JPS585319Y2 - image tube - Google Patents

image tube

Info

Publication number
JPS585319Y2
JPS585319Y2 JP1980092713U JP9271380U JPS585319Y2 JP S585319 Y2 JPS585319 Y2 JP S585319Y2 JP 1980092713 U JP1980092713 U JP 1980092713U JP 9271380 U JP9271380 U JP 9271380U JP S585319 Y2 JPS585319 Y2 JP S585319Y2
Authority
JP
Japan
Prior art keywords
anode
tube
image tube
electrodes
electrons
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1980092713U
Other languages
Japanese (ja)
Other versions
JPS5715067U (en
Inventor
松並傑
足立勝
樋口浩和
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to JP1980092713U priority Critical patent/JPS585319Y2/en
Publication of JPS5715067U publication Critical patent/JPS5715067U/ja
Application granted granted Critical
Publication of JPS585319Y2 publication Critical patent/JPS585319Y2/en
Expired legal-status Critical Current

Links

Landscapes

  • Vessels, Lead-In Wires, Accessory Apparatuses For Cathode-Ray Tubes (AREA)
  • Image-Pickup Tubes, Image-Amplification Tubes, And Storage Tubes (AREA)

Description

【考案の詳細な説明】 この考案は、イメージ管に関するもので、X線イメージ
管球内の迷走電子が加速され陽極などを衝撃して発生す
る二次電子を有効に抑制し、絶縁耐圧を高め、動作の安
定なイメージ管に関するものである。
[Detailed explanation of the invention] This invention relates to an image tube, which effectively suppresses secondary electrons generated when stray electrons in the X-ray image tube are accelerated and impact the anode, etc., and increases the dielectric strength. , concerning an image tube with stable operation.

一般に、X線イメージ管球内には、入力けい光面ならび
に光電面と、この人力けい光面に対向して設けられた出
力けい光面と、管球壁の近くに配置され、入力光電面よ
り放出された光電子を加速集束する集束電極と、補助陽
極ならびに陽極と、これらを収容する管球とより構成さ
れていて、入力けい光面と陽極間ならびに集束電極およ
び補助陽極間には電源装置より加速ならびに集束電圧が
それぞれ供給されている。
Generally, an X-ray image tube has an input phosphor surface and a photocathode, an output phosphor surface located opposite to the manually operated phosphor surface, and an input photocathode located near the tube wall. It consists of a focusing electrode that accelerates and focuses photoelectrons emitted from the auxiliary anode, an auxiliary anode, an anode, and a tube that houses them. A power supply is installed between the input luminescent surface and the anode, and between the focusing electrode and the auxiliary anode. Accelerating and focusing voltages are respectively supplied.

以上の構成で管球内で発生した迷走電子は陽極電位にて
加速され、補助陽極などの高電圧印加電極を衝撃し、二
次電子を発生する。
With the above configuration, stray electrons generated within the tube are accelerated at the anode potential, impact a high voltage application electrode such as an auxiliary anode, and generate secondary electrons.

補助陽極等より放射された二次電子は陽極に正の加速電
圧が印加されている関係上、加速されて出力けい光面を
刺戟し、出力像の画質を低下させるとともに、電極など
の電位を不安定にし、イメージ管の動作を不安定にする
Because a positive accelerating voltage is applied to the anode, the secondary electrons emitted from the auxiliary anode are accelerated and stimulate the output fluorescent surface, reducing the quality of the output image and lowering the potential of the electrode. It makes the image tube unstable.

この幻策としては、補助陽極の少なくとも人力けい光面
に対向する面を二次電子利得(二次電子放出能)δの小
さな物質で構成することが行なわれている。
As a phantom measure, at least the surface of the auxiliary anode facing the manually-powered fluorescent surface is made of a material with a small secondary electron gain (secondary electron emission ability) δ.

しかしながら、従来の可変視野イメージ管においては、
二次電子利得δの小さな物質としては、アルミニウム、
ベリリウム、リチウムを使用し、電極素材にこれら金属
を蒸着する方法が専ら採用されてきたため、製作時に相
当高価な蒸着装置を必要とするほか、地金の前処理に複
雑な工程を必要とするなどの欠点があった。
However, in conventional variable field of view image tubes,
Examples of materials with small secondary electron gain δ include aluminum,
Since the method of using beryllium and lithium and vapor depositing these metals on the electrode material has been exclusively adopted, it requires fairly expensive vapor deposition equipment during production and requires complicated processes for pre-treatment of the bare metal. There was a drawback.

