JP2002357666A - Method for predicting collapse and breakage of ground - Google Patents

Method for predicting collapse and breakage of ground

Info

Publication number
JP2002357666A
JP2002357666A JP2001163776A JP2001163776A JP2002357666A JP 2002357666 A JP2002357666 A JP 2002357666A JP 2001163776 A JP2001163776 A JP 2001163776A JP 2001163776 A JP2001163776 A JP 2001163776A JP 2002357666 A JP2002357666 A JP 2002357666A
Authority
JP
Japan
Prior art keywords
ground
potential difference
data
electrodes
collapse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001163776A
Other languages
Japanese (ja)
Other versions
JP4388242B2 (en
Inventor
Toshiyasu Nagao
年恭 長尾
Hideyuki Murayama
秀幸 村山
Takuro Kato
卓朗 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai University
Fujita Corp
Original Assignee
Tokai University
Fujita Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai University, Fujita Corp filed Critical Tokai University
Priority to JP2001163776A priority Critical patent/JP4388242B2/en
Publication of JP2002357666A publication Critical patent/JP2002357666A/en
Application granted granted Critical
Publication of JP4388242B2 publication Critical patent/JP4388242B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Arrangements For Transmission Of Measured Signals (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Pit Excavations, Shoring, Fill Or Stabilisation Of Slopes (AREA)

Abstract

PROBLEM TO BE SOLVED: To facilitate the prediction of breakage and collapse of ground and enhance the reliability of the prediction. SOLUTION: Two or more profile lines differed in length are set in a prediction subject area GA where the ground is predicted to be unstable, electrodes 1 are set on both sides thereof, and the ground potential difference is measured between the electrodes 1 and 1, respectively. The measured ground potential difference data are recorded every fixed time by a data logger 2, and transmitted to a personal computer 7 set in an observation station or the like through a data transmitting means 3, where necessary processing such as noise removal or the like is performed to evaluate a collapse or breakage precursory phenomenon of the ground of the area GA.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、盛土や切土等によ
る斜面工事やトンネル掘削等の各種土木工事により不安
定になると予想される地盤、或いは風化等により成層が
不安定になっていると予想される地盤における地すべり
や土砂崩れ、トンネル切羽の破壊といった地盤崩壊或い
は破壊現象の発生を予測するための技術に関するもので
ある。
BACKGROUND OF THE INVENTION The present invention relates to a soil which is expected to become unstable due to slope works such as embankment or cut and various civil works such as tunnel excavation, or a case where stratification becomes unstable due to weathering or the like. The present invention relates to a technology for predicting the occurrence of a ground collapse or a destructive phenomenon such as a landslide, a landslide, or a tunnel face destruction in an expected ground.

【0002】[0002]

【従来の技術】わが国では、土や岩を削り取ったり盛土
したりして土木工事を行った人工改変地の斜面はもとよ
り、地盤構成の安定した自然斜面でも、地すべりや土砂
崩れ、岩盤崩壊や土石流などの斜面災害が、特に梅雨期
や台風による豪雨時に多数発生し、大きな社会問題とな
っている。特に、人的被害を伴った福井県越前海岸の斜
面崩落事故(1989年)や、北海道豊浜トンネルの坑
口岩盤崩落事故(1996年)は、記憶に新しい。
2. Description of the Related Art In Japan, landslides, landslides, rock landslides, debris flows, etc., not only on slopes of artificially modified lands where the earth and rocks have been shaved or embanked and civil engineering has been performed, but also on natural slopes with a stable ground structure. Many slope disasters have occurred, especially during the rainy season and heavy rains due to typhoons, which has become a major social problem. In particular, the collapse of the slope on the Echizen coast in Fukui Prefecture (1989) and the collapse of the rock at the entrance of the Toyohama Tunnel in Hokkaido (1996), which were accompanied by human damage, are new to memory.

【0003】国道や県道などの一般道路や、高速道路、
鉄道、新幹線などのインフラ設備は特に公共性が高く、
その建設に伴い盛土や切土により形成される後背斜面の
安全監視が課題となっている。また、全国各地におい
て、急傾斜崩壊危険危険地が約64,000箇所、土石
流危険渓流が約62,000箇所、地すべり危険地が約
6,000箇所指定されており、その対策として、さま
ざまな地すべり対策工事や砂防ダム建設などの治山工事
が進められている。
[0003] General roads such as national roads and prefectural roads, highways,
Infrastructure such as railways and Shinkansen is particularly public.
With the construction, safety monitoring of the back slope formed by embankment and cutting has become an issue. In addition, around 64,000 places with dangerous danger of steep slope collapse, about 62,000 places of dangerous mountain stream with debris flow, and about 6,000 places of landslide danger are designated in various parts of the country, and various landslides are taken as countermeasures. Countermeasures and construction of sabo dams, etc. are being promoted.

【0004】このような不安定斜面における危険を回避
するためには、地盤災害の発生を予測することが有効で
あり、従来、このような予測手段として、次のような方
法が採用されている。 a.地すべり伸縮計(不動杭と可動杭間)、ボーリング
孔内傾斜計、或いは光波測量等による地盤変位測定 b.鉄筋歪計、アンカー軸力計、ボーリング孔内パイプ
歪計等による地盤の歪(応力)の測定 c.地盤が破壊する際に、地盤がそれまで蓄えていた歪
エネルギを開放する結果として発生する微小音であるA
E(アコースティック・エミッション)を、アンカーボ
ルト等に設置したAEセンサによって測定 d.短時間降雨量、累積降雨量、温度、湿度等の気象観
測 e.地盤のクラック、覆工コンクリートの打音による判
定やクラック進展等の目視による観察
[0004] In order to avoid such a danger on an unstable slope, it is effective to predict the occurrence of a ground disaster. Conventionally, the following method has been adopted as such prediction means. . a. Ground displacement measurement by landslide extensometer (between immovable pile and movable pile), inclinometer in boring hole, light wave survey, etc. b. Measurement of ground strain (stress) using a rebar strain gauge, anchor axial force gauge, pipe strain gauge in a borehole, etc. c. When the ground breaks, A is a minute sound generated as a result of releasing the strain energy that the ground has stored up to that time.
E (acoustic emission) is measured by an AE sensor installed on an anchor bolt or the like. D. Meteorological observation of short-time rainfall, accumulated rainfall, temperature, humidity, etc. e. Judgment of cracks in the ground and the sound of lining concrete and visual observation of crack propagation, etc.

【0005】上記従来の方法のうちa及びbは、崩壊す
る可能性が高いと考えられる、或いはすでに変動がある
(現在又は過去に変動の形跡がある)領域を挟んで、地
表或いは地中に計器を設置して測定するものであり、崩
壊領域などの滑動や活動履歴がある程度明らかになって
いる場合に有効な手法である。なお、鉄筋歪計やアンカ
ー軸力計は、対策工として地盤への鉄筋の挿入やグラン
ドアンカー工を施工した場合にのみ測定することが可能
である。
[0005] Of the above-mentioned conventional methods, a and b are considered to have a high possibility of collapse or have already fluctuated (there is evidence of fluctuations now or in the past). It is a method to measure by installing an instrument, and it is an effective method when the sliding and activity history of the collapse area etc. are clarified to some extent. The reinforcing bar strain gauge and the anchor axial force meter can be measured only when a reinforcing bar is inserted into the ground or a ground anchor is constructed as a countermeasure.

【0006】上記従来の方法のうちcは、地盤が変形或
いは破壊する際に発生するAEが微小音であるため、伝
播の際のエネルギ減衰が著しく、破壊発生地点のごく近
傍でなければ、測定が困難である。
In the conventional method c, the AE generated when the ground is deformed or destroyed is a very small sound, so that the energy is greatly attenuated at the time of propagation and is not very close to the point where the failure occurs. Is difficult.

【0007】上記従来の方法のうちdは、地盤の変動を
直接測定するものではなく、地盤崩壊を誘発すると考え
られる気象条件、特に降雨量、更にはそれによる地下水
の変動から、地盤崩壊の危険性を判断するものである。
Among the above-mentioned conventional methods, d is not a method for directly measuring the ground deformation, but is based on weather conditions which are thought to induce the ground collapse, especially rainfall, and the groundwater fluctuation resulting therefrom. It is to judge sex.

