離離れた位置での電位差の大小によっても評価できるし、電位減衰率でも評価できる。また、多数の電極を用いて4極法により体積抵抗率の分布を求め、その体積抵抗率と透水性との相関から測定領域近傍の劣化度を評価する方法、建物屋上に配列した電極を内部電流電極とし、建物本体もしくは地盤に外部電流電極を設置して、内部電流電極と外部電流電極とで防水層上下間の通電電流値もしくは体積抵抗率を求め、その通電電流値もしくは体積抵抗率と透水性との相関から測定領域近傍の劣化度を評価する方法もある。あるいはそれらを組み合わせて総合的に評価することもできる。   For example, any one of a number of electrodes is an internal current electrode, another is a reference electrode, and a plurality of other electrodes on the survey line including the reference electrode are measurement electrodes. To measure the potential difference between the internal current electrode and the external current electrode and measure the potential difference between the reference electrode and the measurement electrode to obtain the distance potential attenuation characteristic. The degree of deterioration in the vicinity of the measurement region is evaluated from the correlation. In this case, the evaluation can be made based on the magnitude of the potential difference at a position distant from the unit distance, or the potential decay rate. In addition, the volume resistivity distribution is obtained by the quadrupole method using a large number of electrodes, and the degree of deterioration in the vicinity of the measurement region is evaluated from the correlation between the volume resistivity and the water permeability. As the current electrode, install an external current electrode on the building body or ground, determine the current value or volume resistivity between the top and bottom of the waterproof layer with the internal current electrode and the external current electrode, and calculate the current value or volume resistivity. There is also a method for evaluating the degree of deterioration in the vicinity of the measurement region from the correlation with water permeability. Or they can be combined and evaluated comprehensively.

このようにして建物屋上防水層のほぼ全面にわたって劣化度を求め、その劣化度の平面的な分布図を作成すると、それに基づき劣化度の大きな領域を部分的に適切に補修することが可能となる。   In this way, when the deterioration degree is obtained over almost the entire surface of the waterproofing layer of the building and a planar distribution map of the deterioration degree is created, it becomes possible to repair a region with a large deterioration degree appropriately based on the distribution map. .

防水層上に、砂等が敷かれ、その上にコンクリート製の保護層が設けられている場合には、その保護層を導電体層として利用し、ルーフブロックの上に多数の電極を仮設配列すればよい。保護層としては、コンクリート製のルーフブロックを載置する構造の他、コンクリートを直接打設する構造がある。そのような保護層が設けられていない場合には、導電性のシートあるいはマットなどを敷き、その上に多数の電極を仮設配列すればよい。   When sand or the like is laid on the waterproof layer and a concrete protective layer is provided on it, the protective layer is used as a conductor layer, and a number of electrodes are temporarily arranged on the roof block. do it. As the protective layer, there is a structure in which concrete is directly placed, in addition to a structure in which a concrete roof block is placed. When such a protective layer is not provided, a conductive sheet or mat may be laid and a large number of electrodes may be temporarily arranged thereon.

本発明の建物屋上防水層の劣化診断方法は、建物屋上防水層の上に、導電体層を介して多数の電極を仮設配列し、それらの電極を用いて電気的特性を求める方法であるから、新設あるいは既設の屋上防水層(アスファルト防水層やシート防水層など)に対して、大掛かりな装置を施工することなく単に電極を仮設するだけで、非破壊で広範囲にわたって防水層の防水性能(劣化度)を直接的に定量的に且つ安価に診断・評価することができる。   The deterioration diagnosis method for a building roof waterproof layer of the present invention is a method in which a large number of electrodes are temporarily arranged on the building roof waterproof layer via a conductor layer, and electrical characteristics are obtained using these electrodes. The waterproof performance (deterioration) of a wide range of non-destructive waterproof layers can be achieved simply by temporarily placing electrodes on a newly installed or existing roof waterproof layer (such as an asphalt waterproof layer or a sheet waterproof layer) without constructing a large-scale device. Degree) can be directly and quantitatively and inexpensively diagnosed and evaluated.

