JP5430532B2 - Continuously variable transmission mechanism - Google Patents

Continuously variable transmission mechanism Download PDF

Info

Publication number
JP5430532B2
JP5430532B2 JP2010231180A JP2010231180A JP5430532B2 JP 5430532 B2 JP5430532 B2 JP 5430532B2 JP 2010231180 A JP2010231180 A JP 2010231180A JP 2010231180 A JP2010231180 A JP 2010231180A JP 5430532 B2 JP5430532 B2 JP 5430532B2
Authority
JP
Japan
Prior art keywords
movable
pulley
tooth
radial
movable tooth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010231180A
Other languages
Japanese (ja)
Other versions
JP2012082928A (en
Inventor
將志 吉野
義輝 金山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
JATCO Ltd
Original Assignee
Nissan Motor Co Ltd
JATCO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd, JATCO Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2010231180A priority Critical patent/JP5430532B2/en
Publication of JP2012082928A publication Critical patent/JP2012082928A/en
Application granted granted Critical
Publication of JP5430532B2 publication Critical patent/JP5430532B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、無終端チェーンリンクと、この無終端チェーンリンクを無段変速可能に巻き掛けしたプーリとから成り、該プーリの中心ボス部外周にバネ手段で径方向外方へ附勢して径方向進退可能に設けた可動歯と、無終端チェーンリンクに設けた可動歯噛合溝との噛み合いにより、該噛み合いが可能な伝動比でのスリップ防止を可能にした無段変速伝動機構に関するものである。   The present invention comprises an endless chain link and a pulley around which the endless chain link is wound so as to be continuously variable, and is urged radially outward by a spring means around the outer periphery of the central boss of the pulley. The present invention relates to a continuously variable transmission mechanism capable of preventing slipping at a transmission ratio capable of meshing by meshing between a movable tooth provided so as to be able to advance and retract and a movable tooth meshing groove provided on an endless chain link. .

この種の無段変速伝動機構としてはVベルト式無段変速機が良く知られており、無終端チェーンリンクを、プーリの固定シーブおよび可動シーブ間に画成されたV溝に掛け渡して動力伝達可能となす一方、
この動力伝達中に、可動シーブをプーリ中心ボス部上でプーリ軸線方向へスライド変位させてプーリV溝の溝幅を変更することにより、プーリに対する無終端チェーンリンクの巻き掛け径を連続的に変化させ、これにより無段変速が可能となるよう構成する。
As this type of continuously variable transmission mechanism, a V-belt continuously variable transmission is well known, and a power is obtained by spanning an endless chain link over a V groove defined between a fixed sheave and a movable sheave of a pulley. While being able to communicate,
During this power transmission, the movable sheave is slid in the pulley axial direction on the pulley center boss to change the groove width of the pulley V groove, thereby continuously changing the winding diameter of the endless chain link to the pulley. Thus, a continuously variable transmission is possible.

他方、無段変速伝動機構のスリップを防止し、これにより伝動効率を高める技術として従来、例えば特許文献1に記載のごとく、プーリV溝の底面を画成するプーリの中心ボス部外周面に歯を突設し、
無終端チェーンリンクの内周に形成した歯溝がプーリ中心ボス部外周面の歯と噛み合う伝動比である間、プーリおよび無終端チェーンリンク間のスリップを防止して無段変速伝動機構の伝動効率を高める技術が提案されている。
On the other hand, as a technique for preventing slippage of the continuously variable transmission mechanism and thereby improving transmission efficiency, conventionally, as described in Patent Document 1, for example, teeth are formed on the outer peripheral surface of the central boss portion of the pulley that defines the bottom surface of the pulley V groove. Project
While the tooth groove formed on the inner periphery of the endless chain link is in the transmission ratio that meshes with the teeth on the outer peripheral surface of the pulley center boss, the transmission efficiency of the continuously variable transmission mechanism is prevented by preventing slippage between the pulley and the endless chain link. A technique for improving the above has been proposed.

他方で特許文献1には、プーリ中心ボス部の外周面に設ける歯を、バネ手段で径方向外方へ附勢して径方向進退可能に設けた可動歯となし、この可動歯が、無終端チェーンリンクに設けた可動歯噛合溝と噛み合った伝動比でのスリップ防止を実現可能にした技術も提案されている。   On the other hand, Patent Document 1 discloses that the teeth provided on the outer peripheral surface of the pulley center boss portion are movable teeth that are urged radially outward by a spring means so as to be able to advance and retract in the radial direction. There has also been proposed a technique capable of preventing slippage at a transmission ratio meshed with a movable tooth meshing groove provided on a terminal chain link.

この提案技術によれば上記の可動歯が、無終端チェーンリンクの内周歯溝と噛み合い損なった場合、無終端チェーンリンクの内周によりバネ手段のバネ力に抗し径方向内方へ後退され得ることから、
プーリ中心ボス部外周の歯が無終端チェーンリンクとの干渉により、この無終端チェーンリンクを損傷させるようなことがなく、耐久性の点で有利である。
According to this proposed technique, when the above-mentioned movable tooth fails to mesh with the inner peripheral tooth groove of the endless chain link, it is retracted radially inward against the spring force of the spring means by the inner periphery of the endless chain link. From getting
Since the teeth on the outer periphery of the pulley center boss part do not damage the endless chain link due to interference with the endless chain link, this is advantageous in terms of durability.

特開2010−014269号公報JP 2010-014269 A

ところで、上記のごとく可動歯をプーリ中心ボス部の外周にバネ手段で径方向外方へ附勢して径方向進退可能に設ける場合、プーリ中心ボス部に対する可動歯の径方向外方への限界位置を規定する必要がある。   By the way, when the movable teeth are urged radially outward by the spring means on the outer periphery of the pulley central boss portion as described above so as to be able to advance and retract in the radial direction, the limit of the movable teeth radially outward with respect to the pulley central boss portion. It is necessary to define the position.

この規定に際し上記した先の提案技術にあっては、可動歯の歯先が、プーリ中心ボス部上に軸線方向スライド可能に嵌合させた可動シーブの内周面よりも径方向外方に位置するよう、可動歯の径方向外方への限界位置を規定していた。   In the above-described proposed technique, the tip of the movable tooth is positioned radially outward from the inner peripheral surface of the movable sheave that is slidably fitted on the pulley center boss portion. Therefore, the limit position of the movable tooth in the radial direction is defined.

このため、可動シーブをプーリV溝の溝幅が狭くなるよう、プーリ中心ボス部上で軸線方向へスライド変位させるとき、可動シーブは歯先を介し可動歯をバネ手段の弾力に抗して径方向内方へ押し込みながら軸線方向へスライド変位させることとなり、可動シーブ内周面と可動歯(歯先)とが摺動により摩耗して耐久性が悪化するという問題を生ずると共に、可動歯の径方向内方押し込み時にバネ手段が大きく撓んでその劣化により耐久性が悪化するという問題も生ずる。   For this reason, when the movable sheave is slid in the axial direction on the pulley central boss so that the groove width of the pulley V groove becomes narrow, the movable sheave has a diameter against the elastic force of the spring means via the tooth tip. The inner surface of the movable sheave and the movable tooth (tooth tip) are worn due to sliding and the durability deteriorates, and the diameter of the movable tooth is reduced. There is also a problem that the spring means is greatly bent when the direction is pushed inward and the durability is deteriorated due to the deterioration.

特にバネ手段の劣化による耐久性の問題は、上記可動シーブのスライド変位が無段変速伝動機構の最ロー変速比選択状態をもたらすものである場合、この最ロー変速比選択状態が駐停車時も含めて長時間に亘り維持され続けることから、特に顕著となる。   In particular, the problem of durability due to deterioration of the spring means is that when the slide displacement of the movable sheave brings about the lowest speed ratio selection state of the continuously variable transmission mechanism, this lowest speed ratio selection state is maintained even when parked or stopped. In particular, it is particularly noticeable because it is maintained for a long time.

本発明は、可動シーブをプーリV溝の溝幅が狭くなるよう、プーリ中心ボス部上で軸線方向へスライド変位させるときも、この可動シーブが可動歯を径方向内方へ押し込むことのないようにして、上記の問題を生ずることのないようにした無段変速伝動機構を提供することを目的とする。   The present invention prevents the movable sheave from pushing the movable teeth radially inward even when the movable sheave is slid in the axial direction on the pulley center boss so that the groove width of the pulley V groove becomes narrower. Thus, an object of the present invention is to provide a continuously variable transmission mechanism that does not cause the above problems.

この目的のため、本発明による無段変速伝動機構は、以下のごとくにこれを構成する。
先ず、本発明の要旨構成の基礎前提となる無段変速伝動機構を説明するに、これは、無終端チェーンリンクと、この無終端チェーンリンクを巻き掛けしたプーリとから成る。
そして、上記無終端チェーンリンクを挟圧する上記プーリの軸線方向対向シーブのうち、一方の固定シーブをプーリ中心ボス部に対し固定し、他方の可動シーブを該プーリ中心ボス部上で軸線方向へスライドさせることにより無段変速可能である。
また、上記プーリ中心ボス部の外周に、バネ手段で径方向外方へ附勢すると共に径方向限界位置に弾支して設けた可動歯と、上記無終端チェーンリンクに設けた可動歯噛合溝との噛み合いにより、該噛み合いが可能な伝動比でのスリップ防止を可能にしたものである。
For this purpose, the continuously variable transmission mechanism according to the present invention is constituted as follows.
First, a continuously variable transmission mechanism, which is the basic premise of the gist of the present invention, will be described. It comprises an endless chain link and a pulley around which the endless chain link is wound.
And among the axially opposed sheaves of the pulley that pinch the endless chain link, one fixed sheave is fixed to the pulley central boss portion, and the other movable sheave is slid in the axial direction on the pulley central boss portion. By making it, continuously variable transmission is possible.
Further, a movable tooth provided on the outer periphery of the pulley center boss portion by urging radially outward by a spring means and elastically supported at a radial limit position, and a movable tooth engagement groove provided on the endless chain link , And slip prevention at a transmission ratio where the meshing is possible.