また再生使用も容易でなかった。Furthermore, it was not easy to recycle and use it.

この考案は上記の問題点を解消するもので、酸化クロム
粉末を樹脂とともにインキ状に溶液化し、溶剤で稀釈し
たものをインキとして電極や管球内面に塗布し、焼付け
たものである。
This idea solves the above problems by diluting chromium oxide powder with resin into an ink solution, diluting it with a solvent, applying it as ink to the electrodes and the inner surface of the tube, and baking it.

以下図面について説明する。The drawings will be explained below.

第1図は本考案のイメージ管の断面図であって、1は入
力けい光面および光電面、2は1に対向して設けられた
出力けい光面、3は陽極、4は補助陽極、5および6は
管球壁の近くに配置され、入力けい光面1より放出され
た光電子を加速集束する集束電極である。
FIG. 1 is a cross-sectional view of the image tube of the present invention, in which 1 is an input fluorescent surface and a photocathode, 2 is an output fluorescent surface provided opposite to 1, 3 is an anode, 4 is an auxiliary anode, Reference numerals 5 and 6 designate focusing electrodes arranged near the tube wall to accelerate and focus photoelectrons emitted from the input fluorescent surface 1.

これらの管球内部品は管球16内に収容されていて、入
力けい光面1と陽極3間ならびに集束電極5.6および
補助陽極4間には電源装置よりカロ速ならびに集束電圧
が供給されている。
These parts within the bulb are housed in the bulb 16, and a Calorie voltage and a focusing voltage are supplied from a power supply between the input luminescent surface 1 and the anode 3 and between the focusing electrode 5.6 and the auxiliary anode 4. ing.

なお、15はX線の入射方向である。Note that 15 is the incident direction of the X-rays.

このような管球内電位分布のもとでは陽極3の近くの管
球16の屈曲点7および8ならびに集束電極5および6
上の特定点9および10を迷走電子の発生点とする迷走
電子は第1図の点線および1点鎖線をもって示す軌道に
沿って、陽極3や補助陽極4を衝撃することが、電子軌
道パストレース計算より判明している。
Under such a potential distribution within the bulb, the bending points 7 and 8 of the bulb 16 near the anode 3 and the focusing electrodes 5 and 6
The stray electrons whose generation points are the specific points 9 and 10 above impact the anode 3 and the auxiliary anode 4 along the trajectories shown by the dotted line and the dashed-dotted line in FIG. This is clear from calculation.

そこで先づ7,8,9および10など管球16内の迷走
電子発生点を酸化クロム・コーティングI。
First, stray electron generating points 7, 8, 9, and 10 in the tube 16 were coated with chromium oxide I.

8.11,1:2して迷走電子発生の根源を絶つ方法を
採るとともに、陽極や補助陽極など迷走電子の衝撃を受
ける部品表面にも酸化クロムコーティング13.14を
施して迷走電子による二次電子とイオンの発生を抑える
ようにしたものである。
8.11, 1:2 to eliminate the source of stray electrons, and also apply chromium oxide coating13.14 to the surfaces of parts that are subject to the impact of stray electrons, such as the anode and auxiliary anode, to prevent secondary emissions caused by stray electrons. It is designed to suppress the generation of electrons and ions.

迷走電子の発生を抑制する方法と二次電子とイオン発生
を防止する方法とは各単独に実施しても効果がある。
The method of suppressing the generation of stray electrons and the method of preventing the generation of secondary electrons and ions are effective even if they are implemented individually.

次にコーティング法について説明する。Next, the coating method will be explained.

先づ酸化クロム粉末とジ・フェニール・オキシド樹脂を
らいかい機に入れ溶剤としてトルエンを混入しつつ、ね
ばりをさけながら、粉末を砕き、且つすりつぶす。
First, chromium oxide powder and di-phenyl oxide resin are placed in a grinder, and while toluene is mixed in as a solvent, the powder is crushed and ground while avoiding stickiness.

この場合の各材料の重量比は、酸化クロム粉末35±3
係、樹脂35±5係、残量をトルエンとすればよい結果
が得られる。
In this case, the weight ratio of each material is chromium oxide powder 35±3
Good results can be obtained if the resin is 35±5% and the remaining amount is toluene.