【0008】上記従来の方法のうちeは、人間による目
視点検であり、現実的には、高速道路や鉄道などの後背
斜面の監視は、主にこの手法が採用されている。判断基
準が定量的でなく、経験や勘に左右されがちで、大きな
労力や費用を要するが、比較的信頼性が高い。
[0008] Of the above-mentioned conventional methods, e is a visual inspection by a human, and in reality, this method is mainly used for monitoring a back slope such as an expressway or a railway. Judgment criteria are not quantitative, tend to be influenced by experience and intuition, and require large labor and cost, but are relatively reliable.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、上述し
た従来の方法では、地盤災害の発生位置や、発生規模、
発生時期などを予測することは非常に困難である。ま
た、各種測定機器の設置やメンテナンスのコストが高
く、設置に時間がかかり、しかも人や器械が立ち入るこ
とができないために測定機器の設置が困難な地形条件で
ある場合が少なくなく、測定機器の電気的な誤動作の可
能性もある。
However, in the above-described conventional method, the location, scale,
It is very difficult to predict when it will occur. In addition, the installation and maintenance costs of various measuring instruments are high, it takes a long time to install, and in many cases, it is difficult to install the measuring instruments because of the inaccessibility of people and instruments. There is also the possibility of an electrical malfunction.

【0010】また、上述した従来の方法では、測定又は
観測された地盤の変位、歪、AE音、降雨量など各種の
物理値から、地盤崩壊の発生を予測するための評価方法
に普遍性がなく、測定値がある値を超えたら地盤が崩壊
すると判定するしきい値の設定や、その物理的な根拠を
求めることが困難である。
In addition, the above-mentioned conventional method has universality in an evaluation method for predicting the occurrence of ground collapse from various physical values such as measured or observed ground displacement, strain, AE sound, and rainfall. Therefore, it is difficult to set a threshold value for determining that the ground collapses when the measured value exceeds a certain value, or to find a physical basis thereof.

【0011】また、地盤の破壊や崩壊が発生する可能性
があると予測される領域やすべり面が、予め明確となっ
ているようなケースは稀で、このため、上述した従来の
方法では、殆どの場合、測定機器の設置位置の選定が困
難である。
[0011] Further, it is rare that an area or a slip surface predicted to possibly cause ground destruction or collapse is clarified in advance. For this reason, in the conventional method described above, In most cases, it is difficult to select the installation position of the measuring device.

【0012】本発明は、上記のような問題に鑑みてなさ
れたもので、その技術的課題とするところは、地盤の破
壊及び崩壊の予測を容易に行うことができ、かつ予測の
信頼性を高めることにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and has as its technical subject the ability to easily predict the destruction and collapse of the ground and to improve the reliability of the prediction. To increase.

【0013】[0013]

【課題を解決するための手段】本発明は、岩石や鉱物な
どに圧縮力、張力或いは剪断力等による歪を与えること
によって、この鉱物に誘電分極や電界を生じ、破壊され
る直前に大きな電気エネルギを放出するといった、ピエ
ゾ効果などによる地電位の変化を利用して、地盤の崩壊
や破壊の発生を予測するもので、地震予知のための有効
な手段であると言われている手法を応用したものであ
る。すなわち、請求項1の発明に係る地盤の崩壊・破壊
予測方法は、地盤が不安定になると予想される予測対象
領域に、互いに長さの異なる複数の測線を設定してその
両端に電極を設置し、各電極間で測定される地電位差変
化データから、前記予測対象領域の地盤の崩壊又は破壊
前兆現象を評価するものである。
SUMMARY OF THE INVENTION According to the present invention, a rock or a mineral is subjected to a strain such as a compressive force, a tensile force or a shearing force, so that a dielectric polarization or an electric field is generated in the mineral and a large electric power is generated immediately before the mineral is destroyed. A method that predicts the occurrence of ground collapse or destruction by using changes in the earth potential due to the piezo effect, such as the release of energy, and applies a method that is said to be an effective means for earthquake prediction It was done. That is, in the method for predicting the collapse and destruction of the ground according to the invention of claim 1, a plurality of survey lines having different lengths are set in the prediction target area where the ground is expected to be unstable, and electrodes are installed at both ends thereof. Then, from the ground potential difference change data measured between the electrodes, the collapse or precursory phenomenon of the ground in the prediction target area is evaluated.

【0014】なお、本発明でいう「地盤」とは、土層や
礫層からなる地盤のほか、岩石が主体の岩盤も含めて総
称するものである。また「地電位差」とは、良く知られ
ているように地盤内の電位差のことであり、「地電流」
と言い換えることもできる。
[0014] The term "ground" as used in the present invention is a generic term that includes not only ground consisting of soil layers and gravel layers, but also rock mainly composed of rocks. The “ground potential difference” is, as is well known, a potential difference in the ground, and “ground current”
It can also be rephrased.

【0015】請求項2の発明に係る地盤の崩壊・破壊予
測方法は、請求項1の発明において、長さの異なる各測
線が、地盤の複数箇所で、水平平面方向或いは鉛直方向
に設定され、各測線で測定された地電位差データから、
予測対象領域の地盤の崩壊又は破壊前兆現象を評価する
ものである。
According to a second aspect of the present invention, there is provided a method for predicting collapse and destruction of a ground, wherein each of the survey lines having different lengths is set in a horizontal plane direction or a vertical direction at a plurality of locations on the ground. From the ground potential difference data measured on each survey line,
The purpose of the present invention is to evaluate the landslide or precursory phenomenon of the ground in the prediction target area.

【0016】請求項3の発明に係る地盤の崩壊・破壊予
測方法は、請求項2の発明において、予測対象領域の地
盤から採取された地盤試料を、絶縁材料からなる室内試
験装置で載荷し、この試料に取り付けた複数の電極間の
電位差を測定し、このデータから、予測対象領域の各測
線で測定された絶対的地電位差データのパターンを評価
する。
According to a third aspect of the present invention, there is provided a method for predicting collapse / destruction of a ground according to the second aspect of the present invention, wherein a ground sample collected from the ground in a prediction target area is loaded by a laboratory test device made of an insulating material; The potential difference between the plurality of electrodes attached to the sample is measured, and from this data, the pattern of the absolute ground potential difference data measured on each measurement line in the prediction target area is evaluated.

【0017】請求項4の発明に係る地盤の崩壊・破壊予
測方法は、請求項1〜3のいずれかの発明において、各
測線において測定される地電位差データVを測線長さL
で除したV/Lあるいはその逆数L/Vを用いて、予測
対象領域の地盤の崩壊又は破壊前兆現象を評価する。
According to a fourth aspect of the present invention, there is provided a method for predicting collapse / destruction of ground, according to any one of the first to third aspects, wherein the ground potential difference data V measured at each measurement line is measured by a measurement line length L.
Using the V / L divided by the above or the reciprocal L / V, the collapse or the precursor phenomenon of the ground in the prediction target area is evaluated.

【0018】請求項5の発明に係る地盤の崩壊・破壊予
測方法は、請求項1〜4のいずれかの発明において、予
測対象領域から離れた地盤安定領域に、一以上の測線を
設定してその両端に電極を設置し、この測線において測
定される地電位差データを比較して、前記予測対象領域
の測線において測定される地電位差データをフィルタリ
ングする。
According to a fifth aspect of the present invention, there is provided a method for predicting collapse or destruction of a ground according to any one of the first to fourth aspects, wherein one or more survey lines are set in a ground stable region remote from the prediction target region. Electrodes are installed at both ends, and the ground potential difference data measured on the survey line is compared to filter the ground potential difference data measured on the survey line in the prediction target area.

【0019】請求項6の発明に係る地盤の崩壊・破壊予
測方法は、請求項5の発明において、各測線における測
定タイミングが、互いに同期される。
According to a sixth aspect of the present invention, in the method for predicting collapse / destruction of ground, in the fifth aspect of the invention, the measurement timings of the respective survey lines are synchronized with each other.

