JP7398282B2 - Belt type continuously variable transmission and its manufacturing method - Google Patents

Belt type continuously variable transmission and its manufacturing method Download PDF

Info

Publication number
JP7398282B2
JP7398282B2 JP2020002461A JP2020002461A JP7398282B2 JP 7398282 B2 JP7398282 B2 JP 7398282B2 JP 2020002461 A JP2020002461 A JP 2020002461A JP 2020002461 A JP2020002461 A JP 2020002461A JP 7398282 B2 JP7398282 B2 JP 7398282B2
Authority
JP
Japan
Prior art keywords
pulley
belt
continuously variable
metal belt
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020002461A
Other languages
Japanese (ja)
Other versions
JP2021110389A (en
Inventor
修治 上田
茂 金原
博彦 戸塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2020002461A priority Critical patent/JP7398282B2/en
Priority to CN202011526020.4A priority patent/CN113108033B/en
Publication of JP2021110389A publication Critical patent/JP2021110389A/en
Application granted granted Critical
Publication of JP7398282B2 publication Critical patent/JP7398282B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H9/00Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members
    • F16H9/02Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion
    • F16H9/04Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion using belts, V-belts, or ropes
    • F16H9/12Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion using belts, V-belts, or ropes engaging a pulley built-up out of relatively axially-adjustable parts in which the belt engages the opposite flanges of the pulley directly without interposed belt-supporting members
    • F16H9/16Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion using belts, V-belts, or ropes engaging a pulley built-up out of relatively axially-adjustable parts in which the belt engages the opposite flanges of the pulley directly without interposed belt-supporting members using two pulleys, both built-up out of adjustable conical parts
    • F16H9/18Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion using belts, V-belts, or ropes engaging a pulley built-up out of relatively axially-adjustable parts in which the belt engages the opposite flanges of the pulley directly without interposed belt-supporting members using two pulleys, both built-up out of adjustable conical parts only one flange of each pulley being adjustable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • B23P15/14Making specific metal objects by operations not covered by a single other subclass or a group in this subclass gear parts, e.g. gear wheels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G5/00V-belts, i.e. belts of tapered cross-section
    • F16G5/16V-belts, i.e. belts of tapered cross-section consisting of several parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H55/00Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
    • F16H55/32Friction members
    • F16H55/36Pulleys
    • F16H55/38Means or measures for increasing adhesion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H55/00Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
    • F16H55/32Friction members
    • F16H55/52Pulleys or friction discs of adjustable construction
    • F16H55/56Pulleys or friction discs of adjustable construction of which the bearing parts are relatively axially adjustable

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Pulleys (AREA)
  • Transmissions By Endless Flexible Members (AREA)

Description

本発明は、一対のプーリの間に無端状の金属ベルトを巻き掛けて構成されるベルト式無段変速機及びその製造方法に関する。 The present invention relates to a belt-type continuously variable transmission constructed by winding an endless metal belt between a pair of pulleys, and a method for manufacturing the same.

歯車以外の機構を用いて変速比(レシオ)を連続的に変化させる無段変速機(CVT:Continuously Variable Transmission)は、車両等の変速手段として用いられている。例えば、車両にはベルト式無段変速機(ベルト式CVT)が用いられる場合がある。このベルト式無段変速機は、駆動側のドライブプーリと従動側のドリブンプーリとの間に無端状の金属ベルトを巻き掛けて構成されており、ドライブプーリとドリブンプーリに油圧によって作用する軸方向の推力を調整することによって、これらのドライブプーリとドリブンブーリへの金属ベルトの巻き掛け径を変化させて変速比を連続的に変化させるものである。 Continuously variable transmissions (CVTs), which continuously change a gear ratio using a mechanism other than gears, are used as a transmission means for vehicles and the like. For example, a belt-type continuously variable transmission (belt-type CVT) may be used in a vehicle. This belt-type continuously variable transmission is constructed by winding an endless metal belt between a drive pulley on the driving side and a driven pulley on the driven side. By adjusting the thrust of the drive pulley and the driven pulley, the diameter of the metal belt wound around the drive pulley and driven pulley is changed to continuously change the gear ratio.

このようなベルト式無段変速機においては、ドライブプーリ及びドリブンプーリ(以下、単に「プーリ」と称する)と金属ベルトとの接触面における摩擦力によって動力が伝達される。したがって、プーリと金属ベルトとの接触面には所要の摩擦力が発生する必要があり、そのためにプーリの金属ベルトとの接触面には適当な表面粗さとなるような研磨加工が施されている。 In such a belt-type continuously variable transmission, power is transmitted by the frictional force at the contact surface between the drive pulley and the driven pulley (hereinafter simply referred to as "pulley") and the metal belt. Therefore, it is necessary to generate the necessary frictional force on the contact surface between the pulley and the metal belt, and for this purpose, the contact surface of the pulley and the metal belt is polished to an appropriate surface roughness. .

また、プーリと金属ベルトとの間には、焼き付き防止や冷却のために潤滑油が供給されるが、この潤滑油が多過ぎるとプーリと金属ベルト間にスリップが発生して動力伝達効率の低下を招くため、余分な潤滑油を効率良く排出する必要がある。そして、高い耐久寿命を確保する観点から、プーリと金属ベルトとの接触面には高い耐磨耗性が要求される。 Additionally, lubricating oil is supplied between the pulley and the metal belt to prevent seizure and for cooling, but if there is too much lubricating oil, slippage will occur between the pulley and the metal belt, reducing power transmission efficiency. Therefore, it is necessary to efficiently drain excess lubricating oil. From the viewpoint of ensuring a long durable life, the contact surface between the pulley and the metal belt is required to have high abrasion resistance.

そこで、特許文献1,2には、プーリの金属ベルトとの接触面に多数の微小凹凸を形成し、この微小凹凸の先端部を研磨して平坦面とする技術が提案されている。また、特許文献3には、プーリの金属ベルトとの接触面に切削加工によって螺旋状の溝部を形成した後に仕上げ研磨を行う技術が提案されている。 Therefore, Patent Documents 1 and 2 propose a technique in which a large number of minute irregularities are formed on the contact surface of a pulley with a metal belt, and the tips of the minute irregularities are polished to make a flat surface. Further, Patent Document 3 proposes a technique in which a spiral groove is formed by cutting on the contact surface of a pulley with a metal belt, and then final polishing is performed.

さらに、特許文献4には、金属ベルトを構成する多数のエレメントまたはプーリのエレメントとの接触面に、互いに交差し、且つ、幅と深さとがほぼ同じ寸法となる複数の溝を設ける技術が提案され、特許文献5には、プーリの金属ベルトとの接触面の算術平均粗さと表面硬さをそれぞれ所定値以内とする技術も提案されている。 Further, Patent Document 4 proposes a technique for providing a plurality of grooves that intersect with each other and have approximately the same width and depth on the contact surface with a large number of elements constituting a metal belt or with elements of a pulley. Patent Document 5 also proposes a technique in which the arithmetic mean roughness and surface hardness of the contact surface of the pulley with the metal belt are each within predetermined values.

また、特許文献6には、プーリの金属ベルトとの接触面に所要の摩擦係数と高い耐磨耗性や疲労強度を確保するために、プーリの接触面の表面から所定深さまでの領域に超音波ラッピング処理によって表面改質層を形成し、この表面改質層に所定の値(例えば、1200MPa)以上の残留応力を付与する技術が提案されている。 Furthermore, in Patent Document 6, in order to ensure the required coefficient of friction and high wear resistance and fatigue strength on the contact surface of the pulley with the metal belt, an area from the surface of the contact surface of the pulley to a predetermined depth is A technique has been proposed in which a surface modified layer is formed by a sonic lapping process and a residual stress of a predetermined value (for example, 1200 MPa) or more is imparted to this surface modified layer.

特開昭60-109661号公報Japanese Unexamined Patent Publication No. 60-109661 特開平5-010405号公報Japanese Patent Application Publication No. 5-010405 特許第2686973号公報Patent No. 2686973 特開昭62-184270号公報Japanese Unexamined Patent Publication No. 184270/1986 特開2000-130527号公報Japanese Patent Application Publication No. 2000-130527 特開2018-004036号公報Japanese Patent Application Publication No. 2018-004036

ところで、金属ベルトは、金属プレート素材を複数の微小凹凸が形成された金型で打ち抜いて得られる複数のエレメントを環状に連結して構成されている。そのため、各エレメントのプーリとの接触面には多数の微小凹凸が形成されるが、この微小凹凸の深さが浅くなり、各エレメントのプーリとの接触長さ(接触面積)は、金型の劣化と共に大きくなる。このため、金型の劣化と共に各エレメントのプーリとの接触面の面圧が低下する。 By the way, a metal belt is constructed by connecting a plurality of elements in an annular shape, which are obtained by punching a metal plate material using a die in which a plurality of minute irregularities are formed. Therefore, a large number of minute irregularities are formed on the contact surface of each element with the pulley, but the depth of these minute irregularities becomes shallow, and the contact length (contact area) of each element with the pulley is It grows larger as it deteriorates. Therefore, as the mold deteriorates, the surface pressure of the contact surface of each element with the pulley decreases.

