JP6711184B2 - Chain-type continuously variable transmission - Google Patents

Chain-type continuously variable transmission Download PDF

Info

Publication number
JP6711184B2
JP6711184B2 JP2016138221A JP2016138221A JP6711184B2 JP 6711184 B2 JP6711184 B2 JP 6711184B2 JP 2016138221 A JP2016138221 A JP 2016138221A JP 2016138221 A JP2016138221 A JP 2016138221A JP 6711184 B2 JP6711184 B2 JP 6711184B2
Authority
JP
Japan
Prior art keywords
pulley
sheave
circumferential groove
fine
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016138221A
Other languages
Japanese (ja)
Other versions
JP2018009629A (en
Inventor
邦人 工藤
邦人 工藤
小林 誠
誠 小林
牛嶋 研史
研史 牛嶋
真 橋本
真 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2016138221A priority Critical patent/JP6711184B2/en
Publication of JP2018009629A publication Critical patent/JP2018009629A/en
Application granted granted Critical
Publication of JP6711184B2 publication Critical patent/JP6711184B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Transmissions By Endless Flexible Members (AREA)

Description

本発明は、無終端チェーンをV溝プーリに無段変速可能に巻き掛けして構成したチェーン式無段変速伝動機構に係わり、特に無終端チェーンとV溝プーリとの間の摩擦係数を増大させてチェーン式無段変速伝動機構の伝動効率を向上させる技術に関するものである。 The present invention relates to a chain type continuously variable transmission mechanism that is configured by winding an endless chain around a V-groove pulley so as to be continuously variable, and particularly increases a friction coefficient between the endless chain and the V-groove pulley. The present invention relates to a technique for improving the transmission efficiency of a chain type continuously variable transmission mechanism.

チェーン式無段変速伝動機構は通常、無終端チェーンをプーリのV溝に掛け渡して動力伝達可能となす一方、この動力伝達中に、プーリV溝を画成する軸線方向対向シーブの間隔を変更してプーリV溝の溝幅を変更することによりプーリに対する無終端チェーンの巻き掛け円弧径を連続的に変化させ、上記の無段変速が可能となるよう構成する。 In the chain type continuously variable transmission mechanism, an endless chain is usually hung over the V groove of the pulley to enable power transmission, and during this power transmission, the interval between the axially opposed sheaves defining the pulley V groove is changed. By changing the groove width of the pulley V groove, the diameter of the circular arc around which the endless chain is wound around the pulley is continuously changed, so that the above-described continuously variable transmission is possible.

他方で無終端チェーンは、多数のリンク板を順次、該リンク板の両端におけるリンクピン挿通孔内に挿通したリンクピンで数珠繋ぎに連結して連続円環状に構成する。
そして各リンクピンの軸線方向両端面は、プーリV溝の側壁を提供する軸線方向対向シーブの相互に対向する円錐のシーブ面と面接触するよう傾斜させ、当該リンクピンの両端傾斜面がプーリの対向シーブ面と摩擦接触することにより上記の動力伝達を可能ならしめる。
On the other hand, in the endless chain, a large number of link plates are sequentially connected by the link pins inserted into the link pin insertion holes at both ends of the link plates in a continuous ring shape.
The both axial end faces of each link pin are inclined so as to make surface contact with the conical sheave faces of the axially opposed sheaves that provide the side walls of the pulley V groove, and the inclined end faces of the link pin of the pulley are formed. The above power transmission is made possible by frictional contact with the facing sheave surface.

ところで、無終端チェーンのリンクピンがV溝プーリに巻き込まれて当該V溝プーリに進入する時、リンクピンの傾斜両端面とV溝プーリ対向シーブ面との間に介在されることとなる油膜のスクイーズ効果により、リンクピンとV溝プーリ(シーブ面)との間における摩擦係数が低下して、両者間のトラクション力(摩擦力)の低下により伝動効率が悪くなるという問題を生ずる。 By the way, when the link pin of the endless chain is wound around the V-groove pulley and enters the V-groove pulley, the oil film that will be interposed between the inclined both end surfaces of the link pin and the sheave surface facing the V-groove pulley. Due to the squeeze effect, the friction coefficient between the link pin and the V-groove pulley (sheave surface) decreases, and the traction force (friction force) between the two decreases, resulting in poor transmission efficiency.

この問題を解消するために従来、特許文献1に記載のごとく無終端チェーン(リンクピン)が摩擦接触する軸線方向対向シーブの対向シーブ面にそれぞれ、該無終端チェーン(リンクピン)の摩擦接触領域全体に亘って、円周方向へ延在する微細円周条溝を設け、
かかる微細円周条溝の存在により上記油膜の発生を減じてリンクピンおよびV溝プーリ(シーブ面)間の摩擦係数が大きくなるようにし、上記トラクション力(摩擦力)の低下(伝動効率の悪化)に係る問題を解決する技術が提案されている。
In order to solve this problem, conventionally, as described in Patent Document 1, the friction contact area of the endless chain (link pin) is respectively formed on the facing sheave surfaces of the axially opposite sheaves on which the endless chain (link pin) frictionally contacts. Provide a fine circumferential groove extending in the circumferential direction over the whole,
The presence of such fine circumferential grooves reduces the generation of the oil film to increase the coefficient of friction between the link pin and the V-groove pulley (sheave surface), thereby reducing the traction force (friction force) (decreasing the transmission efficiency). ) Has been proposed.

なお特許文献1には更に、以下の提案もなされている。
リンクピンの傾斜両端面とV溝プーリ対向シーブ面との間に存在する油膜に起因してリンクピンおよびV溝プーリ(シーブ面)間の摩擦係数が低下する前記の傾向は、V溝プーリ対向シーブ面の径方向内周側ほど顕著になることが知られている。
The following proposal is also made in Patent Document 1.
The above-mentioned tendency that the friction coefficient between the link pin and the V-groove pulley (sheave surface) is reduced due to the oil film existing between the inclined both end surfaces of the link pin and the sheave surface facing the V-groove pulley is It is known that it becomes more prominent on the radially inner side of the sheave surface.

このことから特許文献1には、シーブ面の径方向内周側における微細円周条溝の深さをシーブ面の径方向外周側における微細円周条溝の深さよりも深くし、これによりシーブ面の径方向内周側における油膜が厚くなるのを抑制してシーブ面の径方向内周側でも上記油膜の発生(上記摩擦係数の低下)を要求通りに減ずるようにした技術提案もなされている。 From this, in Patent Document 1, the depth of the fine circumferential groove on the radially inner side of the sheave surface is made deeper than the depth of the fine circumferential groove on the radially outer side of the sheave surface, whereby the sheave. A technical proposal has also been made that suppresses the increase of the thickness of the oil film on the radially inner side of the surface and reduces the occurrence of the oil film (the reduction of the friction coefficient) on the radially inner side of the sheave surface as required. There is.

特開2015−117783号公報JP, 2005-117783, A

しかし、上記した従来の提案技術のごとく微細円周条溝の深さをシーブ面の径方向内周側でシーブ面の径方向外周側よりも深くする対策では、以下の問題を避けられない。
つまり、前記の油膜軽減を実現するに際して要求される微細円周条溝の幅および深さはμmオーダーの微小なものであり、かかる微細円周条溝は例えば砥石による研磨加工等で微細加工することになることもあって、シーブ面径方向配列ピッチが極小な微細円周条溝の深さを上記の通りシーブ面の径方向内周側と外周側とで異ならせる加工は製造上のロバスト性を得難くするという別の難問を生ずる。
However, the following problems cannot be avoided by a measure such that the depth of the fine circumferential groove is deeper on the radially inner side of the sheave surface than on the radially outer side of the sheave surface as in the above-mentioned conventional technique.
That is, the width and the depth of the fine circumferential groove required for realizing the reduction of the oil film are minute in the order of μm, and the fine circumferential groove is finely processed by, for example, polishing with a grindstone. In some cases, the process of making the depth of the fine circumferential groove having the smallest arrangement pitch in the radial direction of the sheave surface different between the radially inner peripheral side and the outer peripheral side of the sheave surface is a manufacturing robustness. Another difficulty arises that it is difficult to obtain sex.