【0020】請求項7の発明に係る地盤の崩壊・破壊予
測方法は、請求項1〜6のいずれかの発明において、各
電極間の地電位差がデータロガーで記録され、記録され
た地電位差データが予測対象領域から離れた所定箇所に
設置されたデータ処理手段にデータ送信手段により送信
され、前記データロガー及びデータ送信手段がソーラ電
源により駆動される。
According to a seventh aspect of the present invention, there is provided a method for predicting ground collapse / destruction according to any one of the first to sixth aspects, wherein a ground potential difference between each electrode is recorded by a data logger, and the recorded ground potential difference data is recorded. Is transmitted from the data transmitting means to the data processing means provided at a predetermined location remote from the prediction target area, and the data logger and the data transmitting means are driven by a solar power supply.

【0021】請求項8の発明に係る地盤の崩壊・破壊予
測方法は、請求項7の発明において、地盤に設置された
複数の電極のうち、データロガーの陽極側入力端子に接
続する電極と陰極側入力端子に接続する電極を任意に選
択することにより、各一対の電極間の絶対的電位差を測
定する方法と、単一の共通電極と他の複数の電極との間
で相対的電位差を測定する方法を選択する。
According to a eighth aspect of the present invention, there is provided a method for predicting collapse / destruction of a ground according to the seventh aspect, wherein, among a plurality of electrodes installed on the ground, an electrode connected to an anode-side input terminal of a data logger and a cathode. A method of measuring the absolute potential difference between each pair of electrodes by arbitrarily selecting the electrodes connected to the side input terminal, and measuring the relative potential difference between a single common electrode and multiple other electrodes Choose a way to do it.

【0022】請求項9の発明に係る地盤の崩壊・破壊予
測方法は、請求項7又は8の発明において、データロガ
ーには、地電位差データと共に、他の地盤変位データ又
は地盤歪データが入力される。
According to a ninth aspect of the present invention, in the method for predicting the collapse or destruction of the ground, in the invention of the seventh or eighth aspect, other ground displacement data or ground strain data is input to the data logger together with the ground potential difference data. You.

【0023】[0023]

【発明の実施の形態】本発明に係る地盤の崩壊・破壊予
測方法は、先に説明したように、地盤の歪による地電位
の変化を評価することによって、地盤の崩壊や破壊の発
生を予測するものである。その評価の根拠を検証するた
め、図1は、室内で岩石に圧縮力による歪を与えて破壊
させる過程で岩石内の絶対的電位差の変化を測定するポ
イントロード試験を示す説明図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The method for predicting ground collapse / destruction according to the present invention, as described above, predicts the occurrence of ground collapse or destruction by evaluating changes in ground potential due to ground distortion. Is what you do. In order to verify the basis of the evaluation, FIG. 1 is an explanatory diagram showing a point load test for measuring a change in an absolute potential difference in a rock in the process of applying a strain to a rock in a room and breaking the rock.

【0024】すなわち図1に示されるポイントロード試
験においては、互いに対向した一対の押圧子101,1
01間に岩石試料100を配置し、この岩石試料100
の両端に電極102,102を貼着して、データロガー
103の入力端子にそれぞれ接続する。押圧子101,
101はベークライト等の絶縁材料からなるものであっ
て、その両側の台座104,104との間もそれぞれ絶
縁紙105によって絶縁されている。押圧子101,1
01は岩石試料100と点接触するように、先端が尖っ
た形状に形成されており、この押圧子101,101の
うちの一方は、螺旋軸106の推進力によって対向方向
へ進退可能となっている。
That is, in the point load test shown in FIG. 1, a pair of pressing elements 101, 1 opposed to each other are used.
01, a rock sample 100 is placed,
Are attached to both ends of the data logger 103 and connected to the input terminals of the data logger 103, respectively. Presser 101,
101 is made of an insulating material such as bakelite, and is insulated from the pedestals 104 on both sides by insulating paper 105, respectively. Presser 101, 1
Numeral 01 is formed in a pointed shape so as to make point contact with the rock sample 100, and one of the pressing elements 101, 101 can advance and retreat in the opposite direction by the propulsive force of the spiral shaft 106. I have.

【0025】図2は、図1に示されるポイントロード試
験による測定結果を示す線図である。すなわち、岩石試
料100への載荷開始前の無負荷状態では、電極10
2,102間で測定される電位差は、0.5mV前後の
小振幅での変化を示すが、押圧子101,101間で岩
石試料100への載荷を開始すると、その初期において
は、電極102,102間の電位差が比較的長い周期で
数mVの振幅で変化しながら、全体として測定値が上昇
トレンドを示す。そして、更に載荷する荷重を増大させ
ていくと、岩石試料100の内部組織の微小破壊が始ま
ることによって、電位差の変化の周期が急激に短くな
り、やがて岩石試料100の破壊に至り、その際に電気
エネルギの放出によって急激に電位が低下する。実際の
地盤破壊過程でも、地電位差の変化は近似したパターン
を示すものと考えられる。
FIG. 2 is a diagram showing a measurement result by the point load test shown in FIG. That is, in the unloaded state before the loading on the rock sample 100, the electrode 10
The potential difference measured between the electrodes 102 and 102 shows a change with a small amplitude of about 0.5 mV. When the loading of the rock sample 100 between the pressers 101 and 101 is started, the electrodes 102 and The measured value as a whole shows an upward trend, while the potential difference between 102 changes with a relatively long period and an amplitude of several mV. When the applied load is further increased, micro-destruction of the internal structure of the rock sample 100 starts, and the period of the change in the potential difference is sharply shortened, and eventually the rock sample 100 is broken. The potential drops rapidly due to the release of electrical energy. Even during the actual ground destruction process, it is considered that the change of the ground potential difference shows an approximate pattern.

【0026】したがって、例えば地盤の崩壊や破壊が発
生する恐れがあると予想される地盤領域から、予めボー
リングによって円柱コア状の地盤サンプルを採取し、上
述のようなポイントロード試験によって、この地盤サン
プルに含水率を変える等の種々の条件のもとで歪を与え
て、歪量と地盤歪信号との相関関係を把握しておけば、
地盤の崩壊や破壊の規模及び時期を推定するのに有効で
ある。
Therefore, for example, a columnar core-shaped ground sample is previously taken by boring from a ground region where there is a possibility that the ground will be collapsed or destroyed, and this ground sample is obtained by the point load test as described above. If the distortion is given under various conditions such as changing the water content, and the correlation between the distortion amount and the ground distortion signal is grasped,
It is useful for estimating the scale and timing of ground collapse and destruction.

【0027】次に、図3は室内で簡易盛土斜面の崩壊試
験を行う方法示す説明図である。この試験においては、
高さh=150mm、下面長さa=350mm、斜面勾
配θ=45°となるように、砂材で模擬盛土110を形
成し、その幅方向両側面を一対の平行な支持板112で
支持した。模擬盛土110の表層部(上層部)、中層
部、及び下層部(下層部)には、模擬盛土110の形成
過程で、斜面110aの近傍及び斜面110aと反対側
の端部近傍に位置する各一対の電極111を埋め込み、
各層の電極111,111間に、それぞれ図示されてい
ない電圧計(データロガー)を接続した。また、模擬盛
土110の上面110bにおける斜面110a寄りの位
置を、載荷装置113で鉛直方向に押圧するようにし
た。
Next, FIG. 3 is an explanatory view showing a method for performing a collapse test of a simple embankment slope indoors. In this test,
A simulated embankment 110 was formed of sand so that the height h = 150 mm, the lower surface length a = 350 mm, and the slope gradient θ = 45 °, and both side surfaces in the width direction were supported by a pair of parallel support plates 112. . In the surface layer portion (upper layer portion), middle layer portion, and lower layer portion (lower layer portion) of the simulated embankment 110, in the process of forming the simulated embankment 110, each is located near the slope 110a and near the end opposite to the slope 110a. Embedded a pair of electrodes 111,
A voltmeter (data logger), not shown, was connected between the electrodes 111 of each layer. In addition, a position near the slope 110a on the upper surface 110b of the simulated embankment 110 is pressed by the loading device 113 in the vertical direction.