これによって、平面的な劣化度判定図を作成することができ、適切な時期に必要最小限の補修を行えばよくなるため、屋上の保全費用の削減と産業廃棄物発生量の削減に顕著な効果が生じる。   As a result, it is possible to create a planar deterioration degree judgment map, and it is only necessary to perform the minimum necessary repairs at an appropriate time, which has a remarkable effect on reducing rooftop maintenance costs and industrial waste generation. Occurs.

建物の屋上アスファルト防水層は、直射日光による熱や紫外線、及び雨水、場合によっては積雪や凍結などの影響を受けて、期間が経過するにつれて徐々に劣化が進行する。劣化の進行度合いは環境によって大きく異なる。一般に、当初は細かいひび割れが生じ、徐々にひび割れが大きくなり、やがて著しく変質(硬化、脆弱化、腐敗、大きなひび割れなど)する。このひび割れの拡大が防水性能に直接的に影響する。当然のことながら、劣化が進行して、ひび割れが多くなると、あるいはひび割れが大きくなると、透水率は大きくなる(水を通し易くなる)。   The rooftop asphalt waterproofing layer of a building is gradually deteriorated as the period elapses due to the effects of heat, ultraviolet rays, rainwater, and in some cases, snow accumulation and freezing due to direct sunlight. The degree of progress of deterioration varies greatly depending on the environment. Generally, fine cracks are generated at the beginning, and the cracks gradually become larger, and eventually undergo significant alteration (hardening, weakening, decay, large cracks, etc.). The expansion of the crack directly affects the waterproof performance. As a matter of course, when the deterioration progresses and cracks increase or the cracks increase, the water permeability increases (it becomes easy to pass water).

一定環境下での経過年数と透水率の関係を求めると、例えば図1のようになる。当然のことながら経過年数が長くなると劣化が進み、透水率が急激に増加していく。環境や材料が異なれば劣化の進行度合いが異なるために経過年数に対する透水率の関係も異なるが、劣化の進行度合いに対する透水率の関係はほぼ一定となる。従って、透水率が分かれば、劣化度を評価できる。例えば、透水率が0.1〜0.2程度の場合を劣化度1(必要に応じて部分補修を行う)、0.2〜0.6程度の場合を劣化度2(部分補修又は大規模補修を行う)、更に0.6程度以上の場合を劣化度3(原則として大規模補修を行う)というように、劣化度をランク分けすることができる。もっと細かくランク分けすることも可能であるが、補修の要否という観点から、3ランク程度に区分けできれば十分である。   For example, FIG. 1 shows the relationship between the elapsed years and the water permeability under a certain environment. As a matter of course, the deterioration progresses as the elapsed years become longer, and the water permeability increases rapidly. Different environments and materials have different degrees of progress of deterioration, so the relationship of water permeability to elapsed years is different, but the relationship of water permeability to the degree of progress of deterioration is almost constant. Therefore, if the water permeability is known, the degree of deterioration can be evaluated. For example, when the water permeability is about 0.1 to 0.2, the degree of deterioration is 1 (partial repair is performed if necessary), and when the degree of water permeability is about 0.2 to 0.6, the degree of deterioration is 2 (partial repair or large scale). The degree of deterioration can be ranked such that the degree of deterioration is about 3 or more (in principle, large-scale repair is performed). Although it is possible to classify the rank more finely, it is sufficient to classify it into about three ranks from the viewpoint of necessity of repair.

ところで、水は導電性を有するため、屋上アスファルト防水層の透水性と電気的性能の間には何らかの相関性があることが予想される。本発明は、このような相関性の存在に着目し、透水性と相関性のある電気的性能を測定することにより、防水性能(劣化度)を直接的に表している透水性から非破壊に面的に防水層の劣化度を評価しようとするものである。   By the way, since water has conductivity, it is expected that there is some correlation between the water permeability of the rooftop asphalt waterproof layer and the electrical performance. The present invention pays attention to the existence of such a correlation, and measures the electrical performance correlated with the water permeability so that the waterproof performance (degradation degree) directly represents the waterproof performance (degradation degree) and is nondestructive. It is intended to evaluate the degree of deterioration of the waterproof layer.