本発明は、このような無段変速伝動機構において、
上記可動歯の径方向限界位置で該可動歯の歯先が、プーリ中心ボス部上に軸線方向スライド可能に嵌合させた上記可動シーブの内周面と同じ径方向位置、若しくは該径方向位置よりも径方向内方位置となるよう、上記可動歯の径方向限界位置を定めた構成に特徴づけられる。
The present invention provides such a continuously variable transmission mechanism.
At the radial limit position of the movable tooth, the tip of the movable tooth is the same radial position as the inner peripheral surface of the movable sheave that is slidably fitted on the pulley center boss, or the radial position. It is characterized by a configuration in which the radial limit position of the movable tooth is determined so as to be a radially inward position.

かかる本発明の無段変速伝動機構にあっては、可動歯の径方向限界位置でその歯先が、プーリ中心ボス部上に軸線方向スライド可能に嵌合させた可動シーブ内周面と同じ径方向位置、若しくは該径方向位置よりも径方向内方位置にあるから、
可動シーブをプーリV溝の溝幅が狭くなるよう、プーリ中心ボス部上で軸線方向へスライド変位させるときも、この可動シーブが可動歯を径方向内方へ押し込むことがない。
In the continuously variable transmission mechanism of the present invention, the tip of the movable tooth has the same diameter as the inner peripheral surface of the movable sheave fitted axially slidably on the pulley central boss at the radial limit position of the movable tooth. Because it is in the directional position, or in the radially inner position than the radial position,
Even when the movable sheave is slid in the axial direction on the pulley central boss so that the groove width of the pulley V groove becomes narrow, the movable sheave does not push the movable teeth radially inward.

従って、可動シーブ内周面と可動歯(歯先)とが摺動により摩耗して耐久性が悪化するという問題を回避し得ると共に、可動歯の径方向内方押し込みによりバネ手段が大きく撓んでその耐久性が悪化するという問題も回避することができる。   Accordingly, it is possible to avoid the problem that the inner peripheral surface of the movable sheave and the movable tooth (tooth tip) wear due to sliding and deteriorate the durability, and the spring means is greatly bent by the inward pushing of the movable tooth in the radial direction. The problem that the durability deteriorates can also be avoided.

本発明の第1実施例になる無段変速伝動機構のセカンダリプーリを示す全体斜視図である。1 is an overall perspective view showing a secondary pulley of a continuously variable transmission mechanism according to a first embodiment of the present invention. 第1実施例になる無段変速伝動機構が最ハイ変速比選択状態である時における、無終端チェーンリンクとセカンダリプーリとの巻き掛け伝動部を示す要部縦断側面図である。FIG. 5 is a longitudinal sectional side view of a main part showing a winding transmission portion between an endless chain link and a secondary pulley when the continuously variable transmission mechanism according to the first embodiment is in the highest gear ratio selection state. 第1実施例になる無段変速伝動機構が最ロー変速比選択状態である時における、無終端チェーンリンクとセカンダリプーリとの巻き掛け伝動部を示す要部縦断側面図である。FIG. 6 is a longitudinal sectional side view of a main part showing a winding transmission portion between an endless chain link and a secondary pulley when the continuously variable transmission mechanism according to the first embodiment is in the lowest gear ratio selection state. 第1実施例になる無段変速伝動機構のセカンダリプーリを固定シーブ側から見て、該固定シーブが除去された状態で示す斜視図である。FIG. 5 is a perspective view showing a secondary pulley of the continuously variable transmission mechanism according to the first embodiment as viewed from the fixed sheave side, with the fixed sheave removed. 図1〜4に示した第1実施例の無段変速伝動機構に用いるバネ手段の斜視図である。FIG. 5 is a perspective view of a spring means used in the continuously variable transmission mechanism of the first embodiment shown in FIGS. 第2実施例になる無段変速伝動機構が最ハイ変速比選択状態である時における、無終端チェーンリンクとセカンダリプーリとの巻き掛け伝動部を示す要部縦断側面図である。FIG. 12 is a longitudinal sectional side view of a main part showing a winding transmission portion between an endless chain link and a secondary pulley when the continuously variable transmission mechanism according to the second embodiment is in the highest gear ratio selection state. 第2実施例になる無段変速伝動機構が最ロー変速比選択状態である時における、無終端チェーンリンクとセカンダリプーリとの巻き掛け伝動部を示す要部縦断側面図である。FIG. 10 is a longitudinal sectional side view of a main part showing a winding transmission portion between an endless chain link and a secondary pulley when the continuously variable transmission mechanism according to the second embodiment is in the lowest gear ratio selection state. 第3実施例になる無段変速伝動機構が最ハイ変速比選択状態である時における、無終端チェーンリンクとセカンダリプーリとの巻き掛け伝動部を示す要部縦断側面図である。FIG. 12 is a longitudinal sectional side view of a main part showing a winding transmission portion between an endless chain link and a secondary pulley when the continuously variable transmission mechanism according to the third embodiment is in the highest gear ratio selection state. 第3実施例になる無段変速伝動機構が最ロー変速比選択状態である時における、無終端チェーンリンクとセカンダリプーリとの巻き掛け伝動部を示す要部縦断側面図である。FIG. 10 is a longitudinal sectional side view of a main part showing a winding transmission portion between an endless chain link and a secondary pulley when the continuously variable transmission mechanism according to the third embodiment is in the lowest gear ratio selection state.

以下、本発明の実施の形態を、図面に示す実施例に基づき詳細に説明する。
<第1実施例の構成>
図1〜5は、本発明の第1実施例になる無段変速伝動機構を示し、この無段変速伝動機構は図2における無終端チェーンリンク1を、図1〜3における従動側のセカンダリプーリ2と、図示せざる同様な駆動側のプライマリプーリとの間に掛け渡して成るものである。
Hereinafter, embodiments of the present invention will be described in detail based on examples shown in the drawings.
<Configuration of the first embodiment>
FIGS. 1 to 5 show a continuously variable transmission mechanism according to a first embodiment of the present invention. This continuously variable transmission mechanism includes an endless chain link 1 in FIG. 2 and a secondary pulley on the driven side in FIGS. 2 and a similar drive-side primary pulley (not shown).

そして本実施例は特に、図2に示すごとく無終端チェーンリンク1がセカンダリプーリ2に対し最内径部に巻き掛けされた最ハイ変速比選択状態で、無終端チェーンリンク1およびセカンダリプーリ2間のスリップを防止する、スリップ防止構造部分の改良を旨とする。   In this embodiment, in particular, as shown in FIG. 2, the endless chain link 1 is wound around the innermost diameter portion of the secondary pulley 2 and the highest gear ratio is selected. The purpose is to improve the anti-slip structure to prevent slipping.

プライマリプーリ(図示せず)およびセカンダリプーリ2はそれぞれ同様なもので、セカンダリプーリ2につき図1〜3を参照しつつ説明すると、プーリ回転軸線方向に正対する対向シーブ3,4を具え、これら対向シーブ3,4間にプーリV溝を画成したV溝プーリとする。
無終端チェーンリンク1は図2に示すとおり、走行方向を横切る断面形状が当該プーリV溝の対向面に面接触するV字状のもので、この面接触下に対向シーブ3,4間に挟圧され、プライマリプーリ(図示せず)およびセカンダリプーリ2間で動力伝達を行うことができる。
A primary pulley (not shown) and a secondary pulley 2 are similar to each other, and the secondary pulley 2 will be described with reference to FIGS. 1 to 3. A V-groove pulley having a pulley V-groove defined between sheaves 3 and 4 is used.
As shown in FIG. 2, the endless chain link 1 has a V-shaped cross section that crosses the traveling direction so as to be in surface contact with the opposing surface of the pulley V-groove. The power is transmitted between the primary pulley (not shown) and the secondary pulley 2.

これらプライマリプーリ(図示せず)およびセカンダリプーリ2を成す軸線方向対向シーブ3,4のうち、一方のシーブ3は、プーリ軸5に固着した固定シーブとし、他方のシーブ4は、プーリ軸5にボールスプライン(図示せず)を介して軸線方向スライド可能に回転係合させた可動シーブとする。   Of the sheaves 3 and 4 in the axial direction that form the primary pulley (not shown) and the secondary pulley 2, one sheave 3 is a fixed sheave fixed to the pulley shaft 5, and the other sheave 4 is attached to the pulley shaft 5. A movable sheave is rotatably engaged through a ball spline (not shown) so as to be axially slidable.