他方、プーリは、熱処理された金属素材を鍛造によって所定の形状に成形する鍛造工程と、該鍛造工程によって成形された中間成形品に切削加工やショットブラストなどの表面処理を施して該中間成形品の表面に多数の微小凹凸を形成する表面処理工程と、該表面処理工程によって形成された前記微小凹凸の凸部先端を研磨によって除去して該微小凹凸に平坦面を形成する研磨工程を経て製造される。このため、プーリの金属ベルトとの接触面は、金属ベルトとの間に所定の摩擦力が得られる表面粗さとされている。 On the other hand, pulleys are made by forging a heat-treated metal material into a predetermined shape by forging, and by subjecting the intermediate molded product formed by the forging process to surface treatments such as cutting and shot blasting. Manufactured through a surface treatment step of forming a large number of minute irregularities on the surface of the product, and a polishing step of removing by polishing the tips of the convex portions of the minute irregularities formed by the surface treatment step to form a flat surface on the minute irregularities. be done. For this reason, the contact surface of the pulley with the metal belt has a surface roughness that provides a predetermined frictional force between the pulley and the metal belt.

しかしながら、前述のように金属ベルトの各エレメントの成形に用いられる金型の劣化に伴って各エレメントの接触面に形成される微小凹凸の深さが浅くなるため、各エレメントのプーリとの接触長さ(接触面積)が次第に大きくなる。そして、このように各エレメントのプーリとの接触面積が大きくなると、各エレメントのプーリとの接触面の面圧が金型の劣化と共に次第に低下する。 However, as mentioned above, as the mold used to mold each element of the metal belt deteriorates, the depth of the minute irregularities formed on the contact surface of each element becomes shallower, so the contact length of each element with the pulley becomes smaller. (contact area) gradually increases. When the contact area of each element with the pulley increases in this way, the surface pressure of the contact surface of each element with the pulley gradually decreases as the mold deteriorates.

したがって、プーリと金属ベルトとの接触面にスリップが発生しない程度の摩擦力を発生させるためには、金型の劣化に伴う接触面の面圧の低下に応じてプーリの接触面の表面粗さを変化させる必要がある。さもなければ、金型の劣化によってプーリと金属ベルトとの間にスリップが発生し、動力伝達効率の低下を招くという問題が発生する。 Therefore, in order to generate a frictional force that does not cause slip on the contact surface between the pulley and the metal belt, the surface roughness of the contact surface of the pulley must be adjusted according to the decrease in surface pressure on the contact surface due to deterioration of the mold. need to change. Otherwise, a problem arises in that slippage occurs between the pulley and the metal belt due to deterioration of the mold, resulting in a reduction in power transmission efficiency.

上記問題を解決する方法として、金型を新しいものと頻繁に交換することが考えられるが、このように金型を新しいものと頻繁に交換すれば金型費が嵩み、製造コストの高騰を招くという問題が発生する。 One way to solve the above problem is to frequently replace the mold with a new one, but if you replace the mold with a new one frequently, the mold cost will increase and the manufacturing cost will rise. The problem of inviting arises.

なお、前記特許文献1~6には、金属ベルトのエレメントの成形に用いられる金型の劣化に伴う問題を解決する技術についての開示はなされていない。 Note that Patent Documents 1 to 6 do not disclose a technique for solving problems associated with deterioration of a mold used for molding elements of a metal belt.

本発明は、上記実情に鑑みてなされたもので、その目的は、金属ベルトの成形に用いられる金型の劣化に応じてプーリの接触面の表面粗さを調整して該プーリと金属ベルト間に所定の摩擦力を確保することによって両者間のスリップの発生を防ぎ、高い動力伝達効率の確保と金型の耐久寿命の延長を図ることができるベルト式無段変速機及びその製造方法を提供することにある。 The present invention has been made in view of the above-mentioned circumstances, and an object thereof is to adjust the surface roughness of the contact surface of the pulley according to the deterioration of the mold used for forming the metal belt, and to create a gap between the pulley and the metal belt. Provides a belt-type continuously variable transmission that prevents slippage between the two by ensuring a predetermined frictional force between the two, ensuring high power transmission efficiency and extending the durable life of the mold, and a method for manufacturing the same. It's about doing.

上記目的を達成するため、本発明は、一対のプーリ(3,5)の間に無端状の金属ベルト(6)を巻き掛けて構成され、一方の前記プーリ(3)の回転を無段階に変速して他方の前記プーリ(5)へと伝達するベルト式無段変速機(1)であって、前記金属ベルト(6)の前記プーリ(3,5)との接触面積が大きいほど、前記プーリ(3,5)の前記金属ベルト(6)との接触面(3a,3b,5a,5b)の表面粗さを大きく設定したことを特徴とする。 In order to achieve the above object, the present invention is constructed by winding an endless metal belt (6) between a pair of pulleys (3, 5), and the rotation of one of the pulleys (3) is controlled steplessly. In a belt type continuously variable transmission (1) that changes speed and transmits the same to the other pulley (5), the larger the contact area of the metal belt (6) with the pulley (3, 5), the larger the contact area of the metal belt (6) with the pulley (3, 5). It is characterized in that the surface roughness of the contact surfaces (3a, 3b, 5a, 5b) of the pulleys (3, 5) with the metal belt (6) is set to be large.

本発明によれば、金属ベルトのエレメントのプーリとの接触面積が大きいほど、つまり、エレメントの成形に使用される金型の耐久による劣化によって該エレメントのプーリ面圧が低下するほど、プーリのエレメントとの接触面の表面粗さを大きく設定するようにしたため、次のような効果が得られる。すなわち、金型の劣化と共にプーリの接触面の表面粗さを大きくすると、該プーリとエレメントとの接触面の摩擦力が高められるため、金型の劣化によってエレメントのプーリ面圧が低下しても、金属ベルトのスリップの発生が防がれて高い動力伝達効率が確保され、一方のプーリから金属ベルトを経て他方のプーリへと動力が確実且つ効率良く伝達される。 According to the present invention, the larger the contact area of the element of the metal belt with the pulley, that is, the lower the surface pressure of the pulley of the element due to deterioration due to durability of the mold used for molding the element, the more the element of the pulley By setting the surface roughness of the contact surface to be large, the following effects can be obtained. In other words, if the surface roughness of the contact surface of the pulley increases as the mold deteriorates, the frictional force on the contact surface between the pulley and the element will increase, so even if the pulley surface pressure of the element decreases due to mold deterioration, , slipping of the metal belt is prevented, high power transmission efficiency is ensured, and power is reliably and efficiently transmitted from one pulley to the other pulley via the metal belt.

また、金型が劣化しても、プーリ側でその接触面の表面粗さを調整(粗さが大きくなる方向に調整)することによって、金型を新しいものと交換することなく同じ金型を引き続き使用することができるため、金型の耐久寿命を延長することができて経済的である。 In addition, even if the mold deteriorates, by adjusting the surface roughness of the contact surface on the pulley side (adjusting in the direction of increasing roughness), the same mold can be used without replacing the mold with a new one. Since it can be used continuously, the durable life of the mold can be extended and it is economical.

上記ベルト式無段変速機(1)において、前記プーリ(3,5)の前記金属ベルト(6)との接触面(3a,3b、5a,5b)の表面粗さを径方向外方に向かって大きく設定してもよい。 In the belt-type continuously variable transmission (1), the surface roughness of the contact surfaces (3a, 3b, 5a, 5b) of the pulleys (3, 5) with the metal belt (6) is adjusted radially outward. You can also set it larger.

さらに、前記ベルト式無段変速機(1)において、前記プーリ(3,5)の前記金属ベルト(6)との円錐状の接触面(3b)を、境界線(M1)を境として内径側を平坦な傾斜面(3b1)、外径側を凸曲面(3b2)とする複合面とし、該複合面の内径側の前記傾斜面(3b1)と外径側の前記凸曲面(3b2)の各表面粗さを径方向外方に向かって大きく設定するとともに、外径側の前記凸曲面(3b2)の前記境界線(M1)における表面粗さを内径側の前記傾斜面(3b1)の前記境界線(M1)における表面粗さよりも小さく設定してもよい。 Furthermore, in the belt type continuously variable transmission (1), the conical contact surface (3b) of the pulley (3, 5) with the metal belt (6) is arranged on the inner diameter side with respect to the boundary line (M1). is a composite surface with a flat inclined surface (3b1) and a convex curved surface (3b2) on the outer diameter side, and each of the inclined surface (3b1) on the inner diameter side and the convex curved surface (3b2) on the outer diameter side of the composite surface The surface roughness is set larger toward the outside in the radial direction, and the surface roughness at the boundary line (M1) of the convex curved surface (3b2) on the outer diameter side is set to be larger than the surface roughness at the boundary line of the inclined surface (3b1) on the inner diameter side. The surface roughness may be set smaller than the surface roughness at line (M1).