図2のAに示すように、多数の電極10は、屋上アスファルト防水層上に設けられている導電性の保護層12の上に、通常、全面にわたって縦横均一に格子配置する。測定方法によっては、図2のBに示すように、簡易的に電極10を対角線状に配置(ライン状面配置)してもよい。調査対象箇所が細長状の場合には、図2のCに示すように、電極10をライン配置としてもよい。このように等間隔で配置するのが好ましいが、位置を特定できるのであればランダムに配置しても構わない。   As shown in FIG. 2A, a large number of electrodes 10 are usually arranged in a grid pattern on the entire surface of the conductive protective layer 12 provided on the roof asphalt waterproof layer. Depending on the measurement method, as shown in FIG. 2B, the electrodes 10 may be simply arranged diagonally (line-shaped surface arrangement). When the investigation target portion is elongated, the electrodes 10 may be arranged in a line as shown in FIG. Although it is preferable to arrange them at equal intervals in this way, they may be arranged at random as long as the positions can be specified.

典型的な測定方法は、多数の電極のうちの任意の1個を内部電流電極、別の1個を基準電極、該基準電極を含む測線上の他の複数個を測定電極とし、建物本体もしくは地盤に外部電流電極を設置して、内部電流電極と外部電流電極との間で通電し、基準電極と測定電極の間の電位差を測定することにより距離的な電位減衰特性を求め、その電位減衰特性と透水性との相関から測定領域近傍の劣化度を評価する。この方法は、電極の設置状態を問わず安定したデータが得られ、測定し易いため、特に好ましい。   In a typical measurement method, any one of a large number of electrodes is an internal current electrode, another is a reference electrode, and another plurality of measurement lines including the reference electrode are measurement electrodes. An external current electrode is installed on the ground, energized between the internal current electrode and the external current electrode, the potential difference between the reference electrode and the measurement electrode is measured to determine the distance potential attenuation characteristics, and the potential attenuation The degree of deterioration in the vicinity of the measurement region is evaluated from the correlation between characteristics and water permeability. This method is particularly preferable because stable data can be obtained regardless of the electrode installation state and measurement is easy.

電極の位置(基準電極からの距離)に対する電位差の関係である電位減衰曲線の例を図3に示す。防水層の劣化度によって、基準電極から離れても電位差があまり減衰しない特性(曲線a)、緩やかに減衰する特性(曲線b)、急激に減衰する特性(曲線c)に分けられる。劣化度が低ければ電位差があまり減衰しないので曲線aのような電位減衰特性は劣化度1と判定でき、同様にして曲線bのような電位減衰特性は劣化度2、曲線cのような電位減衰特性は劣化度3と区別できる。この場合に、単位距離(例えば1m)離れた位置での電位差の大小によっても評価できるし、電位減衰率でも評価できる。   FIG. 3 shows an example of a potential decay curve that is the relationship of the potential difference with respect to the electrode position (distance from the reference electrode). Depending on the degree of deterioration of the waterproof layer, it can be divided into a characteristic in which the potential difference does not attenuate much even when it is away from the reference electrode (curve a), a characteristic that gently attenuates (curve b), and a characteristic that attenuates rapidly (curve c). If the degree of deterioration is low, the potential difference does not attenuate so much, so that the potential attenuation characteristic such as curve a can be determined as the degree of deterioration 1, and similarly, the potential attenuation characteristic such as curve b has the degree of deterioration 2 and the potential attenuation like curve c. The characteristics can be distinguished from the degree of degradation 3. In this case, the evaluation can be made based on the magnitude of the potential difference at a position separated by a unit distance (for example, 1 m), and can also be evaluated by the potential decay rate.