プライマリプーリ(図示せず)およびセカンダリプーリ2は、固定シーブ3および可動シーブ4が軸線方向反対側に位置するよう配置する。
そして、プライマリプーリ(図示せず)の可動シーブを固定シーブに対し接近させてプーリV溝幅を狭くすると同時に、セカンダリプーリ2の可動シーブ4を図2のごとく固定シーブ3から遠ざけてプーリV溝幅を広くするにつれ、
無終端チェーンリンク1は、プライマリプーリ(図示せず)に対する巻き掛け径を増大されると共に、セカンダリプーリ2に対する巻き掛け径を図2のごとく小さくされ、無段変速伝動機構は図2に示す最ハイ変速比選択状態に向け無段変速下にアップシフト可能である。
The primary pulley (not shown) and the secondary pulley 2 are arranged so that the fixed sheave 3 and the movable sheave 4 are located on the opposite sides in the axial direction.
Then, the movable sheave of the primary pulley (not shown) is moved closer to the fixed sheave to narrow the pulley V groove width, and at the same time, the movable sheave 4 of the secondary pulley 2 is moved away from the fixed sheave 3 as shown in FIG. As you increase the width,
In the endless chain link 1, the winding diameter of the primary pulley (not shown) is increased and the winding diameter of the secondary pulley 2 is reduced as shown in FIG. 2, and the continuously variable transmission mechanism is the maximum shown in FIG. Upshifting is possible under a continuously variable transmission toward the high gear ratio selection state.

逆に、プライマリプーリ(図示せず)の可動シーブを固定シーブから遠ざけてプーリV溝幅を広くすると同時に、セカンダリプーリ2の可動シーブ4を図3のごとく固定シーブ3に対し接近させてプーリV溝幅を狭くするにつれ、
無終端チェーンリンク1は、プライマリプーリ(図示せず)に対する巻き掛け径を小さくされると共に、セカンダリプーリ2に対する巻き掛け径(図3では無終端チェーンリンク1が見えていない)を大きくされ、無段変速伝動機構は図3に示す最ロー変速比選択状態に向け無段変速下にダウンシフト可能である。
Conversely, the movable sheave of the primary pulley (not shown) is moved away from the fixed sheave to widen the pulley V groove width, and at the same time, the movable sheave 4 of the secondary pulley 2 is moved closer to the fixed sheave 3 as shown in FIG. As the groove width is narrowed,
The endless chain link 1 has a smaller winding diameter for the primary pulley (not shown) and a larger winding diameter for the secondary pulley 2 (the endless chain link 1 is not visible in FIG. 3). The step-variable transmission mechanism can be downshifted under a continuously variable shift toward the lowest gear ratio selection state shown in FIG.

上記した図2の最ハイ変速比選択状態でセカンダリプーリ2に対する無終端チェーンリンク1のスリップを防止して無段変速伝動機構の伝動効率を向上させるため、
図1〜4に示すごとく、セカンダリプーリ2の中心ボス部8に複数個の可動歯9を、図1および図4のごとく円周方向等間隔に配して設ける。
In order to improve the transmission efficiency of the continuously variable transmission mechanism by preventing the endless chain link 1 from slipping with respect to the secondary pulley 2 in the above-described highest gear ratio selection state of FIG.
As shown in FIGS. 1 to 4, a plurality of movable teeth 9 are provided on the central boss portion 8 of the secondary pulley 2 at regular intervals in the circumferential direction as shown in FIGS. 1 and 4.

セカンダリプーリ2のプーリ中心ボス部8は、図2〜4に明示するごとく、シーブ3,4間におけるプーリ軸5の部分を拡径させて形成する。
可動歯9はそれぞれ、その基部9aが、図2に示した最ハイ変速比選択状態のシーブ3,4間を橋絡するようプーリ軸線方向へ延在させ、この基部9aを、プーリ中心ボス部8の外周面に設けた可動歯ガイド溝11内に径方向進退可能に嵌合させる。
このとき可動歯9は図2〜4に示すごとく、径方向外側に張り出させて設けた歯先9bが図2,3に示すごとくプーリ中心ボス部8の外周面と、径方向において同じレベルまたは径方向内方レベルとなるような径方向位置となす。
The pulley central boss portion 8 of the secondary pulley 2 is formed by expanding the diameter of the pulley shaft 5 between the sheaves 3 and 4 as clearly shown in FIGS.
Each of the movable teeth 9 has its base portion 9a extending in the pulley axial direction so as to bridge between the sheaves 3 and 4 in the highest gear ratio selection state shown in FIG. 2, and this base portion 9a is connected to the pulley central boss portion. 8 is fitted in a movable tooth guide groove 11 provided on the outer peripheral surface so as to be able to advance and retract in the radial direction.
At this time, as shown in FIGS. 2 to 4, the tooth tip 9 b provided so as to project outward in the radial direction is the same level in the radial direction as the outer peripheral surface of the pulley center boss portion 8 as shown in FIGS. Alternatively, the radial position is set to a radially inward level.

上記の可動歯9は、図5に示すようなバネ手段12により、図2,3に示すごとく径方向外方へ附勢し、径方向外方への進出限界位置(径方向限界位置)を規定するに当たっては、
可動歯基部9aの両端9c,9dをプーリ中心ボス部8の外周面よりも径方向内方に位置させ、これら可動歯基部9aの両端9c,9dがシーブ3,4の内周部に対し径方向外方へ衝接することにより、可動歯9の径方向限界位置を規定する。
可動歯9は、かかる径方向限界位置において、歯先9bがプーリ中心ボス部8の外周面と、径方向において同じレベルまたは径方向内方レベルとする。
The movable tooth 9 is urged radially outward as shown in FIGS. 2 and 3 by the spring means 12 as shown in FIG. 5, and the advancing limit position (radial limit position) is set in the radially outward direction. In defining it,
Both ends 9c, 9d of the movable tooth base 9a are positioned radially inward from the outer peripheral surface of the pulley center boss part 8, and both ends 9c, 9d of the movable tooth base 9a have a diameter with respect to the inner periphery of the sheaves 3, 4. The radial limit position of the movable tooth 9 is defined by abutting outward in the direction.
At the radial limit position, the movable tooth 9 is such that the tooth tip 9b is at the same level in the radial direction as the outer peripheral surface of the pulley center boss portion 8 or at the radial inner level.

バネ手段12は図2,3に示すごとく3個一組とし、これらバネ手段12を可動歯9の長手方向、つまりプーリ中心ボス部8の軸線方向へ分散配置する。
この分散配置に当たり、好ましくはバネ手段12をできるだけ可動歯9の長手方向等分配置となるよう分散させるのが良い。
As shown in FIGS. 2 and 3, a set of three spring means 12 is arranged, and these spring means 12 are dispersedly arranged in the longitudinal direction of the movable teeth 9, that is, in the axial direction of the pulley center boss portion 8.
In this distributed arrangement, it is preferable to disperse the spring means 12 so that the movable teeth 9 are equally divided in the longitudinal direction as much as possible.

各バネ手段12は全て、図5に示すごとき同様なものとし、線状体のU字状エレメント13と、同じく線状体の連結エレメント14とを交互に同一円周上に配置して一体ユニットとなす。
U字状エレメント13は、プーリ中心ボス部8の外周条溝8aと各可動歯基部9aとの間において、該プーリ中心ボス部8の母線方向へ延在するよう介在させる。
従ってU字状エレメント13は可動歯9と同数だけ存在し、これらU字状エレメント13を可動歯9に着座させ、連結エレメント14をプーリ中心ボス部8の外周条溝8aに着座させる。
かくてバネ手段12は、線状エレメント13,14の交互組み合わせに成る捩りバネ型式のものとなり、連結エレメント14の捩りバネ作用によりU字状エレメント13を介して各可動歯9を径方向外方へ附勢することができる。
All the spring means 12 are the same as shown in FIG. 5, and a linear U-shaped element 13 and a linear connecting element 14 are alternately arranged on the same circumference. And
The U-shaped element 13 is interposed between the outer peripheral groove 8a of the pulley center boss portion 8 and each movable tooth base portion 9a so as to extend in the generatrix direction of the pulley center boss portion 8.
Accordingly, the same number of U-shaped elements 13 as the movable teeth 9 are present, and these U-shaped elements 13 are seated on the movable teeth 9, and the connecting elements 14 are seated on the outer peripheral groove 8a of the pulley center boss portion 8.
Thus, the spring means 12 is of the torsion spring type in which the linear elements 13 and 14 are alternately combined, and each movable tooth 9 is moved radially outward through the U-shaped element 13 by the torsion spring action of the connecting element 14. Can be energized.

可動歯9の径方向限界位置(径方向外方への進出限界位置)を規定するため、可動歯基部9aの両端9c,9dをシーブ3,4の内周部に対し径方向外方へ衝接させ、この衝接構造を以下に説明する。
シーブ3は、固定シーブであっても、図2,3に示すごとくプーリ軸5と別体に構成し、無終端チェーンリンク1に近い該固定シーブ3の内周隅角に図2,3に示すごとく環状切り欠き3aを形成して、可動歯基部9aの端部9cが径方向外方へ衝接するための内周面3bを設定し、かように成形したシーブ3を図2,3に示すごとくプーリ軸5に固着して固定シーブとなす。
In order to define the radial limit position of the movable tooth 9 (extension limit position radially outward), both ends 9c and 9d of the movable tooth base 9a are opposed radially outward to the inner peripheral part of the sheaves 3 and 4. The contact structure will be described below.
Even if the sheave 3 is a fixed sheave, it is configured separately from the pulley shaft 5 as shown in FIGS. 2 and 3, and is located at the inner peripheral corner of the fixed sheave 3 near the endless chain link 1 as shown in FIGS. As shown, an annular notch 3a is formed, an inner peripheral surface 3b is set for the end 9c of the movable tooth base 9a to contact radially outward, and the sheave 3 thus molded is shown in FIGS. As shown, it is fixed to the pulley shaft 5 to form a fixed sheave.