上記構成によれば、プーリと金属ベルトとの接触面に作用する面圧は、径方向外方に向かって小さくなるため、プーリの接触面の表面粗さを径方向外方に向かって大きく設定することによって、プーリと金属ベルトとの接触面に常に必要十分な摩擦力を発生させて金属ベルトのスリップを防ぐことができ、高い動力伝達効率を維持することができる。 According to the above configuration, the surface pressure acting on the contact surface between the pulley and the metal belt decreases radially outward, so the surface roughness of the pulley contact surface is set to increase radially outward. By doing so, it is possible to always generate a necessary and sufficient frictional force on the contact surface between the pulley and the metal belt to prevent the metal belt from slipping, and it is possible to maintain high power transmission efficiency.

また、本発明は、前記金属ベルト(6)を、金属プレート素材を複数の微小凹凸が形成された金型で打ち抜いて得られる複数のエレメント(6A)を環状に連結して製造するとともに、前記プーリ(3,5)を、熱処理された金属素材を鍛造によって所定の形状に成形する鍛造工程と、該鍛造工程によって成形された中間成形品に表面処理を施して該中間成形品の表面に多数の微小凹凸(9)を形成する表面処理工程と、該表面処理工程によって形成された前記微小凹凸(9)の凸部先端を研磨によって除去して該微小凹凸(9)に平坦面(9a)を形成する研磨工程を経て製造するベルト式無段変速機(1)の製造方法において、前記金型が劣化するほど、前記プーリ(2,3)の製造における前記研磨工程の時間を短縮するようにしたことを特徴とする。 Further, the present invention provides the metal belt (6), which is manufactured by connecting a plurality of elements (6A) obtained by punching a metal plate material with a mold having a plurality of minute irregularities in a ring shape, and The pulleys (3, 5) are formed by a forging process in which a heat-treated metal material is forged into a predetermined shape, and a surface treatment is applied to the intermediate molded product formed by the forging process to form a large number of parts on the surface of the intermediate molded product. a surface treatment step of forming minute irregularities (9), and removing by polishing the convex tips of the minute irregularities (9) formed by the surface treatment step to form a flat surface (9a) on the minute irregularities (9); In the manufacturing method of the belt type continuously variable transmission (1), which is manufactured through a polishing step to form It is characterized by the following.

本発明に係るベルト式無段変速機の製造方法によれば、金型の劣化が進むにしたがってプーリの製造における研磨工程の時間を短縮することによって該プーリの表面粗さを大きくすることができ、金型が劣化しても、プーリと金属ベルトとの間に必要十分な摩擦力を確保して金属ベルトのスリップの発生を防ぎ、高い動力伝達効率を確保することができる。 According to the method for manufacturing a belt-type continuously variable transmission according to the present invention, the surface roughness of the pulley can be increased by shortening the polishing process time in the manufacture of the pulley as the mold deteriorates. Even if the mold deteriorates, it is possible to ensure a necessary and sufficient frictional force between the pulley and the metal belt, prevent slippage of the metal belt, and ensure high power transmission efficiency.

本発明によれば、金属ベルトの成形に用いられる金型の劣化に応じてプーリの接触面の表面粗さを調整して該プーリと金属ベルト間に所定の摩擦力を確保することによって両者間のスリップの発生を防ぎ、高い動力伝達効率の確保と金型の耐久寿命の延長を図ることができるという効果が得られる。また、本発明は、金属ベルトのエレメントの接触面の大きさにより、プーリの表面粗さを的確に変化させることができるという効果もある。 According to the present invention, the surface roughness of the contact surface of the pulley is adjusted in accordance with the deterioration of the mold used for molding the metal belt, and a predetermined frictional force is maintained between the pulley and the metal belt. This has the effect of preventing the occurrence of slippage, ensuring high power transmission efficiency, and extending the durable life of the mold. Further, the present invention has the effect that the surface roughness of the pulley can be accurately changed depending on the size of the contact surface of the element of the metal belt.

本発明に係るベルト式無段変速機の基本構成を模式的に示す図である。1 is a diagram schematically showing the basic configuration of a belt type continuously variable transmission according to the present invention. 本発明に係るベルト式無段変速機の金属ベルトの部分斜視図である。FIG. 2 is a partial perspective view of a metal belt of the belt-type continuously variable transmission according to the present invention. (a)は本発明に係るベルト式無段変速機の金属ベルトを構成するエレメント単体の斜視図、(b)は(a)のX部拡大詳細図である。(a) is a perspective view of a single element constituting a metal belt of a belt-type continuously variable transmission according to the present invention, and (b) is an enlarged detailed view of the X section in (a). ドライブプーリの接触面の形状と該接触面への金属ベルトの各レシオにおける当接位置を示す部分断面図である。FIG. 4 is a partial cross-sectional view showing the shape of the contact surface of the drive pulley and the contact position of the metal belt to the contact surface at each ratio. (a)は表面処理(ショットブラスト)によってプーリ接触面に形成された微小凹凸を示す図、(b)は研磨(ラッピング)によって微小凹凸の凸部先端が除去された状態を示す図である。(a) is a diagram showing minute irregularities formed on the pulley contact surface by surface treatment (shot blasting), and (b) is a diagram showing a state in which the tips of the convex portions of the minute irregularities have been removed by polishing (lapping). ドライブプーリの耐久前負荷特性を示す図である。It is a figure which shows the durable preload characteristic of a drive pulley. 劣化の程度が異なる金型A,B,Cによって成形されたエレメントのプーリ接触長さを示す部分断面図である。FIG. 6 is a partial cross-sectional view showing the pulley contact length of elements molded by molds A, B, and C having different degrees of deterioration. 劣化の程度が異なる金型A,B,Cによって成形されたエレメントの摩耗量とプーリ接触長さとの関係を示す図である。FIG. 6 is a diagram showing the relationship between the wear amount of elements molded by molds A, B, and C having different degrees of deterioration and the pulley contact length. プーリとエレメント間の面圧バランスを保つためのプーリ表面粗さとエレメントのプーリ接触長さとの関係を示す図である。FIG. 3 is a diagram showing the relationship between the pulley surface roughness and the pulley contact length of the element for maintaining the surface pressure balance between the pulley and the element. 劣化の程度が異なる金型A,B,Cを用いてエレメントを成形した場合のプーリの表面粗さの設定方法(耐久前負荷曲線の有効負荷粗さRkの選定方法)を示す図である。FIG. 7 is a diagram showing a method for setting the surface roughness of a pulley (a method for selecting an effective load roughness Rk of a durability preload curve) when an element is molded using molds A, B, and C having different degrees of deterioration.

以下に本発明の実施の形態を添付図面に基づいて説明する。 Embodiments of the present invention will be described below based on the accompanying drawings.

[ベルト式無段変速機の構成と作用]
図1は本発明に係るベルト式無段変速機の基本構成を模式的に示す図、図2は同ベルト式無段変速機の金属ベルトの部分斜視図、図3(a)は同ベルト式無段変速機の金属ベルトを構成するエレメント単体の斜視図、図3(b)は図3(a)のX部拡大詳細図、図4はドライブプーリの接触面の形状と該接触面への金属ベルトの各レシオにおける当接位置を示す部分断面図である。
[Configuration and operation of belt type continuously variable transmission]
FIG. 1 is a diagram schematically showing the basic configuration of a belt-type continuously variable transmission according to the present invention, FIG. 2 is a partial perspective view of a metal belt of the belt-type continuously variable transmission, and FIG. 3(a) is a diagram showing the same belt-type continuously variable transmission. A perspective view of a single element constituting a metal belt of a continuously variable transmission, FIG. 3(b) is an enlarged detailed view of the X portion of FIG. 3(a), and FIG. 4 shows the shape of the contact surface of the drive pulley and the contact surface FIG. 3 is a partial cross-sectional view showing contact positions of the metal belt at each ratio.

図1に示すベルト式無段変速機1は、回転可能なドライブシャフト2上に設けられたドライブプーリ3と回転可能なドリブンシャフト4上に設けられたドリブンプーリ5との間に無端状の金属ベルト6を巻き掛けて構成されている。 The belt-type continuously variable transmission 1 shown in FIG. It is constructed by wrapping a belt 6 around it.

ここで、上記ドライブシャフト2とドリブンシャフト4は、互いに平行に配されており、ドライブプーリ3は、ドライブシャフト2に固定された固定シーブ(固定プーリ半体)3Aと、ドライブシャフト2に沿って軸方向(図1の左右方向)に摺動可能な可動シーブ(可動プーリ半体)3Bとを軸方向に対向配置して構成されている。そして、このドライブプーリ3の可動シーブ3Bの背面側には油室S1が形成されている。同様に、ドリブンプーリ5は、ドリブンシャフト4に固定された固定シーブ(固定プーリ半体)5Aと、ドリブンシャフト4に沿って軸方向に摺動可能な可動シーブ(可動プーリ半体)5Bとを軸方向に対向配置して構成されており、可動シーブ5Bの背面側には油室S2が形成されている。 Here, the drive shaft 2 and the driven shaft 4 are arranged parallel to each other, and the drive pulley 3 has a fixed sheave (fixed pulley half) 3A fixed to the drive shaft 2 and a fixed sheave (fixed pulley half) 3A fixed to the drive shaft 2. It is configured by arranging a movable sheave (movable pulley half) 3B that is slidable in the axial direction (left-right direction in FIG. 1) and facing each other in the axial direction. An oil chamber S1 is formed on the back side of the movable sheave 3B of the drive pulley 3. Similarly, the driven pulley 5 includes a fixed sheave (fixed pulley half) 5A fixed to the driven shaft 4 and a movable sheave (movable pulley half) 5B that is slidable in the axial direction along the driven shaft 4. The movable sheave 5B is arranged to face each other in the axial direction, and an oil chamber S2 is formed on the back side of the movable sheave 5B.