本発明は、上記ロバスト性の問題に鑑み、シーブ面に設ける微細円周条溝の深さをシーブ面の径方向内周側と外周側とで異ならせる代わりに、シーブ面の径方向におけるV溝プーリの回転軸線に同心に配置する個々に閉ループの微細円周条溝の設置密度をシーブ面の径方向内周側と外周側とで異ならせることによって、油膜が厚くなる傾向のシーブ面径方向内周側でも油膜の発生(摩擦係数の低下)を要求通りに減じ得るようにし、これによりチェーン式無段変速伝動機構の伝動効率を向上させることを目的とする。 In view of the above-mentioned problem of robustness, the present invention, instead of making the depth of the fine circumferential groove provided on the sheave surface different between the radially inner peripheral side and the outer peripheral side of the sheave surface, V in the radial direction of the sheave surface. The sheave face diameter that tends to thicken the oil film by making the installation density of the closed loop fine circumferential groove arranged individually concentrically with the rotation axis of the grooved pulley different between the radially inner side and the outer side of the sheave face. An object of the present invention is to improve the transmission efficiency of a chain type continuously variable transmission mechanism by making it possible to reduce the generation of an oil film (reduction of friction coefficient) on the inner peripheral side in the direction as required.

この目的のため、本発明によるチェーン式無段変速伝動機構は、以下のごとくにこれを構成する。
先ず、本発明の前提となるチェーン式無段変速伝動機構を説明するに、これは、
無終端チェーンと、この無終端チェーンを無段変速可能に巻き掛けしたV溝プーリとから成り、
該プーリのV溝を画成する軸線方向対向シーブの間隔を変更することにより、上記無段変速が可能なものである。
For this purpose, the chain type continuously variable transmission mechanism according to the present invention is constructed as follows.
First, the chain type continuously variable transmission mechanism which is the premise of the present invention will be described.
It consists of an endless chain and a V-groove pulley around which this endless chain is continuously variable.
The continuously variable transmission is possible by changing the interval between the axially opposed sheaves that define the V groove of the pulley.

本発明は、かかるチェーン式無段変速伝動機構において、
上記無終端チェーンが摩擦接触する上記軸線方向対向シーブの対向シーブ面にそれぞれ、該無終端チェーンの摩擦接触領域全体に亘って、円周方向へ延在するV溝プーリの回転軸線に同心に配置する個々に閉ループの微細円周条溝を設け、該微細円周条溝のうち上記シーブ面の径方向内周側における内周側微細円周条溝のプーリ径方向配列ピッチを前記シーブ面の径方向外周側における前記外周側微細円周条溝のプーリ径方向配列ピッチよりも小さくして、前記内周側微細円周条溝を上記シーブ面の径方向外周側における外周側微細円周条溝よりも高密度に配置した構成に特徴づけられる。
The present invention provides such a chain type continuously variable transmission mechanism,
Arranged concentrically with the rotation axis of the V-groove that extends in the circumferential direction over the entire frictional contact area of the endless chain on each of the opposite sheave surfaces of the axially opposite sheave with which the endless chain makes frictional contact. Each of them is provided with a closed loop fine circumferential groove, and the pulley radial direction arrangement pitch of the inner circumferential fine circumferential groove on the radially inner side of the sheave surface of the fine circumferential groove is set to the sheave surface The inner peripheral fine circular groove is made smaller than the pulley radial arrangement pitch of the outer peripheral fine circular grooves on the outer peripheral side in the radial direction, and the fine peripheral circular grooves on the outer peripheral side are formed on the outer peripheral side in the radial direction of the sheave surface. It is characterized by a configuration that is denser than the grooves.

上記した本発明のチェーン式無段変速伝動機構にあっては、無終端チェーンが摩擦接触する領域全体に亘って対向シーブ面に設ける微細円周条溝のうちシーブ面の径方向内周側における内周側微細円周条溝を、シーブ面の径方向外周側における外周側微細円周条溝よりも高密度に配置したため、
前記した理由により油膜が厚くなる傾向にあるシーブ面径方向内周側においても油膜を高密度配置の内周側微細円周条溝によって要求通りに遮断することができ、無終端チェーンと対向シーブ面との間の油膜発生を、これら両者が摩擦接触する全域に亘って要求通りに遮断し得ることとなり、油膜によるすべりが当該摩擦接触域の全体に亘り低減されるよう摩擦係数が向上し、また、無終端チェーンと対向シーブ面との間の接触面圧が相対的に高くなって、これによってもこれら両者間の摩擦係数がプーリ比の如何に関わらず全域で増大し、チェーン式無段変速伝動機構の伝動効率を向上させることができる。
In the above-mentioned chain type continuously variable transmission mechanism of the present invention, in the fine circumferential groove provided on the opposing sheave surface over the entire region where the endless chain makes frictional contact, on the radially inner side of the sheave surface. Since the inner circumferential fine circumferential groove is arranged at a higher density than the outer fine circumferential groove on the radial outer side of the sheave surface,
For the above-mentioned reason, the oil film can be blocked as required by the inner circumferential side fine circumferential groove of the high density arrangement even on the radially inner side of the sheave surface where the oil film tends to be thick, and the endless chain and the facing sheave The generation of an oil film between the surface and the surface can be blocked as required over the entire area where both of them make frictional contact, and the friction coefficient is improved so that the slip due to the oil film is reduced over the entire area of the frictional contact, In addition, the contact surface pressure between the endless chain and the facing sheave surface becomes relatively high, which also increases the friction coefficient between the two regardless of the pulley ratio, and the chain type stepless The transmission efficiency of the speed change transmission mechanism can be improved.

また、上記摩擦係数の増大により、無終端チェーンおよび対向シーブ面間の要求摩擦係数を達成するのに必要な、対向シーブ面によるチェーン挟圧力が低くてよくなり、そのためのエネルギー消費が少なくなると共にチェーン式無段変速伝動機構の耐久性を向上させることもできる。 Further, due to the increase in the friction coefficient, the chain clamping pressure by the facing sheave surfaces, which is necessary to achieve the required friction coefficient between the endless chain and the facing sheave surfaces, can be low, and the energy consumption for that is reduced. It is also possible to improve the durability of the chain type continuously variable transmission mechanism.

そして上記の効果が、シーブ面の内周側微細円周条溝を外周側微細円周条溝よりも高密度に配置することで得られるようにしたため、従来のように微細円周条溝の深さを内周側と外周側とで異ならせるという微細円周条溝の仕様変化により同じ課題を解決する場合に比べ、加工に要する時間が短いと共に費用が安価であるのに加え、製造上のロバスト性が得易くなるという効果をも達成することができる。 Since the above effect is obtained by arranging the inner circumferential side fine circumferential groove of the sheave surface at a higher density than the outer circumferential side fine circumferential groove, the fine circumferential groove of the conventional type Compared with the case where the same problem is solved by changing the specifications of the fine circumferential groove where the depth is different on the inner circumference side and the outer circumference side, the time required for processing is shorter and the cost is lower. It is also possible to achieve the effect that the robustness of is easily obtained.

