WO2013061815A1 - Electron tube - Google Patents

Electron tube Download PDF

Info

Publication number
WO2013061815A1
WO2013061815A1 PCT/JP2012/076620 JP2012076620W WO2013061815A1 WO 2013061815 A1 WO2013061815 A1 WO 2013061815A1 JP 2012076620 W JP2012076620 W JP 2012076620W WO 2013061815 A1 WO2013061815 A1 WO 2013061815A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube
electrode
photocathode
electron
inorganic insulating
Prior art date
Application number
PCT/JP2012/076620
Other languages
French (fr)
Japanese (ja)
Inventor
哲哉 齋藤
寛仁 西澤
水野 到
Original Assignee
浜松ホトニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浜松ホトニクス株式会社 filed Critical 浜松ホトニクス株式会社
Publication of WO2013061815A1 publication Critical patent/WO2013061815A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J31/00Cathode ray tubes; Electron beam tubes
    • H01J31/08Cathode ray tubes; Electron beam tubes having a screen on or from which an image or pattern is formed, picked up, converted, or stored
    • H01J31/50Image-conversion or image-amplification tubes, i.e. having optical, X-ray, or analogous input, and optical output

Definitions

  • the present invention relates to an electron tube having an electrode.
  • the withstand voltage characteristics tend not to be sufficiently improved depending on the voltage applied to the electrodes.
  • the present invention has been made in view of such a problem, and an object thereof is to provide an electron tube capable of sufficiently improving withstand voltage characteristics.
  • an electron tube is an electron tube including a cylindrical container configured to include a side wall including a ceramic member and / or a glass member and an electrode.
  • the inorganic insulating film is formed including the surface on the side wall and the surface on the electrode.
  • the “cylindrical container” referred to here includes a container having a thin shape with a large width in a direction perpendicular to the central axis, in addition to a container elongated in the central axis direction including the cylindrical member.
  • an electron tube capable of sufficiently improving the withstand voltage characteristic can be provided.
  • FIG. 1 is a partial cross-sectional view showing an internal configuration of an image intensifier which is an electron tube according to a preferred embodiment of the present invention
  • FIG. 2 is a cross-sectional view of the side tube of FIG.
  • This image intensifier 1 is a proximity type image intensifier tube in which a photocathode, an MCP (microchannel plate: electron multiplier), and a phosphor screen are arranged close to each other inside a vacuum vessel including a ceramic side tube. is there.
  • the inside of the image intensifier 1 has both the opening ends of a substantially hollow cylindrical side tube 2 whose both ends are open at a substantially disc-shaped entrance window 3 and a substantially disc-shaped exit.
  • a high vacuum is maintained by hermetically sealing with the window 4. That is, a vacuum vessel is constituted by the side tube (hollow tube, tube) 2, the entrance window 3, and the exit window 4.
  • a photocathode 5 is formed in the central area of the vacuum side surface of the entrance window 3.
  • the incident window 3 and the photocathode 5 constitute a photocathode 6.
  • a fluorescent screen 7 is formed in the central region of the vacuum side surface of the exit window 4.
  • a disc-shaped MCP 8 is disposed between the photocathode 5 and the phosphor screen 7 so as to face the photocathode 5 and the phosphor screen 7 and hold a predetermined gap.
  • the MCP 8 is held in the side tube 2 by being sandwiched by two substantially ring-shaped electrodes made of Kovar metal 9B, 9C constituting a part of the side tube 2. Specifically, the MCP 8 has a surface on the photocathode 5 side pressed by an electrode 9B via a conductive spacer 10 and a conductive spring 11, and a surface on the phosphor screen 7 side is an electrode via a conductive spacer 12. It is held in the side tube 2 by being pressed down by 9C.
  • a metal conductive film (not shown) is formed in a state of electrical contact with the photocathode 5 in the peripheral region on the vacuum side surface of the entrance window 3.
  • This conductive film is a substantially ring-shaped Kovar metal member for joining the side tube 2 and the incident window 3, and includes an electrode 9 A constituting a part of the side tube 2 and an indium 13 serving as a joining member. Are in electrical contact.
  • a metal conductive film (not shown) is formed in electrical contact with the phosphor screen 7 in the peripheral region on the vacuum side surface of the exit window 4.
  • This conductive film is in electrical contact with an electrode 9D, which is a substantially ring-shaped Kovar metal member for joining the side tube 2 and the exit window 4.
  • the electrode 9D is fitted inside an electrode 9E that is a substantially cylindrical Kovar metal member, and the electrode 9D and the electrode 9E are in electrical contact with each other. Further, the electrode 9D and the emission window 4 are sealed with a frit glass 14.
  • These electrodes 9D and 9E also constitute part of the side tube 2.
  • An external power source is connected to the electrodes 9A, 9B, 9C, 9D, and 9E constituting the side tube 2 via lead wires (not shown). Then, a necessary voltage is applied to the photocathode 5, the photocathode side surface and the phosphor screen side surface (electron incident side surface and electron emission side surface) of the MCP 8, and the phosphor screen 7 by an external power source.
  • a potential difference of about 200 V is set between the photocathode 5 and the photocathode side surface of the MCP 8
  • a potential difference of about 500 V to about 900 V is established between the photocathode side surface and the phosphor screen side surface of the MCP 8.
  • the side tube 2 is provided with an electrode 9F which is a substantially ring-shaped Kovar metal member, and the inner tip is held so as to be spaced from the side surface of the exit window 4 by a predetermined distance.
  • the electrode 9F is a getter energization electrode (not shown).
  • the incident window 3 is a glass face plate formed by processing synthetic quartz in a flat shape in the central region of each surface on the atmosphere side and the vacuum side.
  • the exit window 4 is a fiber plate configured by converging a large number of optical fibers into a plate shape.
  • the phosphor screen 7 formed on the exit window 4 is formed by applying a phosphor to the vacuum side surface of the exit window 4.
  • the side tube 2 includes the electrode 9A and the electrode 9B, the electrode 9B and the electrode 9C, the electrode 9C and the electrode 9F, and
  • the electrodes 9F and 9E have a multi-stage structure in which the ceramic rings (side walls) 15A, 15B, 15C, and 15D, which are ring-shaped ceramic members, are joined to each other. That is, the side tube 2 is configured by combining a ceramic member and a metal electrode.
  • Electrodes 9A, 9B, 9C, 9E, the inner surface of 9F, and ceramic rings 15A, 15B, 15C contains the inner surface of 15D, alumina (Al 2 It is formed with an inorganic insulating film 16a such as O 3 ). Further, all the outer surfaces exposed to the atmosphere side of the side tube 2 include the outer surfaces of the electrodes 9A, 9B, 9C, 9E, 9F and the outer surfaces of the ceramic rings 15A, 15B, 15C, 15D, and alumina (Al 2 O 3 ) or the like.
  • an inorganic insulating film 16a is formed on the inner surface of the electrode 9A from the top of the indium 13 in a state where indium 13 which is a bonding member for bonding the incident window 3 is accumulated. In order to reliably join the incident window 3 and the side tube 2, the inorganic insulating film 16a on the indium 13 is removed.
  • the thickness of these inorganic insulating films 16a and 16b is, for example, 20 to 100 mm.