そして、ドライブプーリ3の可動シーブ3Bの背面側に形成された油室S1とドリブンプーリ5の可動シーブ5Bの背面側に形成された油室S2には、電子制御ユニット(ECU:Electronic Control Unit)U1からの指令によって作動する油圧制御ユニットU2から延びる油路7,8がそれぞれ接続されている。 An electronic control unit (ECU) is installed in an oil chamber S1 formed on the back side of the movable sheave 3B of the drive pulley 3 and an oil chamber S2 formed on the back side of the movable sheave 5B of the driven pulley 5. Oil passages 7 and 8 extending from a hydraulic control unit U2, which is operated in response to a command from U1, are connected to each other.

ところで、ドライブプーリ3の固定シーブ3Aと可動シーブ3Bの軸方向に相対向する円錐状の斜面は、金属ベルト6との接触面3a,3bをそれぞれ構成しており、これらの接触面3a,3bの間にはV溝が形成されている。同様に、ドリブンプーリ5の固定シーブ5Aと可動シーブ5Bの軸方向に相対向する円錐状の斜面は、金属ベルト6との接触面5a,5bをそれぞれ構成しており、これらの接触面5a,5bの間にはV溝が形成されている。そして、ドライブプーリ3に形成されたV溝とドリブンプーリ5に形成されたV溝には、金属ベルト6が挟持された状態で巻き掛けられている。 By the way, the conical slopes of the fixed sheave 3A and the movable sheave 3B of the drive pulley 3 that face each other in the axial direction constitute contact surfaces 3a and 3b with the metal belt 6, respectively. A V groove is formed between them. Similarly, the conical slopes of the fixed sheave 5A and the movable sheave 5B of the driven pulley 5 that face each other in the axial direction constitute contact surfaces 5a and 5b with the metal belt 6, respectively. A V groove is formed between the grooves 5b. A metal belt 6 is wound around the V-groove formed in the drive pulley 3 and the V-groove formed in the driven pulley 5 in a sandwiched manner.

ここで、金属ベルト6は、図2に示すように、金属プレート製の複数のエレメント6Aを無端状の一対の金属製フープ6Bによって環状に連結して構成されており、各エレメント6Aは、図3(a)に示すような形状に成形されている。 Here, as shown in FIG. 2, the metal belt 6 is configured by connecting a plurality of elements 6A made of metal plates in an annular manner by a pair of endless metal hoops 6B, and each element 6A is 3(a).

ところで、図4に示すように、例えば、ドライブプーリ3の可動シーブ3Bの円錐面状の接触面3bは、図示の境界線M1を境として内径側を傾斜角θの平坦な傾斜面3b1、外径側を極率半径rの凸曲面3b2とする複合面とされており、これに対応して金属ベルト6の各エレメント6Aの側面(可動シーブ3Bの接触面3bに接触する面)は、図3(b)に示すように、境界線M2を境として内径側を曲面6a、外径側を平坦な傾斜面6bとする複合面とされている。なお、図示しないが、ドライブプーリ3の固定シーブ3Aの接触面3aとドリブンプーリ5の固定シーブ5A及び可動シーブ5Bの各接触面5a,5bも複合面とされている。また、金属ベルト6の各エレメント6Aの他方の側面(図3(a)の左端面)も複合面とされている。 By the way, as shown in FIG. 4, for example, the conical contact surface 3b of the movable sheave 3B of the drive pulley 3 has a flat inclined surface 3b1 with an inclination angle θ on the inner diameter side and a flat inclined surface 3b1 on the outer diameter side with the illustrated boundary line M1 as the boundary. The radial side is a composite surface with a convex curved surface 3b2 having a polarity radius r, and correspondingly, the side surface of each element 6A of the metal belt 6 (the surface that contacts the contact surface 3b of the movable sheave 3B) is as shown in FIG. As shown in FIG. 3(b), it is a composite surface having a curved surface 6a on the inner diameter side and a flat inclined surface 6b on the outer diameter side with respect to the boundary line M2. Although not shown, the contact surface 3a of the fixed sheave 3A of the drive pulley 3 and the contact surfaces 5a and 5b of the fixed sheave 5A and movable sheave 5B of the driven pulley 5 are also composite surfaces. Further, the other side surface (the left end surface in FIG. 3(a)) of each element 6A of the metal belt 6 is also a composite surface.

以上のように構成されたベルト式無段変速機1において、例えば、エンジンや電動モータなどの駆動源の回転がドライブシャフト2に入力されて該ドライブシャフト2が回転駆動されると、このドライブシャフト2の回転は、ベルト式無段変速機1の作用によって無段階に変速されて金属ベルト6を介してドリブンシャフト4へと伝達され、このドリブンシャフト4が所定の速度で回転する。 In the belt type continuously variable transmission 1 configured as described above, for example, when the rotation of a drive source such as an engine or an electric motor is input to the drive shaft 2 and the drive shaft 2 is rotationally driven, the drive shaft The rotation of the drive shaft 2 is continuously changed in speed by the action of the belt-type continuously variable transmission 1 and transmitted to the driven shaft 4 via the metal belt 6, and the driven shaft 4 rotates at a predetermined speed.

すなわち、ベルト式無段変速機1においては、ドライブプーリ3とドリブンプーリ5に設けられた各油室S1,S2内の油圧が、電子制御ユニット(ECU)U1からの指令によって作動する油圧制御ユニットU2によって制御されることによって変速比(レシオ)が無段階に調整される。具体的には、ドライブプーリ3の油室S1の油圧に対してドリブンプーリ5の油室S2の油圧を相対的に増加させれば、ドリブンプーリ5の可動シーブ5Bに軸方向に作用する推力(プーリ推力)がドライブプーリ3の可動シーブ3Bに軸方向に作用する推力(プーリ推力)よりも相対的に大きくなる。このため、ドリブンプーリ5の固定シーブ5Aと可動シーブ5B間のV溝幅が減少して金属ベルト6のドリブンプーリ5への巻き掛け径(有効半径)が増加する一方、ドライブプーリ3の固定シーブ3Aと可動シーブ3B間のV溝幅が増加して金属ベルト6のドライブプーリ3への巻き掛け径(有効半径)が減少するため、当該ベルト式無段変速機1の変速比(レシオ)が減速(LOW)方向に向かって無段階に変化する。なお、この状態では、金属ベルト6は、ドライブプーリ3の可動シーブ3Bの接触面3bにおいて例えば図4に破線にて示す位置にある。 That is, in the belt-type continuously variable transmission 1, the hydraulic pressure in each oil chamber S1, S2 provided in the drive pulley 3 and the driven pulley 5 is controlled by a hydraulic control unit operated by a command from an electronic control unit (ECU) U1. By being controlled by U2, the gear ratio is adjusted steplessly. Specifically, if the oil pressure in the oil chamber S2 of the driven pulley 5 is increased relative to the oil pressure in the oil chamber S1 of the drive pulley 3, the thrust acting in the axial direction on the movable sheave 5B of the driven pulley 5 ( The pulley thrust force) becomes relatively larger than the thrust force acting on the movable sheave 3B of the drive pulley 3 in the axial direction (pulley thrust force). Therefore, the V-groove width between the fixed sheave 5A and the movable sheave 5B of the driven pulley 5 decreases, and the winding diameter (effective radius) of the metal belt 6 around the driven pulley 5 increases. 3A and the movable sheave 3B increases, and the winding diameter (effective radius) of the metal belt 6 around the drive pulley 3 decreases, the gear ratio of the belt type continuously variable transmission 1 increases. It changes steplessly toward the deceleration (LOW) direction. In this state, the metal belt 6 is at the contact surface 3b of the movable sheave 3B of the drive pulley 3, for example, at the position shown by the broken line in FIG.