本発明の着想を適用可能なチェーン式無段変速伝動機構を例示する概略側面図である。It is a schematic side view which illustrates the chain type continuously variable transmission mechanism to which the idea of this invention can be applied. 図1に示したチェーン式無段変速伝動機構のセカンダリプーリ側における巻き掛け伝動部を示す詳細側面図である。FIG. 2 is a detailed side view showing a winding transmission section on the secondary pulley side of the chain type continuously variable transmission mechanism shown in FIG. 図2に示したセカンダリプーリ側チェーン巻き掛け伝動部の詳細を示す縦断面図である。FIG. 3 is a vertical cross-sectional view showing details of a secondary pulley-side chain winding transmission section shown in FIG. 図1〜3における無終端チェーンのリンクピンを示す全体斜視図である。FIG. 4 is an overall perspective view showing a link pin of the endless chain in FIGS. 1 to 3. 本発明の第1実施例になるチェーン式無段変速伝動機構を示す、図1と同様な概略側面図である。2 is a schematic side view similar to FIG. 1, showing a chain type continuously variable transmission mechanism according to a first embodiment of the present invention. FIG. 図5に示したチェーン式無段変速伝動機構のプライマリプーリシーブおよびセカンダリプーリシーブを示す要部拡大断面図で、 (a)は、図3にαで示すシーブ面の内周側を、図5のA−A線上で断面とし、矢の方向に見て示す要部拡大断面図、 (b)は、図3にβで示すシーブ面の外周側を、図5のB−B線上で断面とし、矢の方向に見て示す要部拡大断面図である。FIG. 5 is an enlarged cross-sectional view of a main part showing the primary pulley sheave and the secondary pulley sheave of the chain type continuously variable transmission mechanism shown in FIG. 5, and (a) shows the inner peripheral side of the sheave surface indicated by α in FIG. A cross-sectional view taken along the line A-A, and an enlarged cross-sectional view of an essential part shown in the direction of the arrow, (b) shows the outer peripheral side of the sheave surface indicated by β in FIG. FIG. 3 is an enlarged cross-sectional view of a main part as seen in the direction of the arrow.

以下、本発明の実施の形態を、図面に示す実施例に基づき詳細に説明する。
<第1実施例の構成>
図1〜3は、本発明の着想を適用可能なチェーン式無段変速伝動機構を示し、
図1は、該チェーン式無段変速伝動機構10の概略側面図、図2,3はそれぞれ、そのセカンダリプーリ側における巻き掛け伝動部の詳細側面図および縦断面図である。
Hereinafter, embodiments of the present invention will be described in detail based on examples shown in the drawings.
<Structure of the first embodiment>
1 to 3 show a chain type continuously variable transmission mechanism to which the idea of the present invention can be applied,
FIG. 1 is a schematic side view of the chain type continuously variable transmission mechanism 10, and FIGS. 2 and 3 are a detailed side view and a longitudinal sectional view of a winding transmission portion on the secondary pulley side thereof, respectively.

図1において、11は、チェーン式無段変速伝動機構10の駆動側プーリであるプライマリプーリ、12は、従動側プーリであるセカンダリプーリをそれぞれ示す。
これらプライマリプーリ11およびセカンダリプーリ12間に無終端チェーン13を掛け渡して設け、チェーン式無段変速伝動機構10は、この無終端チェーン13を介しプライマリプーリ11およびセカンダリプーリ12間で動力伝達を行うものとする。
In FIG. 1, 11 is a primary pulley that is a drive side pulley of the chain type continuously variable transmission mechanism 10, and 12 is a secondary pulley that is a driven side pulley.
An endless chain 13 is provided so as to span between the primary pulley 11 and the secondary pulley 12, and the chain type continuously variable transmission mechanism 10 transmits power between the primary pulley 11 and the secondary pulley 12 via the endless chain 13. I shall.

プライマリプーリ11およびセカンダリプーリ12はそれぞれ、回転軸線方向に正対する対向シーブ11a,12a(図1では便宜上、手前側のシーブを除去して、向こう側のシーブのみを示す)を具え、これら対向シーブ11a間および対向シーブ12a間にそれぞれプーリV溝を画成したV溝プーリとする(対向シーブ12a間に画成されたプーリV溝を図3に示す)。 Each of the primary pulley 11 and the secondary pulley 12 is provided with facing sheaves 11a and 12a (in FIG. 1, the sheave on the front side is removed and only the sheave on the other side is shown for convenience), which faces each other in the rotation axis direction. Let V-grooves define pulley V-grooves between 11a and opposing sheaves 12a (the pulley V-grooves defined between opposing sheaves 12a are shown in FIG. 3).

無終端チェーン13は、図2,3に明示するごとく、多数のリンク板14を順次、その両端におけるリンクピン挿通孔14a内のリンクピン15で数珠繋ぎに連結して連続円環状に構成する。
そしてリンク板14は図3のごとく、リンクピン15に植設したリテーナピン16でリンクピン15に対して抜け止めする。
As shown in FIGS. 2 and 3, the endless chain 13 has a continuous annular shape in which a large number of link plates 14 are sequentially connected to each other by the link pins 15 in the link pin insertion holes 14a at both ends thereof.
Then, as shown in FIG. 3, the link plate 14 is retained by the retainer pin 16 planted in the link pin 15 with respect to the link pin 15.

リンクピン15は、全体を図4に示すように湾曲背面15aを有し、この湾曲背面15aが図2のごとく背中合わせになるよう一対一組として、リンク板14の両端におけるリンクピン挿通孔14a内に挿通する。
そしてリンクピン15の両端面15bはそれぞれ図3,4に示すごとく、プライマリプーリ11およびセカンダリプーリ12のプーリV溝側壁を提供する軸線方向対向シーブ11a(詳しくは、両者の対向シーブ面11b)および軸線方向対向シーブ12a(詳しくは、両者の対向シーブ面12b)と摩擦接触するよう傾斜させる。
The link pins 15 as a whole have a curved back surface 15a as shown in FIG. 4, and the curved back surfaces 15a are back-to-back as shown in FIG. 2 in a pair, and inside the link pin insertion holes 14a at both ends of the link plate 14. Insert into.
As shown in FIGS. 3 and 4, both end surfaces 15b of the link pin 15 are axially opposed sheaves 11a (specifically, both opposed sheave surfaces 11b) that provide pulley V groove side walls of the primary pulley 11 and the secondary pulley 12, respectively. Inclination is made so as to make frictional contact with the axially facing sheave 12a (specifically, the facing sheave surfaces 12b of the two).

かくて無終端チェーン13は、プーリ巻き付き領域においてリンクピン15を、プライマリプーリ11の対向シーブ11a間(対向シーブ面11b)間およびセカンダリプーリ12の対向シーブ12a間(対向シーブ面12b間)に挟圧され、プライマリプーリ11およびセカンダリプーリ12間での動力伝達を行うことができる。 Thus, in the endless chain 13, the link pin 15 is sandwiched between the opposing sheaves 11a of the primary pulley 11 (opposing sheave surfaces 11b) and between the opposing sheaves 12a of the secondary pulley 12 (between the opposing sheave surfaces 12b) in the pulley winding area. By being pressed, the power can be transmitted between the primary pulley 11 and the secondary pulley 12.

なお、プライマリプーリ11の対向シーブ11aは、その一方を固定シーブとし、他方を軸線方向にストローク制御可能な可動シーブとする。
また、セカンダリプーリ12の対向シーブ12aは、プライマリプーリ11の可動シーブと同じ側におけるシーブ(図3の左側におけるシーブ)を固定シーブとし、プライマリプーリ11の固定シーブと同じ側におけるシーブ(図3の右側におけるシーブ)を軸線方向にストローク制御可能な可動シーブとする。
One of the facing sheaves 11a of the primary pulley 11 is a fixed sheave and the other is a movable sheave whose stroke can be controlled in the axial direction.
The facing sheave 12a of the secondary pulley 12 has a sheave on the same side as the movable sheave of the primary pulley 11 (a sheave on the left side of FIG. 3) as a fixed sheave, and a sheave on the same side as the fixed sheave of the primary pulley 11 (see FIG. 3). The sheave on the right side is a movable sheave whose stroke can be controlled in the axial direction.