一方で、可動シーブ4に近い側における可動歯基部9aの端部9dは、図2,3に示すごとくプーリ中心ボス部8の外周に嵌合する可動シーブ4の内周面4aに対し径方向外方へ衝接させる。
そして、可動歯基部9aの端部9c,9dの径方向厚さ(図2,3の上下方向厚さ)は、可動歯9の歯先9bが図2,3に示すごとく可動シーブ内周面4aと同じ径方向位置となるような厚さ、若しくは該径方向位置よりも径方向内方位置となるような厚さとする。
On the other hand, the end 9d of the movable tooth base 9a on the side close to the movable sheave 4 is in the radial direction with respect to the inner peripheral surface 4a of the movable sheave 4 that fits on the outer periphery of the pulley center boss 8 as shown in FIGS. Let them hit the outside.
The radial thicknesses of the end portions 9c and 9d of the movable tooth base 9a (the vertical thickness in FIGS. 2 and 3) are the inner peripheral surface of the movable sheave as shown in FIGS. The thickness is such that it is the same radial position as 4a, or the radial inner position relative to the radial position.

無終端チェーンリンク1の内周縁を画成する各リンク板の内側縁には、セカンダリプーリ2に対する巻き掛け領域において、可動歯9の歯先9bが図2のごとく噛み合うための可動歯噛合溝1aを設け、
図2の最ハイ変速比選択状態で、可動歯9(歯先9b)と可動歯噛合溝1aとの噛み合いにより、セカンダリプーリ2に対する無終端チェーンリンク1のスリップを防止し、無段変速伝動機構の伝動効率を向上させるようにする。
At the inner edge of each link plate that defines the inner peripheral edge of the endless chain link 1, a movable tooth meshing groove 1a for meshing the tip 9b of the movable tooth 9 as shown in FIG. Provided,
In the state in which the highest gear ratio is selected in FIG. 2, the mesh of the movable tooth 9 (tooth tip 9b) and the movable tooth meshing groove 1a prevents the endless chain link 1 from slipping with respect to the secondary pulley 2, and the continuously variable transmission mechanism. To improve the transmission efficiency.

しかして可動歯9(歯先9b)は、可動歯噛合溝1aと整列せずこれとの噛み合いが不能である場合、無終端チェーンリンク1の内周縁によりバネ手段12のバネ力に抗しプーリ中心ボス部8の可動歯ガイド溝11内で、図2の位置よりも更に径方向内方へと押し込まれ得て、無終端チェーンリンク1が可動歯9(歯先9b)との干渉により損傷されるのを防止することができる。   Accordingly, when the movable tooth 9 (tooth tip 9b) is not aligned with the movable tooth meshing groove 1a and cannot be meshed with the movable tooth meshing groove 1a, the pulley against the spring force of the spring means 12 is caused by the inner peripheral edge of the endless chain link 1. In the movable tooth guide groove 11 of the central boss part 8, it can be pushed further inward in the radial direction than the position of FIG. 2, and the endless chain link 1 is damaged due to interference with the movable tooth 9 (tooth tip 9b). Can be prevented.

<第1実施例の作用>
上記した無段変速伝動機構はその伝動中、セカンダリプーリ2の可動シーブ4を図2のごとく固定シーブ3から遠ざけてプーリV溝幅を広くすると、無終端チェーンリンク1がセカンダリプーリ2に対する巻き掛け径を図2のごとく小さくされ、最ハイ変速比選択状態へと無段変速(アップシフト)される。
<Operation of the first embodiment>
In the continuously variable transmission mechanism described above, when the movable sheave 4 of the secondary pulley 2 is moved away from the fixed sheave 3 and the pulley V groove width is increased as shown in FIG. The diameter is reduced as shown in FIG. 2 and continuously variable (upshifted) to the highest gear ratio selection state.

このとき図2に示すように、無終端チェーンリンク1の内周縁における可動歯噛合溝1aが可動歯9の歯先9bに噛み合うようになり、セカンダリプーリ2に対する無終端チェーンリンク1のスリップを防止し得て、最ハイ変速比選択状態での伝動効率を向上させることができる。   At this time, as shown in FIG. 2, the movable tooth engagement groove 1a at the inner peripheral edge of the endless chain link 1 is engaged with the tip 9b of the movable tooth 9, thereby preventing the endless chain link 1 from slipping with respect to the secondary pulley 2. In addition, the transmission efficiency in the state where the highest gear ratio is selected can be improved.

ここで、無終端チェーンリンク1の可動歯噛合溝1aと、可動歯9(歯先9b)とが不整列より噛み合い損なうと、可動歯9(歯先9b)が無終端チェーンリンク1の内周縁によりバネ手段12のバネ力に抗しプーリ中心ボス部8の可動歯ガイド溝11内で、図2の位置よりも更に径方向内方へと押し込まれ得るため、無終端チェーンリンク1が可動歯9(歯先9b)との干渉により損傷されるのを防止することができる。   Here, if the movable tooth meshing groove 1a of the endless chain link 1 and the movable tooth 9 (tooth tip 9b) fail to mesh due to misalignment, the movable tooth 9 (tooth tip 9b) becomes the inner peripheral edge of the endless chain link 1 2 against the spring force of the spring means 12 and can be pushed further radially inward than the position of FIG. 2 in the movable tooth guide groove 11 of the pulley center boss portion 8. It can be prevented from being damaged by interference with 9 (tooth tip 9b).

セカンダリプーリ2の可動シーブ4を図3のごとく固定シーブ3に対し接近させてプーリV溝幅を狭くすると、
無終端チェーンリンク1は、図3からはみ出すほどに、セカンダリプーリ2に対する巻き掛け径を大きくされ、無段変速伝動機構は図3に示す最ロー変速比選択状態へと無段変速(ダウンシフト)される。
When the movable sheave 4 of the secondary pulley 2 is moved closer to the fixed sheave 3 as shown in FIG.
As the endless chain link 1 protrudes from FIG. 3, the winding diameter of the secondary pulley 2 is increased, and the continuously variable transmission mechanism is continuously variable (downshift) to the lowest gear ratio selection state shown in FIG. Is done.

かかる最ロー変速比選択状態へのダウンシフト中、可動シーブ4は図3においてプーリ中心ボス部8上をスライドしつつ、図3に矢印で示す軸線方向へ変位する。
ところで、可動歯9の径方向限界位置においてその歯先9bが図2,3に示すごとく可動シーブ内周面4aと同じ径方向位置、若しくは該径方向位置よりも径方向内方位置にあるため、
図3に矢印で示す可動シーブ4の軸線方向変位中、この可動シーブ4は内周面4aによって可動歯9(歯先9b)をバネ手段12のバネ力に抗し径方向内方へ押し込むことがない。
During the downshift to the lowest gear ratio selection state, the movable sheave 4 slides on the pulley center boss portion 8 in FIG. 3 and is displaced in the axial direction indicated by the arrow in FIG.
By the way, at the radial limit position of the movable tooth 9, the tooth tip 9b is at the same radial position as the movable sheave inner peripheral surface 4a as shown in FIGS. ,
During the axial displacement of the movable sheave 4 indicated by the arrow in FIG. 3, this movable sheave 4 pushes the movable tooth 9 (tooth tip 9b) radially inward against the spring force of the spring means 12 by the inner peripheral surface 4a. There is no.

<第1実施例の効果>
上記した本実施例においては、バネ手段12で径方向外方へ附勢された可動歯9の径方向限界位置を、可動歯9の歯先9bが図2,3に示すごとく可動シーブ内周面4aと同じ径方向位置、若しくは該径方向位置よりも径方向内方位置となるような限界位置にしたため、
図3に矢印で示す可動シーブ4の軸線方向変位による最ロー変速比選択状態へのダウンシフト中、該可動シーブ4の内周面4aが可動歯9(歯先9b)をバネ手段12のバネ力に抗し径方向内方へ押し込むことがない。
<Effects of the first embodiment>
In the above-described embodiment, the radial limit position of the movable tooth 9 urged radially outward by the spring means 12 is shown, and the tip 9b of the movable tooth 9 has a movable sheave inner periphery as shown in FIGS. Because the limit position is the same radial position as the surface 4a, or a radial inner position than the radial position,
During the downshift to the lowest gear ratio selection state due to the axial displacement of the movable sheave 4 indicated by the arrow in FIG. 3, the inner peripheral surface 4a of the movable sheave 4 moves the movable tooth 9 (tooth tip 9b) to the spring of the spring means 12. It does not push inward in the radial direction against the force.

従って、可動シーブ内周面4aと可動歯9(歯先9b)との摺動が発生せず、この摺動により可動シーブ内周面4aおよび可動歯9(歯先9b)が摩耗して耐久性が悪化するという問題を回避し得ると共に、かかる可動シーブ内周面4aの摩耗で、これとプーリ中心ボス部8とのスライド嵌合部から変速制御油圧が漏れ、シーブ3,4による無終端チェーンリンク1の挟圧力の低下で伝動効率が低下するという問題を回避することができる。   Therefore, sliding between the movable sheave inner peripheral surface 4a and the movable tooth 9 (tooth tip 9b) does not occur, and this sliding causes the movable sheave inner peripheral surface 4a and the movable tooth 9 (tooth tip 9b) to wear and become durable. In addition to avoiding the problem of deterioration, the wear of the movable sheave inner peripheral surface 4a causes the shift control hydraulic pressure to leak from the slide fitting portion between this and the pulley center boss portion 8, and the sheaves 3 and 4 are endless. It is possible to avoid the problem that the transmission efficiency decreases due to a decrease in the clamping pressure of the chain link 1.