逆に、ドリブンプーリ5の油室S2の油圧に対してドライブプーリ3の油室S1の油圧を相対的に増加させれば、ドライブプーリ3の可動シーブ3Bに軸方向に作用する推力(プーリ推力)がドリブンプーリ5の可動シーブ5Bに軸方向に作用する推力(プーリ推力)よりも相対的に大きくなる。このため、ドライブプーリ3の固定シーブ3Aと可動シーブ3B間のV溝幅が減少して金属ベルト6のドライブプーリ3への巻き掛け径(有効半径)が増加する一方、ドリブンプーリ5の固定シーブ5Aと可動シーブ5B間のV溝幅が増加して金属ベルト6のドリブンプーリ5への巻き掛け径(有効半径)が減少するため、当該ベルト式無段変速機1の変速比(レシオ)が増速(HIGH)方向に向かって無段階に変化する。なお、この状態では、金属ベルト6は、ドライブプーリ3の可動シーブ3Bの接触面3bにおいて例えば図4に鎖線にて示す位置にある。また、図4に実線にて示す金属ベルト6の位置は、ベルト式無段変速機1が減速(LOW)と増速(HIGH)の中間にあるときの位置である。 Conversely, if the oil pressure in the oil chamber S1 of the drive pulley 3 is increased relative to the oil pressure in the oil chamber S2 of the driven pulley 5, the thrust acting in the axial direction on the movable sheave 3B of the drive pulley 3 (pulley thrust ) is relatively larger than the thrust (pulley thrust) acting on the movable sheave 5B of the driven pulley 5 in the axial direction. Therefore, the width of the V groove between the fixed sheave 3A and the movable sheave 3B of the drive pulley 3 decreases, and the winding diameter (effective radius) of the metal belt 6 around the drive pulley 3 increases. 5A and the movable sheave 5B increases and the winding diameter (effective radius) of the metal belt 6 around the driven pulley 5 decreases, the gear ratio of the belt type continuously variable transmission 1 increases. It changes steplessly toward the speed increasing (HIGH) direction. In this state, the metal belt 6 is at the contact surface 3b of the movable sheave 3B of the drive pulley 3, for example, at the position shown by the chain line in FIG. Further, the position of the metal belt 6 shown by the solid line in FIG. 4 is the position when the belt type continuously variable transmission 1 is between deceleration (LOW) and speed increase (HIGH).

次に、以上のように構成されたベルト式無段変速機1の製造方法について説明する。 Next, a method of manufacturing the belt type continuously variable transmission 1 configured as above will be explained.

[ベルト式無段変速機の製造方法]
<プーリの製造方法>
ベルト式無段変速機1を構成するドライブプーリ3とドリブンプーリ5(以下、これらを単に「プーリ3,5」と略称する)は、以下の鍛造工程と表面処理工程及び研磨工程を経て製造される。
[Manufacturing method of belt type continuously variable transmission]
<Pulley manufacturing method>
The drive pulley 3 and driven pulley 5 (hereinafter simply referred to as "pulleys 3 and 5") that constitute the belt-type continuously variable transmission 1 are manufactured through the following forging process, surface treatment process, and polishing process. Ru.

1)鍛造工程:
鍛造工程においては、焼き入れ・焼き戻しなどの熱処理が施されたSCM420~SCM435(JIS規格)の浸炭材または浸炭窒化材を鍛造によってプーリ3,5の固定シーブ3A,5Aと可動シーブ3B,5Bの形状に成形して中間成形品を得る。
1) Forging process:
In the forging process, the fixed sheaves 3A, 5A and movable sheaves 3B, 5B of the pulleys 3, 5 are formed by forging carburized or carbonitrided materials of SCM420 to SCM435 (JIS standard) that have been heat treated such as quenching and tempering. An intermediate molded product is obtained by molding into the shape of .

2)表面処理工程:
表面処理工程においては、前工程である前記鍛造工程において得られた固定シーブ3A,5Aと可動シーブ3B,5Bの各中間成形品の円錐面状の接触面(金属ベルト6との接触面)にショットブラストや切削加工などの表面処理を施すことによって、図5(a)に示すように、接触面に摩擦係数を調整するための高さ20μm以上の無数の微小凹凸9がランダムに形成される。
2) Surface treatment process:
In the surface treatment step, the conical contact surfaces (contact surfaces with the metal belt 6) of the intermediate molded products of the fixed sheaves 3A, 5A and the movable sheaves 3B, 5B obtained in the forging step, which is the previous step, are By performing surface treatments such as shot blasting and cutting, countless fine irregularities 9 with a height of 20 μm or more are randomly formed on the contact surface to adjust the friction coefficient, as shown in FIG. 5(a). .

上述のようにショットブラストや切削加工などの表面処理によって各中間成形品の接触面に無数の微小凹凸9を形成することによって該接触面の表面粗さが大きくなり、接触面の金属ベルト6との接触面圧が増えて摩擦係数が高められる。また、ショットブラストや切削加工などの表面処理によって各中間成形品の接触面が塑性変形し、加工硬化によって表面の硬度が高められるとともに、接触面の表面に残留応力が付与されるため、接触面の耐磨耗性が高められる。そして、無数の微小凹凸9によって接触面における排油性が高められ、接触面に潤滑油が多量に残留することによる金属ベルト6のスリップの発生が防がれる。 As mentioned above, the surface roughness of the contact surface increases by forming countless minute irregularities 9 on the contact surface of each intermediate molded product by surface treatment such as shot blasting and cutting, and the surface roughness of the contact surface becomes large. The contact surface pressure increases and the coefficient of friction increases. In addition, the contact surfaces of each intermediate molded product are plastically deformed by surface treatments such as shot blasting and cutting, and the hardness of the surfaces is increased by work hardening, and residual stress is imparted to the surfaces of the contact surfaces. The abrasion resistance of The countless minute irregularities 9 improve oil drainage on the contact surface, and prevent the metal belt 6 from slipping due to a large amount of lubricating oil remaining on the contact surface.

3)研磨工程:
研磨工程においては、前工程である前記表面処理工程において中間成形品の接触面に形成された無数の微小凹凸9の凸部先端をラッピングなどの研磨処理によって除去し、図5(b)に示すように、微小凹凸9の凸部先端を平坦面9aとすることによって最終製品である固定シーブ3A,5Aと可動シーブ3B,5Bがそれぞれ製造される。
3) Polishing process:
In the polishing process, the tips of the convex portions of the countless minute irregularities 9 formed on the contact surface of the intermediate molded product in the previous surface treatment process are removed by a polishing process such as lapping, as shown in FIG. 5(b). By making the tips of the convex portions of the minute irregularities 9 flat surfaces 9a, the fixed sheaves 3A, 5A and the movable sheaves 3B, 5B, which are final products, are manufactured, respectively.

表面処理工程において中間成形品の接触面に形成された微小凹凸9の凸部先端を研磨工程によって除去することによって、各凸部の先端に形成される平坦面9aの面積率(接触面の全表面積に占める平坦面9aの面積の割合)を所定の範囲内に設定することによって、接触面の摩耗が軽減されるとともに、大きな摩擦係数が得られ、二次摩耗による摩擦係数の低下が回避される。 By removing the tips of the convex portions of the minute irregularities 9 formed on the contact surface of the intermediate molded product in the surface treatment process in the polishing process, the area ratio of the flat surface 9a formed at the tip of each convex portion (the total contact surface By setting the ratio of the area of the flat surface 9a to the surface area within a predetermined range, wear on the contact surface is reduced, a large friction coefficient is obtained, and a decrease in the friction coefficient due to secondary wear is avoided. Ru.

ここで、プーリ3,5の耐久前負荷特性を図6に示す。 Here, the durable preload characteristics of the pulleys 3 and 5 are shown in FIG.

図6の横軸は負荷長さ率Mr(%)、縦軸は表面粗さR(μm)であり、図中のmは負荷曲線、縦軸上のRk(μm)は有効負荷粗さ(プーリ3,5の接触面3a,3b及び5a,5bが長期間の摩耗で使用することができなくなるまでの摩耗量(図5参照))、Rpk(μm)は微小凹凸9の凸部先端の研磨によるカット量(図5(a)参照)、Rvk(μm)は油溜り深さである。 The horizontal axis of Fig. 6 is the load length ratio Mr (%), the vertical axis is the surface roughness R (μm), m in the figure is the load curve, and Rk (μm) on the vertical axis is the effective load roughness ( The amount of wear until the contact surfaces 3a, 3b and 5a, 5b of the pulleys 3, 5 become unusable due to long-term wear (see Fig. 5)), Rpk (μm) is the The cut amount by polishing (see FIG. 5(a)), Rvk (μm), is the oil pool depth.

ここで、有効負荷粗さRkとカット量Rpk及び油溜り深さRvkの図6中での求め方について説明する。 Here, how to obtain the effective load roughness Rk, the cut amount Rpk, and the oil sump depth Rvk in FIG. 6 will be explained.

図6に示す負荷曲線m上の点で負荷長さ率Mrの差が40%になるような点a,bを通る直線(等価直線)nと負荷長さ率Mr=0%、100%との交点をそれぞれ点c,dとし、点c,dを通る切断レベルの線s,tと負荷曲線mとの交点を点e,fとし、負荷曲線mと負荷長さ率Mr=0%、100%との交点をそれぞれ点g,hとする。 A straight line (equivalent straight line) n passing through points a and b such that the difference in load length ratio Mr is 40% on the load curve m shown in Fig. 6 and load length ratio Mr = 0%, 100%. The intersections of the lines s and t passing through the points c and d are respectively points e and f, and the intersections of the cutting level lines s and t with the load curve m are points e and f, and the load curve m and the load length ratio Mr=0%, Let the intersections with 100% be points g and h, respectively.

