JP2005268197A - X-ray image tube - Google Patents

X-ray image tube Download PDF

Info

Publication number
JP2005268197A
JP2005268197A JP2004186210A JP2004186210A JP2005268197A JP 2005268197 A JP2005268197 A JP 2005268197A JP 2004186210 A JP2004186210 A JP 2004186210A JP 2004186210 A JP2004186210 A JP 2004186210A JP 2005268197 A JP2005268197 A JP 2005268197A
Authority
JP
Japan
Prior art keywords
chromium oxide
oxide film
ray image
image tube
atomic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004186210A
Other languages
Japanese (ja)
Other versions
JP4528562B2 (en
Inventor
Ryuichi Uzuka
竜一 兎束
Shirofumi Yamagishi
城文 山岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Canon Electron Tubes and Devices Co Ltd
Original Assignee
Toshiba Corp
Toshiba Electron Tubes and Devices Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Electron Tubes and Devices Co Ltd filed Critical Toshiba Corp
Priority to JP2004186210A priority Critical patent/JP4528562B2/en
Publication of JP2005268197A publication Critical patent/JP2005268197A/en
Application granted granted Critical
Publication of JP4528562B2 publication Critical patent/JP4528562B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an X-ray image tube in which dust introduction, an unjust emission of light, and peeling off of a membrane can be prevented by finding out the composition ratio of chromium oxide membrane 11. <P>SOLUTION: The chromium oxide membrane 11 is formed at a site which has an electrical potential gradient in a vacuum envelope. A composition ratio of chromium oxide membrane 11 consists of Cr 25-40 atom%, silicon 1-8 atom%, and potassium 0.7-5 atom%, and the rest is substantially composed of oxygen. By the chromium oxide membrane 11, the dust introduction, the unjust emission of the light by obtaining a moderate conductivity and a low secondary electron emissive property, and peeling off of the membrane are prevented by obtaining adhesive force to a membrane formation site and binding capacity between particles. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、真空外囲器内の電極などの電位傾度を有する部位に酸化クロム膜が形成されたX線イメージ管に関する。   The present invention relates to an X-ray image tube in which a chromium oxide film is formed at a portion having a potential gradient such as an electrode in a vacuum envelope.

一般に、X線イメージ管を用いた医用のX線診断装置や産業用の非破壊検査装置などでは、被検体を透過したX線像を、X線イメージ管で可視光像に変換し、この可視光像を撮像カメラで撮影し、この撮影映像をモニタで表示して観察を可能としている。   In general, in medical X-ray diagnostic apparatuses and industrial non-destructive inspection apparatuses using an X-ray image tube, an X-ray image transmitted through a subject is converted into a visible light image by the X-ray image tube. An optical image is taken with an imaging camera, and this photographed image is displayed on a monitor for observation.

従来のX線イメージ管の構成について、図5を参照して説明する。1は真空外囲器で、この真空外囲器1のX線2の入射側には入力窓3が形成され、入力窓3に対して反対側には出力窓4が形成されている。真空外囲器1内には、入力窓3の内側にX線2を電子ビーム5に変換して放出する入力面6が設けられ、出力窓4の内側に電子ビーム5を可視光像に変換して出力する出力面7が設けられている。入力面6から出力面7に向かって進行する電子ビーム5の進路に沿って、電子ビーム5を加速したり集束する電子レンズが形成され、この電子レンズは、入力面6に負の電圧を加えるカソード電極K、出力面7に高い正の電圧を加えるアノード電極A、これらカソード電極Kとアノード電極Aとの間の複数のグリッド電極G1,G2,G3などの複数の電極で構成されている。   The configuration of a conventional X-ray image tube will be described with reference to FIG. Reference numeral 1 denotes a vacuum envelope. An input window 3 is formed on the incident side of the X-ray 2 of the vacuum envelope 1, and an output window 4 is formed on the opposite side to the input window 3. In the vacuum envelope 1, an input surface 6 for converting the X-ray 2 into an electron beam 5 and emitting it is provided inside the input window 3, and the electron beam 5 is converted into a visible light image inside the output window 4. Thus, an output surface 7 for outputting is provided. An electron lens that accelerates or focuses the electron beam 5 is formed along the path of the electron beam 5 traveling from the input surface 6 toward the output surface 7, and this electron lens applies a negative voltage to the input surface 6. The cathode electrode K, the anode electrode A that applies a high positive voltage to the output surface 7, and a plurality of electrodes such as a plurality of grid electrodes G1, G2, and G3 between the cathode electrode K and the anode electrode A are configured.

このようなX線イメージ管に管駆動の高電圧を印加することにより、例えばグリッド電極G3とアノード電極Aとの間の電位差は6kV/mm以上にも達する部位があり、このような電界強度が強く、電位傾度が高い部位では、グリッド電極G3から電子が電界放出され易くなり、このグリッド電極G3上に金属異物が位置した場合には電界放出の確率がさらに高まる。また、電子放出に伴う熱でグリッド電極G3からガスが発生し、このガスが電子で電離、イオン化されてグリッド電極G3に衝突し、二次電子放出が発生する。このことで局所異常放電は持続され、その放電が入力面6に達し、光電層より不正光電子を発生し、この不正光電子が出力面7を蛍光させ、X線イメージ管のいわゆる不正発光の主因となる。また、不正光電子は各種電極の電位を変化させ、X線イメージ管の動作をも不安定にする。   By applying a tube-driven high voltage to such an X-ray image tube, for example, there is a portion where the potential difference between the grid electrode G3 and the anode electrode A reaches 6 kV / mm or more. In a strong and high potential gradient portion, electrons are easily emitted from the grid electrode G3, and the probability of field emission is further increased when a metal foreign object is located on the grid electrode G3. Further, a gas is generated from the grid electrode G3 by heat accompanying the electron emission, and this gas is ionized and ionized by the electrons and collides with the grid electrode G3 to generate secondary electron emission. As a result, the local abnormal discharge is sustained, and the discharge reaches the input surface 6 to generate illegal photoelectrons from the photoelectric layer. The illegal photoelectrons cause the output surface 7 to fluoresce, which is the main cause of so-called illegal light emission of the X-ray image tube. Become. In addition, unauthorized photoelectrons change the potentials of various electrodes, and also make the operation of the X-ray image tube unstable.