  • the side rings 2 are assembled by joining the ceramic rings 15A, 15B, 15C, 15D and the electrodes 9A, 9B, 9C, 9E, 9F.
  • indium 13 is diffused and accumulated on the step on the inner surface of the electrode 9A of the side tube 2.
  • inorganic insulating films 16a and 16b are formed on the inner surface and the outer surface of the side tube 2 by subjecting the side tube 2 to film formation by atomic layer deposition using an ALD (Atomic Layer Deposition) apparatus.
  • ALD Atomic Layer Deposition
  • the emission window 4 on which the phosphor screen 7 is formed is joined to one end side of the side tube 2. Further, each member in the side tube 2 is connected to the lead wire.
  • the side tube 2 is sealed by the incident window 3 in which the activated photocathode 5 is formed.
  • the image intensifier 1 including the side tube 2, the entrance window 3, and the exit window 4 is potted so that the outside is surrounded by a resin material and hardened.
  • the operation of the image intensifier 1 of this embodiment will be described.
  • a predetermined voltage is applied to the photocathode 5, MCP8, and phosphor screen 7 from an external power source
  • the gap between the photocathode 5 and MCP8 and the channel between the electron incident side surface and the electron emission side surface of MCP8 Electric fields in the direction from the fluorescent screen 7 toward the photocathode 5 are respectively generated inside the tube and in the gap between the MCP 8 and the fluorescent screen 7.
  • the inorganic insulating films 16a and 16b are formed on the surfaces of the electrodes 9A, 9B, 9C, and 9E.
  • each of the inorganic insulating films 16a and 16b passes through the inorganic insulating films 16a and 16b. It is possible to apply a voltage to the electrodes, the photocathode 5, the MCP 8, and the phosphor screen 7. At this time, when weak incident light as an optical image is transmitted from the outside through the incident window 3 and is incident on the photocathode 5, the incident light is converted into photoelectrons by the photocathode 5 and emitted into vacuum. The photoelectrons emitted from the photocathode 5 in this way are accelerated by the electric field generated in the gap between the photocathode 5 and the MCP 8 and enter the electron incident side surface of the MCP 8.
  • the photoelectrons incident on the MCP 8 are accelerated by the electric field generated inside the channel tube of the MCP 8, and are multiplied to secondary electrons by repeatedly colliding with the wall surface of the channel tube.
  • the multiplied secondary electrons are emitted from the electron emission side surface of the MCP 8 while retaining the two-dimensional position information of the incident light.
  • Secondary electrons emitted from the MCP 8 are accelerated by an electric field generated in the gap between the MCP 8 and the phosphor screen 7 and then enter the phosphor screen 7.
  • fluorescence is emitted according to the incident secondary electrons, and this fluorescence passes through the emission window 4 and is emitted to the outside.
  • Such emitted light becomes an optical image holding the two-dimensional position information of the incident light.
  • the withstand voltage characteristic of the image intensifier 1 can be sufficiently improved.
  • the withstand voltage characteristic of the image intensifier 1 can be further improved by covering the entire outer surface of the side tube 2 with an inorganic insulating film. For example, there is no possibility of a short circuit due to moisture after the potting process, reliability is improved, and output characteristics can be stabilized even in an environment of high temperature and high humidity.
  • inorganic insulating films 16a and 16b having a thickness of 20 mm, 50 mm, and 100 mm are formed, and the electrode 9C
  • the electrode 9C When a voltage of 18 kV was applied between the electrodes 9D and a voltage was applied between the MCP 8 and the phosphor screen 7, no discharge was observed.
  • the inorganic insulating films 16a and 16b were not formed, discharge was confirmed when a voltage of 10.5 kV was applied between the electrodes 9C and 9D.
  • inorganic insulating films 16a and 16b having a thickness of 20 mm, 50 mm, and 100 mm are formed, and an electrode 9C is formed.
  • a voltage of 18 kV was applied between the electrode 9D and a voltage was applied between the MCP 8 and the phosphor screen 7, no discharge was observed.
  • the inorganic insulating films 16a and 16b were not formed, discharge was confirmed when a voltage of 11 kV was applied between the electrodes 9C and 9D. From this result, it was found that the image intensifier 1 can apply a higher voltage, and is advantageous for achieving high resolution and high gain while reducing the size of the apparatus.
  • the MCP 8 is incorporated using the conductive spacers 10 and 12 and the spring 11 after the inorganic insulating films 16a and 16b are formed.
  • the conductive spacers 10 and 12 and the spring 11 are connected to the side tube.
  • the inorganic insulating film may be formed while being fixed inside, or the MCP 8 may be incorporated using the conductive spacers 10 and 12 and the spring 11 on which the inorganic insulating film is formed. By doing in this way, the effect of preventing discharge is further improved.
  • the present invention is not limited to the embodiment described above.
  • the subject of the present invention is not limited to an image intensifier, and other electron tubes may be used.
  • a device including an electron tube or a vacuum tube such as a photomultiplier tube, an electron multiplier tube, an X-ray image intensifier, an X-ray tube, and various light source devices may be used.
  • the inorganic insulating film formed on the side tube 2 of the present embodiment a nitride film such as Si 3 N 4 may be used in addition to the oxide film such as alumina.
  • the method for forming the inorganic insulating film is not limited to the gas phase ALD method, and a film forming method such as a liquid phase MOD (Metal Organic Deposition) method may be used. Good.
  • the ALD method is more preferable because an inorganic insulating film having a more uniform film thickness and no pinholes can be formed.
  • the ALD method is also preferable because the manufacturing process can be made more efficient.
  • the vacuum container of the present embodiment is not limited to the case where the shape of both end faces, that is, the both open ends of the side tube 2, the shape of the entrance window 3, and the exit window 4 are circular, and there are many shapes such as a square. It may be square.
  • the side tube 2 of the present embodiment is configured by combining a ceramic member and a metal electrode
  • a glass member may be used as a side wall instead of the ceramic member.
  • the outer surface of the cylindrical container may be formed of an inorganic insulating film including the surface on the side wall and the surface on the electrode.
  • the withstand voltage characteristic of the outer surface of the electron tube can be improved, and for example, the characteristic can be stabilized even in an environment of high temperature and high humidity.
  • the electron tube also has a photocathode that converts incident light into photoelectrons, an electron multiplier that multiplies photoelectrons emitted from the photocathode, and a fluorescence that emits fluorescence upon receiving electrons multiplied by the electron multiplier. And an image intensifier.
  • the image intensifier the electron emission in the container tends to affect the output, but the output characteristics can be sufficiently stabilized by forming the inner surface of the cylindrical container with an inorganic insulating film.
  • the present invention uses an electron tube having electrodes, and can sufficiently improve withstand voltage characteristics.