そして、線分cgと線分ce及び曲線egによって囲まれる領域の面積と三角形ceiの面積(図6に斜線にて示す領域の面積)とが等しくなるような負荷長さ率Mr=0%上の点iを求める。また、線分fdと線分dh及び曲線fhによって囲まれる領域の面積と三角形fdjの面積(図6に斜線にて示す領域の面積)とが等しくなるような負荷長さ率Mr=100%上の点jを求める。このとき、点cと点dとの切断レベルの差が有効負荷長さRk、線分cgの長さがカット量Rpk、線分djの長さが油溜り深さRvkとして求められる。 Then, load length ratio Mr = 0% or higher such that the area of the area surrounded by line segment CG, line segment ce, and curve eg is equal to the area of triangle cei (area of the area indicated by diagonal lines in FIG. 6). Find the point i. In addition, the load length ratio Mr = 100% or above is such that the area of the area surrounded by line segment fd, line segment dh, and curve fh is equal to the area of triangle fdj (area of the area indicated by diagonal lines in FIG. 6). Find the point j. At this time, the difference in cutting level between point c and point d is determined as effective load length Rk, the length of line segment cg is determined as cutting amount Rpk, and the length of line segment dj is determined as oil sump depth Rvk.

<金属ベルトの製造方法>
金属ベルト6は、前述のように(図2参照)、複数のエレメント6Aを無端状の一対の金属製フープ6Bによって環状に連結して構成されているが、各エレメント6Aは、焼き入れ・焼き戻しなどの熱処理が施されたSUJ2(JIS規格)などの金属プレート素材を金型で打ち抜いて図3(a)に示すような形状に成形される。ここで、金型には、多数の微小凹凸が形成されており、この金型で金属プレート素材を打ち抜くことによって成形されるエレメント6Aの左右両側面(プーリ3,5との接触面)には、多数の微小凹凸が形成される。
<Metal belt manufacturing method>
As described above (see FIG. 2), the metal belt 6 is constructed by connecting a plurality of elements 6A in an annular manner by a pair of endless metal hoops 6B. A metal plate material such as SUJ2 (JIS standard) that has been subjected to heat treatment such as resetting is punched out with a die to form the shape shown in FIG. 3(a). Here, a large number of minute irregularities are formed in the mold, and both left and right sides (contact surfaces with pulleys 3 and 5) of the element 6A, which is formed by punching a metal plate material with this mold, are , a large number of minute irregularities are formed.

ところで、金型は、耐久によって摩耗が進むために経時的に劣化する。このため、金型に形成されている微小凹凸の凸部(山型の突起)10が図7に示すように摩耗によってその高さが次第に低くなる。すなわち、新しい金型Aに形成された凸部10の高さは高いが、耐久によって摩耗が進むと金型B→金型Cと凸部10の高さが次第に低くなる。 By the way, the mold deteriorates over time as it wears down over time. Therefore, as shown in FIG. 7, the height of the convex portions (mountain-shaped protrusions) 10 of minute irregularities formed on the mold gradually decreases due to wear. That is, the height of the convex portion 10 formed in a new mold A is high, but as wear progresses due to durability, the height of the convex portion 10 from mold B to mold C gradually becomes lower.

したがって、新しい金型Aによってエレメント6Aに微小凹凸が形成される場合、エレメント6Aのプーリ接触長さ(プーリ3,5への接触長さ)LAは比較的短く、したがって、エレメント6Aのプーリ接触面積も比較的小さいために該エレメント6Aのプーリ面圧が比較的大きくなる。 Therefore, when minute irregularities are formed on the element 6A by a new mold A, the pulley contact length LA of the element 6A (the contact length to the pulleys 3 and 5) is relatively short, and therefore the pulley contact area of the element 6A Since the element 6A is also relatively small, the pulley surface pressure of the element 6A is relatively large.

そして、金型の使用によって凸部10が摩耗してその高さが金型B→金型Cと次第に低くなると、金型Bによって成形されたエレメント6Aのプーリ接触長さLBは、金型Aによって成形されたエレメント6Aのプーリ接触長さLAよりも長くなり(LB>LA)、したがって、プーリ接触面積が大きくなって、その分だけプーリ面圧が金型Aによって成形されたエレメント6Aのプーリ面圧よりも小さくなる。 Then, when the convex portion 10 is worn out by using the mold and its height gradually decreases from mold B to mold C, the pulley contact length LB of the element 6A molded by mold B is The pulley contact length LA of the element 6A molded by mold A is longer than the pulley contact length LA (LB>LA), and therefore the pulley contact area becomes larger, and the pulley surface pressure of the element 6A molded by mold A increases accordingly. It is smaller than the surface pressure.

同様に、使用によって最も劣化した金型Cによって成形されたエレメント6Aのプーリ接触長さLCは、金型Bによって成形されたエレメント6Aのプーリ接触長さLBよりも長くなり(LC>LB)、したがって、プーリ接触面積が大きくなって、その分だけプーリ面圧が金型Bによって成形されたエレメント6Aのプーリ面圧よりも小さくなる。すなわち、エレメント6Aのプーリ面圧は、金型A→金型B→金型Cによって成形されたエレメント6Aの順に次第に小さくなる。 Similarly, the pulley contact length LC of the element 6A molded by the mold C which has deteriorated the most due to use is longer than the pulley contact length LB of the element 6A molded by the mold B (LC>LB), Therefore, the pulley contact area becomes larger, and the pulley surface pressure becomes smaller than the pulley surface pressure of the element 6A molded by the mold B by that much. That is, the pulley surface pressure of the element 6A gradually decreases in the order of the element 6A molded by the mold A, mold B, and mold C.

図8に金型A,B,Cによって成形されたエレメント6Aの摩耗量とプーリ接触長さとの関係を示す。金型A,B,Cによって成形されたエレメント6Aは、共に摩耗量が所定量Mで初期摩耗が終了し、その後は定常摩耗に移行する。この定常摩耗においては、同一摩耗量に対して金型A→金型B→金型Cによって成形されたエレメント6Aの順にプーリ接触長さが増加する。したがって、この順にプーリ面圧が低下する。 FIG. 8 shows the relationship between the wear amount of the element 6A molded by molds A, B, and C and the pulley contact length. The initial wear of the elements 6A molded by the molds A, B, and C ends when the amount of wear reaches a predetermined amount M, and then the wear progresses to steady wear. In this steady wear, the pulley contact length increases in the order of mold A→mold B→mold C for the same amount of wear. Therefore, the pulley surface pressure decreases in this order.

[本発明の特徴]
前述のように、金属ベルト6の各エレメント6Aの成形に使用される金型が耐久によって劣化し、該金型によって成形されるエレメント6Aのプーリ接触長さ(接触面積)が次第に増加するために該エレメント6Aのプーリ面圧が経時的に低下すると、エレメント6Aとプーリ3,5との接触面3a,3b及び5a,5bにおける摩擦力が低下し、金属ベルト6にスリップが発生し、動力伝達効率の低下を招くことは前述の通りである。
[Features of the present invention]
As mentioned above, the mold used to mold each element 6A of the metal belt 6 deteriorates over time, and the pulley contact length (contact area) of the element 6A molded by the mold gradually increases. When the pulley surface pressure of the element 6A decreases over time, the frictional force at the contact surfaces 3a, 3b and 5a, 5b between the element 6A and the pulleys 3, 5 decreases, causing slip in the metal belt 6, which impedes power transmission. As mentioned above, this leads to a decrease in efficiency.

そこで、本実施の形態では、金属ベルト6のエレメント6Aのプーリ3,5との接触面積が大きいほど、つまり、エレメント6Aの成形に使用される金型の耐久による劣化によって該エレメント6Aのプーリ面圧が低下するほど、プーリ3,5のエレメント6Aとの接触面3a,3b及び5a,5bの表面粗さを大きく設定するようにした。このように、金型の劣化と共にプーリ3,5の接触面3a,3b及び5a,5bの表面粗さを大きくすると、該プーリ3,5とエレメント6Aとの間の摩擦力が高められるため、金型の劣化によってエレメント6Aのプーリ面圧が低下しても、金属ベルト6のスリップの発生が防がれて高い動力伝達効率が確保され、ドライブプーリ3から金属ベルト6を経てドリブンプーリ5へと動力が確実且つ効率良く伝達される。 Therefore, in this embodiment, the larger the contact area of the element 6A of the metal belt 6 with the pulleys 3 and 5, the more the pulley surface of the element 6A is affected by the deterioration due to durability of the mold used for molding the element 6A. The lower the pressure, the greater the surface roughness of the contact surfaces 3a, 3b and 5a, 5b of the pulleys 3, 5 with the element 6A. As described above, when the surface roughness of the contact surfaces 3a, 3b and 5a, 5b of the pulleys 3, 5 is increased as the mold deteriorates, the frictional force between the pulleys 3, 5 and the element 6A is increased. Even if the pulley surface pressure of the element 6A decreases due to deterioration of the mold, slipping of the metal belt 6 is prevented, ensuring high power transmission efficiency, and the drive pulley 3 passes through the metal belt 6 to the driven pulley 5. Power is transmitted reliably and efficiently.