図4は、本発明に係る建物屋上防水層の劣化診断方法で用いる測定システムの一例を示す構成図である。ここでは、鉄筋コンクリートなどからなる建物の屋根20の上に、アスファルト防水層22が形成されており、その上に保護層24が設けられている。ここで保護層24は、例えば砂を敷いた上にコンクリート製のルーフブロックを配列載置した構造である。保護層が無い場合には、代わりに導電性を有するシートやマットを設ける。保護層24の上に、多数の電極26を縦横格子状に等間隔で配設する。   FIG. 4 is a configuration diagram showing an example of a measurement system used in the deterioration diagnosis method for a building roof waterproof layer according to the present invention. Here, an asphalt waterproof layer 22 is formed on a roof 20 of a building made of reinforced concrete or the like, and a protective layer 24 is provided thereon. Here, the protective layer 24 has a structure in which, for example, concrete roof blocks are arranged and placed on sand. If there is no protective layer, a conductive sheet or mat is provided instead. On the protective layer 24, a large number of electrodes 26 are arranged at equal intervals in a vertical and horizontal grid pattern.

電極26としては、例えば、ゲル電極、金属電極、無分極電極など、仮設式で容易に設置・移動が可能なものを使用する。測定に先立って多数の電極を配設し、測定完了後はそれらの電極を撤去することになる。各電極26のリード線を、接続を切り替える機能を有する端子ボックス28を介して測定器30に接続する。また、建物本体(屋根裏)もしくは地盤に外部電流電極34を設置して、そのリード線も測定器30に接続する。そして、測定器30の送信部から所定の電流を供給し、受信部で電圧を測定する。測定したデータは、パーソナルコンピュータ32で処理する。測定に際しては、十分に水を散布し、保護層24を湿らせて導電性を付与する。   As the electrode 26, for example, a temporary electrode that can be easily installed and moved, such as a gel electrode, a metal electrode, or a non-polarized electrode, is used. Prior to the measurement, a large number of electrodes are arranged, and after completion of the measurement, these electrodes are removed. The lead wire of each electrode 26 is connected to the measuring instrument 30 through a terminal box 28 having a function of switching connection. Further, an external current electrode 34 is installed on the building body (attic) or the ground, and its lead wire is also connected to the measuring device 30. Then, a predetermined current is supplied from the transmission unit of the measuring instrument 30, and the voltage is measured by the reception unit. The measured data is processed by the personal computer 32. In the measurement, water is sufficiently sprayed, and the protective layer 24 is moistened to impart conductivity.

多数の電極26のうちの任意の1個を内部電流電極、別の1個を基準電極、該基準電極を含む測線上の他の複数個を測定電極とし、建物本体もしくは地盤に外部電流電極34を設置して、内部電流電極と外部電流電極との間で通電し、基準電極と測定電極の間の電位差を測定する。これにより距離的な電位減衰特性を求めることができる。その電位減衰曲線と透水率との相関から測定領域近傍の劣化度を評価する。得られた電位減衰曲線を、例えば、
Y=P×XQ
で近似し、電位差Pもしくは電位減衰率Qを求める。電位差Pは、一定距離(X=1)離れた位置での電位差を意味している。電位差Pに対する透水率の関係を図5のAに示し、電位減衰率Qに対する透水率の関係を図5のBに示す。透水率が大きければ、発生する電位差は小さいし、電位は急激に減少する。逆に透水率が小さければ、発生する電位差は大きく、電位は減少し難い。従って、図5に示すように、電位差Pの大小によっても、あるいは電位減衰率Qの大小によっても、透水率が求まる。前記のような透水率と劣化度との関係から、例えば、透水率が0.1〜0.2程度の場合を劣化度1(必要に応じて部分補修を行う)、0.2〜0.6程度の場合を劣化度2(部分補修又は大規模補修を行う)、更に0.6程度以上の場合を劣化度3(原則として大規模補修を行う)というように、劣化度をランク分けできるから、電位差Pあるいは電位減衰率Qによって劣化度をランク分けできる。
Arbitrary one of the many electrodes 26 is an internal current electrode, another one is a reference electrode, and another plurality of measurement lines including the reference electrode are measurement electrodes. An external current electrode 34 is provided on the building body or ground. Is installed and energized between the internal current electrode and the external current electrode, and the potential difference between the reference electrode and the measurement electrode is measured. As a result, the distance-wise potential decay characteristic can be obtained. The degree of deterioration in the vicinity of the measurement region is evaluated from the correlation between the potential decay curve and the water permeability. The obtained potential decay curve is, for example,
Y = P × X Q
To obtain the potential difference P or the potential decay rate Q. The potential difference P means a potential difference at a position separated by a certain distance (X = 1). FIG. 5A shows the relationship of the water permeability to the potential difference P, and FIG. 5B shows the relationship of the water permeability to the potential decay rate Q. If the water permeability is large, the generated potential difference is small, and the potential decreases rapidly. Conversely, if the water permeability is small, the generated potential difference is large and the potential is difficult to decrease. Therefore, as shown in FIG. 5, the water permeability can be obtained by the magnitude of the potential difference P or by the magnitude of the potential decay rate Q. From the relationship between the water permeability and the degree of deterioration as described above, for example, when the water permeability is about 0.1 to 0.2, the degree of deterioration is 1 (partial repair is performed if necessary), and 0.2 to 0. The degree of degradation can be ranked in such a way that the degree of deterioration is 2 (partial repair or large-scale repair is performed), and the degree of deterioration is about 0.6 or more (in principle, large-scale repair is performed). Therefore, the degree of deterioration can be ranked according to the potential difference P or the potential decay rate Q.