濃縮液状につくられたこのインキを電極へ塗布するとき
は、ハケ塗り、スプレ吹き付け、ディップ(浸漬法)法
の倒れかの方法で膜状に薄く塗布することが可能である
ため、金属の蒸着法などと比較して、塗布される対称物
の範囲が広く、且つ作業も容易である。
When applying this ink, which is made in a concentrated liquid form, to the electrodes, it can be applied in a thin film form by brushing, spraying, or dipping methods, making it suitable for metal vapor deposition. Compared to other methods, the range of objects that can be coated is wider and the work is easier.

コーティング終了後、一定時間(1時間以内)常温乾燥
してから、約1時間の予熱(約150°C)および数時
間の焼付(約300℃)を行なうものであって、陽極3
および補助陽極4などの高圧電極の全面に塗布して到達
する迷走電子による二次電子とイオンの発生を抑えると
最高の効果を発揮するが、集束電極など低圧電極の場合
は迷走電子の到達は少なく、逆に発生の機会が多いので
、縁部なと凸凹面に限定してコーティングする方が望ま
しいが1、この様に一部に限定したコーティングにおい
ては、ハケ塗りなど手塗りの方法が適切である。
After the coating is finished, it is dried at room temperature for a certain period of time (within 1 hour), then preheated for about 1 hour (about 150°C) and baked for several hours (about 300°C).
The best effect is achieved by applying the coating to the entire surface of high-voltage electrodes such as the auxiliary anode 4 to suppress the generation of secondary electrons and ions caused by stray electrons that arrive. However, in the case of low-voltage electrodes such as focusing electrodes, stray electrons can On the contrary, it is preferable to apply the coating only to the edges and uneven surfaces, as there are many opportunities for it to occur.1 However, when coating a limited area like this, hand-applying methods such as brushing are appropriate. It is.

また、前記の電極のみならず、第1図7および8に示す
ように、管球16のガラス筒体の内面に、従来ダグや水
金あるいはアルミ蒸着膜などで形成した膜電極の代りに
このコーティングを施すことによって、迷走電子の発生
を有効に防止することが可能となった。
In addition to the above-mentioned electrodes, as shown in FIGS. 7 and 8, these membrane electrodes can be used on the inner surface of the glass cylinder of the bulb 16 instead of the conventional membrane electrodes formed with DAG, water-metal, or aluminum vapor-deposited films. By applying a coating, it has become possible to effectively prevent the generation of stray electrons.

以上説明したとおり、この考案によって、管球とくに小
物管球ならびに可変視野イメージ管球においては耐圧性
能向上にいちじるしい効果があった。
As explained above, this invention has had a remarkable effect on improving the pressure resistance performance of tubes, especially small tubes and variable field of view image tubes.

また、酸化クロムは二次電子利得が小さいので、イオン
スポットならびに電子スポットも軽減できるほか酸化ク
ロムの光吸収特性により光電面反射を減少させるのでコ
ントラストやバックグラウンドの改善にも効果があった
In addition, since chromium oxide has a small secondary electron gain, ion spots and electron spots can be reduced, and the light absorption properties of chromium oxide reduce photocathode reflection, which is effective in improving contrast and background.

また、酸化クロムを樹脂溶液に含有させて電極に塗布し
、焼付塗装したので、樹脂の付着力ならびにスムージン
グ作用によりゴミ落ちもなくなり電極の電解処理などの
地金処理を省略でき、再使用も湯洗だけで十分であり、
特に管球の内面は再使用時にベーキングをやり直す必要
がないなど、幾多の有用な実用的効果を奏することがで
きる。
In addition, since chromium oxide is contained in a resin solution and applied to the electrode and baked, the adhesion and smoothing effect of the resin prevents dust from falling off, making it possible to omit bare metal treatment such as electrolytic treatment of the electrode, and it can be reused with hot water. Washing alone is sufficient;
In particular, the inner surface of the tube does not need to be rebaked when it is reused, and many useful practical effects can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの考案のイメージ管の断面図である。 符号の説明、1:入力けい光面および光電面、2;出力
けい光面、3;陽極、4;補助陽極、5゜6;集束電極
、7,8;管球上の屈曲点、9゜10;電極上の特定点
、11,12;部分的コーティング、13,14;全面
コーティング、15;X線入射方向、16;イメージ管
球。
FIG. 1 is a sectional view of the image tube of this invention. Explanation of symbols: 1: Input fluorescent surface and photocathode, 2: Output fluorescent surface, 3: Anode, 4: Auxiliary anode, 5° 6: Focusing electrode, 7, 8; Bend point on the bulb, 9° 10; Specific point on electrode, 11, 12; Partial coating, 13, 14; Full coating, 15; X-ray incident direction, 16; Image tube.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] イメージ管の電極あるいは管球壁内の電位傾度の高い部
分に酸化クロム含浸樹脂被膜を焼付形成したことを特徴
とするイメージ管。
An image tube characterized in that a chromium oxide-impregnated resin coating is formed by baking on the electrodes of the image tube or on the portions of the tube wall where the potential gradient is high.
JP1980092713U 1980-06-30 1980-06-30 image tube Expired JPS585319Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1980092713U JPS585319Y2 (en) 1980-06-30 1980-06-30 image tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1980092713U JPS585319Y2 (en) 1980-06-30 1980-06-30 image tube