【0028】図4は、図3に示される簡易盛土斜面の崩
壊試験による測定結果を示す線図である。すなわち、載
荷装置113による載荷を増大させていくと、模擬盛土
110の内部に、周期的にクラックが発生し、その度
に、載荷増大に伴う絶対的電位差の緩やかな上昇と、ク
ラックの発生或いは進展の際の放電による急激な絶対的
電位差の低下といった、図2と同様の変化を繰り返すこ
とがわかる。また、模擬盛土110の下層部では、破壊
が起こらないため電位変化が殆ど見られないのに対し
て、上層ほど電位変化が大きいことがわかる。
FIG. 4 is a diagram showing the measurement results of the simple embankment slope shown in FIG. 3 by a collapse test. That is, as the loading by the loading device 113 is increased, cracks are periodically generated inside the simulated embankment 110. Each time, the absolute potential difference is gradually increased due to the increased loading, and the occurrence of cracks or It can be seen that changes similar to those in FIG. 2 are repeated, such as a sharp decrease in the absolute potential difference due to discharge during the progress. Further, in the lower layer portion of the simulated embankment 110, almost no potential change is observed because no destruction occurs, while the upper layer has a larger potential change.

【0029】次に、図5は図3より大規模な盛土斜面の
崩壊試験を示す説明図である。この試験においては、高
さh=500mm、下面長さa=1000mm、斜面勾
配θ=45°となるように、砂材で模擬盛土120を形
成し、その幅方向両側面を一対の平行な支持板(図示省
略)で支持した。模擬盛土120の表層部、中層部、及
び下層部には、データロガー(図示省略)の陽極に接続
される複数の電極121a〜121c,121d〜12
1g,121h〜121jをそれぞれ水平方向適当な間
隔で埋め込み、下層部における斜面120aと反対側の
端部に前記データロガーの陰極に接続される共通電極1
22を埋め込んだ。また、模擬盛土120の上面120
bにおける斜面120a寄りの位置を、載荷装置123
で鉛直方向に押圧するようにした。
Next, FIG. 5 is an explanatory view showing a collapse test of the embankment slope larger than that of FIG. In this test, a simulated embankment 120 was formed with sand material so that the height h = 500 mm, the lower surface length a = 1000 mm, and the slope gradient θ = 45 °, and both sides in the width direction of the simulated embankment 120 were supported by a pair of parallel supports. It was supported by a plate (not shown). A plurality of electrodes 121a to 121c, 121d to 12c connected to the anode of a data logger (not shown) are provided on the surface layer, middle layer, and lower layer of the simulated embankment 120.
1g, 121h to 121j are respectively buried at appropriate intervals in the horizontal direction, and a common electrode 1 connected to the cathode of the data logger is provided at an end of the lower layer opposite to the slope 120a.
22 was embedded. Also, the upper surface 120 of the simulated embankment 120
The position near the slope 120a in FIG.
To press in the vertical direction.

【0030】なお、載荷装置123により与えられる荷
重は、ロードセル124により測定できるようにした。
また、模擬盛土120の上方には、シャワーによる給水
手段(図示省略)を配置し、模擬降雨を与えることがで
きるようにした。更に、模擬盛土120の上面120b
には鉛直変位計125を配置し、模擬盛土120の斜面
120aには、表層部、中層部、及び下層部と対応する
高さにそれぞれ変位測定ターゲットTを配置して、その
変位をそれぞれレーザ変位計126で測定することによ
り、載荷装置123からの荷重による模擬盛土120の
変位を測定できるようにした。
The load applied by the loading device 123 can be measured by the load cell 124.
Further, a water supply means (not shown) using a shower is arranged above the simulated embankment 120 so that simulated rainfall can be given. Furthermore, the upper surface 120b of the simulated embankment 120
A vertical displacement meter 125 is disposed on the slope 120a of the simulated embankment 120, and a displacement measurement target T is disposed at a height corresponding to the surface portion, the middle layer portion, and the lower layer portion. By measuring with the total 126, the displacement of the simulated embankment 120 due to the load from the loading device 123 can be measured.

【0031】先の図3に示される試験では、表層部、中
層部、及び下層部に埋め込んだ各一対の電極間での絶対
的電位差の変化を測定したのに対し、図5に示される試
験では、電極122を共通陰極として各電極121a〜
121jとの間の相対的電位差を測定し、mV/mmで
評価した(mV:両極間の電位差,mm:両極間の距
離)。図6は、この試験により測定されたmV/mmの
値から、模擬盛土120の断面内の相対的電位差分布を
点の粗密で表した説明図で、図中白く見える領域は、m
V/mmの値が−であり、密な点で表された領域はmV
/mmの値が+である。また、黒い長方形は電極の位置
を表す。すなわち、載荷装置123による載荷を増大さ
せていくと、模擬盛土120内に分極が起こり、相対的
電位差の+側と−側との境界が曲線状に明瞭に現われ、
この曲線に沿って、図5に示されるようなすべり面LS
が形成されることがわかる。
In the test shown in FIG. 3, the change in the absolute potential difference between each pair of electrodes embedded in the surface layer, the middle layer, and the lower layer was measured, whereas the test shown in FIG. Then, each electrode 121a to 121a-
The relative potential difference between the two electrodes was measured and evaluated in mV / mm (mV: potential difference between both electrodes, mm: distance between both electrodes). FIG. 6 is an explanatory diagram in which the relative potential difference distribution in the cross section of the simulated embankment 120 is expressed by density of points from the value of mV / mm measured by this test.
The value of V / mm is-, and the area represented by a dense point is mV
The value of / mm is +. The black rectangle indicates the position of the electrode. That is, when the loading by the loading device 123 is increased, polarization occurs in the simulated embankment 120, and the boundary between the positive side and the negative side of the relative potential difference clearly appears in a curved shape,
Along this curve, the slip surface LS as shown in FIG.
Is formed.

【0032】図7は本発明によって切土斜面の崩壊予測
を実施する場合を概略的に示す説明図である。この図7
において、参照符号Aは図中一点鎖線で示す自然斜面を
有する地盤Gを切土することによって施工した切土斜面
である。崩壊する恐れがあると予想される切土斜面Aの
近傍地盤を予測対象地盤領域Gとして、この地盤領域
及びその近傍に複数の電極1,1,…を埋設し、こ
の電極1,1,…を導線2及び図示されていない増幅器
を介して高精度のデータロガー2の陽極側入力端子及び
陰極側入力端子に接続し、地電位差(地電流)を測定す
る。
FIG. 7 is an explanatory view schematically showing a case in which a collapse prediction of a cut slope is performed according to the present invention. This FIG.
In the figure, reference numeral A is a cut slope constructed by cutting a ground G having a natural slope indicated by a chain line in the figure. Near ground of Cut slope A that are expected is likely to collapse as the prediction target ground area G A, embedded a plurality of electrodes 1,1, ... and in this ground area G A and the vicinity thereof, the electrodes 1, Are connected to the anode-side input terminal and the cathode-side input terminal of the high-precision data logger 2 via the conductor 2 and an amplifier (not shown), and a ground potential difference (ground current) is measured.

【0033】複数の電極1,1,…のうち、どの電極を
データロガー2の陽極側入力端子に接続し、どの電極を
陰極側入力端子に接続するかによって、先の図3及び図
5で説明したように、各一対の電極間で絶対的電位差を
計測する場合と、複数の陽極と一つの共通陰極とによる
相対的電位差を測定する場合を、現場の状況等に応じて
選択することができる。
Depending on which of the electrodes 1, 1,... Is connected to the anode-side input terminal of the data logger 2 and which electrode is connected to the cathode-side input terminal, FIG. As described, the case of measuring the absolute potential difference between each pair of electrodes and the case of measuring the relative potential difference between a plurality of anodes and one common cathode can be selected according to the situation at the site and the like. it can.

【0034】電極1としては、例えば地盤表層部に設置
する場合は、鉄筋或いはロックボルトに導線を繋いだも
のが好適に用いられ、地中に設置する場合は、ボーリン
グ孔を穿孔してその中に亜鉛又は鉛の電極を埋め込んだ
ものなどが採用される。ボーリング孔内への電極の設置
方法は、先に説明した従来の技術におけるボーリング孔
内傾斜計、或いはボーリング孔内パイプ歪計等の設置と
同様であるため、これらに比較して特に困難性はない。
For example, when the electrode 1 is installed on the surface layer of the ground, a wire connected to a rebar or a rock bolt is preferably used. When the electrode 1 is installed underground, a boring hole is formed by drilling a hole. And a zinc or lead electrode embedded therein. The method of installing the electrodes in the borehole is the same as the installation of the inclinometer in the borehole in the prior art described above, or the strain gauge or the like in the borehole. Absent.