このような測定方法の他、多数の電極を用いて4極法により体積抵抗率の分布を求め、その体積抵抗率と透水率との相関から測定領域近傍の劣化度を評価することもできる。具体的には、各最小測定電極格子について4極法配置の測定を順次行う。隣接する2個の電極に電流を流し、それに隣接する2個の電極間の電圧を測定して、その領域の体積抵抗率を求める。体積抵抗率に対する透水率の関係を図6に示す。透水率が大きければ体積抵抗率は低いし、逆に透水率が大きければ体積抵抗率は急激に増大する。従って、体積抵抗率の大小によって透水率が求まり、劣化度をランク分けできる。   In addition to such a measurement method, the volume resistivity distribution can be obtained by a four-pole method using a large number of electrodes, and the degree of deterioration in the vicinity of the measurement region can be evaluated from the correlation between the volume resistivity and the water permeability. Specifically, the measurement of the quadrupole method is sequentially performed for each minimum measurement electrode grid. A current is passed through two adjacent electrodes, and the voltage between the two adjacent electrodes is measured to determine the volume resistivity of the region. FIG. 6 shows the relationship of water permeability to volume resistivity. If the water permeability is large, the volume resistivity is low. Conversely, if the water permeability is large, the volume resistivity increases rapidly. Accordingly, the water permeability can be determined by the volume resistivity, and the degree of deterioration can be ranked.

あるいは、建物屋上に配列した電極の1個を内部電流電極とし、建物本体(屋根裏)もしくは地盤に外部電流電極34を設置して、選択した内部電流電極と外部電流電極とで防水層上下間の通電電流値もしくは体積抵抗率を求め、その通電電流値もしくは体積抵抗率と透水率との相関から、選択した測定領域近傍の劣化度を評価する方法もある。   Alternatively, one of the electrodes arranged on the roof of the building is used as an internal current electrode, and an external current electrode 34 is installed on the building body (attic) or ground, and the waterproof layer between the selected internal current electrode and the external current electrode There is also a method of obtaining an energization current value or volume resistivity and evaluating the degree of deterioration in the vicinity of a selected measurement region from the correlation between the energization current value or volume resistivity and the water permeability.

これらの方法は、単独で行ってもよいし、組み合わせることで総合的に評価することもできる。建物屋上防水層のほぼ全面にわたって劣化度を求めると、平面的な劣化度分布図を作成することができる。建物の屋根は、構造や向き、周囲の建物などとの関係で、日当たりや日陰の具合が異なり、防水層に対しても影響が異なる。建物屋上の防水層全体について、測定を行うと、例えば図7に示すように、劣化度1〜3の平面的な劣化度判定図を作成できる。従って、この結果に基づき、劣化度の大きな領域を部分的に補修するような補修計画を立案し、効率よく建物の維持管理を行うことが可能となる。   These methods may be performed independently or can be comprehensively evaluated by combining them. If the degree of deterioration is obtained over almost the entire surface of the building roof waterproof layer, a planar deterioration degree distribution map can be created. The roof of a building has different effects on the waterproof layer due to differences in sunlight and shade, depending on the structure and orientation, surrounding buildings, and the like. When measurement is performed on the entire waterproof layer on the building roof, for example, as shown in FIG. Therefore, based on this result, it is possible to devise a repair plan that partially repairs a region with a high degree of deterioration, and to efficiently maintain and manage the building.