また、金型が劣化しても、プーリ3,5側でその接触面3a,3b及び5a,5bの表面粗さを調整(粗さが大きくなる方向に調整)することによって、金型を新しいものと交換することなく同じ該金型を引き続き使用することができるため、金型の耐久寿命を延長することができて経済的である。 In addition, even if the mold deteriorates, the mold can be replaced with a new one by adjusting the surface roughness of the contact surfaces 3a, 3b and 5a, 5b on the pulleys 3 and 5 side (adjusting in the direction of increasing roughness). Since the same mold can be used continuously without replacing it, the durable life of the mold can be extended, which is economical.

なお、プーリ3,5の接触面3a,3b及び5a,5bの表面粗さを大きくする具体的な方法としては、本実施の形態では、金型が劣化するほど、プーリ3,5の製造における研磨工程の時間を短縮するようにしている。このように、プーリ3,5の製造における研磨工程の時間を短縮すると、プーリ3,5の接触面3a,3b及び5a,5bにショットブラストや切削加工などの表面処理によって形成される微小凹凸9の凸部先端が次工程でのラッピングなどによる研磨によってカットされる量が少なくなって該プーリ3,5の接触面3a,3b及び5a,5bの表面粗さが大きくなる。 In addition, as a specific method of increasing the surface roughness of the contact surfaces 3a, 3b and 5a, 5b of the pulleys 3, 5, in this embodiment, the more the mold deteriorates, the more the surface roughness of the pulleys 3, 5 is increased. We are trying to shorten the time of the polishing process. In this way, if the time for the polishing process in manufacturing the pulleys 3, 5 is shortened, the minute irregularities 9 formed on the contact surfaces 3a, 3b and 5a, 5b of the pulleys 3, 5 by surface treatment such as shot blasting or cutting can be reduced. The amount of the tip of the convex portion cut by polishing such as lapping in the next step is reduced, and the surface roughness of the contact surfaces 3a, 3b and 5a, 5b of the pulleys 3, 5 becomes large.

ここで、図9にプーリ3,5と金属ベルト6との間において面圧バランスを保つためのプーリ3,5の接触面3a,3b及び5a,5bの表面粗さとエレメント6Aの接触長さ(面圧)との関係を示すが、同図から明らかなように、面圧バランスを保つためには、エレメント6Aのプーリ接触長さが長くなる(金型の劣化によってプーリ面圧が低下する)ほどプーリ3,5の接触面3a,3b及び5a,5bの表面粗さを大きくする必要がある。 Here, FIG. 9 shows the surface roughness of the contact surfaces 3a, 3b and 5a, 5b of the pulleys 3, 5 and the contact length of the element 6A ( As is clear from the figure, in order to maintain the balance of the surface pressure, the pulley contact length of the element 6A becomes longer (the pulley surface pressure decreases due to deterioration of the mold). The more it is necessary to increase the surface roughness of the contact surfaces 3a, 3b and 5a, 5b of the pulleys 3, 5.

また、図10(a)~(c)に金型A,B,Cを用いてエレメント6Aを成形した場合のプーリ3,5の表面粗さの設定方法(耐久前負荷曲線の有効負荷粗さRkの選定方法)を示すが、図10(a)に示すように、新しくて劣化の少ない金型Aを用いてエレメント6Aを成形する場合には、プーリ3,5の表面粗さとして、耐久前負荷曲線中の実線にて示す等価曲線にて表示される比較的小さな有効負荷粗さRkを選定する。 10(a) to (c) show how to set the surface roughness of the pulleys 3 and 5 when the element 6A is molded using molds A, B, and C (effective load roughness of the durability preload curve). However, as shown in Fig. 10(a), when molding element 6A using mold A that is new and has little deterioration, the surface roughness of pulleys 3 and 5 should be A relatively small effective load roughness Rk, which is represented by the equivalent curve shown by the solid line in the preload curve, is selected.

そして、図10(b)に示すように、劣化による摩耗が或る程度進んだ金型Bを用いてエレメント6Aを成形する場合には、プーリ3,5の表面粗さとして、耐久前負荷曲線中の実線にて示す等価曲線にて表示される図10(a)にて示す有効負荷粗さRkよりも大きな中程度の有効負荷粗さRkを選定する。 As shown in FIG. 10(b), when molding the element 6A using the mold B which has undergone some degree of wear due to deterioration, the surface roughness of the pulleys 3 and 5 is determined by the durability preload curve. A medium effective load roughness Rk is selected, which is larger than the effective load roughness Rk shown in FIG. 10(a), which is represented by the equivalent curve shown by the solid line in the middle.

その後、図10(c)に示すように、劣化による摩耗が相当程度進んだ金型Cを用いてエレメント6Aを成形する場合には、プーリ3,5の表面粗さとして、耐久前負荷曲線中の実線にて示す等価曲線にて表示される図10(b)にて示す有効負荷粗さRkよりも大きな有効負荷粗さRkを選定する。 After that, as shown in FIG. 10(c), when molding element 6A using mold C which has undergone considerable wear due to deterioration, the surface roughness of pulleys 3 and 5 is An effective load roughness Rk is selected that is larger than the effective load roughness Rk shown in FIG. 10(b), which is displayed by the equivalent curve shown by the solid line.

ところで、プーリ3,5と金属ベルト6との間に作用する面圧は、径方向外方に向かって小さくなるため、プーリ3,5の接触面3a,3b及び5a,5bの表面粗さを径方向外方に向かって大きく設定することが望ましい。このようにすることによって、プーリ3,5と金属ベルト6との接触面3a,3b及び5a,5bに常に必要十分な摩擦力を発生させて金属ベルト6のスリップを防ぐことができ、高い動力伝達効率を確保することができる。 By the way, since the surface pressure acting between the pulleys 3, 5 and the metal belt 6 decreases toward the outside in the radial direction, the surface roughness of the contact surfaces 3a, 3b and 5a, 5b of the pulleys 3, 5 is It is desirable to set it larger toward the outside in the radial direction. By doing this, it is possible to always generate a necessary and sufficient frictional force on the contact surfaces 3a, 3b and 5a, 5b between the pulleys 3, 5 and the metal belt 6, to prevent the metal belt 6 from slipping, and to achieve high power. Transmission efficiency can be ensured.

また、本実施の形態のように、プーリ3,5の接触面3a,3b及び5a,5bが複合面で構成されて場合には、例えば、ドライブプーリ3については、複合面の内径側の傾斜面3b1と外径側の凸曲面3b2(図4参照)の各表面粗さを径方向外方に向かって大きく設定するとともに、外径側の凸曲面3b2の境界線M1における表面粗さを内径側の傾斜面3b1の境界線M1における表面粗さよりも小さく設定することが望ましい。このようにすることによって、プーリ3,5と金属ベルト6との接触面3a,3b及び5a,5bに常に必要十分な摩擦力を発生させて金属ベルト6のスリップを防ぎ、高い動力伝達効率を維持することができる。 Further, as in this embodiment, when the contact surfaces 3a, 3b and 5a, 5b of the pulleys 3, 5 are composed of composite surfaces, for example, for the drive pulley 3, the slope of the inner diameter side of the composite surface is The surface roughness of the surface 3b1 and the convex curved surface 3b2 on the outer diameter side (see FIG. 4) is set to be larger toward the outside in the radial direction, and the surface roughness at the boundary line M1 of the convex curved surface 3b2 on the outer diameter side is set to be larger than the inner diameter. It is desirable to set the surface roughness to be smaller than the surface roughness at the boundary line M1 of the side inclined surface 3b1. By doing this, necessary and sufficient frictional force is always generated on the contact surfaces 3a, 3b and 5a, 5b between the pulleys 3, 5 and the metal belt 6, thereby preventing the metal belt 6 from slipping and achieving high power transmission efficiency. can be maintained.

なお、本発明は、以上説明した実施の形態に適用が限定されるものではなく、特許請求の範囲及び明細書と図面に記載された技術的思想の範囲内で種々の変形が可能である。 Note that the application of the present invention is not limited to the embodiments described above, and various modifications can be made within the scope of the claims, the technical idea described in the specification, and the drawings.