その対策としては、二次電子放出係数が低い反面ある程度の導電性をも持つ物質でグリッド電極G3などの電位傾度を有する部位を被覆することが有効であり、代表的物質としては、酸化クロム膜がある(例えば、特許文献1参照。)。
特開昭58−5319号公報(第1−2頁、第1図)
As a countermeasure, it is effective to cover a portion having a potential gradient such as the grid electrode G3 with a material having a low secondary electron emission coefficient but also having a certain degree of conductivity. A typical material is a chromium oxide film. (For example, refer to Patent Document 1).
JP 58-5319 A (page 1-2, FIG. 1)

しかしながら、従来の酸化クロム膜は、電極などとの付着力および粒子間結着力に乏しく、製造工程や実使用時の振動や衝撃、または環境の急激な変化によって剥がれ落ち易い。この酸化クロム膜が剥がれ落ちた場合には、剥がれ落ちた部位より二次電子放出が発生し、上述した不正発光や動作の不安定性を招くばかりか、剥がれた膜片は管内異物となるために不良となり、製造歩留りの低下や品質の低下を招く。   However, the conventional chromium oxide film has poor adhesion and interparticle adhesion with electrodes and the like, and is easily peeled off due to vibrations and shocks during the manufacturing process, actual use, or sudden changes in the environment. When this chromium oxide film is peeled off, secondary electron emission occurs from the part where the chromium oxide film has been peeled off, causing not only the above-mentioned illegal light emission and unstable operation, but also the peeled film piece becomes a foreign substance in the tube. It becomes defective and causes a decrease in manufacturing yield and quality.

また、付着力および粒子間結着力を高めるためには、例えば水ガラスなどをバインダー材として含有することが知られているが、酸化クロム膜の導電性が損なわれ易く、二次電子放出性は低くても電気絶縁性で帯電し、塵誘引の原因となったり、管内電位分布が不安定になる問題がある。   Further, in order to increase the adhesion and interparticle binding force, it is known to contain, for example, water glass as a binder material, but the conductivity of the chromium oxide film is easily impaired, and the secondary electron emission property is Even if it is low, it is electrically insulative and causes dust attraction, and the potential distribution in the tube becomes unstable.

本発明は、このような点に鑑みなされたもので、酸化クロム膜の組成比率を見出すことにより、塵誘引や不正発光などを防止できるうえに、膜剥がれを防止できるX線イメージ管を提供することを目的とする。   The present invention has been made in view of these points, and provides an X-ray image tube that can prevent dust attraction and unauthorized light emission by finding the composition ratio of a chromium oxide film, and can prevent film peeling. For the purpose.

本発明は、X線の入射側に入力窓が形成されるとともに入力窓に対して反対側に出力窓が形成された真空外囲器と、この真空外囲器内で入力窓側に設けられ入射するX線に対応する電子ビームを放出する入力面と、前記真空外囲器内で出力窓側に設けられ前記電子ビームを可視光像に変換する出力面と、前記入力面と出力面との間で前記電子ビームの進路上に電子レンズを構成する複数の電極とを具備し、前記真空外囲器内の電位傾度を有する部位に酸化クロム膜が形成されたX線イメージ管であって、前記酸化クロム膜の組成比率が、クロム25〜40原子%、珪素1〜8原子%、アルカリ金属0.7〜5原子%、残部が実質的に酸素で構成されているものである。   The present invention provides a vacuum envelope in which an input window is formed on the X-ray incident side and an output window is formed on the opposite side of the input window, and the incident is provided on the input window side in the vacuum envelope. An input surface that emits an electron beam corresponding to X-rays to be emitted; an output surface that is provided on the output window side in the vacuum envelope and converts the electron beam into a visible light image; and between the input surface and the output surface A plurality of electrodes constituting an electron lens on the path of the electron beam, and an X-ray image tube in which a chromium oxide film is formed in a portion having a potential gradient in the vacuum envelope, The composition ratio of the chromium oxide film is such that chromium is 25 to 40 atomic%, silicon is 1 to 8 atomic%, alkali metal is 0.7 to 5 atomic%, and the balance is substantially composed of oxygen.

そして、このような酸化クロム膜の組成比率とすることにより、適度な導電性と低い二次電子放出性とを得て、塵誘引や不正発光などが防止されるうえに、膜形成部位との付着力や粒子間結着力を得て、膜剥がれが防止され、この膜剥がれに伴う二次電子放出や管内異物による不良が防止される。   And by setting it as the composition ratio of such a chromium oxide film | membrane, while obtaining moderate electroconductivity and low secondary electron emission property, dust attraction, unauthorized light emission, etc. are prevented, and also with a film formation site | part. Adhesive force and interparticle binding force are obtained, and film peeling is prevented, and defects due to secondary electron emission and foreign matter in the tube accompanying this film peeling are prevented.