なお、防水層の体積抵抗率が高い場合には、電位差及び電位減衰率と4極法による体積抵抗率から漏洩電流量分布を求めると、漏水箇所の有無の確認と、漏水箇所の位置の特定を行うこともできる。   In addition, when the volume resistivity of the waterproof layer is high, the leakage current amount distribution is obtained from the potential difference and potential decay rate and the volume resistivity by the 4-pole method, and it is confirmed whether there is a leak location and the location of the leak location. Can also be done.

電気的性能試験と共に従来の材料性能試験(引張り強度、針入度)を実施した結果、相関が認められ、それら従来方法に代えて、本発明方法によって効率よく非破壊で防水性能(劣化度)の評価を行えることが確認できた。なお、防水性能(劣化度)の基準は、防水構造、気候、地域などの違いによる影響を考慮することで、より厳密な診断・評価が可能となる。   As a result of conducting the conventional material performance test (tensile strength, penetration) together with the electrical performance test, a correlation was recognized, and instead of the conventional method, the non-destructive and waterproof performance (degradation degree) was efficiently performed by the method of the present invention. It was confirmed that the evaluation of can be performed. The standard of waterproof performance (degradation degree) enables more rigorous diagnosis and evaluation by taking into account the effects of differences in waterproof structure, climate, region, and the like.

透水率と経過年数の関係を示すグラフ。The graph which shows the relationship between water permeability and elapsed years. 電極配置の例を示す説明図。Explanatory drawing which shows the example of electrode arrangement | positioning. 電位減衰曲線の例を示すグラフ。The graph which shows the example of a potential decay curve. 本発明方法で用いる測定システムの一例を示す構成図。The block diagram which shows an example of the measurement system used with the method of this invention. 透水率と電位減衰の関係を示すグラフ。The graph which shows the relationship between a water permeability and electric potential attenuation | damping. 透水率と体積抵抗率の関係を示すグラフ。The graph which shows the relationship between water permeability and volume resistivity. 劣化度分布の例を示す判定図。The determination figure which shows the example of deterioration degree distribution.

符号の説明Explanation of symbols

10 電極
12 保護層
20 屋根
22 アスファルト防水層
24 保護層
26 電極
28 端子ボックス
30 測定器
32 パーソナルコンピュータ
34 外部電流電極
DESCRIPTION OF SYMBOLS 10 Electrode 12 Protective layer 20 Roof 22 Asphalt waterproofing layer 24 Protective layer 26 Electrode 28 Terminal box 30 Measuring instrument 32 Personal computer 34 External current electrode

Claims (6)