【0035】データロガー2は、電極1,1間の地電位
差を一定時間(1〜10秒)の間隔で測定して、時刻歴
で記録するものであり、この測定データは、無線モデム
3によって、データロガー2による測定間隔よりも長い
一定時間(例えば10分〜1時間)の間隔で、現場事務
所の受信機5に送信され、更に、電話回線等の通信ネッ
トワーク6を介して、観測基地に設置されたパーソナル
コンピュータ7に送信される。また、データロガー2及
び無線モデム3は、後述するような人工ノイズの発生原
因とならないソーラ電源4によって駆動される。ソーラ
電源4は、太陽電池(ソーラパネル)41と、ここで発
生した起電力を蓄えるバッテリ42とからなるものであ
る。
The data logger 2 measures the ground potential difference between the electrodes 1 and 1 at regular time intervals (1 to 10 seconds) and records the measured data as time histories. Is transmitted to the receiver 5 of the site office at intervals of a fixed time (for example, 10 minutes to 1 hour) longer than the measurement interval by the data logger 2, and further transmitted to the observation base via a communication network 6 such as a telephone line. Is transmitted to the personal computer 7 installed in the PC. The data logger 2 and the wireless modem 3 are driven by a solar power supply 4 which does not cause artificial noise as described later. The solar power supply 4 includes a solar cell (solar panel) 41 and a battery 42 for storing the electromotive force generated here.

【0036】データロガー2は複数の入力チャンネルを
有するため、電極1,1間の地電位差以外の測定データ
も同時に得られるようにすることができる。例えば、予
測対象地盤領域Gの地形的条件等によって、アンカー
軸力計や、地すべり計などを設置し、それらによる測定
を、電極1,1間の地電位差測定と同期して行い、その
データを取り込むことができる。
Since the data logger 2 has a plurality of input channels, measurement data other than the ground potential difference between the electrodes 1 and 1 can be simultaneously obtained. For example, the topographical conditions of the prediction target ground area G A, and the anchor axial force meter, installed and landslide meter, the measurement by them, carried out in synchronization with the earth potential measurement between the electrodes 1, 1, the data Can be captured.

【0037】観測基地のパーソナルコンピュータ7は、
各観測現場のデータロガー2から送られるデータを処理
し、例えば先に説明したノイズ除去や、相対的電位差の
差分計算など、必要な処理を行い、その結果をリアルタ
イムで評価し、評価データをディスプレイ71あるいは
プリンタ72等に出力するものである。
The personal computer 7 at the observation base is
The data sent from the data logger 2 at each observation site is processed, and necessary processing such as noise removal and relative potential difference calculation described above is performed, the results are evaluated in real time, and the evaluation data is displayed. 71 or a printer 72 or the like.

【0038】データロガー2は、地盤の崩壊・破壊予測
においては、いくつかの異なる地点の観測データを比較
検討することが重要であるため、データロガー2の測定
動作は無線モデム3を介して、遠隔操作を行うことがで
きるようになっている。また、異なる地点(観測現場)
の複数のデータロガー2は、測定されたデータの同期性
が補償されている必要があるため、GPS内蔵時計(図
示省略)によって測定タイミングが互いに同期されてい
る。
The data logger 2 performs the measurement operation of the data logger 2 via the wireless modem 3 because it is important to compare and examine the observation data at several different points in predicting the collapse and destruction of the ground. Remote control can be performed. Also, different points (observation sites)
Since the plurality of data loggers 2 need to compensate for the synchronization of the measured data, the measurement timings are synchronized with each other by a GPS built-in clock (not shown).

【0039】電極1,1間で実際に測定される地電位デ
ータには、さまざまなノイズが含まれている。ノイズに
は、太陽の黒点活動に伴う地磁気の変動による地電位の
変動や、海面の干潮,満潮などに由来する地電位の変動
など、地球的規模のノイズ(グローバルノイズ)と、人
間の活動に由来して、例えば工場や家庭の電気機器或い
は電車等からの漏洩電流や電磁波等によって地電位が変
動する人工ノイズや、降雨による地下水の変化や落雷に
伴う地電位の変化などの地域的なノイズ(ローカルノイ
ズ)がある。そしてこのようなノイズは、ほぼ完全に除
去しないと、予測対象地盤領域の歪応力のみに対応した
地電位差(以下、地盤歪信号という)の変化を的確に判
別することが困難である。
The ground potential data actually measured between the electrodes 1 and 1 contains various noises. The noise includes global-scale noise (global noise) such as fluctuations in earth potential due to changes in geomagnetism due to sunspot activity of the sun, and changes in ground potential due to low tide and high tide on the sea surface, and human activities. Originated, for example, artificial noise in which the ground potential fluctuates due to leakage current or electromagnetic waves from factory or home electrical equipment or trains, or regional noise such as changes in groundwater due to rainfall or changes in ground potential due to lightning strikes (Local noise). Unless such noise is almost completely removed, it is difficult to accurately determine a change in a ground potential difference (hereinafter referred to as a ground distortion signal) corresponding to only the strain stress in the ground region to be predicted.

【0040】ノイズの大部分はグローバルノイズであ
る。グローバルノイズを除去するには、予測対象地盤領
域Gから十分に離れた地点に設定したノイズ測線(図
示省略)でノイズを測定する。すなわち、グローバルノ
イズは各測線の電極間での全ての測定信号に同時に現れ
るが、予測対象地盤領域Gの歪応力による地盤歪信号
の変化は局地的であるため、予測対象地盤領域Gの電
極1,1によって測定される地電位データは、予測対象
地盤領域Gの歪応力に対応した地盤歪信号とノイズが
混在したものであり、一方、ノイズ測線で測定された地
電位データは地盤歪信号を殆ど含まないので、その全て
をノイズとみなすことができる。したがってこのノイズ
によって、予測対象地盤領域Gでの地電位データをフ
ィルタリングすれば、グローバルノイズを除去すること
ができる。
Most of the noise is global noise. To remove the global noise measures noise in noise survey line set at a point sufficiently distant from the prediction target ground area G A (not shown). That is, global noise appear simultaneously in all of the measurement signal between the electrodes of the measuring line, since the change of the ground distortion signal by the distortion stress of the prediction target ground area G A is local, the prediction target ground area G A the ground potential data measured by the electrodes 1,1, which ground distortion signal and noise corresponding to the strain stress of the prediction target ground area G a are mixed, while the ground potential was measured in the noise measuring line data Since almost no ground distortion signal is included, all of the signals can be regarded as noise. Thus by this noise, if filtering ground potential data in the prediction target ground area G A, it is possible to remove the global noise.

【0041】一方、ローカルノイズは、例えば近くの鉄
道を電車が通過している時の地電位差の波形など、測定
実績によって周辺の電磁波環境を評価し、除去すること
ができる。また、先に説明したように、データロガー2
及び無線モデム3は、ソーラ電源4によって駆動される
ため、ノイズを含む商用電源(AC100V)を用いる
場合と比較して、それ自体が人工ノイズの発生原因とな
らない。しかも、ソーラ電源4を用いることによって、
近隣の落雷等による外的ノイズの影響を受けにくく、商
用電源が確保できない山間部や、人が立ち入ることの困
難な危険箇所への設置も容易にできるといった種々の利
点がある。
On the other hand, the local noise can be removed by evaluating the surrounding electromagnetic wave environment based on measurement results such as a waveform of a ground potential difference when a train is passing through a nearby railway. Also, as described above, the data logger 2
Since the wireless modem 3 is driven by the solar power supply 4, the wireless modem 3 itself does not cause artificial noise as compared with the case where a commercial power supply (AC 100 V) containing noise is used. Moreover, by using the solar power supply 4,
There are various advantages such as being less susceptible to external noise due to lightning strikes in the vicinity and being easily installed in mountainous areas where commercial power cannot be secured, or in dangerous places where it is difficult for people to enter.

【0042】上述のようにして、グローバルノイズ及び
ローカルノイズを除去して得られた信号は、予測対象地
盤領域Gの歪応力に対応した地盤歪信号とみなすこと
ができる。したがって、この地盤歪信号の変化データか
ら、先に説明した評価方法によって、予測対象地盤領域
の地盤崩壊時期や規模などを予測することができ
る。
[0042] As described above, the signal obtained by removing the global noise and local noise can be regarded as ground distortion signal corresponding to the distortion stress of the prediction target ground area G A. Therefore, from the change data of the ground distortion signal, it is possible by the evaluation method described above, to predict and ground collapse timing and scale of the prediction target ground area G A.