Landscapes

  • Image-Pickup Tubes, Image-Amplification Tubes, And Storage Tubes (AREA)

Abstract

An image intensifier (1) of the present invention is provided with a side tube (2) that constitutes a vacuum container, and the inner surface of the side tube (2) includes inner surfaces on ceramic rings (15A, 15B, 15C, 15D) and inner surfaces on electrodes (9A, 9B, 9C, 9E, 9F), and is formed of an inorganic insulating film (16a). With such configuration, electron emission from the electrode (9A, 9B, 9C, 9E, 9F) portions on the inner surface of the side tube (2) and from boundary surfaces between the electrodes (9A, 9B, 9C, 9E, 9F) and the ceramic rings (15A, 15B, 15C, 15D) is reduced, and output characteristics are excellently maintained. As a result, withstand voltage characteristics of the image intensifier (1) can be sufficiently improved.

Description

電子管Electron tube
 本発明は、電極を有する電子管に関する。 The present invention relates to an electron tube having an electrode.
 従来から、イメージインテンシファイア等の電子管においては、耐電圧特性の劣化が問題とされている。耐電圧特性の劣化は局所的放電現象を生じさせる可能性があり、このような局所的放電は電子管の出力特性の劣化を生じさせる。このような放電現象を防ぐために、外囲器部分の一部が酸化透明クロム等の透明抵抗層で覆われたイメージ増強管が知られている(下記特許文献1,2参照)。 Conventionally, in an electron tube such as an image intensifier, deterioration of withstand voltage characteristics has been a problem. The deterioration of the withstand voltage characteristic may cause a local discharge phenomenon, and such a local discharge causes the output characteristic of the electron tube to deteriorate. In order to prevent such a discharge phenomenon, an image intensifier tube in which a part of the envelope portion is covered with a transparent resistance layer such as oxidized transparent chromium is known (see Patent Documents 1 and 2 below).
特表平2-227946号公報Japanese National Patent Publication No. 2-227946 米国特許第5,059,854号US Pat. No. 5,059,854
 しかしながら、上述した従来のイメージ増強管では、電極に印加する電圧によっては耐電圧特性が十分に向上できない傾向にあった。 However, in the conventional image intensifier tube described above, the withstand voltage characteristics tend not to be sufficiently improved depending on the voltage applied to the electrodes.
 そこで、本発明は、かかる課題に鑑みて為されたものであり、耐電圧特性を十分に向上させることが可能な電子管を提供することを目的とする。 Therefore, the present invention has been made in view of such a problem, and an object thereof is to provide an electron tube capable of sufficiently improving withstand voltage characteristics.
 上記課題を解決するため、本発明の一側面に係る電子管は、セラミック部材及び/又はガラス部材を含む側壁と電極とを含んで構成された筒状容器を備える電子管において、筒状容器の内面が、側壁上の面及び電極上の面を含んで無機絶縁膜で成膜されている。なお、ここでいう「筒状容器」とは、筒状部材を含む中心軸方向に細長い形状の容器の他、中心軸に垂直な方向の幅が大きい薄型の形状の容器も含む。 In order to solve the above problems, an electron tube according to one aspect of the present invention is an electron tube including a cylindrical container configured to include a side wall including a ceramic member and / or a glass member and an electrode. The inorganic insulating film is formed including the surface on the side wall and the surface on the electrode. The “cylindrical container” referred to here includes a container having a thin shape with a large width in a direction perpendicular to the central axis, in addition to a container elongated in the central axis direction including the cylindrical member.
 このような電子管によれば、筒状容器内面の電極部分及び電極と側壁との境界面からの電子放出が低減され、出力特性が良好に維持される。その結果、電子管の耐電圧特性を十分に向上させることができる。 According to such an electron tube, electron emission from the electrode portion on the inner surface of the cylindrical container and the boundary surface between the electrode and the side wall is reduced, and the output characteristics are maintained favorably. As a result, the withstand voltage characteristics of the electron tube can be sufficiently improved.
 本発明によれば、耐電圧特性を十分に向上させることが可能な電子管を提供できる。 According to the present invention, an electron tube capable of sufficiently improving the withstand voltage characteristic can be provided.
本発明の好適な一実施形態に係る電子管であるイメージインテンシファイアの内部構成を示す一部断面図である。It is a partial sectional view showing an internal configuration of an image intensifier which is an electron tube according to a preferred embodiment of the present invention. 図1の側管の断面図である。It is sectional drawing of the side pipe | tube of FIG.
 以下、図面を参照しつつ本発明に係る電子管の好適な実施形態について詳細に説明する。なお、図面の説明においては同一又は相当部分には同一符号を付し、重複する説明を省略する。 Hereinafter, preferred embodiments of an electron tube according to the present invention will be described in detail with reference to the drawings. In the description of the drawings, the same or corresponding parts are denoted by the same reference numerals, and redundant description is omitted.
 図1は、本発明の好適な一実施形態に係る電子管であるイメージインテンシファイアの内部構成を示す一部断面図、図2は、図1の側管の断面図である。このイメージインテンシファイア1は、セラミック製の側管を含む真空容器の内部で光電面、MCP(マイクロチャンネルプレート:電子増倍部)、及び蛍光面を近接して配置した近接型映像増強管である。 FIG. 1 is a partial cross-sectional view showing an internal configuration of an image intensifier which is an electron tube according to a preferred embodiment of the present invention, and FIG. 2 is a cross-sectional view of the side tube of FIG. This image intensifier 1 is a proximity type image intensifier tube in which a photocathode, an MCP (microchannel plate: electron multiplier), and a phosphor screen are arranged close to each other inside a vacuum vessel including a ceramic side tube. is there.
 図1に示すように、イメージインテンシファイア1の内部は、両端が解放された略中空円筒状の側管2の両開口端部を略円板状の入射窓3及び略円板状の出射窓4によって気密に封止することにより、高真空に保持されている。すなわち、側管(中空状の筒、tube)2、入射窓3、及び出射窓4によって真空容器が構成されている。 As shown in FIG. 1, the inside of the image intensifier 1 has both the opening ends of a substantially hollow cylindrical side tube 2 whose both ends are open at a substantially disc-shaped entrance window 3 and a substantially disc-shaped exit. A high vacuum is maintained by hermetically sealing with the window 4. That is, a vacuum vessel is constituted by the side tube (hollow tube, tube) 2, the entrance window 3, and the exit window 4.
 この入射窓3の真空側表面の中央領域には光電面5が形成されている。入射窓3と光電面5とで光電陰極6が構成される。また、出射窓4の真空側表面の中央領域には、蛍光面7が形成されている。さらに、光電面5と蛍光面7との間には、円板状のMCP8が、光電面5及び蛍光面7に対向して所定の間隙をそれぞれ保持した状態で配置されている。 A photocathode 5 is formed in the central area of the vacuum side surface of the entrance window 3. The incident window 3 and the photocathode 5 constitute a photocathode 6. A fluorescent screen 7 is formed in the central region of the vacuum side surface of the exit window 4. Further, a disc-shaped MCP 8 is disposed between the photocathode 5 and the phosphor screen 7 so as to face the photocathode 5 and the phosphor screen 7 and hold a predetermined gap.
 このMCP8は、側管2の一部を構成する2つの略リング状のコバール金属製の電極9B,9Cによって挟まれることによって側管2内に保持されている。詳細には、MCP8は、その光電面5側表面が導電性のスペーサ10及び導電性のスプリング11を介して電極9Bによって押さえつけられ、その蛍光面7側表面が導電性のスペーサ12を介して電極9Cによって押さえつけられることによって、側管2内に保持される。 The MCP 8 is held in the side tube 2 by being sandwiched by two substantially ring-shaped electrodes made of Kovar metal 9B, 9C constituting a part of the side tube 2. Specifically, the MCP 8 has a surface on the photocathode 5 side pressed by an electrode 9B via a conductive spacer 10 and a conductive spring 11, and a surface on the phosphor screen 7 side is an electrode via a conductive spacer 12. It is held in the side tube 2 by being pressed down by 9C.
 入射窓3の真空側表面の周辺領域には、金属製の導電膜(図示せず)が光電面5と電気的に接触した状態で形成されている。この導電膜は、側管2と入射窓3とを接合するための略リング状のコバール金属製部材であって側管2の一部を構成する電極9Aと、接合部材であるインジウム13を介して電気的に接触している。 A metal conductive film (not shown) is formed in a state of electrical contact with the photocathode 5 in the peripheral region on the vacuum side surface of the entrance window 3. This conductive film is a substantially ring-shaped Kovar metal member for joining the side tube 2 and the incident window 3, and includes an electrode 9 A constituting a part of the side tube 2 and an indium 13 serving as a joining member. Are in electrical contact.
 出射窓4の真空側表面の周辺領域には、金属製の導電膜(図示せず)が蛍光面7と電気的に接触して形成されている。この導電膜は、側管2と出射窓4とを接合するための略リング状のコバール金属製部材である電極9Dと電気的に接触している。電極9Dは、略円筒状のコバール金属製部材である電極9Eの内側に嵌め込まれており、電極9Dと電極9Eとは互いに電気的に接触している。さらに、この電極9Dと出射窓4とはフリットガラス14によって封止されている。これらの電極9D,9Eも側管2の一部を構成する。 A metal conductive film (not shown) is formed in electrical contact with the phosphor screen 7 in the peripheral region on the vacuum side surface of the exit window 4. This conductive film is in electrical contact with an electrode 9D, which is a substantially ring-shaped Kovar metal member for joining the side tube 2 and the exit window 4. The electrode 9D is fitted inside an electrode 9E that is a substantially cylindrical Kovar metal member, and the electrode 9D and the electrode 9E are in electrical contact with each other. Further, the electrode 9D and the emission window 4 are sealed with a frit glass 14. These electrodes 9D and 9E also constitute part of the side tube 2.
 側管2を構成する電極9A,9B,9C,9D,9Eには、図示しないリード線を介して外部電源が接続される。そして、外部電源によって、光電面5と、MCP8の光電面側表面及び蛍光面側表面(電子入射側表面及び電子出射側表面)と、蛍光面7とに対して必要な電圧が印加される。例えば、光電面5とMCP8の光電面側表面との間には、電位差として約200Vが設定され、MCP8の光電面側表面と蛍光面側表面との間には、電位差として約500V~約900Vが可変に設定され、MCP8の蛍光面側表面と蛍光面7との間には、電位差として約6kV~約7kVが設定されている。 An external power source is connected to the electrodes 9A, 9B, 9C, 9D, and 9E constituting the side tube 2 via lead wires (not shown). Then, a necessary voltage is applied to the photocathode 5, the photocathode side surface and the phosphor screen side surface (electron incident side surface and electron emission side surface) of the MCP 8, and the phosphor screen 7 by an external power source. For example, a potential difference of about 200 V is set between the photocathode 5 and the photocathode side surface of the MCP 8, and a potential difference of about 500 V to about 900 V is established between the photocathode side surface and the phosphor screen side surface of the MCP 8. Is set to be variable, and a potential difference of about 6 kV to about 7 kV is set between the fluorescent screen side surface of the MCP 8 and the fluorescent screen 7.
 さらに、側管2には、略リング状のコバール金属製部材である電極9Fが設けられており、その内側の先端部が出射窓4の側面から所定の距離を空けるように保持されている。この電極9Fは図示しないゲッターの通電用電極である。 Further, the side tube 2 is provided with an electrode 9F which is a substantially ring-shaped Kovar metal member, and the inner tip is held so as to be spaced from the side surface of the exit window 4 by a predetermined distance. The electrode 9F is a getter energization electrode (not shown).
 入射窓3は、大気側及び真空側の各表面の中央領域を共に平面状に合成石英を加工して形成されたガラス面板である。出射窓4は、多数個の光ファイバをプレート状に集束して構成されたファイバプレートである。この出射窓4に形成される蛍光面7は、蛍光体を出射窓4の真空側表面に塗布することにより形成されている。 The incident window 3 is a glass face plate formed by processing synthetic quartz in a flat shape in the central region of each surface on the atmosphere side and the vacuum side. The exit window 4 is a fiber plate configured by converging a large number of optical fibers into a plate shape. The phosphor screen 7 formed on the exit window 4 is formed by applying a phosphor to the vacuum side surface of the exit window 4.
 図2に移って、側管2の構造について詳細に説明すると、側管2は、電極9Aと電極9Bとの間、電極9Bと電極9Cとの間、電極9Cと電極9Fとの間、及び電極9Fと電極9Eとの間が、それぞれ、リング状のセラミック部材であるセラミックリング(側壁)15A,15B,15C,15Dを挟んで接合されたような多段構造を有している。すなわち、側管2は、セラミック部材と金属電極とを組み合わせて構成されている。このような側管2の真空側に露出する全ての内面は、電極9A,9B,9C,9E,9Fの内面、及びセラミックリング15A,15B,15C,15Dの内面を含んで、アルミナ(Al)等の無機絶縁膜16aで成膜されている。さらに、側管2の大気側に露出する全ての外面は、電極9A,9B,9C,9E,9Fの外面、及びセラミックリング15A,15B,15C,15Dの外面を含んで、アルミナ(Al)等の無機絶縁膜16bで成膜されている。なお、電極9Aの内面には、入射窓3の接合のための接合部材であるインジウム13を溜めた状態でインジウム13の上から無機絶縁膜16aが成膜され、入射窓3の接合前に、確実に入射窓3と側管2とを接合するために、インジウム13上の無機絶縁膜16aは除去される。これらの無機絶縁膜16a,16bの厚さは、例えば、20Å~100Åである。 Turning to FIG. 2, the structure of the side tube 2 will be described in detail. The side tube 2 includes the electrode 9A and the electrode 9B, the electrode 9B and the electrode 9C, the electrode 9C and the electrode 9F, and The electrodes 9F and 9E have a multi-stage structure in which the ceramic rings (side walls) 15A, 15B, 15C, and 15D, which are ring-shaped ceramic members, are joined to each other. That is, the side tube 2 is configured by combining a ceramic member and a metal electrode. All of the inner surface exposed to the vacuum side of such side tube 2, electrodes 9A, 9B, 9C, 9E, the inner surface of 9F, and ceramic rings 15A, 15B, 15C, contains the inner surface of 15D, alumina (Al 2 It is formed with an inorganic insulating film 16a such as O 3 ). Further, all the outer surfaces exposed to the atmosphere side of the side tube 2 include the outer surfaces of the electrodes 9A, 9B, 9C, 9E, 9F and the outer surfaces of the ceramic rings 15A, 15B, 15C, 15D, and alumina (Al 2 O 3 ) or the like. In addition, an inorganic insulating film 16a is formed on the inner surface of the electrode 9A from the top of the indium 13 in a state where indium 13 which is a bonding member for bonding the incident window 3 is accumulated. In order to reliably join the incident window 3 and the side tube 2, the inorganic insulating film 16a on the indium 13 is removed. The thickness of these inorganic insulating films 16a and 16b is, for example, 20 to 100 mm.
 次に、イメージインテンシファイア1の製造方法について説明する。セラミックリング15A,15B,15C,15D及び電極9A,9B,9C,9E,9Fを接合して側管2を組み立てる。 Next, a method for manufacturing the image intensifier 1 will be described. The side rings 2 are assembled by joining the ceramic rings 15A, 15B, 15C, 15D and the electrodes 9A, 9B, 9C, 9E, 9F.
 次に、側管2の電極9Aの内面の段差上に、インジウム13を拡散させて溜めておく。この状態で、側管2をALD(Atomic Layer Deposition)装置を用いて、原子層堆積法によって成膜処理を行うことによって、側管2の内面及び外面に無機絶縁膜16a,16bを形成する。そして、側管2の内側に導電性スペーサ10,12、スプリング11を用いてMCP8を組み入れた後に、蛍光面7が形成された出射窓4を側管2の一端側に接合する。さらに、側管2内の各部材とリード線との間を継線する。その後、インジウム13上の無機絶縁膜16aを除去してから、活性化した光電面5が形成された入射窓3によって側管2を封止する。次に、側管2、入射窓3、及び出射窓4を含むイメージインテンシファイア1をポッティング加工することによって、その外側を樹脂材料で囲んで固める。 Next, indium 13 is diffused and accumulated on the step on the inner surface of the electrode 9A of the side tube 2. In this state, inorganic insulating films 16a and 16b are formed on the inner surface and the outer surface of the side tube 2 by subjecting the side tube 2 to film formation by atomic layer deposition using an ALD (Atomic Layer Deposition) apparatus. Then, after incorporating the MCP 8 using the conductive spacers 10 and 12 and the spring 11 inside the side tube 2, the emission window 4 on which the phosphor screen 7 is formed is joined to one end side of the side tube 2. Further, each member in the side tube 2 is connected to the lead wire. Thereafter, after removing the inorganic insulating film 16a on the indium 13, the side tube 2 is sealed by the incident window 3 in which the activated photocathode 5 is formed. Next, the image intensifier 1 including the side tube 2, the entrance window 3, and the exit window 4 is potted so that the outside is surrounded by a resin material and hardened.
 本実施形態のイメージインテンシファイア1の動作について説明する。外部電源から光電面5、MCP8、及び蛍光面7に所定の電圧がそれぞれ印加されると、光電面5とMCP8との間隙と、MCP8の電子入射側表面と電子出射側表面との間のチャネル管の内側と、MCP8と蛍光面7との間隙とには、蛍光面7から光電面5に向かう方向の電界がそれぞれ発生する。なお、電極9A,9B,9C,9Eの表面には無機絶縁膜16a,16bが形成されているが、この無機絶縁膜16a,16bは非常に薄いので、無機絶縁膜16a,16bを介した各電極、光電面5、MCP8、及び蛍光面7に対する電圧の印加が可能とされる。このとき、光学像として微弱な入射光が外部から入射窓3を透過して光電面5に入射すると、光電面5によって入射光が光電子に変換されて真空中に放出される。このようにして光電面5から放出された光電子は、光電面5とMCP8との間隙に発生した電界によって加速され、MCP8の電子入射側表面に入射する。 The operation of the image intensifier 1 of this embodiment will be described. When a predetermined voltage is applied to the photocathode 5, MCP8, and phosphor screen 7 from an external power source, the gap between the photocathode 5 and MCP8 and the channel between the electron incident side surface and the electron emission side surface of MCP8 Electric fields in the direction from the fluorescent screen 7 toward the photocathode 5 are respectively generated inside the tube and in the gap between the MCP 8 and the fluorescent screen 7. The inorganic insulating films 16a and 16b are formed on the surfaces of the electrodes 9A, 9B, 9C, and 9E. Since the inorganic insulating films 16a and 16b are very thin, each of the inorganic insulating films 16a and 16b passes through the inorganic insulating films 16a and 16b. It is possible to apply a voltage to the electrodes, the photocathode 5, the MCP 8, and the phosphor screen 7. At this time, when weak incident light as an optical image is transmitted from the outside through the incident window 3 and is incident on the photocathode 5, the incident light is converted into photoelectrons by the photocathode 5 and emitted into vacuum. The photoelectrons emitted from the photocathode 5 in this way are accelerated by the electric field generated in the gap between the photocathode 5 and the MCP 8 and enter the electron incident side surface of the MCP 8.
 そうすると、MCP8に入射した光電子は、MCP8のチャネル管の内側に発生した電界によって加速され、チャネル管の壁面への衝突を繰り返すことによって二次電子に増倍される。その結果、増倍された二次電子は、入射光の二次元位置情報を保持してMCP8の電子出射側表面から放出される。MCP8から放出された二次電子は、MCP8と蛍光面7との間隙に発生した電界によって加速された後に、蛍光面7に入射する。蛍光面7においては、入射した二次電子に応じて蛍光が発せられ、この蛍光が出射窓4を透過して外部に出射される。このような出射光は、入射光の二次元位置情報を保持した光学像となる。 Then, the photoelectrons incident on the MCP 8 are accelerated by the electric field generated inside the channel tube of the MCP 8, and are multiplied to secondary electrons by repeatedly colliding with the wall surface of the channel tube. As a result, the multiplied secondary electrons are emitted from the electron emission side surface of the MCP 8 while retaining the two-dimensional position information of the incident light. Secondary electrons emitted from the MCP 8 are accelerated by an electric field generated in the gap between the MCP 8 and the phosphor screen 7 and then enter the phosphor screen 7. On the fluorescent screen 7, fluorescence is emitted according to the incident secondary electrons, and this fluorescence passes through the emission window 4 and is emitted to the outside. Such emitted light becomes an optical image holding the two-dimensional position information of the incident light.
 以上説明したイメージインテンシファイア1によれば、真空容器を構成する側管2の内面の電極9A,9B,9C,9E,9Fの部分及び電極9A,9B,9C,9E,9Fとセラミックリング15A,15B,15C,15Dとの境界面からの電子放出が低減され、出力特性が良好に維持される。特に、側管2の内面全体を無機絶縁膜で覆うことで側管2の内面からの電子放出を効果的に減らすことができる。その結果、イメージインテンシファイア1の耐電圧特性を十分に向上させることができる。さらに、側管2の外面もその全体を無機絶縁膜で覆うことで、イメージインテンシファイア1の耐電圧特性をさらに向上させることができる。例えば、ポッティング処理後も水分によるショートの可能性が無くなり信頼性が向上して、高温多湿状態の環境下でも出力特性を安定化させることができる。 According to the image intensifier 1 described above, the electrodes 9A, 9B, 9C, 9E, 9F on the inner surface of the side tube 2 constituting the vacuum vessel, the electrodes 9A, 9B, 9C, 9E, 9F, and the ceramic ring 15A. , 15B, 15C, 15D, the electron emission from the interface is reduced, and the output characteristics are maintained well. In particular, by covering the entire inner surface of the side tube 2 with an inorganic insulating film, electron emission from the inner surface of the side tube 2 can be effectively reduced. As a result, the withstand voltage characteristic of the image intensifier 1 can be sufficiently improved. Furthermore, the withstand voltage characteristic of the image intensifier 1 can be further improved by covering the entire outer surface of the side tube 2 with an inorganic insulating film. For example, there is no possibility of a short circuit due to moisture after the potting process, reliability is improved, and output characteristics can be stabilized even in an environment of high temperature and high humidity.
 例えば、側管直径約31mm(光電面有効径18mm)の側管2を含むイメージインテンシファイア1に対して、膜厚20Å、50Å、100Åの無機絶縁膜16a,16bを形成し、電極9Cと電極9D間に18kVの電圧を印加して、MCP8と蛍光面7との間に電圧を印加したところ、放電は観察されなかった。これに対して、無機絶縁膜16a,16bを形成しない場合には、電極9Cと電極9D間に10.5kVの電圧を印加した場合に、放電が確認された。同様に、側管直径約43mm(光電面有効径25mm)の側管2を含むイメージインテンシファイア1に対して、膜厚20Å、50Å、100Åの無機絶縁膜16a,16bを形成し、電極9Cと電極9D間に18kVの電圧を印加して、MCP8と蛍光面7との間に電圧を印加したところ、放電は観察されなかった。これに対して、無機絶縁膜16a,16bを形成しない場合には、電極9Cと電極9D間に11kVの電圧を印加した場合に、放電が確認された。この結果から、イメージインテンシファイア1では、より高い電圧を印加することができ、装置の小型化を図りつつ高解像度、高ゲインを達成するためには有利であることがわかった。 For example, for the image intensifier 1 including the side tube 2 having a side tube diameter of about 31 mm (photocathode effective diameter of 18 mm), inorganic insulating films 16a and 16b having a thickness of 20 mm, 50 mm, and 100 mm are formed, and the electrode 9C When a voltage of 18 kV was applied between the electrodes 9D and a voltage was applied between the MCP 8 and the phosphor screen 7, no discharge was observed. On the other hand, when the inorganic insulating films 16a and 16b were not formed, discharge was confirmed when a voltage of 10.5 kV was applied between the electrodes 9C and 9D. Similarly, for the image intensifier 1 including the side tube 2 having a side tube diameter of about 43 mm (photocathode effective diameter 25 mm), inorganic insulating films 16a and 16b having a thickness of 20 mm, 50 mm, and 100 mm are formed, and an electrode 9C is formed. When a voltage of 18 kV was applied between the electrode 9D and a voltage was applied between the MCP 8 and the phosphor screen 7, no discharge was observed. On the other hand, when the inorganic insulating films 16a and 16b were not formed, discharge was confirmed when a voltage of 11 kV was applied between the electrodes 9C and 9D. From this result, it was found that the image intensifier 1 can apply a higher voltage, and is advantageous for achieving high resolution and high gain while reducing the size of the apparatus.
 なお、前述した実施形態においては、無機絶縁膜16a、16bを形成してから導電性スペーサ10、12、スプリング11を用いてMCP8を組み入れたが、導電性スペーサ10、12、スプリング11を側管内部に固定した状態で無機絶縁膜を形成しても良いし、無機絶縁膜を形成した導電性スペーサ10、12、スプリング11を用いてMCP8を組み入れても良い。このようにすることで、より放電防止の効果が向上する。 In the above-described embodiment, the MCP 8 is incorporated using the conductive spacers 10 and 12 and the spring 11 after the inorganic insulating films 16a and 16b are formed. However, the conductive spacers 10 and 12 and the spring 11 are connected to the side tube. The inorganic insulating film may be formed while being fixed inside, or the MCP 8 may be incorporated using the conductive spacers 10 and 12 and the spring 11 on which the inorganic insulating film is formed. By doing in this way, the effect of preventing discharge is further improved.
 なお、本発明は、前述した実施形態に限定されるものではない。例えば、本発明の対象としては、イメージインテンシファイアには限定されず、その他の電子管であってもよい。例えば、光電子増倍管、電子増倍管、X線イメージインテンシファイア、X線管、各種光源装置等の電子管或いは真空管を含む装置であってもよい。 Note that the present invention is not limited to the embodiment described above. For example, the subject of the present invention is not limited to an image intensifier, and other electron tubes may be used. For example, a device including an electron tube or a vacuum tube such as a photomultiplier tube, an electron multiplier tube, an X-ray image intensifier, an X-ray tube, and various light source devices may be used.
 また、本実施形態の側管2に成膜する無機絶縁膜としては、アルミナのような酸化膜以外に、Si等の窒化膜を用いてもよい。また、無機絶縁膜の成膜方法としては、気相によるALD法には限定されず、液相によるMOD(有機金属塗布熱分解法:Metal Organic Deposition)法のような成膜方法を用いてもよい。ただし、ALD法による成膜方法のほうが、膜厚がより均一でピンホールも無い無機絶縁膜を形成できるためにより好適である。また、ALD法によれば製造工程を効率化することもできるため好ましい。 Further, as the inorganic insulating film formed on the side tube 2 of the present embodiment, a nitride film such as Si 3 N 4 may be used in addition to the oxide film such as alumina. Further, the method for forming the inorganic insulating film is not limited to the gas phase ALD method, and a film forming method such as a liquid phase MOD (Metal Organic Deposition) method may be used. Good. However, the ALD method is more preferable because an inorganic insulating film having a more uniform film thickness and no pinholes can be formed. The ALD method is also preferable because the manufacturing process can be made more efficient.
 また、本実施形態の真空容器は、両端面の形状、すなわち、側管2の両開口端、入射窓3、及び出射窓4の形状が円形である場合には限定されず、四角形等の多角形であってもよい。 In addition, the vacuum container of the present embodiment is not limited to the case where the shape of both end faces, that is, the both open ends of the side tube 2, the shape of the entrance window 3, and the exit window 4 are circular, and there are many shapes such as a square. It may be square.
 また、本実施形態の側管2は、セラミック部材と金属電極とを組み合わせて構成されているが、このセラミック部材に替えて側壁としてガラス部材を用いてもよい。或いは、金属電極に対してセラミック部材とガラス部材の両方を組み合わせて側壁を構成してもよい。 Moreover, although the side tube 2 of the present embodiment is configured by combining a ceramic member and a metal electrode, a glass member may be used as a side wall instead of the ceramic member. Or you may comprise a side wall combining both a ceramic member and a glass member with respect to a metal electrode.
 ここで、本実施形態において、筒状容器の外面も側壁上の面及び電極上の面を含んで無機絶縁膜で成膜されている、ことでもよい。こうすれば、電子管の外面の耐電圧特性も向上させることができ、例えば、高温多湿状態の環境下でも特性を安定化させることができる。 Here, in this embodiment, the outer surface of the cylindrical container may be formed of an inorganic insulating film including the surface on the side wall and the surface on the electrode. In this way, the withstand voltage characteristic of the outer surface of the electron tube can be improved, and for example, the characteristic can be stabilized even in an environment of high temperature and high humidity.
 また、電子管は、入射光を光電子に変換する光電陰極と、光電陰極から放出された光電子を増倍する電子増倍部と、電子増倍部によって増倍された電子を受けて蛍光を発する蛍光面と、を備えるイメージインテンシファイアであってもよい。イメージインテンシファイアでは容器内での電子放出が出力に影響を与えやすいが、筒状容器の内面を無機絶縁膜で成膜することによって出力特性を十分に安定化させることができる。 The electron tube also has a photocathode that converts incident light into photoelectrons, an electron multiplier that multiplies photoelectrons emitted from the photocathode, and a fluorescence that emits fluorescence upon receiving electrons multiplied by the electron multiplier. And an image intensifier. In the image intensifier, the electron emission in the container tends to affect the output, but the output characteristics can be sufficiently stabilized by forming the inner surface of the cylindrical container with an inorganic insulating film.
 本発明は、電極を有する電子管を使用用途とし、耐電圧特性を十分に向上させることができるものである。 The present invention uses an electron tube having electrodes, and can sufficiently improve withstand voltage characteristics.
 1…イメージインテンシファイア、2…側管、3…入射窓、4…出射窓、5…光電面、6…光電陰極、7…蛍光面、8…MCP(電子増倍部)、9A,9B,9C,9D,9E,9F…電極、15A,15B,15C,15D…セラミックリング(セラミック部材、側壁)、16a,16b…無機絶縁膜。 DESCRIPTION OF SYMBOLS 1 ... Image intensifier, 2 ... Side tube, 3 ... Incident window, 4 ... Outgoing window, 5 ... Photocathode, 6 ... Photocathode, 7 ... Phosphor screen, 8 ... MCP (electron multiplication part), 9A, 9B , 9C, 9D, 9E, 9F ... electrodes, 15A, 15B, 15C, 15D ... ceramic rings (ceramic members, side walls), 16a, 16b ... inorganic insulating films.

Claims (3)

  1.  セラミック部材及び/又はガラス部材を含む側壁と電極とを含んで構成された筒状容器を備える電子管において、
     前記筒状容器の内面が、前記側壁上の面及び前記電極上の面を含んで無機絶縁膜で成膜されている、
    ことを特徴とする電子管。
    In an electron tube including a cylindrical container configured to include a side wall and an electrode including a ceramic member and / or a glass member,
    The inner surface of the cylindrical container is formed of an inorganic insulating film including the surface on the side wall and the surface on the electrode.
    An electron tube characterized by that.
  2.  前記筒状容器の外面も、前記側壁上の面及び前記電極上の面を含んで無機絶縁膜で成膜されている、
    ことを特徴とする請求項1記載の電子管。
    The outer surface of the cylindrical container is also formed of an inorganic insulating film including the surface on the side wall and the surface on the electrode.
    The electron tube according to claim 1, wherein:
  3.  前記電子管は、
     入射光を光電子に変換する光電陰極と、
     前記光電陰極から放出された光電子を増倍する電子増倍部と、
     前記電子増倍部によって増倍された電子を受けて蛍光を発する蛍光面と、
    を備えるイメージインテンシファイアである、
    ことを特徴とする請求項1又は2記載の電子管。
    The electron tube is
    A photocathode for converting incident light into photoelectrons;
    An electron multiplier for multiplying photoelectrons emitted from the photocathode;
    A fluorescent screen that emits fluorescence in response to electrons multiplied by the electron multiplier;
    An image intensifier with
    The electron tube according to claim 1 or 2, wherein
PCT/JP2012/076620 2011-10-25 2012-10-15 Electron tube WO2013061815A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011233902A JP5864210B2 (en) 2011-10-25 2011-10-25 Electron tube and manufacturing method thereof
JP2011-233902 2011-10-25

Publications (1)

Publication Number Publication Date
WO2013061815A1 true WO2013061815A1 (en) 2013-05-02

Family

ID=48167648

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/076620 WO2013061815A1 (en) 2011-10-25 2012-10-15 Electron tube

Country Status (2)

Country Link
JP (1) JP5864210B2 (en)
WO (1) WO2013061815A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103824739A (en) * 2014-02-28 2014-05-28 中国科学院西安光学精密机械研究所 Framing image converter tube
JP6695461B1 (en) * 2019-02-20 2020-05-20 浜松ホトニクス株式会社 Phosphor panel manufacturing method, phosphor panel, image intensifier, and scanning electron microscope

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5782953A (en) * 1980-11-12 1982-05-24 Nec Corp Image tube
JPH02227946A (en) * 1989-01-09 1990-09-11 Philips Gloeilampenfab:Nv Image intensifier
JPH0316653U (en) * 1989-06-30 1991-02-19
JPH04163840A (en) * 1990-10-29 1992-06-09 Toshiba Corp Image tube
JPH09265923A (en) * 1996-03-28 1997-10-07 Toshiba Corp High vacuum structure, member for high vacuum and image intensifier tube
JPH11120946A (en) * 1997-10-14 1999-04-30 Toshiba Electronic Engineering Corp X-ray image tube
JP2005268197A (en) * 2004-02-20 2005-09-29 Toshiba Corp X-ray image tube
JP2009217996A (en) * 2008-03-07 2009-09-24 Hamamatsu Photonics Kk Photo-electric cathode, electron tube, and image intensifier

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11329314A (en) * 1998-05-14 1999-11-30 Toshiba Corp X-ray image intensifier
JP4469837B2 (en) * 2006-12-19 2010-06-02 株式会社東芝 Image intensifier
JP2009217944A (en) * 2008-03-07 2009-09-24 Toshiba Corp Image intensifier

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5782953A (en) * 1980-11-12 1982-05-24 Nec Corp Image tube
JPH02227946A (en) * 1989-01-09 1990-09-11 Philips Gloeilampenfab:Nv Image intensifier
JPH0316653U (en) * 1989-06-30 1991-02-19
JPH04163840A (en) * 1990-10-29 1992-06-09 Toshiba Corp Image tube
JPH09265923A (en) * 1996-03-28 1997-10-07 Toshiba Corp High vacuum structure, member for high vacuum and image intensifier tube
JPH11120946A (en) * 1997-10-14 1999-04-30 Toshiba Electronic Engineering Corp X-ray image tube
JP2005268197A (en) * 2004-02-20 2005-09-29 Toshiba Corp X-ray image tube
JP2009217996A (en) * 2008-03-07 2009-09-24 Hamamatsu Photonics Kk Photo-electric cathode, electron tube, and image intensifier

Also Published As

Publication number Publication date
JP2013093172A (en) 2013-05-16
JP5864210B2 (en) 2016-02-17

Similar Documents

Publication Publication Date Title
JP4608572B2 (en) Phosphor
RU2510096C2 (en) Compact image intensifying tube and night vision system equipped with same
JP5981820B2 (en) Microchannel plate, microchannel plate manufacturing method, and image intensifier
US5982094A (en) Electron tube with polycrystalline diamond photocathode
JP2011513920A (en) Method for fabricating a microchannel plate device having a plurality of emissive layers
US10340129B2 (en) Microchannel plate and electron multiplier
EP1089320B1 (en) Electron tube
US8786168B2 (en) Microchannel plate for electron multiplier
JP4410027B2 (en) Photocathode and electron tube
US8816582B2 (en) Photo cathode for use in a vacuum tube as well as such as vacuum tube
JP5864210B2 (en) Electron tube and manufacturing method thereof
JP5784873B2 (en) Ion barrier membrane for vacuum tube using electron multiplication, electron multiplication structure for vacuum tube using electron multiplication, and vacuum tube using electron multiplication with such electron multiplication structure
JP2007520048A (en) Parallel plate electron multiplier with suppressed ion feedback
JP5956292B2 (en) Electron tube
JP2002042636A (en) Photocathode and electron tube
US9105459B1 (en) Microchannel plate assembly
US9299530B2 (en) Electron tube
JPWO2003005408A1 (en) Electron tube and method of manufacturing the same
JP2009217996A (en) Photo-electric cathode, electron tube, and image intensifier
JP7445098B1 (en) electron tube
RU2558387C1 (en) Electro-optical display and method of making same
US11201041B2 (en) Gas electron multiplier board photomultiplier
RU2660947C2 (en) X-ray visualizer
JPH0487247A (en) Multiple channel plate
JPS5812977B2 (en) image can

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12843435

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12843435

Country of ref document: EP

Kind code of ref document: A1