本発明によれば、酸化クロム膜の組成比率を、クロム25〜40原子%、珪素1〜8原子%、アルカリ金属0.7〜5原子%、残部が実質的に酸素で構成したので、適度な導電性と低い二次電子放出性とを得て、塵誘引や不正発光などを防止できるうえに、膜形成部位との付着力や粒子間結着力を得て、膜剥がれを防止でき、この膜剥がれに伴う二次電子放出や管内異物による不良を防止できる。   According to the present invention, the chromium oxide film has a composition ratio of chromium 25 to 40 atomic%, silicon 1 to 8 atomic%, alkali metal 0.7 to 5 atomic%, and the balance substantially composed of oxygen. In addition to being able to obtain low electrical conductivity and low secondary electron emission properties, it is possible to prevent dust attraction and unauthorized light emission, as well as adhesion to the film formation site and interparticle adhesion, thereby preventing film peeling. Defects due to secondary electron emission and foreign matter in the tube due to film peeling can be prevented.

以下、本発明の一実施の形態を図面を参照して説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

X線イメージ管の基本構成は、背景技術で説明した図4に示す構成と同様であり、同一符号を用いて説明する。すなわち、X線イメージ管の基本構成では、1は真空外囲器で、この真空外囲器1のX線2の入射側には入力窓3が形成され、入力窓3に対して反対側には出力窓4が形成されている。真空外囲器1内には、入力窓3の内側にX線2を電子ビーム5に変換して放出する入力面6が設けられ、出力窓4の内側に電子ビーム5を可視光像に変換して出力する出力面7が設けられている。入力面6から出力面7に向かって進行する電子ビーム5の進路に沿って、電子ビーム5を加速したり集束する電子レンズが形成され、この電子レンズは、入力面6に負の電圧を加えるカソード電極Kや出力面7に高い正の電圧を加えるアノード電極A、これらカソード電極Kとアノード電極Aとの間の複数のグリッド電極G1,G2,G3などの複数の電極で構成されている。   The basic configuration of the X-ray image tube is the same as the configuration shown in FIG. 4 described in the background art, and will be described using the same reference numerals. That is, in the basic configuration of the X-ray image tube, reference numeral 1 denotes a vacuum envelope, and an input window 3 is formed on the incident side of the X-ray 2 of the vacuum envelope 1 and on the opposite side to the input window 3. An output window 4 is formed. In the vacuum envelope 1, an input surface 6 for converting the X-ray 2 into an electron beam 5 and emitting it is provided inside the input window 3, and the electron beam 5 is converted into a visible light image inside the output window 4. Thus, an output surface 7 for outputting is provided. An electron lens that accelerates or focuses the electron beam 5 is formed along the path of the electron beam 5 traveling from the input surface 6 toward the output surface 7, and this electron lens applies a negative voltage to the input surface 6. The cathode electrode K and the anode electrode A for applying a high positive voltage to the output surface 7, and a plurality of electrodes such as a plurality of grid electrodes G 1, G 2, G 3 between the cathode electrode K and the anode electrode A are configured.

図1には、X線イメージ管の一部、すなわちアノード電極Aおよびグリッド電極G3の近傍のみを示している。グリッド電極G3は、アノード電極Aの最も近くかつ対向しているため、最も電界強度が高く、最も電位傾度が高い部位である。このグリッド電極G3の最も電界強度が高くなるアノード電極Aに近い先端部とその近傍の表面であって少なくとも0.5kV/mm以上の電界強度の最大値となる表面を覆って、酸化クロム膜11が形成されている。なお、図1に示す酸化クロム膜11は模式図的に示している。   FIG. 1 shows only a part of the X-ray image tube, that is, the vicinity of the anode electrode A and the grid electrode G3. Since the grid electrode G3 is closest to and faces the anode electrode A, the grid electrode G3 has the highest electric field strength and the highest potential gradient. The chromium electrode film 11 covers the front end portion of the grid electrode G3 closest to the anode electrode A where the electric field strength is highest and the surface in the vicinity thereof and the surface having the maximum electric field strength of at least 0.5 kV / mm. Is formed. Note that the chromium oxide film 11 shown in FIG. 1 is schematically shown.

酸化クロム膜11の組成比率は、クロム25〜40原子%、珪素1〜8原子%、アルカリ金属としてカリウム0.7〜5原子%、残部が実質的に酸素で構成されている。この組成比率は酸化クロム膜11として形成後の組成比率である。また、酸化クロム膜11中の酸化クロム粒子の平均粒径は、0.5〜1.5μmで構成されている。酸化クロム膜11の膜厚は、5〜100μmで形成されている。   The composition ratio of the chromium oxide film 11 is 25 to 40 atomic% of chromium, 1 to 8 atomic% of silicon, 0.7 to 5 atomic% of potassium as an alkali metal, and the balance is substantially oxygen. This composition ratio is the composition ratio after the chromium oxide film 11 is formed. The average particle diameter of the chromium oxide particles in the chromium oxide film 11 is 0.5 to 1.5 μm. The film thickness of the chromium oxide film 11 is 5 to 100 μm.

そして、この酸化クロム膜11の形成方法の一例について説明する。まず、平均粒径0.9μmのCr粉末とSiO/KOとが3モル比となる水ガラス水溶液を、上述した酸化クロム膜11の組成比率の範囲になるよう計量、混合する。この際、分散促進剤としてアンモニアを添加してもよい。次いで、スプレー法、筆塗り法などで目的の部位に塗布する。次いで、400〜550℃の温度で焼成を施す。この際、雰囲気は真空、空気、水素などのいずれを用いても構わないが、真空雰囲気が最も安定した導電率を得ることができる。 An example of a method for forming the chromium oxide film 11 will be described. First, a water glass aqueous solution in which Cr 2 O 3 powder having an average particle size of 0.9 μm and SiO 2 / K 2 O have a molar ratio of 3 is weighed and mixed so that the composition ratio of the chromium oxide film 11 is within the above range. To do. At this time, ammonia may be added as a dispersion accelerator. Next, it is applied to the target site by spraying, brushing, or the like. Next, baking is performed at a temperature of 400 to 550 ° C. At this time, the atmosphere may be any of vacuum, air, hydrogen, etc., but the vacuum atmosphere can obtain the most stable conductivity.