【0043】図8は自然斜面における広範な地すべり危
険地域において本発明を実施する場合の電極1の配置例
を示す説明図で、図中の破線は等高線である。図8に示
される地域の地盤は火山灰が堆積したもので、急勾配と
なっている部分に、崩落による崖Bが形成されており、
そこから谷筋Cが延びている。崖Bの近傍には、それぞ
れ一対の電極1,1によって、地盤崩落方向に沿った短
測線S1と、これにほぼ直交する方向に延びる複数の短
測線S2が設定されている。また、谷筋Cのほぼ全長に
わたって、その全体的な方向に沿うように、それぞれ一
対の電極1,1によって、長測線L1と、これにほぼ直
交する方向に延びる長測線L2が設定されている。
FIG. 8 is an explanatory view showing an example of the arrangement of the electrodes 1 when the present invention is implemented in a wide landslide risk area on a natural slope, and the broken lines in the figure are contour lines. The ground in the area shown in FIG. 8 is one in which volcanic ash is deposited, and a cliff B due to a collapse is formed in a steep part.
The valley C extends from there. In the vicinity of the cliff B, a short measurement line S1 extending in the direction of ground collapse and a plurality of short measurement lines S2 extending in a direction substantially perpendicular thereto are set by a pair of electrodes 1 and 1, respectively. A pair of electrodes 1 and 1 respectively define a long measurement line L1 and a long measurement line L2 extending in a direction substantially orthogonal to the valley C along the overall direction over the entire length of the valley C. .

【0044】短測線S1,S2は、急勾配における地す
べりの監視を行うものであり、50〜100m程度の長
さを有する。長測線L1,L2は谷筋Vにおける土石流
の監視を行うもので、1〜数kmの長さを有する。
The short measurement lines S1 and S2 are for monitoring a landslide on a steep slope, and have a length of about 50 to 100 m. The long measurement lines L1 and L2 monitor debris flow at the valley V and have a length of one to several kilometers.

【0045】このような、電極間距離の異なる複数の測
線を設定することによって、各電極間の距離(測線の長
さ)と各電極間の地電位差の変化量から、その差分の大
きい領域の地盤が不安定であることを同定することがで
きる。
By setting a plurality of measurement lines having different electrode-to-electrode distances, an area having a large difference is determined from the distance between the electrodes (the length of the measurement line) and the amount of change in the ground potential difference between the electrodes. It is possible to identify that the ground is unstable.

【0046】[0046]

【発明の効果】請求項1の発明に係る地盤の崩壊・破壊
予測方法によれば、長さの異なる複数の測線を設定して
その両端に電極を設置し、各電極間で測定される地電位
差の変化データから、前記予測対象領域の地盤の崩壊又
は破壊前兆現象を評価するものであり、信頼性の高い予
測を行うことができる。
According to the method for predicting the collapse and destruction of the ground according to the first aspect of the present invention, a plurality of measurement lines having different lengths are set, electrodes are installed at both ends, and the ground measured between the electrodes is measured. From the data on the change in the potential difference, the phenomenon of precursory collapse or destruction of the ground in the prediction target area is evaluated, and highly reliable prediction can be performed.

【0047】請求項2の発明に係る地盤の崩壊・破壊予
測方法によれば、各測線で絶対的地電位差を測定し、そ
の変動を評価することによって、地盤の崩壊や破壊の規
模及び時期について信頼性の高い予測を行うことができ
る。
According to the method for predicting the collapse or destruction of the ground according to the second aspect of the present invention, the absolute ground potential difference is measured on each measurement line and the fluctuation is evaluated to determine the scale and timing of the destruction and destruction of the ground. A highly reliable prediction can be made.

【0048】請求項3の発明に係る地盤の崩壊・破壊予
測方法は、請求項2の発明において、予測対象領域の地
盤から採取された地盤試料に歪を与えたときの絶対的電
位差の変化パターンを予め把握することによって、予測
対象領域の各測線で測定された絶対的地電位差データの
パターンから、信頼性の高い予測を行うことができる。
According to a third aspect of the present invention, there is provided a method for predicting collapse / destruction of a ground according to the second aspect of the present invention, wherein a change pattern of an absolute potential difference when a strain is applied to a ground sample taken from the ground in a prediction target area. Is obtained in advance, a highly reliable prediction can be performed from the pattern of the absolute ground potential difference data measured on each measurement line in the prediction target area.

【0049】請求項4の発明に係る地盤の崩壊・破壊予
測方法によれば、各測線において測定される地電位差デ
ータVを測線長さLで除したV/Lあるいはその逆数L
/Vの差分から、地盤の崩壊や破壊が生じると予測され
る領域について信頼性の高い予測を行うことができる。
According to the method for predicting the collapse or destruction of the ground according to the fourth aspect of the present invention, V / L obtained by dividing the ground potential difference data V measured on each survey line by the survey line length L or its reciprocal L
From the difference of / V, highly reliable prediction can be made for a region where collapse or destruction of the ground is predicted to occur.

【0050】請求項5の発明に係る地盤の崩壊・破壊予
測方法によれば、予測対象領域から離れた地盤安定領域
に、一以上のノイズ測線を設定することによって、予測
対象領域における測定データからノイズを除去して、地
盤の歪応力に対応した地盤歪信号のみを取り出すことが
できるので、精度の高いデータによる信頼性の高い予測
を行うことができる。
According to the ground collapse / destruction prediction method according to the fifth aspect of the present invention, one or more noise survey lines are set in a ground stable region distant from the prediction target region, so that the measured data in the prediction target region can be obtained. Since noise can be removed and only a ground distortion signal corresponding to the distortion stress of the ground can be extracted, highly reliable prediction based on highly accurate data can be performed.

【0051】請求項6の発明に係る地盤の崩壊・破壊予
測方法によれば、各測線における測定タイミングが、互
いに同期されるため、ノイズ除去のための各データの突
合せを、正確に行うことができる。
According to the method for predicting collapse / destruction of the ground according to the sixth aspect of the present invention, since the measurement timings of the respective survey lines are synchronized with each other, it is possible to accurately perform matching of the respective data for noise removal. it can.

【0052】請求項7の発明に係る地盤の崩壊・破壊予
測方法によれば、データロガー及びデータ送信手段がソ
ーラ電源で駆動されるため、それ自体によるノイズを発
生せず、落雷等によるノイズの影響も受けにくいので精
度の高い測定を行うことができる。また、商用電源が確
保できない山間部や、人が立ち入ることの困難な危険箇
所での自動測定を容易に行うことができる。
According to the method for predicting ground collapse / destruction according to the seventh aspect of the present invention, since the data logger and the data transmitting means are driven by a solar power supply, noise is not generated by itself, and noise due to lightning strike or the like is not generated. Since it is hardly affected by the measurement, highly accurate measurement can be performed. Further, automatic measurement can be easily performed in a mountainous area where a commercial power supply cannot be secured or in a dangerous place where it is difficult for humans to enter.

【0053】請求項8の発明に係る地盤の崩壊・破壊予
測方法によれば、地盤に設置された複数の電極のうち、
データロガーの陽極側入力端子に接続する電極と陰極側
入力端子に接続する電極を任意に選択することにより、
各一対の電極間の絶対的電位差を測定する方法と、一つ
の共通電極と他の複数の電極との間で相対的電位差を測
定する方法を選択することができるので、現場の状況等
に応じて、適切な測定方法を採用することによって、信
頼性の高い予測を行うことができる。
According to the method for predicting the collapse or destruction of the ground according to the invention of claim 8, the plurality of electrodes installed on the ground include:
By arbitrarily selecting the electrode connected to the anode input terminal and the electrode connected to the cathode input terminal of the data logger,
A method of measuring the absolute potential difference between each pair of electrodes and a method of measuring the relative potential difference between one common electrode and a plurality of other electrodes can be selected. Thus, by adopting an appropriate measurement method, highly reliable prediction can be performed.