かくて前記の動力伝達中、プライマリプーリ11の可動シーブを固定シーブに対し接近させてプーリV溝幅を狭くすると同時に、セカンダリプーリ12の可動シーブを固定シーブから遠ざけてプーリV溝幅を広くするにつれ、
無終端チェーン13は、プライマリプーリ11に対する巻き掛け円弧径を増大されると共に、セカンダリプーリ12に対する巻き掛け円弧径を小さくされ、チェーン式無段変速伝動機構10は図1に示す最ハイ変速比選択状態に向け無段変速下にアップシフト可能である。
Thus, during the power transmission, the movable sheave of the primary pulley 11 is brought closer to the fixed sheave to narrow the pulley V groove width, and at the same time, the movable sheave of the secondary pulley 12 is moved away from the fixed sheave to widen the pulley V groove width. As
In the endless chain 13, the diameter of the winding arc around the primary pulley 11 is increased, and the diameter of the winding arc around the secondary pulley 12 is reduced, and the chain type continuously variable transmission mechanism 10 selects the highest gear ratio selection shown in FIG. It is possible to upshift under continuously variable gear shift to the state.

逆に、プライマリプーリ11の可動シーブを固定シーブから遠ざけてプーリV溝幅を広くすると同時に、セカンダリプーリ12の可動シーブを固定シーブに対し接近させてプーリV溝幅を狭くするにつれ、
無終端チェーン13は、プライマリプーリ11に対する巻き掛け円弧径を小さくされると共に、セカンダリプーリ12に対する巻き掛け円弧径を増大され、チェーン式無段変速伝動機構10は図1に示す最ハイ変速比選択状態から図示せざる最ロー変速比選択状態に向け無段変速下にダウンシフト可能である。
Conversely, as the movable sheave of the primary pulley 11 is moved away from the fixed sheave to widen the pulley V groove width, and at the same time the movable sheave of the secondary pulley 12 is moved closer to the fixed sheave to narrow the pulley V groove width,
In the endless chain 13, the diameter of the winding arc with respect to the primary pulley 11 is reduced and the diameter of the winding arc with respect to the secondary pulley 12 is increased, and the chain type continuously variable transmission mechanism 10 selects the highest gear ratio as shown in FIG. It is possible to downshift under continuously variable gear shift from the state to the unillustrated lowest gear ratio selection state.

<リンクピンおよびシーブ面間の摩擦係数増大対策>
上記したチェーン式無段変速伝動機構の伝動効率を向上させるためには、リンクピン15の傾斜両端面15bがプーリ対向シーブ11a,12a(対向シーブ面11b,12b)と摩擦接触して、無終端チェーン13を介し前記の動力伝達を行うことから、リンクピン15の傾斜両端面15bとプーリ対向シーブ11a,12a(対向シーブ面11b,12b)との間における摩擦係数を大きくすることが肝要である。
<Measures to increase friction coefficient between link pin and sheave surface>
In order to improve the transmission efficiency of the chain type continuously variable transmission mechanism described above, the inclined both end surfaces 15b of the link pin 15 are brought into frictional contact with the pulley facing sheaves 11a, 12a (opposing sheave surfaces 11b, 12b), and endless. Since the power is transmitted through the chain 13, it is important to increase the friction coefficient between the inclined both end surfaces 15b of the link pin 15 and the pulley facing sheaves 11a, 12a (opposing sheave surfaces 11b, 12b). ..

ここでリンクピン15の傾斜両端面15bとプーリ対向シーブ11a,12a(対向シーブ面11b,12b)との間における摩擦係数を考察する。
リンクピン15の傾斜両端面15bとプーリ対向シーブ11a,12a(対向シーブ面11b,12b)との間に油膜が介在せず両者が全接触している場合、これら両者間の摩擦力(摩擦係数)は、リンクピン15がプーリに巻き込まれて進入する位置と、プーリの巻き掛け領域から繰り出される位置との間の全てにおいて比較的大きな値で連続的に変化する。
Here, the friction coefficient between the inclined both end surfaces 15b of the link pin 15 and the pulley facing sheaves 11a, 12a (opposing sheave surfaces 11b, 12b) will be considered.
If there is no oil film between the inclined both end surfaces 15b of the link pin 15 and the pulley facing sheaves 11a, 12a (opposing sheave surfaces 11b, 12b) and both are in full contact, the frictional force between them (friction coefficient ) Continuously changes with a relatively large value between the position where the link pin 15 is wound around the pulley and enters and the position where the link pin 15 is paid out from the winding region of the pulley.

しかし、チェーン式無段変速伝動機構10はプライマリプーリ11およびセカンダリプーリ12と、無終端チェーン13との間における伝動部を潤滑する必要があり、リンクピン15の傾斜両端面15bとプーリ対向シーブ11a,12a(対向シーブ面11b,12b)との間には油膜が介在する。 However, the chain type continuously variable transmission mechanism 10 needs to lubricate the transmission part between the primary pulley 11 and the secondary pulley 12 and the endless chain 13, and the inclined both end surfaces 15b of the link pin 15 and the pulley facing sheave 11a. , 12a (opposing sheave surfaces 11b, 12b) have an oil film interposed therebetween.

従って、リンクピン15の傾斜両端面15bとプーリ対向シーブ11a,12a(対向シーブ面11b,12b)とが全接触することはなく、リンクピン15の傾斜両端面15bとプーリ対向シーブ11a,12a(対向シーブ面11b,12b)との間における摩擦力(摩擦係数)は、全接触時の摩擦力(摩擦係数)よりも、全域において油膜の介在により小さくなる。
そのため、リンクピン15の傾斜両端面15bとプーリ対向シーブ11a,12a(対向シーブ面11b,12b)との間にスリップを生じ易く、チェーン式無段変速伝動機構の伝動効率を悪化させるという問題が発生する。
Therefore, the inclined both end surfaces 15b of the link pin 15 and the pulley opposing sheaves 11a, 12a (opposing sheave surfaces 11b, 12b) do not make full contact, and the inclined both end surfaces 15b of the link pin 15 and the pulley opposing sheaves 11a, 12a ( The frictional force (friction coefficient) between the opposing sheave surfaces 11b and 12b) becomes smaller than the frictional force (friction coefficient) at the time of full contact due to the interposition of the oil film.
Therefore, there is a problem that slippage is likely to occur between the inclined both end surfaces 15b of the link pin 15 and the pulley opposing sheaves 11a, 12a (opposing sheave surfaces 11b, 12b), and the transmission efficiency of the chain type continuously variable transmission mechanism is deteriorated. appear.

この問題は、プーリ11,12に対する無終端チェーン13の巻き掛け円弧径が小さい領域において、つまり大プーリ比(ロー側プーリ比)で行われるコースティング(惰性)走行時であれば、リンクピン15の傾斜両端面15bと、プライマリプーリシーブ11a(シーブ面11b)の径方向内周側(以下、単に内周側と言う)との接触領域において顕著に表れ、また、小プーリ比(ハイ側プーリ比)で行われるドライブ(駆動)走行時であれば、リンクピン15の傾斜両端面15bと、セカンダリプーリシーブ12a(シーブ面12b)の内周側との接触領域において顕著に表れる。 This problem is caused by link pin 15 when coasting (inertia) traveling is performed in a region where the winding arc diameter of endless chain 13 with respect to pulleys 11 and 12 is small, that is, at a large pulley ratio (low side pulley ratio). Of the primary pulley sheave 11a (sheave surface 11b) on the radially inner side (hereinafter simply referred to as the inner side) of the primary pulley sheave 11a, and the small pulley ratio (high side pulley). When the driving is performed at a ratio of (2), the inclined end surfaces 15b of the link pin 15 and the inner peripheral side of the secondary pulley sheave 12a (sheave surface 12b) are significantly visible in the contact area.

以下のその理由を説明する。
プライマリプーリシーブ11aのシーブ面内周側およびセカンダリプーリシーブ12aのシーブ面内周側では、無終端チェーン13の巻付き半径が小さくて、シーブ面11b,12bに対するチェーン接触長(V溝プーリに対するチェーン巻き付き長)が短いと共に無終端チェーン13の周速度が高速であることから、シーブ面11b,12bの内周側とリンクピン15の傾斜両端面15bとの間における油膜収容可能量が少なく、シーブ面11bおよび12bによる無終端チェーン13(リンクピン15)の挟圧力が同じ条件下において、シーブ面11b,12bの内周側における油膜がシーブ面11b,12bの径方向外周側(以下、単に外周側と言う)に比べて厚くなる傾向にある。
The reason will be described below.
At the inner peripheral side of the sheave surface of the primary pulley sheave 11a and the inner peripheral side of the sheave surface of the secondary pulley sheave 12a, the winding radius of the endless chain 13 is small, and the chain contact length with respect to the sheave surfaces 11b and 12b (the chain relative to the V-groove pulley is Since the winding length) is short and the peripheral speed of the endless chain 13 is high, the amount of oil film that can be accommodated between the inner peripheral side of the sheave surfaces 11b, 12b and the inclined end surfaces 15b of the link pin 15 is small, and the sheave is small. Under the condition that the clamping force of the endless chain 13 (link pin 15) by the surfaces 11b and 12b is the same, the oil film on the inner peripheral side of the sheave surfaces 11b, 12b becomes the outer peripheral side in the radial direction of the sheave surfaces 11b, 12b (hereinafter simply referred to as the outer periphery). It is thicker than the side).

その反面シーブ面11b,12bの外周側では、チェーン巻付き半径が大きくてシーブ面11b,12bに対するチェーン接触長(V溝プーリ11,12に対するチェーン巻き付き長)が長いことを主たる原因として、シーブ面11b,12bの外周側とリンクピン15の傾斜両端面15bとの間における油膜収容可能量が多く、シーブ面11b,12bの外周側における油膜がシーブ面11b,12bの内周側に比べて薄くなる傾向にある。 On the other hand, on the outer peripheral side of the sheave surfaces 11b and 12b, the sheave surface is mainly caused by a large chain winding radius and a long chain contact length with the sheave surfaces 11b and 12b (chain winding length with respect to the V-groove pulleys 11 and 12). A large amount of oil film can be stored between the outer peripheral side of 11b, 12b and the inclined end surfaces 15b of the link pin 15, and the oil film on the outer peripheral side of the sheave surfaces 11b, 12b is thinner than the inner peripheral side of the sheave surfaces 11b, 12b. Tends to become.

これらの理由によって、リンクピン15およびV溝プーリ11,12(シーブ面11b,12b)間における摩擦係数の低下傾向はシーブ面11b,12bの内周側ほど顕著になる。 For these reasons, the decreasing tendency of the friction coefficient between the link pin 15 and the V-groove pulleys 11 and 12 (the sheave surfaces 11b and 12b) becomes more prominent toward the inner peripheral side of the sheave surfaces 11b and 12b.

以上の事実に鑑み本発明の第1実施例では、以下のようにしてリンクピン15の傾斜両端面15bとプーリ対向シーブ11a,12a(シーブ面11b,12b)との間に介在する油膜をシーブ面11b,12bの全トラクション伝動領域に亘り要求通りに遮断可能となし、これによりリンクピン傾斜両端面15bとプーリ対向シーブ11a,12a(シーブ面11b,12b)との間における摩擦係数をシーブ面11b,12bの全トラクション伝動領域で要求通りに大きくして、チェーン式無段変速伝動機構の伝動効率を向上させる。 In view of the above facts, in the first embodiment of the present invention, the oil film interposed between the inclined both end surfaces 15b of the link pin 15 and the pulley facing sheaves 11a, 12a (the sheave surfaces 11b, 12b) is provided as follows. It is possible to cut off as much as required over the entire traction transmission area of the surfaces 11b, 12b, so that the coefficient of friction between the link pin inclined both end surfaces 15b and the pulley facing sheaves 11a, 12a (sheave surfaces 11b, 12b) can be determined. The transmission efficiency of the chain type continuously variable transmission is improved by enlarging it as required in the entire traction transmission area of 11b and 12b.

つまり本実施例においては、V溝プーリ対向シーブ11a,12a(シーブ面11b,12b)の内周側および外周側に関する上記した油膜発生状況に鑑み、図5に示すごとくV溝プーリ対向シーブ11a,12aのシーブ面11b,12bにそれぞれ、無終端チェーン13(リンクピン両端傾斜面15b)が摩擦接触する領域の全体に亘って、プーリ円周方向に延在する微細円周条溝21を設けるが、この微細円周条溝21を特に以下のように構成・配置する。
なお図5に示す無終端チェーン13の巻き掛け状態は、図3のそれと同じく、プライマリプーリ11およびセカンダリプーリ12に対する無終端チェーン13の巻き掛け円弧径が同じになるプーリ比1のチェーン巻き掛け状態である。
That is, in the present embodiment, in view of the above-described oil film generation situation on the inner peripheral side and the outer peripheral side of the V-groove pulley facing sheaves 11a, 12a (sheave surfaces 11b, 12b), as shown in FIG. Fine sheave grooves 21 extending in the pulley circumferential direction are provided on the sheave surfaces 11b and 12b of 12a, respectively, over the entire region in which the endless chain 13 (link pin end inclined surfaces 15b) frictionally contacts. The fine circumferential groove 21 is particularly constructed and arranged as follows.
The winding state of the endless chain 13 shown in FIG. 5 is the same as that of FIG. 3, in which the endless chain 13 is wound around the primary pulley 11 and the secondary pulley 12 with the same circular arc diameter. Is.

これら微細円周条溝21を本実施例では個々に閉ループの円形微細円周条溝とし、これら円形微細円周条溝21をリンクピン15の移動方向に沿うよう延在させるべく、好ましくは、プライマリプーリ11およびセカンダリプーリ12の軸心Opに同心の真円条溝とする。
これら円形微細円周条溝(真円条溝)21は全て、図3のα領域であるシーブ面11b,12bの内周側のものを図5のA−A断面として図6(a)に明示し、図3のβ領域であるシーブ面11b,12bの外周側のものを図5のB−B断面として図6(b)に明示するように、幅Wおよび深さDが同じ同仕様のものとする。
In the present embodiment, these fine circumferential groove 21 are individually closed loop circular fine circumferential grooves, and in order to extend these circular fine circumferential groove 21 along the moving direction of the link pin 15, preferably, A true circular groove concentric with the axial center Op of the primary pulley 11 and the secondary pulley 12.
All of these circular fine circumferential groove (true circular groove) 21 is the inner peripheral side of the sheave surfaces 11b, 12b, which is the α region in FIG. 3, as a cross section taken along the line AA in FIG. As shown in FIG. 6(b), the outer peripheral side of the sheave surfaces 11b, 12b, which is the β region of FIG. 3, is clearly shown in FIG. 6(b) as the BB cross section of FIG. It is assumed that

しかしこれら円形微細円周条溝(真円条溝)21は、プーリ11,12の径方向において相互に隣り合う円形微細円周条溝21の間隔(プーリ径方向ピッチ)が図6(a),(b)に示すごとく、シーブ面11b,12bの内周側αと外周側βとで異なるよう、つまりシーブ面11b,12bの内周側αにおける円形微細円周条溝21のプーリ径方向ピッチPinがシーブ面11b,12bの外周側βにおける円形微細円周条溝21のプーリ径方向ピッチPoutよりも小さくなるよう配設して、円形微細円周条溝21を内周側αにおいて外周側βにおけるよりも高密度に配置する。
なお円形微細円周条溝(真円条溝)21は、その設置要求に鑑みて幅Wおよび深さDが例えばμmオーダーの微小なものとし、砥石による研磨加工等により刻設することができる。
However, in the circular fine circular groove (true circular groove) 21, the interval (pulley radial pitch) between the circular fine circular grooves 21 adjacent to each other in the radial direction of the pulleys 11 and 12 is shown in FIG. 6(a). , (b), the inner peripheral side α of the sheave surfaces 11b, 12b and the outer peripheral side β are different, that is, the pulley radial direction of the circular fine circumferential groove 21 on the inner peripheral side α of the sheave surfaces 11b, 12b. The pitch Pin is arranged so as to be smaller than the pulley radial pitch Pout of the circular fine circular groove 21 on the outer peripheral side β of the sheave surfaces 11b, 12b, and the circular fine circular groove 21 is formed on the inner peripheral side α. Place more densely than on side β.
The circular fine circumferential groove (true circular groove) 21 has a width W and a depth D of, for example, a micrometer order in consideration of the installation requirements, and can be engraved by grinding with a grindstone or the like. ..