また、可動シーブ4の内周面4aが可動歯9(歯先9b)をバネ手段12のバネ力に抗し径方向内方へ押し込むことがないため、当該可動歯9の径方向内方押し込みによりバネ手段12が大きく撓んでその耐久性が悪化するという問題も回避することができる。   Further, the inner peripheral surface 4a of the movable sheave 4 does not push the movable tooth 9 (tooth tip 9b) inward in the radial direction against the spring force of the spring means 12, so that the movable tooth 9 is pushed inward in the radial direction. This can also avoid the problem that the spring means 12 is greatly bent and its durability is deteriorated.

とりわけ本実施例においては、図3に矢印で示す可動シーブ4の軸線方向変位が無段変速伝動機構の最ロー変速比選択状態をもたらすものであることから、この最ロー変速比選択状態で可動歯9が径方向内方へ押し込まれてバネ手段12を大きく撓ませることのないようにし得ることとなる。
ところで最ロー変速比選択状態は、駐停車時も含めると長時間に亘り維持され続ける変速比選択状態であり、この長時間に亘り選択される最ロー変速比でバネ手段12が大きく撓んだ状態にされていると、その耐久性が著しく低下し、バネ手段12が早期に劣化してしまう。
しかし本実施例においては上記の通り、最ロー変速比選択状態で可動歯9が径方向内方へ押し込まれず、バネ手段12を大きく撓ませることがないことから、長時間に亘りバネ手段12が大きく撓んだ状態のままにされることがなく、バネ手段12がこれに伴う早期劣化により可動歯9の径方向押し出し力を弱められて、伝動効率の向上効果を阻害されるという問題を回避することができる。
In particular, in this embodiment, since the axial displacement of the movable sheave 4 indicated by the arrow in FIG. 3 brings about the lowest speed ratio selection state of the continuously variable transmission mechanism, the movable sheave 4 is movable in this lowest speed ratio selection state. The teeth 9 can be prevented from being bent inward in the radial direction so that the spring means 12 is largely bent.
By the way, the lowest gear ratio selection state is a gear ratio selection state that continues to be maintained for a long time even when parked or stopped, and the spring means 12 is greatly bent at the lowest gear ratio selected for this long time. If it is in a state, its durability is remarkably lowered, and the spring means 12 is deteriorated at an early stage.
However, in this embodiment, as described above, the movable tooth 9 is not pushed inward in the radial direction in the state where the lowest gear ratio is selected, and the spring means 12 is not greatly deflected. Avoiding the problem that the spring means 12 is not left in a largely bent state, and the radial pushing force of the movable tooth 9 is weakened due to the early deterioration accompanying this, and the effect of improving the transmission efficiency is hindered. can do.

更に本実施例においては、バネ手段12により径方向外方へ附勢されている可動歯9の径方向限界位置を規定するに際し、可動歯9(基部9a)の両端9c,9dをシーブ3,4の内周部3b,4aに対し径方向外方へ衝接させ、
また可動歯両端9c,9dの径方向厚さを加減して、可動歯9の上記径方向限界位置を、可動歯9の歯先9bが可動シーブ内周面4aと同じ径方向位置、若しくは該径方向位置よりも径方向内方位置となるような限界位置となすため、
既存部品(シーブ3,4)の有効利用により安価に当該可動歯9の径方向限界位置を規定し得ると共に、可動歯両端9c,9dの径方向厚さを加減するだけの簡単な手法で安価に、可動歯9の歯先9bを可動シーブ内周面4aと同じ径方向位置、若しくは該径方向位置よりも径方向内方位置となすことができる。
Furthermore, in this embodiment, when defining the radial limit position of the movable tooth 9 urged radially outward by the spring means 12, both ends 9c, 9d of the movable tooth 9 (base 9a) are connected to the sheave 3, 4 butt against the inner peripheral part 3b, 4a radially outward,
Further, by adjusting the radial thickness of both ends of the movable teeth 9c, 9d, the radial limit position of the movable tooth 9 is set to the same radial position where the tip 9b of the movable tooth 9 is the same as the inner peripheral surface 4a of the movable sheave, or In order to achieve a limit position that is a radially inward position rather than a radial position,
By using existing parts (sheaves 3 and 4) effectively, the radial limit position of the movable tooth 9 can be specified at a low cost, and it is inexpensive with a simple method that just adjusts the radial thickness of the movable tooth ends 9c and 9d. Further, the tooth tip 9b of the movable tooth 9 can be set to the same radial position as the movable sheave inner peripheral surface 4a or a radially inner position than the radial position.

<第2実施例>
図6,7は、本発明の第2実施例になる無段変速伝動機構を成す無終端チェーンリンク1およびセカンダリプーリ2の巻き掛け伝動部で、図中、図1〜4におけると同様な部分を同一符号にて示す。
<Second embodiment>
FIGS. 6 and 7 are winding transmission portions of the endless chain link 1 and the secondary pulley 2 constituting the continuously variable transmission mechanism according to the second embodiment of the present invention, and are the same portions as in FIGS. Are denoted by the same reference numerals.

なお図6は、無段変速伝動機構が最ハイ変速比選択状態であるときの無終端チェーンリンク1およびセカンダリプーリ2の巻き掛け伝動部を示す、図2と同様な図であり、
また図7は、無段変速伝動機構が最ロー変速比選択状態であるときの無終端チェーンリンク1およびセカンダリプーリ2の巻き掛け伝動部を示す、図3と同様な図である。
6 is a view similar to FIG. 2, showing the winding transmission portion of the endless chain link 1 and the secondary pulley 2 when the continuously variable transmission mechanism is in the highest gear ratio selection state.
FIG. 7 is a view similar to FIG. 3, showing the winding transmission portion of the endless chain link 1 and the secondary pulley 2 when the continuously variable transmission mechanism is in the lowest speed ratio selection state.

本実施例では、バネ手段12で径方向外方へ附勢された可動歯9の径方向外方への進出限界位置(径方向限界位置)を規定するに当たり、追加部品である筒状の可動歯ガイド21を用いる。
この筒状の可動歯ガイド21は、プーリ中心ボス部8の外周面よりも径方向内方に位置するような直径とし、プーリ中心ボス部8内に嵌合して、プーリ中心ボス部8と同心状態を保つよう設ける。
In this embodiment, a cylindrical movable movable member, which is an additional part, is used to define the radially outward advance limit position (radial limit position) of the movable tooth 9 urged radially outward by the spring means 12. A tooth guide 21 is used.
The cylindrical movable tooth guide 21 has a diameter that is positioned radially inward from the outer peripheral surface of the pulley center boss portion 8, and is fitted into the pulley center boss portion 8 so that the pulley center boss portion 8 Provide to maintain concentricity.

可動歯ガイド21には、その内周側から径方向外方へ可動歯9の歯先9bが貫通するガイド孔(図示せず)を設け、可動歯9の基部9aを可動歯ガイド21の内周面に対し径方向外方へ衝接させて、可動歯9の径方向外方への進出限界位置(径方向限界位置)を規定する。
かかる可動歯9の径方向限界位置で可動歯9の歯先9bは、図6,7に示すごとく可動シーブ4の内周面4aと同じ径方向位置、若しくは該径方向位置よりも径方向内方位置となるような高さとする。
The movable tooth guide 21 is provided with a guide hole (not shown) through which the tooth tip 9b of the movable tooth 9 penetrates radially outward from the inner peripheral side thereof, and the base 9a of the movable tooth 9 is provided inside the movable tooth guide 21. The advancing limit position (radial limit position) of the movable tooth 9 to the radially outward direction is defined by making contact with the peripheral surface radially outward.
The tip 9b of the movable tooth 9 at the radial limit position of the movable tooth 9 is the same radial position as the inner peripheral surface 4a of the movable sheave 4 as shown in FIGS. The height is such that it is in the right direction.

<第2実施例の作用>
セカンダリプーリ2の可動シーブ4を図6のごとく固定シーブ3から遠ざけてプーリV溝幅を広くすると、無終端チェーンリンク1がセカンダリプーリ2に対する巻き掛け径を図6のごとく小さくされ、最ハイ変速比選択状態へと無段変速(アップシフト)される。
<Operation of Second Embodiment>
When the movable sheave 4 of the secondary pulley 2 is moved away from the fixed sheave 3 as shown in FIG. Continuously variable shift (upshift) to the ratio selection state.

このとき、無終端チェーンリンク1の可動歯噛合溝1aが可動歯9の歯先9bに噛み合うようになり、セカンダリプーリ2に対する無終端チェーンリンク1のスリップを防止し得て、最ハイ変速比選択状態での伝動効率を向上させることができる。   At this time, the movable tooth meshing groove 1a of the endless chain link 1 comes to mesh with the tooth tip 9b of the movable tooth 9, which can prevent the endless chain link 1 from slipping with respect to the secondary pulley 2, and the highest gear ratio is selected. The transmission efficiency in the state can be improved.

ここで、無終端チェーンリンク1の可動歯噛合溝1aが可動歯9(歯先9b)に噛み合い損なうと、可動歯9(歯先9b)が無終端チェーンリンク1の内周縁によりバネ手段12のバネ力に抗しプーリ中心ボス部8の可動歯ガイド溝11内で、図6の位置よりも更に径方向内方へと押し込まれ得るため、無終端チェーンリンク1が可動歯9(歯先9b)との干渉により損傷されるのを防止することができる。   Here, when the movable tooth meshing groove 1a of the endless chain link 1 fails to engage with the movable tooth 9 (tooth tip 9b), the movable tooth 9 (tooth tip 9b) of the spring means 12 is moved by the inner peripheral edge of the endless chain link 1. In the movable tooth guide groove 11 of the pulley center boss 8 against the spring force, the endless chain link 1 can be pushed inward in the radial direction from the position of FIG. ) Can be prevented from being damaged.