【0054】請求項9の発明に係る地盤の崩壊・破壊予
測方法によれば、データロガーに、電極間の地電位差デ
ータと共に、他の手段による測定データも入力されるた
め、これらのデータによって、予測の信頼性を一層向上
することができる。
According to the method for predicting the collapse / destruction of the ground according to the ninth aspect of the present invention, the data logger receives the data measured by other means together with the ground potential difference data between the electrodes. The reliability of prediction can be further improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】室内で岩石に圧縮力による歪を与えて破壊させ
る過程で岩石内の絶対的電位差の変化を測定するポイン
トロード試験を示す説明図である。
FIG. 1 is an explanatory view showing a point load test for measuring a change in an absolute potential difference in a rock in a process of applying a strain to a rock by compressive force in a room and breaking the rock.

【図2】図1に示されるポイントロード試験による測定
結果を示す線図である。
FIG. 2 is a diagram showing a measurement result by a point load test shown in FIG. 1;

【図3】室内で簡易盛土斜面の崩壊試験を行う方法を示
す説明図である。
FIG. 3 is an explanatory view showing a method of performing a collapse test of a simple embankment slope indoors.

【図4】図3に示される簡易盛土斜面の崩壊試験による
測定結果を示す線図である。
FIG. 4 is a diagram showing measurement results of a collapse test of the simple embankment slope shown in FIG. 3;

【図5】図3に示される簡易盛土斜面の崩壊試験より大
規模な盛土斜面の崩壊試験を示す説明図である。
FIG. 5 is an explanatory diagram showing a collapse test of an embankment slope larger than that of the simple embankment slope shown in FIG. 3;

【図6】図5に示される試験により測定された値から、
模擬盛土の断面内の相対的電位差分布を濃淡で表した説
明図である。
FIG. 6 shows the values measured by the test shown in FIG.
It is explanatory drawing which represented the relative electric potential difference distribution in the cross section of a simulation embankment by shading.

【図7】本発明によって切土斜面の崩壊予測を実施する
場合を概略的に示す説明図である。
FIG. 7 is an explanatory diagram schematically showing a case in which a cut slope failure prediction is performed according to the present invention.

【図8】自然斜面における広範な地すべり危険地域にお
いて本発明を実施する場合の電極1の配置例を示す説明
図である。
FIG. 8 is an explanatory diagram showing an example of the arrangement of the electrodes 1 when the present invention is implemented in a wide landslide risk area on a natural slope.

【符号の説明】[Explanation of symbols]

A 切土斜面 G 地盤 G 予測対象領域 1,102,121a〜121j,122 電極 2,103 データロガー 3 無線モデム(データ送信手段) 4 ソーラ電源 6 通信ネットワーク 7 パーソナルコンピュータ 100 岩石試料(地盤試料) 101 押圧子Reference Signs List A Cut slope G Ground G A prediction target area 1,102,121a-121j, 122 Electrode 2,103 Data logger 3 Wireless modem (data transmission means) 4 Solar power supply 6 Communication network 7 Personal computer 100 Rock sample (ground sample) 101 Presser

───────────────────────────────────────────────────── フロントページの続き (72)発明者 村山 秀幸 東京都渋谷区千駄ヶ谷四丁目6番15号 株 式会社フジタ内 (72)発明者 加藤 卓朗 東京都渋谷区千駄ヶ谷四丁目6番15号 株 式会社フジタ内 Fターム(参考) 2D043 AA01 AA09 AB00 BA10 BB04 2D044 EA07 2F073 AA23 AB01 AB02 BB01 BB09 BC02 CC03 CC09 DD07 EE11 EF09 FG01 FG02 FG14 GG01 GG04 GG05 GG09 2F076 BA18 BB09 BD02 BD17 BE08 BE09 BE18  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Hideyuki Murayama 4-16-15 Sendagaya, Shibuya-ku, Tokyo Inside Fujita Co., Ltd. (72) Inventor Takuo Kato 4-6-115 Sendagaya, Shibuya-ku, Tokyo Stock F-term in Fujita (reference)

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 地盤が不安定になると予想される予測対
象領域に、互いに長さの異なる複数の測線を設定してそ
の両端に電極を設置し、各電極間で測定される地電位差
の変化データから、前記予測対象領域の地盤の崩壊又は
破壊前兆現象を評価することを特徴とする地盤の崩壊・
破壊予測方法。
1. A plurality of survey lines having different lengths are set in a prediction target region where the ground is expected to be unstable, electrodes are installed at both ends thereof, and a change in a ground potential difference measured between the electrodes is set. From the data, evaluation of the ground collapse or precursory phenomenon of the ground of the prediction target area is characterized by
Failure prediction method.
【請求項2】 長さの異なる各測線が、地盤の複数箇所
で、水平平面方向或いは鉛直方向に設定され、各測線で
測定された地電位差データから、予測対象領域の地盤の
崩壊又は破壊前兆現象を評価することを特徴とする請求
項1に記載の地盤の崩壊・破壊予測方法。
2. Each survey line having a different length is set at a plurality of locations on the ground in a horizontal plane direction or a vertical direction, and based on geoelectric potential difference data measured at each survey line, a sign of collapse or destruction of the ground in the prediction target area. The method according to claim 1, wherein the phenomenon is evaluated.
【請求項3】 予測対象領域の地盤から採取された地盤
試料を、絶縁材料からなる室内試験装置で載荷し、この
試料に取り付けた複数の電極間の電位差を測定し、この
データから、予測対象領域の各測線で測定された絶対的
地電位差データのパターンを評価することを特徴とする
請求項2に記載の地盤の崩壊・破壊予測方法。
3. A ground sample collected from the ground in the region to be predicted is loaded by a laboratory test device made of an insulating material, and a potential difference between a plurality of electrodes attached to the sample is measured. 3. The method according to claim 2, wherein a pattern of absolute ground potential difference data measured by each measurement line of the area is evaluated.
【請求項4】 各測線において測定される地電位差デー
タVを測線長さLで除したV/Lあるいはその逆数L/
Vを用いて、予測対象領域の地盤の崩壊又は破壊前兆現
象を評価することを特徴とする請求項1〜3のいずれか
に記載の地盤の崩壊・破壊予測方法。
4. V / L obtained by dividing the ground potential difference data V measured on each measurement line by the measurement line length L or its reciprocal L /
The ground collapse / destruction prediction method according to any one of claims 1 to 3, wherein V is used to evaluate a ground collapse or a precursory phenomenon of the ground in the prediction target area.
【請求項5】 予測対象領域から離れた地盤安定領域
に、一以上の測線を設定してその両端に電極を設置し、
この測線において測定される地電位差データを比較し
て、前記予測対象領域の測線において測定される地電位
差データをフィルタリングすることを特徴とする請求項
1〜4のいずれかに記載の地盤の崩壊・破壊予測方法。
5. At least one survey line is set in a ground stabilization region apart from a prediction target region, and electrodes are installed at both ends thereof.
The ground potential difference data according to any one of claims 1 to 4, wherein the ground potential difference data measured in the survey line is compared, and the ground potential difference data measured in the survey target region is filtered. Failure prediction method.
【請求項6】 各測線における測定タイミングが、互い
に同期されることを特徴とする請求項5に記載の地盤の
崩壊・破壊予測方法。
6. The method according to claim 5, wherein the measurement timings of the respective measurement lines are synchronized with each other.
【請求項7】 各電極間の地電位差がデータロガーによ
り記録され、 記録された地電位差データが予測対象領域から離れた所
定箇所に設置されたデータ処理手段にデータ送信手段に
より送信され、 前記データロガー及びデータ送信手段がソーラ電源によ
り駆動されることを特徴とする請求項1〜6のいずれか
に記載の地盤の崩壊・破壊予測方法。
7. A ground potential difference between the electrodes is recorded by a data logger, and the recorded ground potential difference data is transmitted by a data transmission unit to a data processing unit installed at a predetermined location remote from the prediction target area, 7. The method according to claim 1, wherein the logger and the data transmission unit are driven by a solar power supply.
【請求項8】 地盤に設置された複数の電極のうち、デ
ータロガーの陽極側入力端子に接続する電極と陰極側入
力端子に接続する電極を任意に選択することにより、各
一対の電極間の絶対的電位差を測定する方法と、単一の
共通電極と他の複数の電極との間で相対的電位差を測定
する方法を選択することを特徴とする請求項7に記載の
地盤の崩壊・破壊予測方法。
8. An electrode connected to an anode-side input terminal and an electrode connected to a cathode-side input terminal of a data logger are arbitrarily selected from among a plurality of electrodes installed on the ground, so that each pair of electrodes can be connected. The method according to claim 7, wherein a method of measuring an absolute potential difference and a method of measuring a relative potential difference between a single common electrode and a plurality of other electrodes are selected. Forecasting method.
【請求項9】 データロガーには、地電位差データと共
に、他の地盤変位データ又は地盤歪データが入力される
ことを特徴とする請求項7又は8に記載の地盤の崩壊・
破壊予測方法。
9. The data logger according to claim 7 or 8, wherein other ground displacement data or ground strain data is input together with the ground potential difference data.
Failure prediction method.
JP2001163776A 2001-05-31 2001-05-31 Ground collapse / destruction prediction method Expired - Lifetime JP4388242B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001163776A JP4388242B2 (en) 2001-05-31 2001-05-31 Ground collapse / destruction prediction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001163776A JP4388242B2 (en) 2001-05-31 2001-05-31 Ground collapse / destruction prediction method

Publications (2)

Publication Number Publication Date
JP2002357666A true JP2002357666A (en) 2002-12-13
JP4388242B2 JP4388242B2 (en) 2009-12-24

Family

ID=19006682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001163776A Expired - Lifetime JP4388242B2 (en) 2001-05-31 2001-05-31 Ground collapse / destruction prediction method

Country Status (1)

Country Link
JP (1) JP4388242B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010151701A (en) * 2008-12-26 2010-07-08 Public Works Research Institute Breakage/collapse prediction method of ground
RU2548186C2 (en) * 2013-08-26 2015-04-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Кубанский государственный аграрный университет" Method of prediction of distruction of riverbanks
KR101588319B1 (en) * 2014-11-25 2016-01-25 대한민국 Apparatus for evaluating dredge of debris barrier and method thereof
CN105572509A (en) * 2016-01-19 2016-05-11 国网河南省电力公司检修公司 Sensor network optimization layout method for grounding net state monitoring
CN110865246A (en) * 2019-10-12 2020-03-06 陈国能 Porous monitoring system and method for fracture diffusion electric field intensity
CN110865244A (en) * 2019-10-12 2020-03-06 陈国能 Single-hole monitoring system and method for fracture diffusion electric field intensity of intersection part of broken belt
CN110865242A (en) * 2019-10-12 2020-03-06 陈国能 System and method for monitoring fracture electric field intensity
BE1026548B1 (en) * 2019-07-10 2021-02-05 Inst Geology & Geophysics Cas A SLOPE IN SITU LOADING DEVICE
WO2021253869A1 (en) * 2020-06-17 2021-12-23 南方科技大学 Subsidence early warning method and system, terminal device, and storage medium
CN115420463A (en) * 2022-11-04 2022-12-02 成都理工大学 Landslide river-plugging whole-process simulation and dam break mechanism test device and test method
JP7236187B1 (en) 2021-10-28 2023-03-09 中国砿業大学 Simulating device and test method for dynamic hazards caused by deep rocky mountain splash

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110865241B (en) * 2019-10-12 2021-08-17 陈国能 Fracture stability evaluation system and method
CN110865243B (en) * 2019-10-12 2021-09-21 陈国能 Detection system and method for piezoelectric part of fracture electric field

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010151701A (en) * 2008-12-26 2010-07-08 Public Works Research Institute Breakage/collapse prediction method of ground
RU2548186C2 (en) * 2013-08-26 2015-04-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Кубанский государственный аграрный университет" Method of prediction of distruction of riverbanks
KR101588319B1 (en) * 2014-11-25 2016-01-25 대한민국 Apparatus for evaluating dredge of debris barrier and method thereof
CN105572509A (en) * 2016-01-19 2016-05-11 国网河南省电力公司检修公司 Sensor network optimization layout method for grounding net state monitoring
BE1026548B1 (en) * 2019-07-10 2021-02-05 Inst Geology & Geophysics Cas A SLOPE IN SITU LOADING DEVICE
CN110865242B (en) * 2019-10-12 2021-11-09 陈国能 System and method for monitoring fracture electric field intensity
CN110865242A (en) * 2019-10-12 2020-03-06 陈国能 System and method for monitoring fracture electric field intensity
CN110865244A (en) * 2019-10-12 2020-03-06 陈国能 Single-hole monitoring system and method for fracture diffusion electric field intensity of intersection part of broken belt
CN110865246A (en) * 2019-10-12 2020-03-06 陈国能 Porous monitoring system and method for fracture diffusion electric field intensity
CN110865244B (en) * 2019-10-12 2022-01-11 陈国能 Single-hole monitoring system and method for fracture diffusion electric field intensity of intersection part of broken belt
CN110865246B (en) * 2019-10-12 2022-02-11 陈国能 Porous monitoring system and method for fracture diffusion electric field intensity
WO2021253869A1 (en) * 2020-06-17 2021-12-23 南方科技大学 Subsidence early warning method and system, terminal device, and storage medium
JP7236187B1 (en) 2021-10-28 2023-03-09 中国砿業大学 Simulating device and test method for dynamic hazards caused by deep rocky mountain splash
JP2023066398A (en) * 2021-10-28 2023-05-15 中国砿業大学 Simulation device and test method for deep rock burst dynamic disaster
CN115420463A (en) * 2022-11-04 2022-12-02 成都理工大学 Landslide river-plugging whole-process simulation and dam break mechanism test device and test method
CN115420463B (en) * 2022-11-04 2023-02-07 成都理工大学 Landslide and river plugging whole process simulation and dam break mechanism test device and test method

Also Published As

Publication number Publication date
JP4388242B2 (en) 2009-12-24

Similar Documents

Publication Publication Date Title
Uchimura et al. Precaution and early warning of surface failure of slopes using tilt sensors
Shiotani Evaluation of long-term stability for rock slope by means of acoustic emission technique
Smethurst et al. Current and future role of instrumentation and monitoring in the performance of transport infrastructure slopes
KR102124546B1 (en) Management and warning system of falling rock and soil and stone measure facilities to be communicated with the slope warning device
Amitrano et al. Microseismic activity analysis for the study of the rupture mechanisms in unstable rock masses
Carpinteri et al. A study on the structural stability of the Asinelli Tower in Bologna
JP4388242B2 (en) Ground collapse / destruction prediction method
JP3894494B2 (en) Sediment disaster prediction system, regional information provision system, and sediment disaster prediction method
Glendinning et al. informed design, management and maintenance of infrastructure slopes: development of a multi-scalar approach
Wang et al. Investigation of seasonal variations of tower footing impedance in transmission line grounding systems
KR100358291B1 (en) Monitoring system of falling rocks
RU2393290C2 (en) Method for monitoring safety of earth dam and device for its implementation
Codeglia et al. Strategies for rock slope failure early warning using acoustic emission monitoring
Tao et al. Real-time TDR field bridge scour monitoring system
Delmonaco et al. Advancedmonitoring Systems for Landslide Risk Reduction in THE'SIQ'of PETRA (jordan)
JP4900615B2 (en) Ground failure / collapse prediction method
Occhiena et al. Analysis of climatic influences on slope microseismic activity and rockfalls: case study of the Matterhorn Peak (Northwestern Alps)
RU2710901C1 (en) Method for automatic remote monitoring of accumulation of residual deformations and vibrations of heat and moisture conditions of elements of road structures in real operating conditions
Cambiaggi et al. Effect of slow-moving landslides on churches in the Liguria region: A geotechnical approach
Wanare et al. Recent advances in early warning systems for landslide forecasting
JP3803470B2 (en) Ground fracture prediction method
Leroueil et al. Assessment of slope stability
Costello et al. Caha Tunnel Rock Repairs and Improvements including Non-Destructive Testing
Baraccani et al. Identification through seismometric measurements of transients propagating inside the asinelli and garisenda towers (Bologna, Italy), implication on structural
CN115854854A (en) Multi-physical-field permafrost region landslide monitoring system and monitoring method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090902

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091002

R150 Certificate of patent or registration of utility model

Ref document number: 4388242

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131009

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term