1 ベルト式無段変速機
3 ドライブプーリ
3A ドライブプーリの固定シーブ
3B ドライブプーリの可動シーブ
3a,3b ドライブプーリの接触面
3b1 ドライブプーリの傾斜面
3b2 ドライブプーリの凸曲面
5 ドリブンプーリ
5A ドリブンプーリの固定シーブ
5B ドリブンプーリの可動シーブ
5a,5b ドリブンプーリの接触面
6 金属ベルト
6A 金属ベルトのエレメント
9 プーリの微小凹凸
9a 微小凹凸の平坦面
10 金型の微小凹凸の凸部
LA~LC エレメントの接触長さ
M1,M2 境界線
Rk 有効負荷粗さ
Rpk カット量
Rvk 油溜り深さ
S1,S2 油室
U1 電子制御ユニット
U2 油圧制御ユニット
1 Belt type continuously variable transmission 3 Drive pulley 3A Fixed sheave of drive pulley 3B Movable sheave of drive pulley 3a, 3b Contact surface of drive pulley 3b1 Inclined surface of drive pulley 3b2 Convex curved surface of drive pulley 5 Driven pulley 5A Fixation of driven pulley Sheave 5B Movable sheave of driven pulley 5a, 5b Contact surface of driven pulley 6 Metal belt 6A Element of metal belt 9 Minute unevenness of pulley 9a Flat surface with minute unevenness 10 Convex part of minute unevenness of mold LA to LC Contact length of element M1, M2 Boundary line Rk Effective load roughness Rpk Cut amount Rvk Oil sump depth S1, S2 Oil chamber U1 Electronic control unit U2 Hydraulic control unit

Claims (4)

一対のプーリの間に無端状の金属ベルトを巻き掛けて構成され、一方の前記プーリの回転を無段階に変速して他方の前記プーリへと伝達するベルト式無段変速機のベルト式無段変速機の製造方法であって、
前記金属ベルトを、金属プレート素材を複数の微小凹凸が形成された金型で打ち抜いて得られる複数のエレメントを環状に連結して製造するとともに、
前記プーリを、熱処理された金属素材を鍛造によって所定の形状に成形する鍛造工程と、該鍛造工程によって成形された中間成形品に表面処理を施して該中間成形品の表面に多数の微小凹凸を形成する表面処理工程と、該表面処理工程によって形成された前記微小凹凸の凸部先端を研磨によって除去して該微小凹凸に平坦面を形成する研磨工程を経て製造するベルト式無段変速機の製造方法において、
前記プーリは、前記金型の摩耗の進行に伴って、製造した前記金属ベルトとの接触面積が大きくなるほど、当該金属ベルトとの接触面の表面粗さが大きくなるように製造する
ことを特徴とするベルト式無段変速機の製造方法。
A belt type continuously variable transmission that is constructed by winding an endless metal belt between a pair of pulleys, and transmits the rotation of one of the pulleys to the other pulley. A method for manufacturing a transmission, the method comprising:
The metal belt is manufactured by connecting a plurality of elements obtained by punching a metal plate material with a mold having a plurality of minute irregularities in a ring shape, and
The pulley includes a forging process in which a heat-treated metal material is forged into a predetermined shape, and a surface treatment is applied to the intermediate molded product formed by the forging process to form a large number of minute irregularities on the surface of the intermediate molded product. A belt type continuously variable transmission manufactured through a surface treatment step of forming a surface, and a polishing step of removing by polishing the tips of the convex portions of the minute irregularities formed by the surface treatment step to form a flat surface on the minute irregularities. In the manufacturing method,
The pulley is manufactured so that as the mold wears out, the surface roughness of the contact surface with the manufactured metal belt increases as the contact area with the manufactured metal belt increases. A manufacturing method for a belt-type continuously variable transmission.
前記プーリの前記表面粗さは、径方向外方に向かって大きくする
ことを特徴とする請求項1に記載のベルト式無段変速機の製造方法。
The method for manufacturing a belt type continuously variable transmission according to claim 1, wherein the surface roughness of the pulley increases radially outward.
前記プーリの前記金属ベルトとの円錐状の接触面を、境界線を境として内径側を平坦な傾斜面、外径側を凸曲面とする複合面とし、
該複合面の内径側の前記傾斜面と外径側の前記凸曲面の各表面粗さを径方向外方に向かって大きくするとともに、外径側の前記凸曲面の前記境界線における表面粗さを内径側の前記傾斜面の前記境界線における表面粗さよりも小さくする
ことを特徴とする請求項1または2に記載のベルト式無段変速機の製造方法。
The conical contact surface of the pulley with the metal belt is a composite surface with a flat inclined surface on the inner diameter side and a convex curved surface on the outer diameter side with the boundary line as the boundary,
The surface roughness of the inclined surface on the inner diameter side and the convex curved surface on the outer diameter side of the composite surface is increased radially outward, and the surface roughness at the boundary line of the convex curved surface on the outer diameter side is increased. The method for manufacturing a belt type continuously variable transmission according to claim 1 or 2, wherein the surface roughness is made smaller than the surface roughness at the boundary line of the inclined surface on the inner diameter side.
前記金型が劣化するほど、前記プーリの製造における前記研磨工程の時間を短縮するようにする
ことを特徴とする請求項1~3の何れかに記載のベルト式無段変速機の製造方法。
The method for manufacturing a belt-type continuously variable transmission according to any one of claims 1 to 3, characterized in that the more the mold deteriorates, the more the time required for the polishing step in manufacturing the pulley is reduced.
JP2020002461A 2020-01-09 2020-01-09 Belt type continuously variable transmission and its manufacturing method Active JP7398282B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020002461A JP7398282B2 (en) 2020-01-09 2020-01-09 Belt type continuously variable transmission and its manufacturing method
CN202011526020.4A CN113108033B (en) 2020-01-09 2020-12-22 Method for manufacturing belt type continuously variable transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020002461A JP7398282B2 (en) 2020-01-09 2020-01-09 Belt type continuously variable transmission and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2021110389A JP2021110389A (en) 2021-08-02
JP7398282B2 true JP7398282B2 (en) 2023-12-14

Family

ID=76710179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020002461A Active JP7398282B2 (en) 2020-01-09 2020-01-09 Belt type continuously variable transmission and its manufacturing method

Country Status (2)

Country Link
JP (1) JP7398282B2 (en)
CN (1) CN113108033B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113997020B (en) * 2021-11-10 2024-04-26 中国航发贵州黎阳航空动力有限公司 Machining method for reducing roughness of inner ring of rectifier

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004293635A (en) 2003-03-26 2004-10-21 Nissan Motor Co Ltd Belt-type continuously variable transmission and its manufacturing method
JP2006118535A (en) 2004-10-19 2006-05-11 Honda Motor Co Ltd Belt type continuously variable transmission
JP2018008357A (en) 2016-07-15 2018-01-18 本田技研工業株式会社 Sheave surface polishing device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009068653A (en) * 2007-09-14 2009-04-02 Toyota Motor Corp Belt element, and belt type continuously variable transmission
JP4641319B2 (en) * 2008-05-12 2011-03-02 ジヤトコ株式会社 Belt for continuously variable transmission
JP5505523B2 (en) * 2011-02-03 2014-05-28 トヨタ自動車株式会社 Belt type continuously variable transmission
CN104334918B (en) * 2012-07-06 2016-09-21 本田技研工业株式会社 Metal tape element
CN104334917B (en) * 2012-07-06 2016-03-09 本田技研工业株式会社 Metal tape element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004293635A (en) 2003-03-26 2004-10-21 Nissan Motor Co Ltd Belt-type continuously variable transmission and its manufacturing method
JP2006118535A (en) 2004-10-19 2006-05-11 Honda Motor Co Ltd Belt type continuously variable transmission
JP2018008357A (en) 2016-07-15 2018-01-18 本田技研工業株式会社 Sheave surface polishing device

Also Published As

Publication number Publication date
JP2021110389A (en) 2021-08-02
CN113108033A (en) 2021-07-13
CN113108033B (en) 2023-11-21

Similar Documents

Publication Publication Date Title
US7958635B2 (en) Process for producing a pulley for a continuously variable belt drive transmission
CN102444705B (en) There is the CVT pulley on the surface of engineering design
US6629904B2 (en) Detailed description of the invention
JP7398282B2 (en) Belt type continuously variable transmission and its manufacturing method
JP2973666B2 (en) Belt-type continuously variable transmission for vehicles
KR100877034B1 (en) Driveless belts, continuous band manufacturing methods thereof and continuously variable transmissions
JP2008101747A (en) Power transmission chain and power-transmission equipment with it
WO2007072559A1 (en) Power transmission chain and power transmission device
WO2015008692A1 (en) Continuously variable transmission belt
JP2006226452A (en) Power transmission chain and power transmission device having the same
JP2004190829A (en) Chain for power transmission and power transmission equipment
JP4254298B2 (en) Belt-type continuously variable transmission and method for manufacturing the same
US8182384B2 (en) Power transmission chain and power transmission apparatus
JP4592380B2 (en) Belt type continuously variable transmission
JP7449737B2 (en) Metal belt and belt type continuously variable transmission equipped with the same
JP2007253192A (en) Method for manufacturing shaft
NL2027233B1 (en) A drive belt provided with a plurality of transverse segments and a ring stack confined in a central opening of these transverse segments
NL1043521B1 (en) A drive belt provided with a plurality of transverse segments and a ring stack that is confined in a central opening of these transverse segments
JP2008116013A (en) Cvt element
NL1043699B1 (en) A method for manufacturing a transverse segment for a drive belt
NL2027215B1 (en) A drive belt provided with a plurality of transverse segments and a ring stack confined in a central opening of these transverse segments
JP4082233B2 (en) Power transmission chain and power transmission device
JPS60238234A (en) Manufacturing method of pulley for belt driving type stepless transmission
EP1831587B1 (en) Drive belt for a continuosly variable transmission
JP2007527486A (en) Drive belt with transverse element and band set

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231204

R150 Certificate of patent or registration of utility model

Ref document number: 7398282

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150