この焼成後は、必要に応じて表面抵抗値や膜厚、外観検査を行い、他の部品と組み立て、入力面6および出力面7を封止し、排気して光電面を形成し、X線イメ−ジ管を形成する。   After firing, surface resistance, film thickness, and appearance are inspected as necessary, assembled with other components, input surface 6 and output surface 7 are sealed, evacuated to form a photocathode, and X-ray An image tube is formed.

そして、酸化クロム膜11の組成比率について評価試験を実施し、その結果を図2に示す。   And the evaluation test was implemented about the composition ratio of the chromium oxide film | membrane 11, and the result is shown in FIG.

この評価試験では、酸化クロム粒子の平均粒径および膜厚を一定とし、クロム(Cr)と珪素(Si)とカリウム(K)との組成比率を異ならせた酸化クロム膜11をそれぞれ形成したグリッド電極G3の試料を用意し、各試料について、耐剥離試験、表面抵抗測定、製品振動通電寿命試験を実施した。   In this evaluation test, the grids in which the chromium oxide films 11 were formed with the average particle diameter and film thickness of the chromium oxide particles being constant and the composition ratios of chromium (Cr), silicon (Si), and potassium (K) being different from each other were formed. Samples of the electrode G3 were prepared, and each sample was subjected to a peel resistance test, a surface resistance measurement, and a product vibration energization life test.

耐剥離試験では、グリッド電極G3の部品状態で、テープ試験、また、X線イメージ管の製品状態で、タッピング試験、乾式US試験、冷熱衝撃試験を実施したもので、図2には各試料毎に10個ずつ供試した中での剥離が起きた数を示す。   In the peel resistance test, a tapping test, a dry US test, and a thermal shock test were performed in the state of the grid electrode G3 component, in the tape test, and in the product state of the X-ray image tube. Shows the number of delamination in 10 samples.

テープ試験は、酸化クロム膜11の塗布部位に汎用の接着テープを貼り付けた後に引き剥がし、酸化クロム膜11が剥離したか否かを評する。   In the tape test, a general-purpose adhesive tape is applied to the application site of the chromium oxide film 11 and then peeled off to evaluate whether or not the chromium oxide film 11 is peeled off.

タッピング試験は、真空外囲器1の管に入力面6および出力面7を取り付ける前の電極類を組み込んだ状態において、管に数百回打撃を与えることで、酸化クロム膜11が剥離したか否かを評する。   In the tapping test, whether or not the chromium oxide film 11 was peeled off by hitting the tube several hundred times in a state where the electrodes before the input surface 6 and the output surface 7 were installed in the tube of the vacuum envelope 1 Evaluate whether or not.

乾式US試験は、タッピング試験後に、管に空気中で超音波振動子を直接当てることで、酸化クロム膜11が剥離したか否かを評する。   In the dry US test, after the tapping test, an ultrasonic vibrator is directly applied to the tube in the air to evaluate whether or not the chromium oxide film 11 is peeled off.

冷熱衝撃試験は、乾式US試験後に、実使用環境の上下限温度を交互に数十回晒すことで、酸化クロム膜11が剥離したか否かを評する。   The thermal shock test evaluates whether or not the chromium oxide film 11 is peeled off by alternately exposing the upper and lower limit temperatures of the actual use environment several tens of times after the dry US test.

また、表面抵抗測定では、膜表面の抵抗値を測定したもので、抵抗値が1E12以上だと導電性が欠如し、帯電し易く、不良となる。   Further, in the surface resistance measurement, the resistance value of the film surface is measured. If the resistance value is 1E12 or more, the electroconductivity is lacking, and it becomes easy to be charged and becomes defective.

製品振動通電寿命試験では、製品に振動を与えながら通電し、所定の寿命までに異物欠点不良、不正発光不良の発生を試験したもので、図2には各試料毎に10本ずつ供試した中での不良本数を示す。   In the product vibration energization life test, the product was energized while applying vibration, and the occurrence of foreign object defects and improper light emission defects were tested by the predetermined life. In FIG. 2, 10 samples were tested for each sample. The number of defectives is shown.

図2に示すように、評価試験の結果、クロムが25原子%未満であると、導電性の欠如ばかりか、二次電子放出抑制機能が損なわれ、不正発光不良が増加する。また、クロムが40原子%を超えると、膜形成部位との付着力や粒子間結着力が欠乏し、膜剥離が起き易く、膜剥離に伴う異物欠点不良や不正発光不良が増加する。そのため、クロムは、25〜40原子%の範囲が好ましく、導電性と低い二次電子放出性と耐剥離性とが確実に得られるより好ましい範囲は32〜36原子%である。   As shown in FIG. 2, when the chromium is less than 25 atomic% as a result of the evaluation test, not only the lack of conductivity but also the secondary electron emission suppressing function is impaired, and the irregular light emission increases. On the other hand, if the chromium content exceeds 40 atomic%, the adhesion to the film forming site and the interparticle bonding force are deficient, and the film is likely to be peeled off. Therefore, chromium is preferably in the range of 25 to 40 atomic%, and more preferably in the range of 32 to 36 atomic% in which conductivity, low secondary electron emission property and peeling resistance are surely obtained.