Publications (2)

Publication Number Publication Date
JPS5715067U JPS5715067U (en) 1982-01-26
JPS585319Y2 true JPS585319Y2 (en) 1983-01-29

Family

ID=29454656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1980092713U Expired JPS585319Y2 (en) 1980-06-30 1980-06-30 image tube

Country Status (1)

Country Link
JP (1) JPS585319Y2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005268197A (en) * 2004-02-20 2005-09-29 Toshiba Corp X-ray image tube
WO2014038317A1 (en) * 2012-09-05 2014-03-13 浜松ホトニクス株式会社 Electron tube
US9293308B2 (en) 2012-09-05 2016-03-22 Hamamatsu Photonics K.K. Electron tube

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51148351A (en) * 1975-06-16 1976-12-20 Toshiba Corp Fluorescent amplifier tube

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4924165U (en) * 1972-05-31 1974-03-01

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51148351A (en) * 1975-06-16 1976-12-20 Toshiba Corp Fluorescent amplifier tube

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005268197A (en) * 2004-02-20 2005-09-29 Toshiba Corp X-ray image tube
WO2014038317A1 (en) * 2012-09-05 2014-03-13 浜松ホトニクス株式会社 Electron tube
CN104603907A (en) * 2012-09-05 2015-05-06 浜松光子学株式会社 Electron tube
US9293308B2 (en) 2012-09-05 2016-03-22 Hamamatsu Photonics K.K. Electron tube
US9299530B2 (en) 2012-09-05 2016-03-29 Hamamatsu Photonics K.K. Electron tube

Also Published As

Publication number Publication date
JPS5715067U (en) 1982-01-26

Similar Documents

Publication Publication Date Title
JPS585319Y2 (en) image tube
US2597617A (en) Method of depositing and impervious metal film on a granular surface
GB1309379A (en) Electric high-vacuum discharge tube
US2916664A (en) Electron discharge device
GB302307A (en) Improvements relating to electron discharge apparatus
US2588019A (en) Monoscope target for pickup tubes
DE2213493C3 (en) Electronic image intensifier tube in which an electrically conductive TeU is provided with an electrically insulating layer, and method for producing this layer
US2960416A (en) Method of manufacturing screens for electron-discharge devices
JPS6223421B2 (en)
JPH023262B2 (en)
US4463075A (en) Process for forming conductive bridge in cathode ray tubes
US5572087A (en) Improved cathode ray tube of an image intensifier type in which internal protective films are degraded organic materials
GB1368882A (en) Light amplification devices
US2840488A (en) Method for aluminizing cathode ray tube screens
US2879406A (en) Electron discharge tube structure
KR940007243B1 (en) Black lead layer manufacturing method at crt's surface
GB481170A (en) Improvements in or relating to electron discharge devices
US2526574A (en) Secondary emitter
GB471191A (en) Improvements in or relating to television apparatus
GB421050A (en) Improvements in or relating to cathode ray tubes
US5621273A (en) Cathode ray tube and method of manufacturing a cathode ray tube
JPS59686Y2 (en) Color-CRT white balance observation device
GB792507A (en) Improvements in or relating to electron discharge devices
JPS57119437A (en) Cathode ray tube
JPH0719078Y2 (en) Thin cathode ray tube