ここで、シーブ面11b,12bの内周側αにおける円形微細円周条溝21のプーリ径方向ピッチPin(径方向配列密度)、および内周側αにおける円形微細円周条溝21のプーリ径方向ピッチPin(径方向配列密度)、および外周側βにおける円形微細円周条溝21のプーリ径方向ピッチPout(外周側径方向配列密度)はそれぞれ、シーブ面11b,12bの内周側αおよび外周側βでの前記した油膜の排除に関する要求度合い(摩擦係数増大要求度合い)に応じ、当該要求が実現されるよう決定する。 Here, the pulley radial pitch Pin (radial array density) of the circular fine circumferential groove 21 on the inner peripheral side α of the sheave surfaces 11b, 12b, and the pulley diameter of the circular fine circular circumferential groove 21 on the inner peripheral side α The direction pitch Pin (radial array density) and the pulley radial pitch Pout (outer peripheral radial array density) of the circular fine circumferential groove 21 on the outer peripheral side β are respectively the inner peripheral side α and the sheave surfaces 11b and 12b. According to the degree of demand for the removal of the oil film on the outer peripheral side β (friction coefficient increase demand degree), it is determined that the demand is fulfilled.

そして、内周側αおよび外周側βの間における円形微細円周条溝21のプーリ径方向ピッチは、内周側ピッチPin(内周側径方向配列密度)と外周側ピッチPout(外周側径方向配列密度)との中間的な値とし、この中間的な値もシーブ面11b,12bの内周側αおよび外周側β間の領域での油膜の排除に関する要求度合い(摩擦係数増大要求度合い)に応じ、当該要求が実現されるよう決定する。 The pulley radial direction pitch of the circular fine circumferential groove 21 between the inner peripheral side α and the outer peripheral side β is the inner peripheral side pitch Pin (inner peripheral side radial array density) and the outer peripheral side pitch Pout (outer peripheral side diameter). Directional arrangement density), and this intermediate value is also the degree of demand for removal of the oil film in the region between the inner peripheral side α and the outer peripheral side β of the sheave surfaces 11b, 12b (friction coefficient increase demand degree) According to, the request is decided to be realized.

なお上記では円形微細円周条溝21のプーリ径方向ピッチを、内周側領域αと、外周側領域βと、これらの間の中間領域とで異ならせる場合について説明したが、油膜の排除に関する要求度合い(摩擦係数増大要求度合い)が外周側βで小さく、内周側αへ向かうにつれて大きくなること前述の通りであるため、
円形微細円周条溝21のプーリ径方向ピッチを決定するに際しては、円形微細円周条溝21のうちの最内周側微細円周条溝から最外周側微細円周条溝へ向かうにつれ、円形微細円周条溝21のプーリ径方向ピッチを徐々に大きくするのが良いのは言うまでもない。
In the above description, the pulley radial pitch of the circular fine circumferential groove 21 is different between the inner peripheral side region α, the outer peripheral side region β, and the intermediate region between them. The degree of demand (degree of demand for increasing the friction coefficient) is small on the outer peripheral side β and increases as it goes to the inner peripheral side α.
When determining the pulley radial pitch of the circular fine circumferential groove 21, as going from the innermost circumferential fine circumferential groove to the outermost fine circumferential groove of the circular fine circumferential groove 21, Needless to say, it is good to gradually increase the pulley radial pitch of the circular fine circumferential groove 21.

この場合、円形微細円周条溝21の最内周側のものから最外周側微のものまで、全ての円形微細円周条溝21がそれぞれ、前記した油膜の排除に関する要求度合い(摩擦係数増大要求度合い)を過不足なく実現し得ることとなり、無駄な円形微細円周条溝21を設けることなく、効率的にチェーン式無段変速伝動機構の伝動効率を高めることができる。 In this case, from the innermost peripheral side groove to the outermost peripheral side fine circular fine circumferential groove 21, all of the circular fine circular groove 21 are required for the removal of the oil film described above (increased friction coefficient). Therefore, the transmission efficiency of the chain type continuously variable transmission mechanism can be efficiently increased without providing a wasteful circular fine circumferential groove 21.

<第1実施例の効果>
上記した第1実施例の構成によれば、プーリ軸線方向対向シーブ11a,12aのシーブ面11b,12bに、無終端チェーン13(リンクピン15の両端傾斜面15b)が摩擦接触する全領域に亘って円形微細円周条溝21を設け、これら円形微細円周条溝21のうち内周側微細円周条溝のプーリ径方向ピッチPinを外周側微細円周条溝のプーリ径方向ピッチPoutよりも 小さくして、内周側微細円周条溝を外周側微細円周条溝よりも高密度に配置したたため、
前記した通り油膜が厚くなる傾向にあるシーブ面内周側においても油膜を高密度配置の内周側微細円周条溝によって要求通りに遮断することができる。
<Effect of the first embodiment>
According to the configuration of the above-described first embodiment, the sheave surfaces 11b and 12b of the sheaves 11a and 12a that face each other in the axial direction of the pulley are covered over the entire area in which the endless chain 13 (the inclined surfaces 15b at both ends of the link pin 15) frictionally contacts. The circular fine circular groove 21 is provided with a circle, and the pulley radial pitch Pin of the inner fine circular groove of these circular fine groove 21 is defined as the pulley radial pitch Pout of the outer fine circular groove. Since the inner circumferential side fine circumferential groove is arranged at a higher density than the outer circumferential side fine circumferential groove,
As described above, even on the inner peripheral side of the sheave surface where the oil film tends to be thick, the oil film can be blocked as required by the inner peripheral side fine circumferential groove of the high density arrangement.

よって、無終端チェーン13と対向シーブ面11b,12bとの間の油膜発生を、これら両者が摩擦接触する全域に亘って要求通りに遮断し得ることとなり、油膜によるすべりが当該摩擦接触域の全体に亘り低減されるよう摩擦係数が向上し、また、無終端チェーン13と対向シーブ面11b,12bとの間の接触面圧が相対的に高くなって、これによってもこれら両者間の摩擦係数がプーリ比の如何に関わらず全域で増大し、チェーン式無段変速伝動機構の伝動効率を向上させることができる。 Therefore, the oil film generated between the endless chain 13 and the facing sheave surfaces 11b, 12b can be blocked as required over the entire area in which both of them make frictional contact, and the slip due to the oil film causes the entire frictional contact area. The friction coefficient is improved so as to be reduced over a period of time, and the contact surface pressure between the endless chain 13 and the facing sheave surfaces 11b, 12b is relatively increased. It can be increased over the entire range regardless of the pulley ratio, and the transmission efficiency of the chain type continuously variable transmission mechanism can be improved.

また、上記摩擦係数の増大により、無終端チェーン13および対向シーブ面11b,12b間の要求摩擦係数を達成するのに必要な、対向シーブ面11b,12bによるチェーン挟圧力が低くてよくなり、そのためのエネルギー消費が少なくなると共にチェーン式無段変速伝動機構の耐久性を向上させることもできる。 Further, due to the increase in the friction coefficient, the chain clamping force by the facing sheave surfaces 11b, 12b, which is necessary to achieve the required friction coefficient between the endless chain 13 and the facing sheave surfaces 11b, 12b, may be low. The energy consumption of the chain type can be reduced and the durability of the chain type continuously variable transmission can be improved.

そして上記の効果が、シーブ面11b,12bの内周側微細円周条溝を外周側微細円周条溝よりも高密度に配置することで得られるようにしたため、従来のように微細円周条溝の深さを内周側と外周側とで異ならせるという微細円周条溝の仕様変化により同じ課題を解決する場合に比べ、加工に要する時間が短いと共に費用が安価であるのに加え、製造上のロバスト性が得易くなるという効果をも達成することができる。 Since the above effect can be obtained by arranging the inner circumferential side fine circumferential groove of the sheave surfaces 11b, 12b at a higher density than that of the outer circumferential side fine circumferential groove, the fine circumferential circumference as in the conventional case is obtained. Compared to the case where the same problem is solved by changing the specifications of the fine circumferential groove where the depth of the groove is different between the inner circumference side and the outer circumference side, the processing time is shorter and the cost is lower. In addition, it is possible to achieve the effect that manufacturing robustness is easily obtained.

更に本実施例において前記した通り、円形微細円周条溝21のプーリ径方向ピッチを決定するに際して、円形微細円周条溝21のうちの最内周側微細円周条溝から最外周側微細円周条溝へ向かうにつれ、円形微細円周条溝21のプーリ径方向ピッチが徐々に大きくなるよう円形微細円周条溝21のプーリ径方向ピッチを連続的に変化させる場合、
円形微細円周条溝21の最内周側のものから最外周側のものまで、全ての円形微細円周条溝21がそれぞれ、前記した油膜の排除に関する要求度合い(摩擦係数増大要求度合い)を過不足なく実現し得ることによって、無駄な円形微細円周条溝21を設けることなく、効率的にチェーン式無段変速伝動機構の伝動効率を高めることができる。
Further, as described above in this embodiment, when determining the pulley radial pitch of the circular fine circumferential groove 21, the innermost fine groove of the circular fine groove 21 to the outermost fine groove of the circular fine groove 21 are determined. In the case where the pulley radial pitch of the circular fine circumferential groove 21 is continuously changed so that the radial pitch of the circular fine circular groove 21 gradually increases toward the circumferential groove,
From the innermost peripheral side to the outermost peripheral side of the circular fine circumferential groove 21, all of the circular fine circular grooves 21 have the above-mentioned degree of demand regarding the elimination of the oil film (degree of increase in friction coefficient). Since it can be realized without excess or deficiency, it is possible to efficiently increase the transmission efficiency of the chain type continuously variable transmission mechanism without providing wasteful circular fine circumferential groove 21.

<第2実施例>
図示しなかったが本発明においては、無終端チェーン13(リンクピン両端傾斜面15b)が接する全領域においてシーブ面11b,12bに設ける微細円周条溝21を前記した第1実施例のごとき円形(真円)に形成する代わりに、1本の連続した螺旋状に形成することができる。
<Second embodiment>
Although not shown, in the present invention, the fine circumferential groove 21 provided on the sheave surfaces 11b, 12b in the entire region where the endless chain 13 (link pin both end inclined surfaces 15b) contacts is circular as in the first embodiment. Instead of forming into a (perfect circle), it can be formed into one continuous spiral.

つまり本実施例では(以下便宜上、第1実施例に対応する部分を同符号付きで説明する)、前記内周側αにおける微細円周条溝のうちの最内周側微細円周条溝から、前記外周側βにおける微細円周条溝のうちの最外周側微細円周条溝まで螺旋状に延在する1本の連続した螺旋状微細円周条溝21をシーブ面11b,12bの無終端チェーン接触領域全体に亘って設け、この螺旋状微細円周条溝21をV溝プーリ11,12の回転軸線Opに同心に配置する。 That is, in the present embodiment (for convenience, the portions corresponding to those in the first embodiment will be described with the same reference numerals), from the innermost circumferential side fine circumferential groove among the fine circumferential groove on the inner circumferential side α. , One continuous spiral fine circumferential groove 21 extending spirally to the outermost fine circumferential groove of the fine circumferential groove on the outer peripheral side β is provided on the sheave surfaces 11b, 12b. The spiral fine circumferential groove 21 is provided over the entire end chain contact region, and is arranged concentrically with the rotation axis Op of the V-groove pulleys 11 and 12.

そして、上記螺旋状微細円周条溝21のプーリ径方向配列ピッチを、プーリ径方向内周側からプーリ径方向外周側へ向かうにつれ徐々に大きくするか、若しくは内周側領域αと、外周側領域βと、これらの中間領域との間で第1実施例と同様の考え方に基づき異ならせることにより、内周側微細円周条溝を外周側微細円周条溝よりも高密度に配置する。
かかる螺旋状微細円周条溝21の加工に際しては、そのプーリ径方向最内周側における線輪部分から加工を開始し、プーリ径方向最外周側における線輪部分へと加工を進めて、当該螺旋状微細円周条溝21を形成する。
The pitch of the spiral fine circumferential groove 21 in the pulley radial direction is gradually increased from the inner side of the pulley radial direction toward the outer side of the pulley radial direction, or the inner peripheral side region α and the outer peripheral side are arranged. By making the region β and these intermediate regions different from each other based on the same idea as in the first embodiment, the inner circumferential side fine circumferential groove is arranged at a higher density than the outer circumferential side fine circumferential groove. ..
When processing the spiral fine circumferential groove 21, the processing is started from the wire ring portion on the innermost peripheral side in the pulley radial direction, and the processing is advanced to the wire ring portion on the outermost peripheral side in the pulley radial direction. A spiral fine circumferential groove 21 is formed.

<第2実施例の効果>
本実施例においても、プーリ軸線方向対向シーブ11a,12aのシーブ面11b,12bに、無終端チェーン13(リンクピン15の両端傾斜面15b)が摩擦接触する全領域に亘って螺旋状微細円周条溝21を設け、当該螺旋状微細円周条溝21のプーリ径方向配列ピッチをシーブ面11,12bの内周側で外周側よりも小さくして、内周側微細円周条溝を外周側微細円周条溝よりも高密度に配置したため、
第1実施例につき前記した通り油膜が厚くなる傾向にあるシーブ面内周側においても、油膜を高密度配置の内周側微細円周条溝によって要求通りに遮断することができ、第1実施例と同様な諸々の効果を達成することができる。
<Effects of the second embodiment>
Also in this embodiment, the spiral fine circumference is provided over the entire area where the endless chain 13 (both end inclined surfaces 15b of the link pin 15) frictionally contacts the sheave surfaces 11b, 12b of the sheaves 11a, 12a facing the pulley axial direction. A groove 21 is provided, and the arrangement pitch of the spiral fine circumferential groove 21 in the radial direction of the pulley is made smaller on the inner peripheral side of the sheave surfaces 11, 12b than on the outer peripheral side, and the inner peripheral fine circular groove is formed on the outer periphery. Since it is arranged at a higher density than the side fine circumferential groove,
As described above for the first embodiment, even on the inner peripheral side of the sheave surface where the oil film tends to be thick, the oil film can be blocked as required by the inner peripheral side fine circumferential groove of the high density arrangement. Various effects similar to the example can be achieved.

更に本実施例において螺旋状微細円周条溝21のプーリ径方向ピッチを決定するに際し、前記した通り螺旋状微細円周条溝21のプーリ径方向配列ピッチが、プーリ径方向内周側からプーリ径方向外周側へ向かうにつれ徐々に大きくなるよう螺旋状微細円周条溝21のプーリ径方向ピッチを連続的に変化させる場合、
螺旋状微細円周条溝21の最内周側線輪部分から最外周側線輪部分まで、螺旋状微細円周条溝21の全ての線輪部分がそれぞれ、第1実施例につき前述した油膜の排除に関する要求度合い(摩擦係数増大要求度合い)を過不足なく実現し得ることによって、螺旋状微細円周条溝21に無駄な線輪部分が存在しないこととなり、効率的にチェーン式無段変速伝動機構の伝動効率を高めることができる。
Further, in determining the pulley radial pitch of the spiral fine circumferential groove 21 in this embodiment, as described above, the pitch of the spiral fine circumferential groove 21 in the pulley radial direction is set from the inner radial side of the pulley to the pulley radial direction. When continuously changing the pulley radial pitch of the spiral fine circumferential groove 21 so as to gradually increase toward the outer peripheral side in the radial direction,
From the innermost-circumferential-side wheel portion of the spiral fine circumferential groove 21 to the outermost-circumferential-side wheel portion, all the wheel portions of the helical fine circumferential-groove 21 are respectively excluded from the oil film described in the first embodiment. By satisfying the degree of demand (requirement degree of increasing the friction coefficient) with respect to the spiral fine circumferential groove 21, there will be no unnecessary wire ring portion, and the chain type continuously variable transmission mechanism can be efficiently used. The transmission efficiency of can be improved.

そして螺旋状微細円周条溝21の加工に際し、そのプーリ径方向最内周側における線輪部分から加工を開始し、プーリ径方向最外周側における線輪部分へと加工を進めて、当該螺旋状微細円周条溝21を形成するため、
螺旋状微細円周条溝21のプーリ径方向内周側における線輪部分が形状およびプーリ径方向配列ピッチに関し高い精度を要求されると雖も、この高い要求精度を比較的容易に実現し得て、当該内周側線輪部分の油膜収容可能量に関するロバスト性を確保し易い。
When the spiral fine circumferential groove 21 is processed, the processing is started from the wire ring portion on the innermost peripheral side in the pulley radial direction, and the processing is advanced to the wire ring portion on the outermost peripheral side in the pulley radial direction. To form the fine circular circumferential groove 21,
If the wire ring portion of the spiral fine circumferential groove 21 on the inner diameter side of the pulley in the radial direction of the pulley is required to have high accuracy with respect to the shape and the arrangement pitch of the pulley in the radial direction, the 雖 can also achieve this high accuracy relatively easily. Thus, it is easy to ensure robustness regarding the oil film accommodable amount of the inner peripheral side wheel portion.

<その他の実施例>
なお上記した両実施例においては、微細円周条溝21をプーリシーブ11a,12aに同心の真円条溝(第1実施例)または螺旋条溝(第2実施例)としたが、これに限られるものでなく、微細円周条溝21はプーリ円周方向へ延在するものであれば前記の作用効果を同様に奏することができる。
<Other Examples>
In both of the embodiments described above, the fine circumferential groove 21 is a true circular groove (first embodiment) or a spiral groove (second embodiment) concentric with the pulley sheaves 11a and 12a. However, if the fine circumferential groove 21 extends in the circumferential direction of the pulley, the above-described effects can be obtained in the same manner.

10 チェーン式無段変速伝動機構
11 プライマリプーリ
11a プライマリプーリシーブ
11b 対向シーブ面
12 セカンダリプーリ
12a セカンダリプーリシーブ
12b 対向シーブ面
13 無終端チェーン
14 リンク板
15 リンクピン
15b 両端傾斜面
21 微細円周条溝
10 chain type continuously variable transmission
11 Primary pulley
11a Primary pulley sheave
11b Opposing sheave surface
12 Secondary pulley
12a Secondary pulley sheave
12b Opposing sheave surface
13 endless chain
14 Link board
15 link pin
15b Both ends inclined surface
21 Fine circumferential groove

Claims (2)

無終端チェーンと、この無終端チェーンを無段変速可能に巻き掛けしたV溝プーリとから成り、
該プーリのV溝を画成する軸線方向対向シーブの間隔を変更することにより、前記無段変速が可能なチェーン式無段変速伝動機構において、
前記無終端チェーンが摩擦接触する前記軸線方向対向シーブの対向シーブ面にそれぞれ、該無終端チェーンの摩擦接触領域全体に亘って、前記V溝プーリの回転軸線に同心に配置する個々に閉ループの微細円周条溝を設け、該微細円周条溝のうち前記シーブ面の径方向内周側における内周側微細円周条溝のプーリ径方向配列ピッチを前記シーブ面の径方向外周側における前記外周側微細円周条溝のプーリ径方向配列ピッチよりも小さくして、前記内周側微細円周条溝を前記外周側微細円周条溝よりも高密度に配置したことを特徴とするチェーン式無段変速伝動機構。
It consists of an endless chain and a V-groove pulley around which this endless chain is continuously variable.
In the chain type continuously variable transmission mechanism capable of continuously variable transmission by changing the interval between the axially opposed sheaves defining the V groove of the pulley,
Each of the opposed sheave surfaces of the axially opposed sheaves with which the endless chain makes frictional contact is arranged in concentric with the rotation axis of the V-groove pulley over the entire frictional contact area of the endless chain. A circumferential groove is provided, and a pulley radial direction arrangement pitch of the inner circumferential side fine circumferential groove on the radially inner side of the sheave surface of the fine circumferential groove is set on the radial outer side of the sheave surface. A chain characterized in that the inner peripheral fine circumferential groove is arranged at a higher density than the outer peripheral fine circumferential groove by making the outer peripheral fine circumferential groove smaller than the pulley radial array pitch. Type continuously variable transmission mechanism.
請求項1に記載されたチェーン式無段変速伝動機構において、
前記内周側微細円周条溝のうちの最内周側微細円周条溝から、前記外周側微細円周条溝のうちの最外周側微細円周条溝へ向かうにつれ、前記微細円周条溝のプーリ径方向配列ピッチを徐々に大きくしたものであることを特徴とするチェーン式無段変速伝動機構。
The chain type continuously variable transmission mechanism according to claim 1,
From the innermost circumferential fine circumferential groove of the inner circumferential fine circumferential groove to the outermost fine circumferential groove of the outer circumferential fine circumferential groove, the fine circumference A chain type continuously variable transmission, characterized in that the pitch of the grooves in the radial direction of the pulley is gradually increased .
JP2016138221A 2016-07-13 2016-07-13 Chain-type continuously variable transmission Active JP6711184B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016138221A JP6711184B2 (en) 2016-07-13 2016-07-13 Chain-type continuously variable transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016138221A JP6711184B2 (en) 2016-07-13 2016-07-13 Chain-type continuously variable transmission

Publications (2)

Publication Number Publication Date
JP2018009629A JP2018009629A (en) 2018-01-18
JP6711184B2 true JP6711184B2 (en) 2020-06-17

Family

ID=60994242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016138221A Active JP6711184B2 (en) 2016-07-13 2016-07-13 Chain-type continuously variable transmission

Country Status (1)

Country Link
JP (1) JP6711184B2 (en)

Also Published As

Publication number Publication date
JP2018009629A (en) 2018-01-18

Similar Documents

Publication Publication Date Title
JP4641319B2 (en) Belt for continuously variable transmission
KR100267820B1 (en) Belt for continously variable transmission
JP4667342B2 (en) Endless belt for power transmission
WO2017200057A1 (en) Transmission belt
US11280385B2 (en) Transfer belt
US7169072B2 (en) Metal push belt and oil specification related thereto
JP2012251578A (en) Chain type stepless variable speed transmission mechanism
JP6711184B2 (en) Chain-type continuously variable transmission
JP2008101747A (en) Power transmission chain and power-transmission equipment with it
JP4887302B2 (en) Transmission with convex pulley sheave and drive belt
JP5430532B2 (en) Continuously variable transmission mechanism
JP6322992B2 (en) Manufacturing method of chain type continuously variable transmission mechanism
EP2516888A1 (en) Drive belt and transverse element for a drive belt
JP2005042803A (en) Endless metal belt assembling method
JP2008544165A (en) Drive belt for continuously variable transmission and method for producing transverse element for such drive belt
JP7449737B2 (en) Metal belt and belt type continuously variable transmission equipped with the same
JP3743902B2 (en) Belt drive system
NL2027215B1 (en) A drive belt provided with a plurality of transverse segments and a ring stack confined in a central opening of these transverse segments
JP2005264990A (en) Belt type continuously variable transmission, belt type continuously variable transmission sheave, and vehicle equipped with the belt type continuously variable transmission
CN113090723B (en) Continuously variable transmission
JP2009204013A (en) Pulley for continuously variable transmission
JP2011069414A (en) Power transmission chain and power transmission device
KR20120101562A (en) Drive belt for a transmission with convex pulley sheaves
JP2001208139A (en) Endless transmission element of continuously variable transmission
JP2006226401A (en) Power transmission chain and power transmission apparatus using it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200310

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200428

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200511

R151 Written notification of patent or utility model registration

Ref document number: 6711184

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151