珪素が1原子%未満であると、膜形成部位との付着力や粒子間結着力が損なわれ、膜剥離が起き易く、膜剥離に伴う異物欠点不良や不正発光不良が増加する。また、珪素が8原子%を超えると、膜の導電性が不十分になる。そのため、珪素は、1〜8原子%の範囲が好ましく、導電性と低い二次電子放出性と耐剥離性とが確実に得られるより好ましい範囲は3〜6原子%である。   If the silicon content is less than 1 atomic%, the adhesion to the film forming site and the interparticle bonding force are impaired, and film peeling is likely to occur, resulting in an increase in defect defects and defective light emission due to film peeling. On the other hand, if silicon exceeds 8 atomic%, the conductivity of the film becomes insufficient. For this reason, silicon is preferably in the range of 1 to 8 atomic%, and more preferably in the range of 3 to 6 atomic%, where conductivity, low secondary electron emission properties and peeling resistance can be reliably obtained.

カリウムが0.7原子%未満であると、膜形成部位との付着力や粒子間結着力が損なわれ、膜剥離が起き易く、膜剥離に伴う異物欠点不良や不正発光不良が増加する。また、カリウムが5原子%を超えると、膜の導電性が不十分になる。そのため、カリウムは、0.7〜5原子%の範囲が好ましく、導電性と低い二次電子放出性と耐剥離性とが確実に得られるより好ましい範囲は2〜4原子%である。また、珪素に対するカリウムの原子存在比率は0.6〜0.7%の範囲が好ましい。   If the potassium content is less than 0.7 atomic%, the adhesion to the film forming site and the interparticle bonding force are impaired, and film peeling is likely to occur, resulting in an increase in foreign matter defects and improper light emission defects associated with film peeling. Moreover, when potassium exceeds 5 atomic%, the electroconductivity of a film | membrane will become inadequate. Therefore, potassium is preferably in the range of 0.7 to 5 atomic%, and more preferably in the range of 2 to 4 atomic%, where conductivity, low secondary electron emission property and peeling resistance are surely obtained. Moreover, the atomic ratio of potassium to silicon is preferably in the range of 0.6 to 0.7%.

このように、酸化クロム膜11の組成比率を見出し、酸化クロム膜11の組成比率を、クロム25〜40原子%、珪素1〜8原子%、アルカリ金属0.7〜5原子%、残部が実質的に酸素で構成することにより、適度な導電性と低い二次電子放出性とが得られ、不正発光や動作の不安定性を防止できるうえに、膜形成部位との付着力や粒子間結着力を得て、膜剥がれを防止でき、この膜剥がれに伴う二次電子放出や管内異物による不良を防止できる。   Thus, the composition ratio of the chromium oxide film 11 is found, the composition ratio of the chromium oxide film 11 is 25 to 40 atomic% of chromium, 1 to 8 atomic% of silicon, 0.7 to 5 atomic% of alkali metal, and the balance is substantially the same. By using oxygen as a constituent, moderate conductivity and low secondary electron emission properties can be obtained. In addition, illegal light emission and operational instability can be prevented, and adhesion to the film formation site and interparticle binding force can be prevented. Thus, film peeling can be prevented, and defects due to secondary electron emission and foreign matter in the tube accompanying this film peeling can be prevented.

また、以上の酸化クロム膜11の組成比率を前提として、酸化クロム粒子の平均粒径は、0.5〜1.5μmの範囲が好ましい。0.5μmより細かいと、塗布時に凝集しやすいうえ、導電性が高くなり過ぎるし、また、1.5μmより粗いと、導電性が損なわれ、絶縁膜に近くなる。   Further, on the premise of the composition ratio of the chromium oxide film 11, the average particle diameter of the chromium oxide particles is preferably in the range of 0.5 to 1.5 μm. If it is finer than 0.5 μm, it tends to agglomerate at the time of application, and the conductivity becomes too high, and if it is coarser than 1.5 μm, the conductivity is impaired and it becomes close to an insulating film.

さらに、酸化クロム膜11の膜厚は、5〜100μmの範囲が好ましい。5μmより薄いと、二次放電放出抑制機能が損なわれ、不正発光不良が増加し、また、100μmより厚いと、膜が割れ易くなる。そのため、5〜100μmの範囲が好ましく、低い二次電子放出性が確実に得られて割れにくくできるより好ましくは10〜15μmである。   Furthermore, the film thickness of the chromium oxide film 11 is preferably in the range of 5 to 100 μm. When the thickness is less than 5 μm, the secondary discharge emission suppressing function is impaired, and illegal light emission defects increase. When the thickness is more than 100 μm, the film is easily broken. Therefore, the range of 5-100 micrometers is preferable, More preferably, it is 10-15 micrometers from which the low secondary electron emission property is acquired reliably and it can do not break easily.

次に、真空外囲器1内における酸化クロム膜11を形成する範囲の部位に関して説明する。   Next, a description will be given of a portion of the vacuum envelope 1 in a range where the chromium oxide film 11 is formed.

管内に金属異物が介在した場合、例えばグリッド電極G3とアノード電極Aとの間の電位差が6kV/mmに遥かに及ばない箇所においても放電源になりうることが諸実験で明らかになった。すなわち、金属異物とは、電極加工時に生成するバリや、電極類を管内に組み込む際の擦れおよび溶接時など、さまざまな要因によって産出されるものであり、バリ除去処理や組み込み法の改善、溶接条件の改正により管内への持ち込みを低減し、さらにはタッピングや管内洗浄によりある程度排出することは可能だが、万全ではなく、管内の金属異物を完全に撲滅することは困難である。この金属異物の材質は、SUSや、AL、Cuなどの材質で、50〜200ミクロンの針状を呈している場合が多く、この程度のサイズだと、0.5kV/mm以上の電界強度下において、クーロン力が作用して金属異物が動き回るようになる。X線イメ−ジ管の実稼動時の動作中、管内に潜んでいた金属異物がグリッド電極G3上に載ると、金属異物にクーロン力が作用してアノード電極Aに向かい起立浮上し、この起立浮上した金属異物に電界が集中して放電が発生し、放電電流が流れて金属異物がグリッド電極G3に溶着されてしまい、溶着された金属異物からの放電が持続するといったプロセスにより、X線イメージ管は使用に耐えなくなってしまうことが多いことが、諸実験で明らかになった。   Various experiments have revealed that when a metal foreign object is present in the tube, it can be a discharge source even at a location where the potential difference between the grid electrode G3 and the anode electrode A does not reach as much as 6 kV / mm, for example. In other words, metallic foreign matter is produced by various factors such as burrs generated during electrode processing, rubbing when welding electrodes into the tube, and welding, improving burr removal processing, assembling methods, welding Although it is possible to reduce the carry-in into the pipe by amending the conditions and to discharge to some extent by tapping and cleaning the pipe, it is not perfect and it is difficult to completely eliminate the metallic foreign matter in the pipe. The material of the metal foreign material is SUS, AL, Cu, or the like, and often has a needle shape of 50 to 200 microns. With this size, the electric field strength is 0.5 kV / mm or more. , The Coulomb force acts to move the metal foreign object around. During the actual operation of the X-ray image tube, if a metal foreign object that has been lurking in the tube is placed on the grid electrode G3, the Coulomb force acts on the metal foreign object and rises up to the anode electrode A. An X-ray image is generated by a process in which an electric field concentrates on the floating metal foreign object, a discharge occurs, a discharge current flows, the metal foreign object is welded to the grid electrode G3, and the discharge from the deposited metal foreign object continues. Experiments have shown that tubes often become unusable.

図3には、X線イメージ管の一部、すなわちアノード電極Aとこのアノード電極Aに対向するグリッド電極G3との間での電界強度解析の結果の一例を示している。この電界強度解析とは、実際の電極形状と印加電圧値とを基に有限要素法などを用いて解析し、電極各部の電界強度を求めるものである。図3に示す矢印は、電界強度が0.5kV/mm以上となる電界を示し、矢印の長さが長くかつ濃淡が濃いほど電界強度が高いことを示している。   FIG. 3 shows an example of the result of electric field intensity analysis of a part of the X-ray image tube, that is, the anode electrode A and the grid electrode G3 facing the anode electrode A. In this field strength analysis, analysis is performed using a finite element method or the like based on the actual electrode shape and applied voltage value, and the field strength of each part of the electrode is obtained. The arrow shown in FIG. 3 indicates an electric field at which the electric field strength is 0.5 kV / mm or more, and indicates that the electric field strength is higher as the length of the arrow is longer and the shade is darker.

そして、グリッド電極G3に対する酸化クロム11の塗布範囲を、3kV/mm以上の電界強度の範囲と、1kV/mm以上の電界強度の範囲と、0.5kV/mm以上の電界強度の範囲との3種類のX線イメ−ジ管の試料をそれぞれ試作し、これらについて評価試験を実施し、その結果を図4に示す。評価試験では、各管内に予め一定量の金属異物を故意に混入させ、通電回転試験を実施した。この通電回転試験は、各電極に製品駆動電圧を印加させながら、Cアーム動作を繰返し行うもので、加速寿命試験として好適なものである。   Then, the application range of the chromium oxide 11 to the grid electrode G3 is 3 of an electric field strength range of 3 kV / mm or more, an electric field strength range of 1 kV / mm or more, and an electric field strength range of 0.5 kV / mm or more. Samples of various types of X-ray image tubes were made respectively, and evaluation tests were conducted on these samples. The results are shown in FIG. In the evaluation test, a predetermined amount of metallic foreign matter was intentionally mixed in each tube in advance, and an energization rotation test was performed. This energization rotation test repeats the C-arm operation while applying a product drive voltage to each electrode, and is suitable as an accelerated life test.

図4に示すように、評価試験の結果、3kV/mm以上の電界強度の範囲に酸化クロム膜11を形成した場合には、5本の試料の全数に金属異物起因の不正持続放電が発生した。また、1kV/mm以上の電界強度の範囲に広げて酸化クロム膜11を形成した場合には、10本の試料中の2本に金属異物起因の不正持続放電が発生した。さらに、0.5kV/mm以上の電界強度の範囲に広げて酸化クロム膜11を形成した場合には、100本の試料中に金属異物起因の不正持続放電が発生した本数は0本であった。   As shown in FIG. 4, when the chromium oxide film 11 was formed in the range of the electric field strength of 3 kV / mm or more as a result of the evaluation test, the improper sustained discharge caused by the metal foreign matter occurred in the total number of the five samples. . In addition, when the chromium oxide film 11 was formed in a range of electric field strength of 1 kV / mm or more, irregular sustained discharge caused by metallic foreign matter occurred in two of the ten samples. Further, when the chromium oxide film 11 was formed in a range of electric field strength of 0.5 kV / mm or more, the number of irregular sustained discharges caused by metallic foreign matter in 100 samples was zero. .

そのため、上述した所定の組成、粒径、膜厚の酸化クロム膜11を、特にアノード電極Aに対向するグリッド電極G3で、少なくとも0.5kV/mm以上の電界強度になる範囲の部位に形成することにより、管内に金属異物が混入し、排除しきれなくても、不正持続放電というX線イメ−ジ管にとっての致命的な問題は抑止され、高い品質を備えたX線イメ−ジ管を提供できる。   Therefore, the chromium oxide film 11 having the above-mentioned predetermined composition, particle size, and film thickness is formed at a portion in a range where the electric field strength is at least 0.5 kV / mm or more particularly on the grid electrode G3 facing the anode electrode A. Thus, even if metal foreign matter is mixed in the tube and cannot be completely eliminated, the fatal problem of improper sustained discharge for the X-ray image tube is suppressed, and a high-quality X-ray image tube can be obtained. Can be provided.

なお、酸化クロム11は、グリッド電極G3の0.5kV/mm以上の電界強度になる範囲の部位には漏れなく形成するが、0.5kV/mmに至らずとも、金属異物による不正放電防止のマージンを考慮して、組立作業に支障を与えない範囲でその酸化クロム11の形成範囲を適度に拡張することが好ましい。   Note that the chromium oxide 11 is formed without leakage in a portion of the grid electrode G3 in a range where the electric field strength is 0.5 kV / mm or more, but even if it does not reach 0.5 kV / mm, it prevents improper discharge due to metallic foreign matter. In consideration of the margin, it is preferable to appropriately expand the formation range of the chromium oxide 11 within a range that does not hinder the assembly work.

また、酸化クロム膜11は、電位傾度を有する部位としてグリッド電極G3に形成したが、これに限定されず、真空外囲器1内の他の電極や真空外囲器1内に配置されるガラスやセラミック部なども電位傾度を有する部位であり、これら部位に形成してもよい。   Further, the chromium oxide film 11 is formed on the grid electrode G3 as a portion having a potential gradient. However, the present invention is not limited to this, and other electrodes in the vacuum envelope 1 or glass disposed in the vacuum envelope 1 are used. The ceramic part is also a part having a potential gradient, and may be formed in these parts.

また、酸化クロム膜11の組成中のアルカリ金属としては、カリウムが好ましいが、ナトリウムに置き換えることもでき、あるいはカリウムとナトリウムとの両方を用いることもできる。   In addition, as the alkali metal in the composition of the chromium oxide film 11, potassium is preferable, but it can be replaced with sodium, or both potassium and sodium can be used.

本発明の一実施の形態を示すX線イメージ管の酸化クロム膜を形成した一部の拡大断面図である。It is a partial expanded sectional view in which the chromium oxide film of the X-ray image tube which shows one embodiment of this invention was formed. 同上酸化クロム膜の組成比率についての評価試験を行った結果を示す説明図である。It is explanatory drawing which shows the result of having performed the evaluation test about the composition ratio of a chromium oxide film | membrane same as the above. 同上酸化クロム膜を形成する部位を特定するうえで実施したアノード電極とこのアノード電極に対向するグリッド電極との電解強度の解析結果の一例を示す説明図である。It is explanatory drawing which shows an example of the analysis result of the electrolytic strength of the anode electrode implemented when specifying the site | part which forms a chromium oxide film | membrane same as the above, and the grid electrode facing this anode electrode. 同上酸化クロム膜を形成する範囲についての評価試験を行った結果を示す説明図である。It is explanatory drawing which shows the result of having performed the evaluation test about the range which forms a chromium oxide film | membrane same as the above. X線イメージ管の断面図である。It is sectional drawing of an X-ray image tube.

符号の説明Explanation of symbols

1 真空外囲器
2 X線
3 入力窓
4 出力窓
5 電子ビーム
6 入力面
7 出力面
11 酸化クロム膜
A アノード電極
G3 グリッド電極
DESCRIPTION OF SYMBOLS 1 Vacuum envelope 2 X-ray 3 Input window 4 Output window 5 Electron beam 6 Input surface 7 Output surface
11 Chromium oxide film A Anode electrode
G3 grid electrode

Claims (6)

X線の入射側に入力窓が形成されるとともに入力窓に対して反対側に出力窓が形成された真空外囲器と、この真空外囲器内で入力窓側に設けられ入射するX線に対応する電子ビームを放出する入力面と、前記真空外囲器内で出力窓側に設けられ前記電子ビームを可視光像に変換する出力面と、前記入力面と出力面との間で前記電子ビームの進路上に電子レンズを構成する複数の電極とを具備し、前記真空外囲器内の電位傾度を有する部位に酸化クロム膜が形成されたX線イメージ管であって、
前記酸化クロム膜の組成比率が、クロム25〜40原子%、珪素1〜8原子%、アルカリ金属0.7〜5原子%、残部が実質的に酸素で構成されている
ことを特徴とするX線イメージ管。
A vacuum envelope in which an input window is formed on the incident side of the X-ray and an output window is formed on the opposite side of the input window, and an incident X-ray provided on the input window side in the vacuum envelope. An input surface that emits a corresponding electron beam, an output surface that is provided on the output window side in the vacuum envelope and converts the electron beam into a visible light image, and the electron beam between the input surface and the output surface An X-ray image tube comprising a plurality of electrodes constituting an electron lens on the path of the electrode, and a chromium oxide film formed on a portion having a potential gradient in the vacuum envelope,
The composition ratio of the chromium oxide film is 25-40 atomic% chromium, 1-8 atomic% silicon, 0.7-5 atomic% alkali metal, and the balance is substantially composed of oxygen. Line image tube.
酸化クロム膜が、少なくとも0.5kV/mm以上の電界強度になる部位に形成されていることを特徴とする請求項1記載のX線イメージ管。   The X-ray image tube according to claim 1, wherein the chromium oxide film is formed at a portion having an electric field strength of at least 0.5 kV / mm. 電極としてアノード電極およびこのアノード電極に対向するグリッド電極を有し、このアノード電極に対向するグリッド電極に酸化クロム膜が形成されていることを特徴とする請求項1または2記載のX線イメージ管。   3. An X-ray image tube according to claim 1, further comprising an anode electrode as an electrode and a grid electrode facing the anode electrode, wherein a chromium oxide film is formed on the grid electrode facing the anode electrode. . アルカリ金属が、カリウムであることを特徴とする請求項1ないし3いずれか記載のX線イメージ管。   4. The X-ray image tube according to claim 1, wherein the alkali metal is potassium. 酸化クロム膜中の酸化クロム粒子の平均粒径が、0.5〜1.5μmであることを特徴とする請求項1ないし4いずれか記載のX線イメージ管。   The X-ray image tube according to any one of claims 1 to 4, wherein the average particle diameter of the chromium oxide particles in the chromium oxide film is 0.5 to 1.5 µm. 酸化クロム膜の膜厚が、5〜100μmであることを特徴とする請求項1ないし5いずれか記載のX線イメージ管。   6. The X-ray image tube according to claim 1, wherein the chromium oxide film has a thickness of 5 to 100 [mu] m.
JP2004186210A 2004-02-20 2004-06-24 X-ray image tube Active JP4528562B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004186210A JP4528562B2 (en) 2004-02-20 2004-06-24 X-ray image tube

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004045363 2004-02-20
JP2004186210A JP4528562B2 (en) 2004-02-20 2004-06-24 X-ray image tube

Publications (2)

Publication Number Publication Date
JP2005268197A true JP2005268197A (en) 2005-09-29
JP4528562B2 JP4528562B2 (en) 2010-08-18

Family

ID=35092502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004186210A Active JP4528562B2 (en) 2004-02-20 2004-06-24 X-ray image tube

Country Status (1)

Country Link
JP (1) JP4528562B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009217944A (en) * 2008-03-07 2009-09-24 Toshiba Corp Image intensifier
JP2011243419A (en) * 2010-05-18 2011-12-01 Toshiba Corp Recovery method for recovering bulb from image tube and manufacturing method of image tube
US20120306349A1 (en) * 2006-12-19 2012-12-06 Toshiba Electron Tubes & Device Co., Ltd. Image intensifier
WO2013061815A1 (en) * 2011-10-25 2013-05-02 浜松ホトニクス株式会社 Electron tube

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS585319Y2 (en) * 1980-06-30 1983-01-29 株式会社島津製作所 image tube
JPH0636713A (en) * 1992-07-21 1994-02-10 Toshiba Corp X-ray image tube
JPH09265923A (en) * 1996-03-28 1997-10-07 Toshiba Corp High vacuum structure, member for high vacuum and image intensifier tube
JPH10340793A (en) * 1996-12-27 1998-12-22 Canon Inc Antistatic film, image-forming device and manufacture thereof
JP2003077409A (en) * 2001-09-03 2003-03-14 Kyocera Corp Spacer for field emission display device and its manufacturing method, substrate for field emission display device using same and its manufacturing method, as well as field emission display device using same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS585319Y2 (en) * 1980-06-30 1983-01-29 株式会社島津製作所 image tube
JPH0636713A (en) * 1992-07-21 1994-02-10 Toshiba Corp X-ray image tube
JPH09265923A (en) * 1996-03-28 1997-10-07 Toshiba Corp High vacuum structure, member for high vacuum and image intensifier tube
JPH10340793A (en) * 1996-12-27 1998-12-22 Canon Inc Antistatic film, image-forming device and manufacture thereof
JP2003077409A (en) * 2001-09-03 2003-03-14 Kyocera Corp Spacer for field emission display device and its manufacturing method, substrate for field emission display device using same and its manufacturing method, as well as field emission display device using same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120306349A1 (en) * 2006-12-19 2012-12-06 Toshiba Electron Tubes & Device Co., Ltd. Image intensifier
US8335295B1 (en) 2006-12-19 2012-12-18 Kabushiki Kaisha Toshiba Image intensifier
JP2009217944A (en) * 2008-03-07 2009-09-24 Toshiba Corp Image intensifier
JP2011243419A (en) * 2010-05-18 2011-12-01 Toshiba Corp Recovery method for recovering bulb from image tube and manufacturing method of image tube
WO2013061815A1 (en) * 2011-10-25 2013-05-02 浜松ホトニクス株式会社 Electron tube
JP2013093172A (en) * 2011-10-25 2013-05-16 Hamamatsu Photonics Kk Electron tube

Also Published As

Publication number Publication date
JP4528562B2 (en) 2010-08-18

Similar Documents

Publication Publication Date Title
US5860584A (en) Method of bonding amorphous carbon material with metal material or ceramic material and electron tube device
EP2887380B1 (en) Transmitting-type target and X-ray generation tube provided with transmitting-type target
JP5136346B2 (en) X-ray device electrode
JP6230389B2 (en) X-ray generator tube, X-ray generator and X-ray imaging system using the same
US10229808B2 (en) Transmission-type target for X-ray generating source, and X-ray generator and radiography system including transmission-type target
US10062539B2 (en) Anode and x-ray generating tube, x-ray generating apparatus, and radiography system that use the anode
JP4528562B2 (en) X-ray image tube
US10242837B2 (en) Anode and X-ray generating tube, X-ray generating apparatus, and radiography system that use the anode
JP4469837B2 (en) Image intensifier
Comins et al. Preparation and evaluation of P-47 scintillators for a scanning electron microscope
JPS59155941A (en) Electron-beam inspection device
JP2009217944A (en) Image intensifier
Tabakov X-ray tube arcing: manifestation and detection during qualuty control
JP5015026B2 (en) Beam detection member and beam detector using the same
JP2010281710A (en) Method and instrument for measuring electronic spectrum
JP2011044385A (en) Image tube
JP6272539B1 (en) X-ray generator tube, X-ray generator and X-ray imaging system using the same
JP2014072157A (en) Radiation generating tube
JP2024004457A (en) x-ray tube
JP2015138726A (en) spark plug
KR20200014995A (en) Micro focus x-ray tube
JP2008204838A (en) X-ray image intensifier
Hata et al. High‐Resolution Microfocused X‐Ray Source with Functions of Scanning Electron Microscope
JP2001319558A (en) Cathode structure, its fabrication method and cathode- ray tube using it
JP2009158145A (en) Substrate processing device, substrate processing method, and manufacturing method for high-voltage device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091007

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100331

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100512

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100607

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4528562

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350