建物屋上防水層の上に、導電体層を介して多数の電極を仮設配列し、それらの電極を用いて電気的特性を求め、電気的特性と透水性との相関から非破壊で防水層の劣化度を評価することを特徴とする建物屋上防水層の劣化診断方法。   A large number of electrodes are temporarily arranged on the rooftop waterproofing layer via a conductor layer, and the electrical characteristics are obtained using these electrodes, and the waterproof layer is nondestructive from the correlation between the electrical characteristics and water permeability. A method for diagnosing deterioration of a waterproofing layer on a building roof, characterized by evaluating the degree of deterioration. 多数の電極のうちの任意の1個を内部電流電極、別の1個を基準電極、該基準電極を含む測線上の他の複数個を測定電極とし、建物本体もしくは地盤に外部電流電極を設置して、内部電流電極と外部電流電極との間で通電し、基準電極と測定電極の間の電位差を測定することにより距離的な電位減衰特性を求め、その電位減衰特性と透水性との相関から測定領域近傍の劣化度を評価する請求項1記載の建物屋上防水層の劣化診断方法。   Arbitrary one of a number of electrodes is an internal current electrode, another is a reference electrode, and a plurality of other electrodes on the survey line including the reference electrode are measurement electrodes, and an external current electrode is installed on the building body or ground Then, energizing between the internal current electrode and the external current electrode, measuring the potential difference between the reference electrode and the measurement electrode to obtain the distance potential attenuation characteristics, and the correlation between the potential attenuation characteristics and the water permeability The deterioration diagnosis method for a building roof waterproof layer according to claim 1, wherein the deterioration degree in the vicinity of the measurement area is evaluated. 多数の電極を用いて4極法により体積抵抗率の分布を求め、その体積抵抗率と透水性との相関から測定領域近傍の劣化度を評価する請求項1記載の建物屋上防水層の劣化診断方法。   The deterioration diagnosis of a rooftop waterproofing layer according to claim 1, wherein a volume resistivity distribution is obtained by a quadrupole method using a large number of electrodes, and the degree of degradation in the vicinity of the measurement region is evaluated from the correlation between the volume resistivity and water permeability. Method. 建物屋上に配列した電極を内部電流電極とし、建物本体もしくは地盤に外部電流電極を設置して、内部電流電極と外部電流電極とで防水層上下間の通電電流値もしくは体積抵抗率を求め、その通電電流値もしくは体積抵抗率と透水性との相関から測定領域近傍の劣化度を評価する請求項1記載の建物屋上防水層の劣化診断方法。   The electrode arranged on the roof of the building is used as the internal current electrode, and the external current electrode is installed on the building body or ground, and the current value or volume resistivity between the upper and lower waterproof layers is determined between the internal current electrode and the external current electrode. The deterioration diagnosis method for a building roof waterproof layer according to claim 1, wherein the deterioration degree in the vicinity of the measurement region is evaluated from the correlation between the energization current value or volume resistivity and water permeability. 建物屋上防水層のほぼ全面にわたって劣化度を求めて平面的な劣化度分布図を作成し、それに基づき劣化度の大きな領域を部分的に補修可能とした請求項1乃至4のいずれかに記載の建物屋上防水層の劣化診断方法。   The degree of deterioration is obtained over almost the entire surface of the waterproofing roof of the building, a planar deterioration degree distribution map is created, and an area with a large degree of deterioration can be partially repaired based on the distribution map. Deterioration diagnosis method for building roof waterproof layer. 導電体層が、防水層上に敷いた砂層及びその上に載置されているコンクリート製の保護層である請求項1乃至5のいずれかに記載の建物屋上防水層の劣化診断方法。
6. The deterioration diagnosis method for a building roof waterproof layer according to claim 1, wherein the conductor layer is a sand layer laid on the waterproof layer and a concrete protective layer placed thereon.
JP2004085620A 2004-03-23 2004-03-23 Degradation diagnosis method for building roof waterproof layer Expired - Fee Related JP4442808B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004085620A JP4442808B2 (en) 2004-03-23 2004-03-23 Degradation diagnosis method for building roof waterproof layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004085620A JP4442808B2 (en) 2004-03-23 2004-03-23 Degradation diagnosis method for building roof waterproof layer

Publications (2)

Publication Number Publication Date
JP2005274242A true JP2005274242A (en) 2005-10-06
JP4442808B2 JP4442808B2 (en) 2010-03-31

Family

ID=35174088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004085620A Expired - Fee Related JP4442808B2 (en) 2004-03-23 2004-03-23 Degradation diagnosis method for building roof waterproof layer

Country Status (1)

Country Link
JP (1) JP4442808B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010144369A (en) * 2008-12-17 2010-07-01 Mitsui Home Co Ltd Wooden framework wall
JP2010151701A (en) * 2008-12-26 2010-07-08 Public Works Research Institute Breakage/collapse prediction method of ground
JP2012026219A (en) * 2010-07-27 2012-02-09 Ever Protect Co Ltd Inspection/confirmation method of execution of silicate-based surface impregnation concrete protective material and inspection device used for the same
GB2527766A (en) * 2014-06-30 2016-01-06 Elcometer Ltd Contamination meter
JP2021173699A (en) * 2020-04-28 2021-11-01 田島ルーフィング株式会社 Waterproof subsidiary material with water leakage detection function, rooftop waterproof structure including the same, and method for detecting water leakage
CN114960769A (en) * 2022-05-26 2022-08-30 济南市市政工程设计研究院(集团)有限责任公司 Basement waterproof layer structure, basement wall and building

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010144369A (en) * 2008-12-17 2010-07-01 Mitsui Home Co Ltd Wooden framework wall
JP2010151701A (en) * 2008-12-26 2010-07-08 Public Works Research Institute Breakage/collapse prediction method of ground
JP2012026219A (en) * 2010-07-27 2012-02-09 Ever Protect Co Ltd Inspection/confirmation method of execution of silicate-based surface impregnation concrete protective material and inspection device used for the same
GB2527766A (en) * 2014-06-30 2016-01-06 Elcometer Ltd Contamination meter
WO2016001652A1 (en) * 2014-06-30 2016-01-07 Elcometer Limited Contamination meter
GB2527766B (en) * 2014-06-30 2020-07-29 Elcometer Ltd Contamination meter
JP2021173699A (en) * 2020-04-28 2021-11-01 田島ルーフィング株式会社 Waterproof subsidiary material with water leakage detection function, rooftop waterproof structure including the same, and method for detecting water leakage
JP7300417B2 (en) 2020-04-28 2023-06-29 田島ルーフィング株式会社 Subsidiary waterproofing material with water leakage detection function, roof waterproof structure including the same, and method for detecting water leakage
CN114960769A (en) * 2022-05-26 2022-08-30 济南市市政工程设计研究院(集团)有限责任公司 Basement waterproof layer structure, basement wall and building
CN114960769B (en) * 2022-05-26 2023-11-24 济南市市政工程设计研究院(集团)有限责任公司 Basement waterproof layer structure, basement wall and building

Also Published As

Publication number Publication date
JP4442808B2 (en) 2010-03-31

Similar Documents

Publication Publication Date Title
Maierhofer et al. Application of impulse-thermography for non-destructive assessment of concrete structures
US9624671B1 (en) Leak detection and location system and method
EP3168589A1 (en) Leak detection in roof membranes
US9341540B2 (en) Leak detection and location system, method, and software product
US9500555B2 (en) Method and system for leak detection in roofing and waterproofing membranes
US20130037420A1 (en) Method and apparatus for detecting moisture on metal and other surfaces, including surfaces under thermal insulation
US9823161B2 (en) Leak detection and location system and method
Reichling et al. Full surface inspection methods regarding reinforcement corrosion of concrete structures
US11300497B2 (en) System, electrode and method for evaluating a condition of steel reinforcements in concrete
KR100972563B1 (en) Determinating device for condition of a bridge deck using dielectric constant and the method thereof
JP4442808B2 (en) Degradation diagnosis method for building roof waterproof layer
US20110231125A1 (en) Aircraft structure testing device of the wire cutter type
JP2007278843A (en) Device and method for diagnosing corrosion in underground buried steel structure
JP2002357666A (en) Method for predicting collapse and breakage of ground
JP5946867B2 (en) Method for identifying corrosion location of steel material in concrete structure and potential difference measuring device for identifying corrosion location
Gulikers Statistical interpretation of results of potential mapping on reinforced concrete structures
JPH0933382A (en) Method for detecting leakage position
JP3740586B2 (en) Equipment for electrical inspection of building leaks
JPH10318876A (en) Method for detecting water leak position in water sealing sheet at waste disposal place
US20230314265A1 (en) Method and system with multi-conductor sensors for moisture monitoring of structures
JP2004233142A (en) Water leak detection system and water leak detection method
JPH11248664A (en) Abnormality detecting method for non-reinforced concrete wall
Vokey A Method to Detect and Locate Roof Leaks Using Conductive Tapes
Niroula et al. Long-Term Maintenance of the Suspension Cables of the Anthony Wayne Bridge
Sunderman Alleviating Stray Current Concerns" Our Infrastructure Is Corroding!"

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100107

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100107

R150 Certificate of patent or registration of utility model

Ref document number: 4442808

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140122

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees