JP2005264990A - Belt type continuously variable transmission, belt type continuously variable transmission sheave, and vehicle equipped with the belt type continuously variable transmission - Google Patents

Belt type continuously variable transmission, belt type continuously variable transmission sheave, and vehicle equipped with the belt type continuously variable transmission Download PDF

Info

Publication number
JP2005264990A
JP2005264990A JP2004075591A JP2004075591A JP2005264990A JP 2005264990 A JP2005264990 A JP 2005264990A JP 2004075591 A JP2004075591 A JP 2004075591A JP 2004075591 A JP2004075591 A JP 2004075591A JP 2005264990 A JP2005264990 A JP 2005264990A
Authority
JP
Japan
Prior art keywords
belt
sheave
continuously variable
variable transmission
type continuously
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004075591A
Other languages
Japanese (ja)
Inventor
Yosuke Ishida
洋介 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Motor Co Ltd
Original Assignee
Yamaha Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Motor Co Ltd filed Critical Yamaha Motor Co Ltd
Priority to JP2004075591A priority Critical patent/JP2005264990A/en
Publication of JP2005264990A publication Critical patent/JP2005264990A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Pulleys (AREA)
  • Transmissions By Endless Flexible Members (AREA)
  • Chemically Coating (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a belt type continuously variable transmission capable of preventing sliding of a belt, while minimizing thrust added to the belt. <P>SOLUTION: In the belt type continuously variable transmission 1 transmitting rotating force of a primary side sheave 3 to a secondary side sheave 5 through an endless belt, a continuously variable transmission sheave, and a vehicle equipped with the continuously variable transmission, a belt clipping surface 15 of at least either one of the primary side sheave 3 or the secondary side sheave 5 is plastically deformed by contacting with the belt to smooth surface roughness. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、プライマリ側シーブの回転力を無端状のベルトを介してセカンダリ側シーブに伝達するベルト式無段変速装置、このベルト式無段変速装置に用いるシーブ、さらにこのベルト式無段変速装置を搭載した自動二輪車のような車両に関し、特に運転開始初期のベルトの滑りを防止する構造に関する。   The present invention relates to a belt-type continuously variable transmission that transmits the rotational force of a primary-side sheave to a secondary-side sheave via an endless belt, a sheave used in this belt-type continuously variable transmission, and further this belt-type continuously variable transmission In particular, the present invention relates to a structure for preventing belt slippage at the beginning of operation.

変速比を走行状況に応じて無段階的に調整しうる自動二輪車用ベルト式無段変速装置が提案されている(例えば特許文献1参照)
この種のベルト式無段変速装置は、プライマリ側シーブ、セカンダリ側シーブおよび該両シーブに巻回されたベルトを備えている。プライマリ側シーブは、エンジンからの動力伝達によって駆動されるものであり、互いに向かい合う一対の挟持面と、これら挟持面の間に形成されたベルト溝とを有している。セカンダリ側シーブは、動力伝達機構あるいは減速機構を介して自動二輪車の後輪を駆動する。このセカンダリ側シーブは、互いに向かい合う一対の挟持面と、これら挟持面の間に形成されたベルト溝とを備えている。
There has been proposed a belt type continuously variable transmission for a motorcycle that can adjust a gear ratio steplessly in accordance with a traveling state (see, for example, Patent Document 1).
This type of belt-type continuously variable transmission includes a primary sheave, a secondary sheave, and a belt wound around both sheaves. The primary sheave is driven by power transmission from the engine and has a pair of clamping surfaces facing each other and a belt groove formed between the clamping surfaces. The secondary sheave drives the rear wheels of the motorcycle via a power transmission mechanism or a speed reduction mechanism. The secondary sheave includes a pair of clamping surfaces facing each other and a belt groove formed between the clamping surfaces.

また上記ベルトは、プライマリ側シーブのベルト溝とセカンダリ側シーブのベルト溝との間に無端状に巻き掛けられている。このベルトは、各シーブのベルト挟持面に接する被挟持面を有している。このベルトの被挟持面と各シーブの挟持面との間に生じる摩擦力により、プライマリ側シーブの回転力がベルトを介してセカンダリ側シーブに伝わるようになっている。   The belt is wound endlessly between the belt groove of the primary sheave and the belt groove of the secondary sheave. This belt has a sandwiched surface that contacts the belt sandwiching surface of each sheave. The rotational force of the primary sheave is transmitted to the secondary sheave through the belt by the frictional force generated between the sandwiched surface of the belt and the sandwiching surface of each sheave.

この種のベルト式無段変速装置は、図7に示すように、各シーブの挟持面がベルトを挟持する推力を大きくする程、シーブとベルトとの間で伝達可能なトルクが大きくなるといった特性を有している。ベルトに加わる推力が増えると、シーブの挟持面とベルトの被挟持面との間に大きな摩擦抵抗が生じ、ベルトの発熱量が増加する。ベルトの発熱は、運動エネルギーが熱エネルギーに変化していることを示しており、その分、トルクの伝達効率が低下する。   As shown in FIG. 7, this type of belt-type continuously variable transmission has a characteristic that the torque that can be transmitted between the sheave and the belt increases as the thrust of each sheave sandwiching the belt increases. have. When the thrust applied to the belt increases, a large frictional resistance is generated between the holding surface of the sheave and the clamped surface of the belt, and the heat generation amount of the belt increases. The heat generation of the belt indicates that the kinetic energy is changed to the thermal energy, and the torque transmission efficiency is lowered accordingly.

図8は、ベルトに加わる推力を変化させた時のベルトの発熱量および伝達効率の変化を示している。この図8から明らかなように、推力が増加するとそれに略比例してベルトの発熱量が増えるとともに、トルクの伝達効率が低下している。このことから、シーブとベルトとの間でのトルクの伝達効率を高めるためには、推力を必要最小限に設定する必要がある。
特開2002−147553号公報
FIG. 8 shows changes in the heat generation amount and transmission efficiency of the belt when the thrust applied to the belt is changed. As is apparent from FIG. 8, when the thrust increases, the heat generation amount of the belt increases in proportion to the thrust, and the torque transmission efficiency decreases. Therefore, in order to increase the torque transmission efficiency between the sheave and the belt, it is necessary to set the thrust to the minimum necessary.
JP 2002-147553 A

ところで、従来のベルト式無段変速装置によると、組立完了後のシーブ及びベルトが新品の状態で運転を開始した時、特にその運転開始初期の段階でベルトに滑りを生じる傾向がある。図9は、運転開始初期におけるベルトの伝達トルクの推移を示している。この図9から明らかなように、運転開始直後ではベルトに伝わるトルクが予め決められた設定値cを大幅に下回っている。このトルク値は、運転時間の経過とともに次第に上昇する傾向にあり、ある一定の時間を経過した時点で設定値に到達する。   By the way, according to the conventional belt-type continuously variable transmission, when the operation is started with the sheave and belt after completion of assembly being new, the belt tends to slip, particularly at the initial stage of the operation. FIG. 9 shows the transition of the belt transmission torque at the beginning of operation. As is apparent from FIG. 9, immediately after the operation is started, the torque transmitted to the belt is significantly lower than the predetermined set value c. This torque value tends to gradually increase with the lapse of the operation time, and reaches the set value when a certain time has passed.

運転初期のベルトの滑りを抑制する手段としては、ベルトに加わる推力を大きくすることが考えられる。ところが、推力を大きくすると、先にも述べたようにベルトの発熱量が増大するのを避けられない。従って、慣らし運転完了後においてはベルトに加わる推力が過大となり、トルクの伝達効率が悪化するという問題が生じてくる。   As a means for suppressing belt slip in the initial stage of operation, it is conceivable to increase the thrust applied to the belt. However, when the thrust is increased, it is inevitable that the amount of heat generated by the belt increases as described above. Therefore, after the break-in operation is completed, the thrust applied to the belt becomes excessive, resulting in a problem that the torque transmission efficiency is deteriorated.

本発明の課題は、ベルトに加わる推力を必要最小限に抑えつつ、ベルトの滑りを防止できるベルト式無段変速装置を提供することにある。   An object of the present invention is to provide a belt type continuously variable transmission that can prevent the belt from slipping while minimizing the thrust applied to the belt.

本発明の他の課題は、ベルトに加わる推力を必要最小限に抑えつつ、ベルトの滑りを防止できるベルト式無段変速装置用シーブを提供することにある。   Another object of the present invention is to provide a belt-type continuously variable transmission sheave that can prevent the belt from slipping while minimizing the thrust applied to the belt.

本発明のさらに他の課題は、ベルトに加わる推力を必要最小限に抑えつつ、ベルトの滑りを防止できるベルト式無段変速装置を搭載した車両を提供することにある。   Still another object of the present invention is to provide a vehicle equipped with a belt-type continuously variable transmission capable of preventing belt slipping while minimizing the thrust applied to the belt.

請求項1,4,7の発明は、プライマリ側シーブの回転力を無端状のベルトを介してセカンダリ側シーブに伝達するベルト式無段変速装置,該無段変速装置用シーブ,該無段変速装置を備えた車両において、上記プライマリ側シーブ又はセカンダリ側シーブの少なくとも一方のベルト挟持面を、ベルトとの接触により塑性変形して表面粗さが滑らかになるように構成したことを特徴としている。   According to the first, fourth, and seventh aspects of the invention, a belt-type continuously variable transmission that transmits the rotational force of the primary sheave to the secondary sheave via an endless belt, the sheave for the continuously variable transmission, and the continuously variable transmission In the vehicle equipped with the apparatus, at least one belt clamping surface of the primary sheave or the secondary sheave is configured to be plastically deformed by contact with the belt so that the surface roughness is smooth.

請求項2,5,8の発明は、上記シーブのベルト挟持面に、めっき皮膜が形成されており、かつ該めっき皮膜はベルトとの接触により塑性変形することを特徴としている。   The inventions of claims 2, 5 and 8 are characterized in that a plating film is formed on the belt holding surface of the sheave, and the plating film is plastically deformed by contact with the belt.

請求項3,6,9の発明は、上記シーブのベルト挟持面に、ベルトの被挟持面の極表面を剥離させる凹凸を形成したことを特徴としている。   The inventions of claims 3, 6 and 9 are characterized in that the belt holding surface of the sheave is provided with unevenness for peeling off the extreme surface of the belt holding surface.

請求項1,4,7の発明によれば、上記プライマリ側シーブ又はセカンダリ側シーブの少なくとも一方のベルト挟持面が、ベルトとの接触により塑性変形して表面粗さが滑らかになり、このベルト挟持面とベルトの被挟持面との接触状態が安定しやすくなり、初期滑りを抑制できる。   According to the first, fourth, and seventh aspects of the present invention, at least one belt clamping surface of the primary side sheave or the secondary side sheave is plastically deformed by contact with the belt and the surface roughness becomes smooth. The contact state between the surface and the clamped surface of the belt is easily stabilized, and initial slip can be suppressed.

また請求項2,5,8の発明によれば、上記シーブのベルト挟持面に形成しためっき皮膜がベルトとの接触により塑性変形するので、シーブ側のベルト挟持面とベルト側の被挟持面との接触状態がより一層安定し、初期滑りを抑制できる。   According to the inventions of claims 2, 5 and 8, since the plating film formed on the belt clamping surface of the sheave is plastically deformed by contact with the belt, the sheave-side belt clamping surface and the belt-side clamping surface The contact state is further stabilized, and initial slip can be suppressed.

さらにまた請求項3,6,9の発明によれば、上記シーブのベルト挟持面にベルトの被挟持面の極表面を剥離させる凹凸を形成したので、運転開始初期のシーブとベルトとの間の摩擦係数が高くなるとともに、ベルト表面が剥離するいわゆる皮剥きが短時間で完了し、この点からも上記初期滑りを抑制できる。   Furthermore, according to the inventions of claims 3, 6 and 9, since the unevenness that peels off the pole surface of the sandwiched surface of the belt is formed on the belt sandwiching surface of the sheave, the sheave between the sheave and the belt at the start of operation is formed. As the coefficient of friction increases, so-called skinning that peels off the belt surface can be completed in a short time, and the initial slip can be suppressed from this point.

以下、本発明の実施形態を添付図面に沿って説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

図1〜図4は本発明の一実施形態に係るベルト式無段変速装置を説明するための図であり、図1はその断面平面図、図2はシーブの挟持面の状態を説明するための模式図、図3はシーブの挟持面の状態を説明するための模式拡大図、図4はシーブの挟持面の表面粗さを測定した結果を示す図である。   1 to 4 are diagrams for explaining a belt-type continuously variable transmission according to an embodiment of the present invention, FIG. 1 is a sectional plan view thereof, and FIG. 2 is a diagram for explaining a state of a holding surface of a sheave. FIG. 3 is a schematic enlarged view for explaining the state of the sandwiching surface of the sheave. FIG. 4 is a diagram showing the results of measuring the surface roughness of the sandwiching surface of the sheave.

図1において、1は自動二輪車に採用されたベルト式無段変速装置であり、これは不図示のエンジンのクランクケース側部に配置されている。上記無段変速装置1は、エンジンの回転力が伝達される入力軸2にプライマリ側シーブ3を装着するとともに、該入力軸2と平行に配置された出力軸4にセカンダリ側シーブ5を装着し、該セカンダリ側シーブ5とプライマリ側シーブ3とにVベルト6を巻回した構造となっている。上記出力軸4の回転は不図示の動力伝達機構を介して後輪軸に伝達される。   In FIG. 1, reference numeral 1 denotes a belt type continuously variable transmission employed in a motorcycle, which is disposed on a side of a crankcase of an engine (not shown). The continuously variable transmission 1 has a primary sheave 3 attached to an input shaft 2 to which engine torque is transmitted, and a secondary sheave 5 attached to an output shaft 4 arranged in parallel with the input shaft 2. The V-belt 6 is wound around the secondary sheave 5 and the primary sheave 3. The rotation of the output shaft 4 is transmitted to the rear wheel shaft via a power transmission mechanism (not shown).

上記プライマリ側シーブ3は、入力軸2の外端部にこれと共に回転するように固定されたプライマリ側固定シーブ半体3aと、該入力軸2の固定シーブ半体3aの内側に軸方向に移動可能にかつスライドカラー7を介して入力軸2と共に回転するように装着されたプライマリ側可動シーブ半体3bとを有している。   The primary sheave 3 is moved in the axial direction inside the primary sheave half 3a fixed to the outer end of the input shaft 2 so as to rotate together with the primary sheave half 3a of the input shaft 2. And a primary movable sheave half 3b mounted so as to rotate together with the input shaft 2 via a slide collar 7.

また上記入力軸2の可動シーブ半体3bの内側にはカムプレート8が装着されており、該カムプレート8は入力軸2に共に回転するように固定されている。このカムプレート8と可動シーブ半体3bとの間にはウェイト9が遠心力により径方向外側に移動可能に配設されている。   A cam plate 8 is mounted inside the movable sheave half 3b of the input shaft 2, and the cam plate 8 is fixed to the input shaft 2 so as to rotate together. A weight 9 is arranged between the cam plate 8 and the movable sheave half 3b so as to be movable radially outward by centrifugal force.

上記セカンダリ側シーブ5は、出力軸4に固定されたセカンダリ側固定シーブ半体5aと、該固定シーブ半体5aの外側に軸方向に移動可能にかつ固定シーブ半体5aと共に回転するように装着されたセカンダリ側可動シーブ半体5bとを有している。   The secondary sheave 5 is attached to a secondary side fixed sheave half 5a fixed to the output shaft 4 and to be movable in the axial direction outside the fixed sheave half 5a and to rotate with the fixed sheave half 5a. Secondary-side movable sheave half 5b.

上記固定シーブ半体5aの軸芯部には円筒状のスライドカラー10が固着されており、該スライドカラー10は出力軸4に共に回転するように固定されている。このスライドカラー10上に上記セカンダリ側可動シーブ半体5bの軸芯部に固着された円筒部5cが軸方向に移動可能に装着されている。   A cylindrical slide collar 10 is fixed to the shaft core of the fixed sheave half 5a, and the slide collar 10 is fixed to the output shaft 4 so as to rotate together. A cylindrical portion 5c fixed to the shaft core portion of the secondary movable sheave half 5b is mounted on the slide collar 10 so as to be movable in the axial direction.

上記可動シーブ半体5bの円筒部5cには軸方向に延びる係合溝5dが周方向に所定間隔をあけて形成されている。この各係合溝5d内には係合ピン11が挿入され、該係合ピン11はスライドカラー10に締結固定されている。このようにして可動シーブ半体5bは軸方向に移動可能にかつ固定シーブ半体5aと共に回転するようになっている。   Engaging grooves 5d extending in the axial direction are formed in the cylindrical portion 5c of the movable sheave half 5b at predetermined intervals in the circumferential direction. Engagement pins 11 are inserted into the respective engagement grooves 5 d, and the engagement pins 11 are fastened and fixed to the slide collar 10. In this way, the movable sheave half 5b is movable in the axial direction and rotates together with the fixed sheave half 5a.

上記スライドカラー10の外端部にはばね受け部材12が固定されており、該ばね受け部材12と可動シーブ半体5bとの間には、該可動シーブ半体5bを固定シーブ半体5a側に付勢するばね13が介設されている。   A spring receiving member 12 is fixed to the outer end portion of the slide collar 10, and the movable sheave half 5b is placed between the spring receiving member 12 and the movable sheave half 5b on the fixed sheave half 5a side. A spring 13 for biasing is interposed.

上記各シーブ半体3a,3b,5a,5bのVベルト挟持面15は円錐面をなすように形成されており、プライマリ側,セカンダリ側の固定シーブ半体3a,5aのそれぞれと可動シーブ半体3b,5bのぞれぞれとでV字状の溝が形成され、該溝内にVベルト6が嵌装されている。そして各シーブ半体3a,3b及び5a,5bによりVベルト6は所定のシーブ推力でもって挟持されている。   Each sheave half 3a, 3b, 5a, 5b has a V-belt clamping surface 15 formed so as to form a conical surface, and each of the primary and secondary fixed sheave halves 3a, 5a and the movable sheave half. A V-shaped groove is formed in each of 3b and 5b, and a V-belt 6 is fitted in the groove. The V-belt 6 is sandwiched between the sheave halves 3a, 3b and 5a, 5b with a predetermined sheave thrust.

エンジン回転が最も低い状態ではウェイト9が径方向内側に位置し、プライマリ側可動シーブ半体3bが軸方向内側に移動して固定シーブ半体3aから離れ、シーブの巻き掛け径が小さくなるとともに、セカンダリ側可動シーブ半体5bがばね13により付勢されて固定シーブ半体5a側に移動し、シーブの巻き掛け径が大きくなり、最大減速比のロウ位置となる。   In the state where the engine speed is the lowest, the weight 9 is positioned radially inward, the primary movable sheave half 3b moves axially inward and away from the fixed sheave half 3a, and the sheave winding diameter decreases, The secondary movable sheave half 5b is urged by the spring 13 and moves to the fixed sheave half 5a side, the sheave winding diameter increases, and the low reduction position of the maximum reduction ratio is obtained.

エンジン回転の上昇に伴って入力軸2の回転速度が上昇すると、遠心力によってウェイト9が径方向外側に移動してプライマリ側可動シーブ半体3bを固定シーブ半体3a側に移動させ、これによりシーブの巻き掛け径が大きくなるとともに、セカンダリ側可動シーブ半体5bがばね13の付勢力に抗して軸方向外側に移動し、エンジン回転が最も高い状態ではシーブの巻き掛け径が最小となり、最小減速比のトップ位置となる。   When the rotational speed of the input shaft 2 increases as the engine speed increases, the weight 9 moves radially outward due to the centrifugal force to move the primary movable sheave half 3b toward the fixed sheave half 3a. As the sheave winding diameter increases, the secondary movable sheave half 5b moves outward in the axial direction against the urging force of the spring 13, and the sheave winding diameter is minimized at the highest engine speed. It is the top position of the minimum reduction ratio.

上記Vベルト6は、耐熱性,耐久性を有する樹脂製のものであり、例えばポリアミド樹脂にカーボン繊維又はアラミド繊維を混入させて概ね横H形状に成形された多数の樹脂ブロック6aを一列に並べて配置し、各樹脂ブロック6a同士を超耐熱性ゴムあるいは金属からなる環状の連結帯6bにより連結した構造となっている。   The V-belt 6 is made of a resin having heat resistance and durability. For example, a large number of resin blocks 6 a formed by mixing carbon fibers or aramid fibers into a polyamide resin and having a substantially horizontal H shape are arranged in a row. The resin blocks 6a are arranged to be connected by an annular connecting band 6b made of super heat resistant rubber or metal.

そして上記プライマリ側シーブ3,セカンダリ側シーブ5に本実施形態の特徴をなす構成が採用されている。上記各シーブ3,5を構成する固定シーブ半体3a,5a及び可動シーブ半体3b,5bは、アルミニウム合金、例えばAC4B,ADC−11を用いて製作されている。またこれらの各シーブ半体3a,3b,5a,5bの挟持面15は、上記アルミニウム合金からなる金属表面15a上にめっき皮膜16を被覆形成した構成となっている。   The primary side sheave 3 and the secondary side sheave 5 employ the configuration that characterizes this embodiment. The fixed sheave halves 3a and 5a and the movable sheave halves 3b and 5b constituting the respective sheaves 3 and 5 are manufactured using an aluminum alloy, for example, AC4B or ADC-11. The sandwiching surface 15 of each of the sheave halves 3a, 3b, 5a, 5b has a structure in which a plating film 16 is formed on the metal surface 15a made of the aluminum alloy.

上記めっき皮膜16としては、表面硬度600〜1000Hv、ビッカース割れ発生荷重(靱性)250〜350NのNI−Pめっき、例えば株式会社神戸製鋼所の「KENI COAT(登録商標)」が採用可能である。   As the plating film 16, NI-P plating having a surface hardness of 600 to 1000 Hv and a Vickers crack generation load (toughness) of 250 to 350 N, for example, “KENI COAT (registered trademark)” of Kobe Steel, Ltd. can be employed.

ここで上記各シーブ3,5は、鍛造あるいは鋳造により半製品に成形され、上記挟持面15を構成する金属表面15aに切削,研削等の機械加工を施すことにより最終製品とされたものが採用可能である。このような機械加工は、シーブ半体を回転軸回りに回転させながら刃物や砥石を表面に切り込むことにより行なわれるが、加工コスト上の制約もあることから、挟持面15を断面して微視的に見ると、上記金属表面15aに環状の溝をなすような加工痕15bが形成されている(図2参照)。   Here, each of the sheaves 3 and 5 is formed into a semi-finished product by forging or casting, and adopted as a final product by performing machining such as cutting and grinding on the metal surface 15a constituting the clamping surface 15. Is possible. Such machining is performed by cutting a blade or a grindstone into the surface while rotating the half of the sheave around the rotation axis. If it sees specifically, the process trace 15b which makes an annular groove | channel will be formed in the said metal surface 15a (refer FIG. 2).

なお上記加工痕15bは溝部と山部とからなる凹凸を有するのであるが、この凹凸の溝深さあるいは山高さ及び溝幅は、該無段変速装置1が未使用の新品状態で、概ね数μm 〜数十μm である。また上記めっき皮膜16は概ね数μm〜10μmの膜厚を有し、この加工痕15bの凹凸をなす表面形状に沿うように形成されており、そのためめっき皮膜16の表面にも上記加工痕15bに対応する凹凸が形成されている(図3(a)参照)。   The machining mark 15b has irregularities composed of a groove part and a peak part. The groove depth or peak height and groove width of the uneven part is approximately several times when the continuously variable transmission 1 is unused. μm to several tens of μm. The plating film 16 has a film thickness of about several μm to 10 μm and is formed along the surface shape forming the irregularities of the processing mark 15b. Therefore, the surface of the plating film 16 is also formed on the processing mark 15b. Corresponding irregularities are formed (see FIG. 3A).

そして本実施形態の無段変速装置1を搭載した自動二輪車により走行を開始すると、上記挟持面15のめっき皮膜16及び金属表面15aが上記Vベルト6により叩かれ、ある程度の走行後では、上記加工痕をなす凹凸が塑性変形し、上記加工痕15aの溝深さが浅くなるとともに溝幅が狭くなり、全体が平らになる(図3(b)参照)。なお、図3(b)から明らかなように、上述の塑性変形が進行してもめっき皮膜16の摩耗によりあるいは剥離により金属表面15aが露出することはほとんどない。   When traveling is started by a motorcycle equipped with the continuously variable transmission 1 of the present embodiment, the plating film 16 and the metal surface 15a of the clamping surface 15 are struck by the V belt 6, and after a certain amount of traveling, the above processing is performed. The irregularities forming the trace are plastically deformed, the depth of the processed trace 15a becomes shallower, the width of the groove becomes narrower, and the whole becomes flat (see FIG. 3B). As apparent from FIG. 3B, the metal surface 15a is hardly exposed due to wear or peeling of the plating film 16 even if the above-described plastic deformation proceeds.

ここで図4(a)は、未走行状態で上記各シーブの挟持面15を表面粗さ計で計測した結果を示し、同図(b)は走行後の計測結果を示す。なお、図4(a)(b)では、縦軸は横軸に対して50倍に拡大して表示されている。即ち、挟持面の半径方向位置を表す横軸は単位目盛りが100μmであるのに対し、表面粗さをの大きさを示す縦軸は単位目盛りが2μmである。   Here, FIG. 4A shows the result of measuring the sandwiching surface 15 of each sheave with a surface roughness meter in the non-running state, and FIG. 4B shows the measurement result after running. In FIGS. 4A and 4B, the vertical axis is displayed 50 times larger than the horizontal axis. That is, the horizontal axis representing the radial position of the clamping surface has a unit scale of 100 μm, whereas the vertical axis representing the surface roughness has a unit scale of 2 μm.

上述の未走行状態では、図4(a)に示すように、表面粗さは約3μmであるのに対し、走行後の状態では、同図(b)に示すように、表面粗さは約2μm以下となっている。また同図(b)から、挟持面の凹凸が塑性変形し、表面が滑らかになっていることが判る。   In the above non-running state, the surface roughness is about 3 μm as shown in FIG. 4A, whereas in the state after running, the surface roughness is about 3 μm as shown in FIG. It is 2 μm or less. Further, from FIG. 5B, it can be seen that the unevenness of the clamping surface is plastically deformed and the surface is smooth.

このように本実施形態の金属表面15aとめっき皮膜16からなる挟持面15では、Vベルト6に叩かれることでその表面が塑性変形し、その表面状態が滑らかとなり、シーブ側の挟持面とベルト側の被挟持面との接触状態が安定し易くなり、その結果シーブの推力を大きくすることなく上述の初期滑りを抑制できる。   As described above, the clamping surface 15 formed of the metal surface 15a and the plating film 16 of the present embodiment is plastically deformed by being struck by the V-belt 6, and the surface state becomes smooth, and the clamping surface on the sheave side and the belt As a result, the initial slip can be suppressed without increasing the thrust of the sheave.

また本実施形態では、挟持面15の表面が塑性変形することにより滑らかになり、めっき皮膜16及び金属表面15aが削られることはほとんどないので、上記シーブ側の挟持面15と上記ベルト側の被挟持面との接触状態を長期間に渡って安定させることができ、シーブの推力を大きくすることなくベルトの滑りを長期間に渡って抑制できる。   Further, in this embodiment, the surface of the clamping surface 15 becomes smooth by plastic deformation, and the plating film 16 and the metal surface 15a are hardly scraped. The contact state with the clamping surface can be stabilized over a long period of time, and belt slippage can be suppressed over a long period of time without increasing the sheave thrust.

また上記運転開始の極初期においては、上記挟持面15に形成されている加工痕15aの凹凸によりベルトの被挟持面との間の摩擦係数が大きくなり、この点からも運転開始時のベルトの初期滑りを抑制できる。さらにまた上記凹凸によりVベルト6の極表面を剥離するいわゆる皮剥きが短時間で行なわれ、この点も初期滑りの抑制に貢献していると考えられる。   In the very initial stage of the operation, the friction coefficient between the belt and the clamped surface of the belt increases due to the unevenness of the processing marks 15a formed on the clamping surface 15. From this point, the belt of the belt at the start of the operation starts. Initial slip can be suppressed. Furthermore, the so-called peeling of the pole surface of the V-belt 6 by the unevenness is performed in a short time, and this point is considered to contribute to the suppression of the initial slip.

また、上述のようにある程度走行すると挟持面の凸凹が塑性変形して表面が滑らかになるので、それ以降におけるVベルト6の摩耗を抑制できる。   Further, when the vehicle travels to some extent as described above, the unevenness of the clamping surface is plastically deformed and the surface becomes smooth, so that wear of the V belt 6 thereafter can be suppressed.

なお、上記実施形態では、図3に模式的に示すように、めっき皮膜16を加工痕15aの溝深さより厚く形成した場合を説明したが、このめっき皮膜と溝深さについては各種の変形例が採用可能であり、例えば図5,図6に示すようにめっき皮膜16を溝深さより薄く形成しても良い。   In the above embodiment, as schematically illustrated in FIG. 3, the case where the plating film 16 is formed thicker than the groove depth of the processing mark 15 a has been described. However, various modifications may be made to the plating film and the groove depth. For example, as shown in FIGS. 5 and 6, the plating film 16 may be formed thinner than the groove depth.

また上記実施形態では、金属表面にめっき皮膜を形成した場合を説明したが、ベルトの被挟持面の材質,表面状態等に合わせてシーブの挟持面の材質,表面処理を決定すればよく、めっき皮膜を形成しないことも可能である。   In the above embodiment, the case where the plating film is formed on the metal surface has been described. However, the material and surface treatment of the sandwiching surface of the sheave may be determined in accordance with the material and surface state of the sandwiched surface of the belt. It is also possible not to form a film.

さらにまた上記シーブの材質についても上記実施形態に限定されないのは勿論であり、本発明では、要は、シーブの挟持面を、走行開始初期においてベルトとの接触により塑性変形して表面粗さが滑らかになるように構成すれば良い。   Of course, the material of the sheave is not limited to the above-described embodiment. In the present invention, the surface of the sandwiching surface of the sheave is plastically deformed by contact with the belt at the beginning of running. What is necessary is just to comprise so that it may become smooth.

本発明の一実施形態のベルト式無段変速装置の断面平面図である。1 is a cross-sectional plan view of a belt type continuously variable transmission according to an embodiment of the present invention. 上記実施形態のシーブの表面状態を説明するための模式図である。It is a schematic diagram for demonstrating the surface state of the sheave of the said embodiment. 上記表面状態を説明するための模式断面拡大図である。It is a schematic cross-sectional enlarged view for demonstrating the said surface state. 上記表面状態の表面粗さ計による計測結果を示す図である。It is a figure which shows the measurement result by the surface roughness meter of the said surface state. 上記表面状態の変形例を示す模式断面拡大図である。It is a schematic cross-sectional enlarged view which shows the modification of the said surface state. 上記表面状態の他の変形例を示す模式断面拡大図である。It is a schematic cross-sectional enlarged view which shows the other modification of the said surface state. 一般的なベルト式無段変速装置におけるシーブ推力と伝達トルクとの関係を示す特性図である。FIG. 5 is a characteristic diagram showing a relationship between sheave thrust and transmission torque in a general belt type continuously variable transmission. 一般的なベルト式無段変速装置におけるシーブ推力と発熱料,伝達効率との関係を示す特性図である。It is a characteristic view which shows the relationship between the sheave thrust in a general belt type continuously variable transmission, a heat generating material, and transmission efficiency. 一般的なベルト式無段変速装置における運転時間と伝達トルクとの関係を示す特性図である。It is a characteristic view which shows the relationship between the driving time and the transmission torque in a general belt type continuously variable transmission.

符号の説明Explanation of symbols

1 ベルト式無段変速装置
3 プライマリ側シーブ
5 セカンダリ側シーブ
6 Vベルト
15 ベルト挟持面
15b 加工痕(凹凸)
16 めっき皮膜
DESCRIPTION OF SYMBOLS 1 Belt type continuously variable transmission 3 Primary side sheave 5 Secondary side sheave 6 V belt 15 Belt clamping surface 15b Processing trace (unevenness)
16 Plating film

Claims (9)

プライマリ側シーブの回転力を無端状のベルトを介してセカンダリ側シーブに伝達するベルト式無段変速装置において、上記プライマリ側シーブ又はセカンダリ側シーブの少なくとも一方のベルト挟持面を、ベルトとの接触により塑性変形して表面粗さが滑らかになるように構成したことを特徴とするベルト式無段変速装置。   In the belt-type continuously variable transmission that transmits the rotational force of the primary sheave to the secondary sheave through an endless belt, at least one belt clamping surface of the primary sheave or the secondary sheave is brought into contact with the belt. A belt-type continuously variable transmission configured to be plastically deformed to have a smooth surface roughness. 請求項1において、上記シーブのベルト挟持面に、めっき皮膜が形成されており、かつ該めっき皮膜はベルトとの接触により塑性変形することを特徴とするベルト式無段変速装置。   The belt-type continuously variable transmission according to claim 1, wherein a plating film is formed on a belt holding surface of the sheave, and the plating film is plastically deformed by contact with the belt. 請求項1又は2において、上記シーブのベルト挟持面に、ベルトの被挟持面の極表面を剥離させる凹凸を形成したことを特徴とするベルト式無段変速装置。   3. The belt type continuously variable transmission according to claim 1, wherein the belt holding surface of the sheave is provided with irregularities for peeling off the pole surface of the holding surface of the belt. プライマリ側シーブの回転力を無端状のベルトを介してセカンダリ側シーブに伝達するベルト式無段変速装置用シーブにおいて、該シーブのベルト挟持面を、ベルトとの接触により塑性変形して表面粗さが滑らかになるように構成したこと特徴とするベルト式無段変速装置用シーブ。   In a belt-type continuously variable transmission sheave that transmits the rotational force of the primary sheave to the secondary sheave through an endless belt, the belt clamping surface of the sheave is plastically deformed by contact with the belt, resulting in surface roughness. A belt-type continuously variable transmission sheave characterized in that the belt is smooth. 請求項4において、上記シーブのベルト挟持面に、めっき皮膜が形成されており、かつ該めっき皮膜はベルトとの接触により塑性変形することを特徴とするベルト式無段変速装置用シーブ。   5. The sheave for a belt type continuously variable transmission according to claim 4, wherein a plating film is formed on a belt holding surface of the sheave, and the plating film is plastically deformed by contact with the belt. 請求項4又は5において、上記シーブのベルト挟持面に、ベルトの被挟持面の極表面を剥離させる凹凸を形成したことを特徴とするベルト式無段変速装置用シーブ。   6. The sheave for a belt-type continuously variable transmission according to claim 4, wherein the belt-clamping surface of the sheave is provided with irregularities that peel off the pole surface of the clamped surface of the belt. プライマリ側シーブの回転力を無端状のベルトを介してセカンダリ側シーブに伝達するベルト式無段変速装置を搭載した車両において、上記プライマリ側シーブ又はセカンダリ側シーブの少なくとも一方のベルト挟持面を、ベルトとの接触により塑性変形して表面粗さが滑らかになるように構成したことを特徴とするベルト式無段変速装置を搭載した車両。   In a vehicle equipped with a belt-type continuously variable transmission that transmits the rotational force of the primary sheave to the secondary sheave through an endless belt, the belt clamping surface of at least one of the primary sheave or the secondary sheave A vehicle equipped with a belt-type continuously variable transmission, which is configured to be plastically deformed by contact with the belt and to have a smooth surface roughness. 請求項7において、上記シーブのベルト挟持面に、めっき皮膜が形成されており、かつ該めっき皮膜はベルトとの接触により塑性変形することを特徴とするベルト式無段変速装置を搭載した車両。   8. A vehicle equipped with a belt type continuously variable transmission according to claim 7, wherein a plating film is formed on a belt holding surface of the sheave, and the plating film is plastically deformed by contact with the belt. 請求項4又は5において、上記シーブのベルト挟持面に、ベルトの被挟持面の極表面を剥離させる凹凸を形成したことを特徴とするベルト式無段変速装置を搭載した車両。   6. A vehicle equipped with a belt-type continuously variable transmission according to claim 4 or 5, wherein the belt holding surface of the sheave is provided with unevenness for peeling off the pole surface of the holding surface of the belt.
JP2004075591A 2004-03-17 2004-03-17 Belt type continuously variable transmission, belt type continuously variable transmission sheave, and vehicle equipped with the belt type continuously variable transmission Withdrawn JP2005264990A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004075591A JP2005264990A (en) 2004-03-17 2004-03-17 Belt type continuously variable transmission, belt type continuously variable transmission sheave, and vehicle equipped with the belt type continuously variable transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004075591A JP2005264990A (en) 2004-03-17 2004-03-17 Belt type continuously variable transmission, belt type continuously variable transmission sheave, and vehicle equipped with the belt type continuously variable transmission

Publications (1)

Publication Number Publication Date
JP2005264990A true JP2005264990A (en) 2005-09-29

Family

ID=35089775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004075591A Withdrawn JP2005264990A (en) 2004-03-17 2004-03-17 Belt type continuously variable transmission, belt type continuously variable transmission sheave, and vehicle equipped with the belt type continuously variable transmission

Country Status (1)

Country Link
JP (1) JP2005264990A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008039177A (en) * 2006-07-12 2008-02-21 Yamaha Motor Co Ltd Belt type continuously variable transmission, straddle-type vehicle, and method for producing sheave of belt type continuously variable transmission
EP1878947A3 (en) * 2006-07-12 2010-12-15 Yamaha Hatsudoki Kabushiki Kaisha Belt type continuously variable transmission
JP2012184788A (en) * 2011-03-03 2012-09-27 Honda Motor Co Ltd Continuously variable transmission structure
JP2013160377A (en) * 2012-02-08 2013-08-19 Honda Motor Co Ltd Belt-type continuously variable transmission
EP3421839A4 (en) * 2016-02-23 2019-02-27 Honda Motor Co., Ltd. Electronically controlled v-belt continuously variable transmission

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008039177A (en) * 2006-07-12 2008-02-21 Yamaha Motor Co Ltd Belt type continuously variable transmission, straddle-type vehicle, and method for producing sheave of belt type continuously variable transmission
EP1878947A3 (en) * 2006-07-12 2010-12-15 Yamaha Hatsudoki Kabushiki Kaisha Belt type continuously variable transmission
EP1878948B1 (en) * 2006-07-12 2015-12-02 Yamaha Hatsudoki Kabushiki Kaisha Belt type continuously variable transmission, and method of manufacturing a sheave of the belt type continuously variable transmission
JP2012184788A (en) * 2011-03-03 2012-09-27 Honda Motor Co Ltd Continuously variable transmission structure
JP2013160377A (en) * 2012-02-08 2013-08-19 Honda Motor Co Ltd Belt-type continuously variable transmission
EP3421839A4 (en) * 2016-02-23 2019-02-27 Honda Motor Co., Ltd. Electronically controlled v-belt continuously variable transmission

Similar Documents

Publication Publication Date Title
JP4878619B2 (en) Continuously variable transmission belt
JP4667342B2 (en) Endless belt for power transmission
KR20160100978A (en) A continuously variable transmission with pulleys and a drive belt
JP2009063048A (en) Belt type continuously variable transmission
JP2005264990A (en) Belt type continuously variable transmission, belt type continuously variable transmission sheave, and vehicle equipped with the belt type continuously variable transmission
JP2005155755A (en) Manufacturing device and manufacturing method for endless metallic ring used in continuously variable transmission
WO2007072559A1 (en) Power transmission chain and power transmission device
US8082817B2 (en) Power transmission mechanism
US20080229581A1 (en) Continuously variable transmission and manufacturing method for continuously variable transmission
JP2011149518A (en) Method of manufacturing transmission belt
JP7398282B2 (en) Belt type continuously variable transmission and its manufacturing method
JP2008116010A (en) Power transmission endless belt
CN104011430B (en) Flexible steel ring and the driving belt with multiple lateral direction element
EP1831587B1 (en) Drive belt for a continuosly variable transmission
JP6711184B2 (en) Chain-type continuously variable transmission
EP1893889A1 (en) Drive belt for a continuously variable transmission and method of manufacturing a transverse element for such a drive belt
JP2008116013A (en) Cvt element
JP6322992B2 (en) Manufacturing method of chain type continuously variable transmission mechanism
JP2013515916A (en) Drive belt for transmission with convex pulley sheave
JP2015165153A (en) Continuously variable transmission belt
JP2008168301A (en) Method and apparatus for manufacturing power transmitting chain
JP2005114100A (en) Belt/pulley type continuously variable transmission with parallel groove and multiple circular groove
JP2017020536A (en) Power transmission device
JP2004268054A (en) Rolling device
JP2008267577A (en) Method and apparatus for pre-tensioning power transmission chain

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070605