セカンダリプーリ2の可動シーブ4を図7のごとく固定シーブ3に対し接近させてプーリV溝幅を狭くすると、
無終端チェーンリンク1は、図7からはみ出すほどに、セカンダリプーリ2に対する巻き掛け径を大きくされ、無段変速伝動機構は図7に示す最ロー変速比選択状態へと無段変速(ダウンシフト)される。
When the movable sheave 4 of the secondary pulley 2 is brought closer to the fixed sheave 3 as shown in FIG.
As the endless chain link 1 protrudes from FIG. 7, the winding diameter of the secondary pulley 2 is increased, and the continuously variable transmission mechanism is continuously variable (downshift) to the lowest gear ratio selection state shown in FIG. Is done.

かかる最ロー変速比選択状態へのダウンシフト中、可動シーブ4は図7においてプーリ中心ボス部8上をスライドしつつ、図7に矢印で示す軸線方向へ変位する。
ところで、可動歯9の径方向限界位置においてその歯先9bが図6,7に示すごとく可動シーブ内周面4aと同じ径方向位置、若しくは該径方向位置よりも径方向内方位置にあるため、
図7に矢印で示す可動シーブ4の軸線方向変位中、この可動シーブ4は内周面4aによって可動歯9(歯先9b)をバネ手段12のバネ力に抗し径方向内方へ押し込むことがない。
During the downshift to the lowest gear ratio selection state, the movable sheave 4 slides on the pulley center boss portion 8 in FIG. 7 and is displaced in the axial direction indicated by the arrow in FIG.
By the way, at the radial limit position of the movable tooth 9, the tooth tip 9b is at the same radial position as the movable sheave inner peripheral surface 4a as shown in FIGS. ,
During the axial displacement of the movable sheave 4 indicated by an arrow in FIG. 7, the movable sheave 4 pushes the movable tooth 9 (tooth tip 9b) radially inward against the spring force of the spring means 12 by the inner peripheral surface 4a. There is no.

<第2実施例の効果>
上記した本実施例においても、バネ手段12で径方向外方へ附勢された可動歯9の径方向限界位置を、可動歯9の歯先9bが図6,7に示すごとく可動シーブ内周面4aと同じ径方向位置、若しくは該径方向位置よりも径方向内方位置となるような限界位置にしたため、
図7に矢印で示す可動シーブ4の軸線方向変位による最ロー変速比選択状態へのダウンシフト中、該可動シーブ4の内周面4aが可動歯9(歯先9b)をバネ手段12のバネ力に抗し径方向内方へ押し込むことがない。
<Effect of the second embodiment>
Also in this embodiment described above, the radial limit position of the movable tooth 9 urged radially outward by the spring means 12 is shown as the tip 9b of the movable tooth 9 as shown in FIGS. Because the limit position is the same radial position as the surface 4a, or a radial inner position than the radial position,
During the downshift to the lowest speed ratio selection state due to the axial displacement of the movable sheave 4 indicated by the arrow in FIG. 7, the inner peripheral surface 4a of the movable sheave 4 moves the movable tooth 9 (tooth tip 9b) to the spring of the spring means 12. It does not push inward in the radial direction against the force.

従って、可動シーブ内周面4aと可動歯9(歯先9b)との摺動が発生せず、この摺動により可動シーブ内周面4aおよび可動歯9(歯先9b)が摩耗して耐久性が悪化するという問題を回避し得ると共に、かかる可動シーブ内周面4aの摩耗で、これとプーリ中心ボス部8とのスライド嵌合部から変速制御油圧が漏れ、シーブ3,4による無終端チェーンリンク1の挟圧力の低下で伝動効率が低下するという問題を回避することができる。   Therefore, sliding between the movable sheave inner peripheral surface 4a and the movable tooth 9 (tooth tip 9b) does not occur, and this sliding causes the movable sheave inner peripheral surface 4a and the movable tooth 9 (tooth tip 9b) to wear and become durable. In addition to avoiding the problem of deterioration, the wear of the movable sheave inner peripheral surface 4a causes the shift control hydraulic pressure to leak from the slide fitting portion between this and the pulley center boss portion 8, and the sheaves 3 and 4 are endless. It is possible to avoid the problem that the transmission efficiency decreases due to a decrease in the clamping pressure of the chain link 1.

また、可動シーブ4の内周面4aが可動歯9(歯先9b)をバネ手段12のバネ力に抗し径方向内方へ押し込むことがないため、当該可動歯9の径方向内方押し込みによりバネ手段12が大きく撓んでその耐久性が悪化するという問題を回避し得ると共に、
かようにバネ手段12が大きく撓んだ状態が、最ロー変速比選択中の長時間に亘り継続して、バネ手段12がこれに伴う早期劣化により可動歯9の径方向押し出し力を弱められて、伝動効率の向上効果を阻害されるという問題を回避することができる。
Further, the inner peripheral surface 4a of the movable sheave 4 does not push the movable tooth 9 (tooth tip 9b) inward in the radial direction against the spring force of the spring means 12, so that the movable tooth 9 is pushed inward in the radial direction. As a result, the problem that the spring means 12 is greatly bent and its durability deteriorates can be avoided,
The state in which the spring means 12 is greatly bent continues for a long time during selection of the lowest speed ratio, and the spring means 12 can weaken the radial pushing force of the movable tooth 9 due to the early deterioration accompanying this. Thus, it is possible to avoid the problem that the effect of improving the transmission efficiency is hindered.

更に本実施例においては、バネ手段12により径方向外方へ附勢されている可動歯9の径方向限界位置を規定するに際し、プーリ中心ボス部8の外周面よりも径方向内方に嵌合した筒状の可動歯ガイド21を用いるため、
固定シーブ3に、図2,3に示すような環状切り欠き3aを設ける必要がなくなり、当該環状切り欠き3aの形成による固定シーブ3の強度低下を防止することができる。
Further, in this embodiment, when the radial limit position of the movable tooth 9 urged radially outward by the spring means 12 is defined, it is fitted inward in the radial direction from the outer peripheral surface of the pulley center boss portion 8. To use the combined cylindrical movable tooth guide 21,
It is not necessary to provide the fixed sheave 3 with the annular notch 3a as shown in FIGS. 2 and 3, and it is possible to prevent the strength reduction of the fixed sheave 3 due to the formation of the annular notch 3a.

<第3実施例>
図8,9は、本発明の第3実施例になる無段変速伝動機構を成す無終端チェーンリンク1およびセカンダリプーリ2の巻き掛け伝動部で、図中、図1〜4におけると同様な部分を同一符号にて示す。
<Third embodiment>
FIGS. 8 and 9 are winding transmission portions of the endless chain link 1 and the secondary pulley 2 constituting the continuously variable transmission mechanism according to the third embodiment of the present invention, and are the same portions as in FIGS. Are denoted by the same reference numerals.

なお図8は、無段変速伝動機構が最ハイ変速比選択状態であるときの無終端チェーンリンク1およびセカンダリプーリ2の巻き掛け伝動部を示す、図2と同様な図であり、
また図9は、無段変速伝動機構が最ロー変速比選択状態であるときの無終端チェーンリンク1およびセカンダリプーリ2の巻き掛け伝動部を示す、図3と同様な図である。
FIG. 8 is a view similar to FIG. 2 showing the winding transmission portion of the endless chain link 1 and the secondary pulley 2 when the continuously variable transmission mechanism is in the highest gear ratio selection state.
FIG. 9 is a view similar to FIG. 3, showing the winding transmission portion of the endless chain link 1 and the secondary pulley 2 when the continuously variable transmission mechanism is in the lowest speed ratio selection state.

本実施例では、バネ手段12で径方向外方へ附勢された可動歯9の径方向外方への進出限界位置(径方向限界位置)を規定するに当たり、図1〜3に示す第1実施例と同様に、可動歯基部4aの両端9c,9dを、シーブ3,4の内周面3b,4aに対し径方向外方へ衝接させて、可動歯9の径方向限界位置を規定する。   In the present embodiment, in defining the advance limit position (radial limit position) of the movable tooth 9 urged radially outward by the spring means 12 in the radial outward direction, the first shown in FIGS. Similarly to the embodiment, both ends 9c and 9d of the movable tooth base 4a are brought into contact radially outward with the inner peripheral surfaces 3b and 4a of the sheaves 3 and 4 to define the radial limit position of the movable tooth 9. To do.

しかし、当該可動歯9の径方向限界位置において、可動歯9の歯先9b,9eのうち、可動シーブ内周面4aと同じ径方向位置、若しくは該径方向位置よりも径方向内方位置となる歯先9bは、可動シーブ4が図8に示す最ハイ変速比選択位置と図9に示す最ロー変速比選択位置との間でストロークする時に、可動シーブ内周面4aが被さる領域の歯先部分のみとする。   However, at the radial limit position of the movable tooth 9, among the tooth tips 9b, 9e of the movable tooth 9, the same radial position as the movable sheave inner peripheral surface 4a, or a radially inner position than the radial position. The tooth tip 9b is a tooth in a region covered by the inner surface 4a of the movable sheave when the movable sheave 4 strokes between the highest gear ratio selection position shown in FIG. 8 and the lowest gear ratio selection position shown in FIG. Only the tip part.

そして、残りの領域における可動歯9の歯先9eは歯先9bよりも大径とし、可動歯9には小径の歯先9bと、大径の歯先9eとより成る段付きの歯先を設ける。
小径の歯先9bと噛み合う可動歯噛合溝1aは、図2に示す第1実施例と同様なものとし、大径の歯先9eと噛み合う可動歯噛合溝1bは、図8に示すように歯先9eとの噛合により伝動効率を高めるようなものとする。
Then, the tooth tip 9e of the movable tooth 9 in the remaining region has a larger diameter than the tooth tip 9b, and the movable tooth 9 has a stepped tooth tip composed of a small diameter tooth tip 9b and a large diameter tooth tip 9e. Provide.
The movable tooth meshing groove 1a meshing with the small diameter tooth tip 9b is the same as that of the first embodiment shown in FIG. 2, and the movable tooth meshing groove 1b meshing with the large diameter tooth tip 9e is a tooth as shown in FIG. The transmission efficiency is increased by meshing with the tip 9e.

<第3実施例の作用>
セカンダリプーリ2の可動シーブ4を図8のごとく固定シーブ3から遠ざけてプーリV溝幅を広くすると、無終端チェーンリンク1がセカンダリプーリ2に対する巻き掛け径を図8のごとく小さくされ、最ハイ変速比選択状態へと無段変速(アップシフト)される。
<Operation of the third embodiment>
When the movable sheave 4 of the secondary pulley 2 is moved away from the fixed sheave 3 as shown in FIG. Continuously variable shift (upshift) to the ratio selection state.

このとき、無終端チェーンリンク1の可動歯噛合溝1a,1bがそれぞれ可動歯9の歯先9b,9eに噛み合うようになり、セカンダリプーリ2に対する無終端チェーンリンク1のスリップを防止し得て、最ハイ変速比選択状態での伝動効率を向上させることができる。   At this time, the movable tooth meshing grooves 1a, 1b of the endless chain link 1 are engaged with the tooth tips 9b, 9e of the movable tooth 9, respectively, and the slip of the endless chain link 1 with respect to the secondary pulley 2 can be prevented, It is possible to improve the transmission efficiency when the highest gear ratio is selected.

ここで、無終端チェーンリンク1の可動歯噛合溝1a,1bが可動歯9(歯先9b,9e)に噛み合い損なうと、可動歯9(歯先9b,9e)が無終端チェーンリンク1の内周縁によりバネ手段12のバネ力に抗しプーリ中心ボス部8の可動歯ガイド溝11内で、図8の位置よりも更に径方向内方へと押し込まれ得るため、無終端チェーンリンク1が可動歯9(歯先9b,9e)との干渉により損傷されるのを防止することができる。   Here, if the movable tooth meshing grooves 1a, 1b of the endless chain link 1 fail to mesh with the movable teeth 9 (tooth tips 9b, 9e), the movable teeth 9 (tooth tips 9b, 9e) The endless chain link 1 is movable because it can be pushed further radially inward than the position of FIG. 8 in the movable tooth guide groove 11 of the pulley center boss 8 against the spring force of the spring means 12 by the peripheral edge. It is possible to prevent damage due to interference with the teeth 9 (tooth tips 9b, 9e).

セカンダリプーリ2の可動シーブ4を図9のごとく固定シーブ3に対し接近させてプーリV溝幅を狭くすると、
無終端チェーンリンク1は、図9からはみ出すほどに、セカンダリプーリ2に対する巻き掛け径を大きくされ、無段変速伝動機構は図9に示す最ロー変速比選択状態へと無段変速(ダウンシフト)される。
When the movable sheave 4 of the secondary pulley 2 is moved closer to the fixed sheave 3 as shown in FIG.
As the endless chain link 1 protrudes from FIG. 9, the winding diameter of the secondary pulley 2 is increased, and the continuously variable transmission mechanism is continuously shifted to the lowest gear ratio selection state shown in FIG. 9 (downshift). Is done.

かかる最ロー変速比選択状態へのダウンシフト中、可動シーブ4は図9においてプーリ中心ボス部8上をスライドしつつ、図9に矢印で示す軸線方向へ変位する。
ところで、可動歯9の径方向限界位置においてその歯先9bが図8,9に示すごとく可動シーブ内周面4aと同じ径方向位置、若しくは該径方向位置よりも径方向内方位置にあるため、
図9に矢印で示す可動シーブ4の軸線方向変位中、この可動シーブ4は内周面4aによって可動歯9(歯先9b)をバネ手段12のバネ力に抗し径方向内方へ押し込むことがない。
During the downshift to the lowest gear ratio selection state, the movable sheave 4 slides on the pulley center boss portion 8 in FIG. 9 and is displaced in the axial direction indicated by the arrow in FIG.
By the way, at the radial limit position of the movable tooth 9, the tooth tip 9b is at the same radial position as the movable sheave inner peripheral surface 4a, as shown in FIGS. ,
During the axial displacement of the movable sheave 4 indicated by the arrow in FIG. 9, the movable sheave 4 pushes the movable tooth 9 (tooth tip 9b) radially inward against the spring force of the spring means 12 by the inner peripheral surface 4a. There is no.

<第3実施例の効果>
上記した本実施例においても、バネ手段12で径方向外方へ附勢された可動歯9の径方向限界位置を、可動歯9の歯先9bが図8,9に示すごとく可動シーブ内周面4aと同じ径方向位置、若しくは該径方向位置よりも径方向内方位置となるような限界位置にしたため、
図9に矢印で示す可動シーブ4の軸線方向変位による最ロー変速比選択状態へのダウンシフト中、該可動シーブ4の内周面4aが可動歯9(歯先9b)をバネ手段12のバネ力に抗し径方向内方へ押し込むことがない。
<Effect of the third embodiment>
Also in the present embodiment described above, the radial limit position of the movable tooth 9 urged radially outward by the spring means 12, the tip 9b of the movable tooth 9 as shown in FIGS. Because the limit position is the same radial position as the surface 4a, or a radial inner position than the radial position,
During the downshift to the lowest gear ratio selection state due to the displacement in the axial direction of the movable sheave 4 indicated by the arrow in FIG. It does not push inward in the radial direction against the force.

従って、可動シーブ内周面4aと可動歯9(歯先9b)との摺動が発生せず、この摺動により可動シーブ内周面4aおよび可動歯9(歯先9b)が摩耗して耐久性が悪化するという問題を回避し得ると共に、可動歯9の径方向内方押し込みによりバネ手段12が大きく撓んでその耐久性が悪化したり、バネ手段12が大きく撓んだ状態が長時間続いて早期に劣化されるという問題を回避することができる。   Therefore, sliding between the movable sheave inner peripheral surface 4a and the movable tooth 9 (tooth tip 9b) does not occur, and this sliding causes the movable sheave inner peripheral surface 4a and the movable tooth 9 (tooth tip 9b) to wear and become durable. In addition to avoiding the problem of deterioration, the spring means 12 is greatly bent due to the radially inward pushing of the movable tooth 9 to deteriorate its durability, or the spring means 12 is greatly bent for a long time. Thus, the problem of early deterioration can be avoided.

更に本実施例においては、可動歯9の径方向限界位置において、可動歯9の歯先9b,9eのうち、可動シーブ内周面4aと同じ径方向位置、若しくは該径方向位置よりも径方向内方位置となる歯先9bは、可動シーブ4が図8に示す最ハイ変速比選択位置と図9に示す最ロー変速比選択位置との間でストロークする時に、可動シーブ内周面4aが被さる領域の歯先部分のみとし、残りの領域における可動歯9の歯先9eは歯先9bよりも大径にしたため、
大径の歯先9bと可動歯噛合溝1bと噛み合いにより、無終端チェーンリンク1およびセカンダリプーリ2間の伝動トルク容量が増大して、可動歯9による伝動効率の向上効果を更に確実なものにすることができる。
Further, in the present embodiment, at the radial limit position of the movable tooth 9, among the tooth tips 9b, 9e of the movable tooth 9, the same radial position as the movable sheave inner peripheral surface 4a, or more radial than the radial position. When the movable sheave 4 strokes between the highest gear ratio selection position shown in FIG. 8 and the lowest gear ratio selection position shown in FIG. 9, the inner peripheral surface 4a of the movable sheave is Because only the tooth tip portion of the covered region, the tooth tip 9e of the movable tooth 9 in the remaining region is larger than the tooth tip 9b,
Engagement with the large-diameter tooth tip 9b and the movable tooth meshing groove 1b increases the transmission torque capacity between the endless chain link 1 and the secondary pulley 2, further improving the efficiency of transmission efficiency by the movable tooth 9. can do.

<その他の実施例>
なお図8,9のように、可動シーブ4のストローク中に可動シーブ内周面4aが被さる可動歯9の歯先領域における歯先部分9bのみを、可動シーブ内周面4aと同じ径方向位置、若しくは該径方向位置よりも径方向内方位置となし、他領域における歯先部分9eを歯先部分9bよりも大径にする着想は、
可動歯9の径方向限界位置を図6,7におけるように筒状の可動歯ガイド21で規定する構成に対しても適用し得るのは言うまでもない。
<Other examples>
As shown in FIGS. 8 and 9, only the tip portion 9b in the tip region of the movable tooth 9 covered by the movable sheave inner peripheral surface 4a during the stroke of the movable sheave 4 is the same radial position as the movable sheave inner peripheral surface 4a. Or the radial inner position than the radial position, the idea of making the tooth tip portion 9e in the other region larger than the tooth tip portion 9b,
Needless to say, the present invention can be applied to a configuration in which the radial limit position of the movable tooth 9 is defined by the cylindrical movable tooth guide 21 as shown in FIGS.

また第1〜3実施例ではいずれも、最ハイ変速比選択状態で無終端チェーンリンク1とセカンダリプーリ2との間のスリップを防止すべく、これら無終端チェーンリンク1およびセカンダリプーリ2間にスリップ防止機構(可動歯9、可動歯噛合溝1a)が存在する場合について本発明の着想を適用したが、
最ロー変速比選択状態で無終端チェーンリンク1とプライマリプーリ(図示せず)との間のスリップを防止すべく、これらの間に同様なスリップ防止機構が存在する場合も本発明の上記した着想は適用可能であり、この適用によっても前記したと同様な作用効果が奏し得られのは言うまでもない。
In each of the first to third embodiments, the slip between the endless chain link 1 and the secondary pulley 2 is prevented in order to prevent the slip between the endless chain link 1 and the secondary pulley 2 in the highest gear ratio selection state. Although the idea of the present invention was applied to the case where a prevention mechanism (movable tooth 9, movable tooth meshing groove 1a) exists,
In order to prevent slip between the endless chain link 1 and the primary pulley (not shown) in the state where the lowest gear ratio is selected, the above-described idea of the present invention is also provided when a similar anti-slip mechanism exists between them. It is needless to say that the same effect as described above can be obtained by this application.

1 無終端チェーンリンク
1a,1b 可動歯噛合溝
2 セカンダリプーリ
3 固定シーブ
3a 環状切り欠き
3b 環状切り欠き内周面
4 可動シーブ
4a 可動シーブ内周面
5 プーリ軸
8 プーリ中心ボス部
9 可動歯
9a 基部
9b,9e 歯先
11 可動歯ガイド溝
12 バネ手段
21 可動歯ガイド
1 Endless chain link
1a, 1b Movable tooth meshing groove
2 Secondary pulley
3 Fixed sheave
3a annular notch
3b Inner circumferential surface of annular notch
4 Movable sheave
4a Movable sheave inner surface
5 Pulley shaft
8 Pulley center boss
9 Movable teeth
9a base
9b, 9e tooth tip
11 Movable tooth guide groove
12 Spring means
21 Movable tooth guide

Claims (4)

無終端チェーンリンクと、この無終端チェーンリンクを巻き掛けしたプーリとから成り、
前記無終端チェーンリンクを挟圧する前記プーリの軸線方向対向シーブのうち、一方の固定シーブをプーリ中心ボス部に対し固定し、他方の可動シーブを該プーリ中心ボス部上で軸線方向へスライドさせることにより無段変速可能であり、
前記プーリ中心ボス部の外周に、バネ手段で径方向外方へ附勢すると共に径方向限界位置に弾支して設けた可動歯と、前記無終端チェーンリンクに設けた可動歯噛合溝との噛み合いにより、該噛み合いが可能な伝動比でのスリップ防止を可能にした無段変速伝動機構において、
前記可動歯の径方向限界位置で該可動歯の歯先が、プーリ中心ボス部上に軸線方向スライド可能に嵌合させた前記可動シーブの内周面と同じ径方向位置、若しくは該径方向位置よりも径方向内方位置となるよう、前記可動歯の径方向限界位置を定めたことを特徴とする無段変速伝動機構。
It consists of an endless chain link and a pulley around which this endless chain link is wound.
Among the axially opposed sheaves of the pulley that pinch the endless chain link, one fixed sheave is fixed to the pulley central boss portion, and the other movable sheave is slid in the axial direction on the pulley central boss portion. Can be continuously variable,
A movable tooth that is urged radially outward by a spring means on the outer periphery of the pulley center boss portion and elastically supported at a radial limit position, and a movable tooth meshing groove provided on the endless chain link In the continuously variable transmission mechanism that enables slip prevention at a transmission ratio that enables the meshing,
At the radial limit position of the movable tooth, the tip of the movable tooth has the same radial position as the inner peripheral surface of the movable sheave that is slidably fitted on the pulley center boss, or the radial position. A continuously variable transmission mechanism characterized in that a radial limit position of the movable tooth is determined so as to be a radially inward position.
請求項1に記載された無段変速伝動機構において、
前記可動歯のプーリ軸線方向両端を、前記軸線方向対向シーブの内周部に対し径方向外方へ衝接させて、前記可動歯の径方向限界位置を規定するよう構成し、
前記可動歯のプーリ軸線方向両端における径方向厚さを、前記可動歯の径方向限界位置で該可動歯の歯先が前記可動シーブ内周面と同じ径方向位置、若しくは該径方向位置よりも径方向内方位置となるよう決定したことを特徴とする無段変速伝動機構。
In the continuously variable transmission mechanism according to claim 1,
The pulley is configured such that both ends of the movable teeth in the axial direction of the pulley are brought into contact radially outward with respect to the inner peripheral portion of the axially opposed sheave, thereby defining a radial limit position of the movable teeth,
The radial thickness at both ends of the pulley in the axial direction of the movable tooth is set so that the tip of the movable tooth is the same radial position as the inner peripheral surface of the movable sheave at the radial limit position of the movable tooth, or more than the radial position. A continuously variable transmission mechanism characterized by being determined to be a radially inward position.
請求項1に記載された無段変速伝動機構において、
前記プーリ中心ボス部の外周に嵌合させて設けた筒状の可動歯ガイドの内周に可動歯を衝接させて、前記可動歯の径方向限界位置を規定するよう構成し、
前記可動歯ガイドの内径を、前記可動歯の径方向限界位置で該可動歯の歯先が前記可動シーブ内周面と同じ径方向位置、若しくは該径方向位置よりも径方向内方位置となるよう決定したことを特徴とする無段変速伝動機構。
In the continuously variable transmission mechanism according to claim 1,
The movable teeth are brought into contact with the inner periphery of a cylindrical movable tooth guide provided by being fitted to the outer periphery of the pulley center boss, and the radial limit position of the movable teeth is defined.
With the inner diameter of the movable tooth guide, the tip of the movable tooth is the same radial position as the inner peripheral surface of the movable sheave at the radial limit position of the movable tooth, or a radially inner position than the radial position. A continuously variable transmission mechanism characterized in that it is determined as follows.
請求項1〜3のいずれか1項に記載された無段変速伝動機構において、
前記可動歯の歯先は、前記可動シーブの軸線方向スライド中に該可動シーブの内周面が被さる領域のみを、前記可動シーブ内周面と同じ径方向位置、若しくは該径方向位置よりも径方向内方位置にされるものであることを特徴とする無段変速伝動機構。
In the continuously variable transmission mechanism according to any one of claims 1 to 3,
The tip of the movable tooth has the same radial position as the inner peripheral surface of the movable sheave or a diameter larger than the radial position only in the region covered by the inner peripheral surface of the movable sheave during the axial sliding of the movable sheave. A continuously variable transmission mechanism characterized in that it is set in a direction inward direction.
JP2010231180A 2010-10-14 2010-10-14 Continuously variable transmission mechanism Expired - Fee Related JP5430532B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010231180A JP5430532B2 (en) 2010-10-14 2010-10-14 Continuously variable transmission mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010231180A JP5430532B2 (en) 2010-10-14 2010-10-14 Continuously variable transmission mechanism

Publications (2)

Publication Number Publication Date
JP2012082928A JP2012082928A (en) 2012-04-26
JP5430532B2 true JP5430532B2 (en) 2014-03-05

Family

ID=46242010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010231180A Expired - Fee Related JP5430532B2 (en) 2010-10-14 2010-10-14 Continuously variable transmission mechanism

Country Status (1)

Country Link
JP (1) JP5430532B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5977186B2 (en) * 2013-03-25 2016-08-24 ジヤトコ株式会社 Continuously variable transmission and control method
ITTO20130322A1 (en) * 2013-04-22 2013-07-22 Kite Gen Res Srl PERFECTED PULLEY FOR HIGH EFFICIENCY WINCH.
CN104214306B (en) * 2013-05-31 2018-07-03 王国斌 A kind of oscillating tooth sliding block constrains elastic reset design method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6182061A (en) * 1984-08-23 1986-04-25 Honda Motor Co Ltd V belt transmission device
JP5347539B2 (en) * 2008-03-26 2013-11-20 日産自動車株式会社 Continuously variable transmission

Also Published As

Publication number Publication date
JP2012082928A (en) 2012-04-26

Similar Documents

Publication Publication Date Title
US11280385B2 (en) Transfer belt
US6074317A (en) Belt for continuously variable transmission with suppressed slip relative to the pulleys
JP5430532B2 (en) Continuously variable transmission mechanism
JP5877900B2 (en) Metal belt element
JP5614223B2 (en) Continuously variable transmission mechanism
JP2012251578A (en) Chain type stepless variable speed transmission mechanism
JP5515818B2 (en) Continuously variable transmission mechanism
JP2015045344A (en) Continuously variable transmission mechanism
JP2005344743A (en) Belt continuously variable transmission
JP5126016B2 (en) Belt type continuously variable transmission
JP5349442B2 (en) Continuously variable transmission mechanism
JP2013241996A (en) Chain link clamping force control device for continuously-variable transmission mechanism
JP2005214345A (en) Power transmission chain, manufacturing method thereof and power transmission
JP6711184B2 (en) Chain-type continuously variable transmission
JP2005042803A (en) Endless metal belt assembling method
JP6322992B2 (en) Manufacturing method of chain type continuously variable transmission mechanism
JP3675329B2 (en) Belt type continuously variable transmission
JP2012513570A (en) Continuously variable transmission
JP2014016008A (en) Continuously variable transmission mechanism
JP2014185702A (en) Support structure for pulley of continuously variable transmission
JP2015075155A (en) Continuously variable transmission mechanism
JP4673635B2 (en) Metal belt
JP4216214B2 (en) Assembled V-belt
JP2013113433A (en) Continuously variable transmission mechanism
JP5614019B2 (en) Power transmission device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131203

R150 Certificate of patent or registration of utility model

Ref document number: 5430532

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees