JP2005261095A - Railway vehicle control method - Google Patents

Railway vehicle control method Download PDF

Info

Publication number
JP2005261095A
JP2005261095A JP2004069958A JP2004069958A JP2005261095A JP 2005261095 A JP2005261095 A JP 2005261095A JP 2004069958 A JP2004069958 A JP 2004069958A JP 2004069958 A JP2004069958 A JP 2004069958A JP 2005261095 A JP2005261095 A JP 2005261095A
Authority
JP
Japan
Prior art keywords
brake
control method
electric
railway vehicle
train
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004069958A
Other languages
Japanese (ja)
Other versions
JP4271605B2 (en
Inventor
Kiyoshi Kawaguchi
清 川口
Hiroaki Ishida
弘明 石田
Takeshi Hayase
剛 早勢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP2004069958A priority Critical patent/JP4271605B2/en
Publication of JP2005261095A publication Critical patent/JP2005261095A/en
Application granted granted Critical
Publication of JP4271605B2 publication Critical patent/JP4271605B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a railway vehicle control method that can suppress the generation of an excessive self-link force and the unevenness of a brake by adding mainly a control means and some sensors to a conventional inverter-controlled electric train that uses an induction motor. <P>SOLUTION: An estimate value of an actual adhesion coefficient is calculated from information at a wheel skid in place of a method that conventionally uses a fixed value such as 20% with respect to an anticipated adhesion coefficient required for a drive shaft in a train composition, the calculated value is used as the anticipated adhesion coefficient when the calculated value is smaller than the anticipated adhesion coefficient of the drive shaft, and an air supplement control amount is reduced. By the calculation method of the anticipated value of the adhesion coefficient, the anticipate value is obtained by dividing the brake force of the shaft at the wheel skid by the axial weight of the shaft. <P>COPYRIGHT: (C)2005,JPO&amp;NCIPI

Description

本発明は、鉄道車両制御方法に関するものである。   The present invention relates to a railway vehicle control method.

鉄道車両制御に、直流電動機と抵抗制御と発電ブレーキを用いたかつての旧型電車と、その後の誘導電動機と電力変換器と電力回生ブレーキを用いる近年のインバータ制御電車を例に、従来技術について説明する。   The conventional technology will be described by taking as an example an old train using a DC motor, resistance control and power generation brake for railcar control, and a recent inverter control train using an induction motor, power converter and power regeneration brake. .

はじめに、日本の鉄道の軌間は、1067mmであり、世界的には狭軌と呼ばれている。鉄道導入当時の車体の幅は、英国の経験値を基に軌間の2倍であったが、現在の日本の車体幅は、多くが軌間の約3倍まで拡大されている。因みに、自動車では1.3倍程度である。軌間の大きさは、曲線半径やカントや車体の幅のみならず、車両の高さや長さ、台車、軸重といった各仕様を制約する。例えば、狭軌では標準軌に比べ、低速走行時における急曲線走行が許容される。しかし、一方で車体幅の拡大に伴い、乗り上がり脱線や座屈脱線、高速走行時における蛇行動や転覆といった事故を防止する上での、線路状態や限界速度や車両制御法への制約が増す。   First, the gauge of Japanese railways is 1067 mm, which is called a narrow gauge worldwide. The width of the car body at the time of the introduction of the railway was double the gauge based on the experience in the UK, but the current width of the Japanese car body has been expanded to about three times the gauge. Incidentally, it is about 1.3 times in automobiles. The size of the trajectory limits not only the curve radius, the cant and the width of the vehicle body, but also the specifications such as the height and length of the vehicle, the carriage, and the axle weight. For example, in a narrow gauge, a sharp curve traveling at a low speed is allowed as compared with a standard gauge. However, on the other hand, with the expansion of the vehicle body width, restrictions on the track condition, limit speed, and vehicle control method are increased to prevent accidents such as climbing derailment, buckling derailment, snake behavior and rollover at high speeds. .

例えば、鉄道車両の制御法の基本として、自動車のジャックナイフ現象やスネーク現象に相当する座屈脱線の防止のための列車制御法がある。特に減速度の大きな電車列車の場合、直流電動機と抵抗制御と発電ブレーキを用いたかつての旧型電車では、列車内のブレーキ力の均等とブレーキ応答の均等を考慮した設計が尊重され、これに加えて、ブレーキ力の急変や過大な自連力(車両間の自動連結器に加わる圧縮力)や横圧が生じない設計も重視された。   For example, there is a train control method for preventing buckling derailment corresponding to a jackknife phenomenon or a snake phenomenon of an automobile as a basic control method of a railway vehicle. In particular, in the case of trains with large deceleration, the old trains that used DC motors, resistance control, and power generation brakes respected the design considering the equality of brake force and equality of brake response in the train. At the same time, there was an emphasis on designs that do not generate sudden changes in braking force, excessive self-interaction (compressive force applied to the automatic coupling between vehicles), or lateral pressure.

具体的には、
(1)直流電動機の出力が小さいこともあって、MT比(電動車M・付随車Tの比率)が6M4Tというように、編成列車内でのM車の割合が多くなるようにしていた。
(2)列車内の電動車と付随車のブレーキ力は、各車とも同一の減速度となるように設計された。
(3)電動車の常用ブレーキに併用される動力ブレーキには、失効しにくい簡易な発電ブレーキが用いられた。
(4)車輪踏面制輪子には、制輪子の溶着摩耗により踏面粗さを生成する高粘着な鋳鉄系が用いられていた。
(5)MT比6:4の駆動軸に要する期待粘着係数は14%程度で、雨天時の粘着係数15%に近い値に設計された。
(6)台車には、急曲線の線路でも旋回が容易なボルスタを有し、軸バネには変位量の大きなバネが用いられた。
(7)空気ブレーキ配管には絞りを設け、圧力変化率とジャーク(減速度変化率)量は緩慢に抑えられた。
In particular,
(1) Since the output of the DC motor is small, the ratio of the M cars in the train train is increased so that the MT ratio (ratio of the electric car M and the accompanying car T) is 6M4T.
(2) The braking force of the electric vehicle and the accompanying vehicle in the train was designed to have the same deceleration for each vehicle.
(3) A simple power generation brake that does not easily expire is used as a power brake that is used together with a service brake of an electric vehicle.
(4) A highly adhesive cast iron system that generates tread surface roughness by welding wear of the control wheel has been used for the wheel tread surface control device.
(5) The expected adhesion coefficient required for a drive shaft with an MT ratio of 6: 4 is about 14%, which is designed to be close to an adhesion coefficient of 15% in rainy weather.
(6) The bogie has a bolster that can be turned easily even on a sharply curved track, and a spring with a large displacement was used as the shaft spring.
(7) The air brake piping was provided with a throttle, and the pressure change rate and jerk (deceleration change rate) amount were controlled slowly.

その後、電車の主回路方式が進化し、高出力で省保守の誘導電動機と高価な電力変換器、及び電力回生ブレーキを有する従来のインバータ制御電車が普及した。その結果、コスト低減が優先され、部品点数も大幅に削減された。   Later, the train's main circuit system evolved, and conventional inverter-controlled trains with high-power, low-maintenance induction motors, expensive power converters, and power regenerative brakes became popular. As a result, cost reduction was prioritized, and the number of parts was greatly reduced.

例えば、
(1)電動機出力が増大し、MT比で4M8Tというように編成列車におけるM車の割合がかつての半分以下に集約された。
(2)列車内のブレーキは、付随車の機械ブレーキ力を電動車側で分担する遅れ込め制御への依存が増大した。
(3)電動車の常用ブレーキには、架線電圧の影響で失効し易い電力回生ブレーキが普及した。
(4)車輪踏面制輪子の材質には、制輪子の摩耗と表面粗さが小さくなる合成系や焼結系が普及した。
(5)MT比4:8の駆動軸に要する期待粘着係数は20%以上で、雨天時の実際の粘着係数は逆に10%程度に低下した。
(6)台車は、空気バネになり、ボルスタレス式が普及し、軸バネは硬いゴムを用いる方式が普及した。
(7)電空協調の制御性向上のため、空気ブレーキ回路の圧力変化率は増大し、配管上の絞りは撤去された。
なし
For example,
(1) The motor output increased, and the ratio of M cars in the train train was concentrated to less than half of the former, such as 4M8T in MT ratio.
(2) The brakes in the train have increased reliance on delaying control that shares the mechanical braking force of the accompanying vehicle on the electric vehicle side.
(3) Electric power regenerative brakes that tend to expire due to the influence of overhead wire voltage have become widespread as service brakes for electric vehicles.
(4) Synthetic systems and sintered systems that reduce wear and surface roughness of the control wheel have become widespread as materials for the wheel tread surface control device.
(5) The expected adhesion coefficient required for a drive shaft with an MT ratio of 4: 8 was 20% or more, and the actual adhesion coefficient during rain was reduced to about 10%.
(6) The bogie became an air spring, the bolsterless type became popular, and the shaft spring used a hard rubber system.
(7) In order to improve the controllability of electro-pneumatic cooperation, the pressure change rate of the air brake circuit increased, and the restriction on the piping was removed.
None

以上のような理由により、特に近年のインバータ制御車では、車輪・レール間の粘着力(転がり摩擦力)や架線電圧といった外乱の影響を受け易くなり、それに関するトラブルが増大した。その背景には、
(1)付随車に対する電動車割合が減る一方で速度向上したため、駆動軸に要する期待粘着係数が従前の2倍以上になった。
(2)列車内の電動車と付随車のブレーキ力の差は、常用最大ブレーキ時の低速時に従前の3倍以上になった。
(3)架線電圧や編成列車内の各電力変換器の電圧差により、電力回生ブレーキの失効や絞り込みが多発しはじめた。
(4)車輪踏面が鏡面化し、期待粘着係数と実際の粘着係数の乖離も増大したため、車輪の滑走が多発しはじめた。
(5)期待粘着係数と実際の粘着係数の乖離により、滑走に伴う電力回生ブレーキのブレーキ不均等が多発しはじめた。
(6)急曲線通過時の台車には、アンダーステアリング傾向が増大した。ブレーキ時には空気バネ化により軸重移動量が増大し、縦勾配区間通過時においては硬いゴムを用いる方式の軸バネにおいて輪重の偏りが増大した。
(7)空気ブレーキ回路の圧力変化率が増大したため、電力回生ブレーキ失効時のジャーク量が増大した。
For the reasons described above, particularly in recent inverter-controlled vehicles, it is easily affected by disturbances such as the adhesion between the wheels and the rails (rolling frictional force) and the overhead wire voltage, and the troubles associated therewith have increased. In the background,
(1) Since the ratio of the electric vehicle with respect to the accompanying vehicle has been reduced while the speed has been improved, the expected adhesion coefficient required for the drive shaft has become more than twice the conventional one.
(2) The difference in the braking force between the electric vehicle and the accompanying vehicle in the train is more than three times that of the previous one at the time of low speed during regular maximum braking.
(3) Due to the voltage difference between the overhead line voltage and each power converter in the train, the power regenerative brake has started to expire and narrow down frequently.
(4) Since the wheel tread has become a mirror surface and the difference between the expected adhesion coefficient and the actual adhesion coefficient has increased, the wheel has started to skid frequently.
(5) Due to the divergence between the expected adhesion coefficient and the actual adhesion coefficient, brake unevenness of the power regenerative brake due to sliding began to occur frequently.
(6) Under-steering tendency increased for trolleys passing through sharp curves. The amount of movement of the axle load increased due to the air spring during braking, and the bias of wheel load increased in the shaft spring using a hard rubber when passing through the longitudinal gradient section.
(7) Since the rate of change in pressure of the air brake circuit has increased, the amount of jerk when the power regeneration brake has expired has increased.

以上の理由により、近年のインバータ制御電車では、従前の旧型電車に比べ、動的な自連力や横圧が増大した。   For the above reasons, in the inverter-controlled train in recent years, the dynamic self-reaction force and lateral pressure have increased compared to the conventional old train.

そこで、従来のインバータ制御電車の課題を解決するために、本発明は、誘導電動機を用いる従来のインバータ制御電車に対して、主に制御手段と一部センサを付加し、過大な自連力の発生やブレーキの不均等を抑制することができる鉄道車両制御方法を提供することを目的とする。   Therefore, in order to solve the problems of the conventional inverter-controlled train, the present invention mainly adds control means and some sensors to the conventional inverter-controlled train using an induction motor, and has an excessive self-operating force. An object of the present invention is to provide a railway vehicle control method capable of suppressing occurrence and non-uniformity of brakes.

本発明は、上記目的を達成するために、
(1)過大な自連力の発生やブレーキの不均等を抑制する鉄道車両制御方法であって、列車編成内の駆動軸に要する期待粘着係数については、従来の20%といった固定した値を用いる方法に代えて、車輪滑走時の情報から実際の粘着係数の推定値を算出し、その算出値が駆動軸の期待粘着係数値より小さい場合には算出値を期待粘着係数として用い、遅れ込め制御の量を削減する方法である。なお、粘着係数の推定値の算出方法は、車輪滑走時の当該軸のブレーキ力を当該軸の軸重で割って求める。
(2)電動車と付随車間の遅れ込め制御の量については、従来の固定した値を用いる方法に代えて、編成車両数が所定の車両数より増大した場合や、MT比が1M2Tのように付随車に対する電動車比率が少ない場合において、従来の遅れ込め制御の量を削減する。
(3)電動車と付随車間の遅れ込め制御の量については、従来の固定した値を用いる方法に代えて、急曲線通過時の線路情報、または過大な左右振動加速度の情報の何れかの情報を用いて、従来の遅れ込め制御の量を削減する。
(4)電動車の電気ブレーキ力の演算については、従来のブレーキノッチ(減速度の指令量に相当)と速度と乗車重量の情報に加え、上記(1)で算出した期待粘着係数を用いて、電力回生ブレーキの分担を削減する。
(5)パンタ点の架線電圧が高いなどの理由で電気ブレーキの分担を減らす場合、不足分を機械(空気)ブレーキで補う電空協調(ブレンディング)ブレーキ制御については、従来の各車両別の1両一括制御に代えて、編成の電気ブレーキ力を均等にするための、列車編成一括の電気ブレーキ制御用指令線を列車内に引き通し、その指令に基づいて編成内の各車両の電気ブレーキ力を均等に配分する。
(6)電動車のブレーキ制御方式については、従来の一般的な1両4軸一括制御式の電気指令式空気ブレーキ方式に代えて、1両各軸個別制御式の新電気指令式空気ブレーキ方式とし、滑走再粘着制御時の各軸個別の電空協調ブレーキ制御を行うと共に、遅れ込めの制御の量を最大ブレーキ力の半分以下まで制限する。
(7)列車の減速度、あるいは編成車両数、あるいは自連力が、予め設定した値を超えた場合には、従来の電気と空気のブレーキの急峻なジャーク量に代えて、従来値より緩慢なジャーク量に制御する。
In order to achieve the above object, the present invention provides
(1) A railway vehicle control method that suppresses the occurrence of excessive self-interaction and brake unevenness, and uses a fixed value such as 20% of the conventional expected adhesion coefficient required for the drive shaft in train formation. Instead of the method, the estimated value of the actual adhesion coefficient is calculated from the information when the wheel is sliding, and if the calculated value is smaller than the expected adhesion coefficient value of the drive shaft, the calculated value is used as the expected adhesion coefficient and delayed control Is a way to reduce the amount of In addition, the calculation method of the estimated value of the adhesion coefficient is obtained by dividing the braking force of the shaft at the time of wheel sliding by the axial weight of the shaft.
(2) As for the amount of delay control between the electric vehicle and the accompanying vehicle, instead of the conventional method using a fixed value, when the number of trained vehicles increases from a predetermined number of vehicles, or the MT ratio is 1M2T When the ratio of the electric vehicle to the accompanying vehicle is small, the amount of conventional delay control is reduced.
(3) For the amount of delay control between the electric vehicle and the accompanying vehicle, instead of the conventional method using a fixed value, either the track information when passing a sharp curve or the information of excessive lateral vibration acceleration To reduce the amount of conventional delay control.
(4) Regarding the calculation of the electric brake force of the electric vehicle, in addition to the information on the conventional brake notch (corresponding to the command amount of deceleration), speed and ride weight, the expected adhesion coefficient calculated in (1) above is used. Reduce the share of power regenerative braking.
(5) When reducing the sharing of electric brakes due to high overhead wire voltage at the punter point, etc., electro-pneumatic coordination (blending) brake control that compensates the shortage with mechanical (air) brakes Instead of the two-way control, the train brake command line for electric brake control is routed through the train to equalize the electric brake force of the train, and the electric brake force of each vehicle in the train is based on the command. Distribute evenly.
(6) As for the brake control system for electric vehicles, instead of the conventional one-car 4-axis batch control type electric command-type air brake system, a new electric command-type air brake system with individual control for each axis. In addition to performing electro-pneumatic cooperative brake control for each axis during sliding re-adhesion control, the amount of delay control is limited to less than half of the maximum braking force.
(7) When the deceleration of the train, the number of trains set, or the autonomous force exceeds a preset value, it is slower than the conventional value instead of the sharp jerk amount of the conventional electric and air brakes. Control the amount of jerk.

以上、改善手段の多くは鉄道車両制御法の変更による。編成列車に新たに付加を要するセンサや装置も僅かですむ。すなわち、
上記(1)においては、付加すべきセンサや装置はなし。本発明に基づく鉄道車両制御法を採用する。
As described above, most of the improvement means are due to changes in the railway vehicle control method. Few sensors and devices need to be newly added to trains. That is,
In (1) above, there are no sensors or devices to be added. The railway vehicle control method based on the present invention is adopted.

上記(2)においては、付加すべきセンサや装置はなし。本発明に基づく鉄道車両制御法を採用する。   In (2) above, there are no sensors or devices to be added. The railway vehicle control method based on the present invention is adopted.

上記(3)においては、編成列車の両端制御車への左右振動センサか横圧センサを付加する。または、GPS(衛星測位システム)と線路情報を付加する。   In the above (3), a lateral vibration sensor or a lateral pressure sensor is added to the both-end control vehicle of the train set. Alternatively, GPS (satellite positioning system) and track information are added.

上記(4)においては、付加すべきセンサや装置はなし。本発明に基づく鉄道車両制御法を採用する。   In (4) above, there are no sensors or devices to be added. The railway vehicle control method based on the present invention is adopted.

上記(5)においては、編成車両を連ねる電気ブレーキ制御指令線の付加と鉄道車両制御法の機能を追加する。   In (5) above, the addition of an electric brake control command line connecting trains and the function of the railway vehicle control method are added.

上記(6)においては、電動車のブレーキ制御装置の個別制御化(ブレーキ制御装置の交換)と鉄道車両制御法の機能追加が必要である。   In the above (6), it is necessary to individually control the brake control device of the electric vehicle (replacement of the brake control device) and add functions of the rail vehicle control method.

上記(7)においては、付加すべきセンサや装置はなし。本発明に基づく鉄道車両制御法を採用する。あるいは、編成列車中間の一部車両に対する自連力センサを設ける。   In (7) above, there are no sensors or devices to be added. The railway vehicle control method based on the present invention is adopted. Alternatively, a self-operating force sensor is provided for some vehicles in the middle of the train set.

本発明によれば、過大な自連力の発生やブレーキの不均等を抑制することができる。   According to the present invention, it is possible to suppress the occurrence of excessive self-reaction force and brake non-uniformity.

より具体的には、
(A)座屈脱線防止を向上させることができる。
More specifically,
(A) Prevention of buckling derailment can be improved.

(B)ブレーキの回生率を向上させることができる。   (B) The regeneration rate of the brake can be improved.

(C)機械ブレーキや車輪の保守を低減させることができる。   (C) Maintenance of mechanical brakes and wheels can be reduced.

(D)回生ブレーキの信頼性を向上させることができる。   (D) The reliability of the regenerative brake can be improved.

(E)駆動と制御の性能を向上させることができる。   (E) The drive and control performance can be improved.

過大な自連力の発生やブレーキの不均等を抑制する鉄道車両制御方法であって、列車編成内の駆動軸に要する期待粘着係数は、車輪滑走時の情報から実際の粘着係数の推定値を車輪滑走時の当該軸のブレーキ力を当該軸の軸重で割って求め、その算出値が駆動軸の期待粘着係数値より小さい場合には、算出値を期待粘着係数として用い、遅れ込め制御の量を削減する。よって、過大な自連力の発生やブレーキの不均等を抑制することができる。   A railway vehicle control method that suppresses the occurrence of excessive self-interaction and brake unevenness. The expected adhesion coefficient required for the drive shaft in the train organization is the estimated value of the actual adhesion coefficient from the information during wheel sliding. If the calculated braking force is smaller than the expected adhesion coefficient value of the drive shaft, the braking force of the relevant axis when the wheel is sliding is divided by the axial weight of the relevant axis. Reduce the amount. Therefore, generation | occurrence | production of an excessive self-reaction force and the nonuniformity of a brake can be suppressed.

以下、本発明の実施の形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

図1は本発明の実施例を示す鉄道車両の制御ブロック図である。   FIG. 1 is a control block diagram of a railway vehicle showing an embodiment of the present invention.

この図に示す列車内の電気と機械による制御とを併用する電空協調制御、遅れ込め制御、駆動・力行制御を行う鉄道車両制御装置において、1は車両の制動の検出手段(既存の車両が有している指令系)、2は力行のノッチ段の検出手段(既存の車両が有している指令系)、3は車両の左右方向Gの検出センサ(自動車で用いられているエアバック用のGセンサを用いることができる)、4はMT(電動車と付随車)比の検出手段(既存の車両が有している指令系)、5は線形・速度・滑走の有無の検出手段(既存の車両が有している指令系)、6は自連力の検出センサ、7は横圧の検出センサ、8はパンタ点電流の検出手段(既存の車両が有している指令系)、9はGPS、16はデータ入力装置(線路情報17を入力可)、10は各種の検出手段1〜9やデータ入力装置16からのデータを取り込んで最適な車両の制御を行う制御装置である。   In the railway vehicle control apparatus that performs electro-pneumatic cooperative control, delay control, and drive / power running control using both electric and mechanical control in the train shown in this figure, 1 is a vehicle braking detection means (existing vehicle is Command system), 2 is a detecting means for notching step of power running (command system that existing vehicles have), 3 is a detection sensor for vehicle lateral direction G (for airbag used in automobiles) 4) MT (electric vehicle and associated vehicle) ratio detection means (command system of existing vehicles), 5 linear / speed / sliding presence detection means ( The command system of the existing vehicle), 6 is a detection sensor of the self-reaction force, 7 is a detection sensor of the lateral pressure, 8 is a detection means of the punter point current (command system of the existing vehicle), 9 is GPS, 16 is a data input device (track information 17 can be input), 10 is various Data from detection means 1-9 and the data input device 16 is a control device for controlling the optimum vehicle captures.

また、制御装置10によって制御の対象となる、ノッチ11、電動機13の電力を制御する電動機制御器12、電気ブレーキ14、機械ブレーキ15を備えている。   Further, the control device 10 includes a notch 11 to be controlled, an electric motor controller 12 that controls electric power of the electric motor 13, an electric brake 14, and a mechanical brake 15.

まず、本発明に関連する各種用語について説明する。   First, various terms related to the present invention will be described.

電空協調制御とは、電気機関車や電車では空気ブレーキのほかに発電ブレーキ(車両の運動エネルギーを主電動機で電気エネルギーに変換し、これを抵抗器に通電して熱として消費させるもの)や電力回生ブレーキ(発電ブレーキと同様の方法によって生じた電気エネルギーを電車線を通して他の負荷に消費させるもの)といった電気ブレーキが使用されているが、これらの電気ブレーキ力が飽和したり失効した場合などに空気ブレーキを作用させるなど、各々のブレーキ力の和がブレーキ力指令値と一致するようにさせる制御方法のことである。   Electro-pneumatic cooperative control is an electric brake for electric locomotives and trains, in addition to an air brake (which converts the vehicle's kinetic energy into electrical energy by the main motor, which is then passed through a resistor and consumed as heat), Electric brakes such as electric power regenerative brakes (those that cause electric energy generated by the same method as power generation brakes to be consumed by other loads through the train line) are used, but when these electric brake forces saturate or expire This is a control method for causing the sum of the respective brake forces to coincide with the brake force command value, for example, by applying an air brake.

遅れ込め制御とは、電気ブレーキと空気ブレーキを併用するブレーキにおいて、付随車(T)の空気ブレーキによる摩擦材料の摩耗を低減させるために、電動車(M)の電気ブレーキに付随車の分も分担させる制御法である。従って、電動車または電動車(M)と付随車(T)などがユニットとなった編成列車の電気ブレーキ力が飽和状態となった場合、もしくは電気ブレーキが失効した場合に、空気ブレーキによって制動力を捕捉する。付随車の空気ブレーキは、電気ブレーキのみで負担しきれない強いブレーキの指令を受けた場合や架線電圧が高い場合などに作用する。   In the brake using both the electric brake and the air brake, in order to reduce the wear of the friction material due to the air brake of the associated vehicle (T), the delay control is performed by the electric brake of the electric vehicle (M). It is a control method to share. Therefore, when the electric braking force of the train train in which the electric vehicle or the electric vehicle (M) and the accompanying vehicle (T) are united becomes saturated or the electric brake expires, the braking force is generated by the air brake. To capture. The air brake of the accompanying vehicle acts when receiving a command for a strong brake that cannot be borne by the electric brake alone or when the overhead wire voltage is high.

この作用によって、電動車の電気ブレーキや回生ブレーキを最大限に使用し、付随車の制輪子の摩耗の低減などが図られ、省エネルギーやメンテナンス低減などの利点をもつ。付随車のブレーキシリンダ圧力の立ち上がり開始が遅れることから遅れ込め制御と名付けられた(図2参照)。   This action maximizes the use of electric brakes and regenerative brakes for electric vehicles, reduces wear on the brakes of accompanying vehicles, and has advantages such as energy saving and maintenance reduction. Since the start of the rise of the brake cylinder pressure of the accompanying vehicle is delayed, it was named delayed control (see FIG. 2).

なお、図2において、AはT車が本来必要とする常用最大ブレーキ力、Bは常用最大ブレーキAの50%以下の遅れ込め制御により減じられて作用するブレーキ力、Cは性能設計上で要する期待粘着係数、Dは実際に算出された粘着係数、FはM車が本来必要とする常用最大ブレーキ力、Eは遅れ込め制御により増大されて作用するM(電動)車のブレーキ力をそれぞれ示している。   In FIG. 2, A is the normal maximum braking force originally required for the T car, B is the braking force that is reduced by delay control of 50% or less of the normal maximum brake A, and C is required for performance design. Expected adhesion coefficient, D is the actually calculated adhesion coefficient, F is the normal maximum braking force originally required for the M car, and E is the braking force of the M (electric) car that is increased and operated by the delay control. ing.

図2(a)から明らかなように、本発明においては、T車の遅れ込め制御の量は常用最大ブレーキAの50%以下とする。また、図2(b)から明らかなように、M(電動)車でT(付随)車の分まで分担する遅れ込め制御の量は常用最大ブレーキ力Fの50%以下とし、かつ期待粘着係数と同値以下であると同時に、実際に算出された粘着力と同値以下とする。このようにすることで車輪滑走を抑制する。   As is clear from FIG. 2A, in the present invention, the amount of delay control for the T car is set to 50% or less of the maximum service brake A. Further, as is clear from FIG. 2B, the amount of delay control that is shared by the M (electric) vehicle to the T (accompanying) vehicle is 50% or less of the normal maximum braking force F, and the expected adhesion coefficient. And at the same time as the actual calculated adhesive strength. By doing so, wheel sliding is suppressed.

図3は編成列車の遅れ込め制御ブレーキ時における列車座窟(スネーク)現象例を示す図である。ここでは、2M3T編成列車を示しており、21はM車又は機関車、22,23,25はT車、24はM車である。   FIG. 3 is a diagram showing an example of a train cave (snake) phenomenon at the time of delayed control braking of a train train. Here, a 2M3T train is shown, in which 21 is an M car or locomotive, 22, 23 and 25 are T cars, and 24 is an M car.

このような編成列車における遅れ込め制御ブレーキ時に列車座窟(スネーク)現象が発生することがある。   A train snake phenomenon may occur at the time of delayed control braking in such a train.

自連力とは、車両間の連結器軸方向に作用する力をいう。自動連結器作用力の略称である。自連力測定ピンと言われる、連結器と緩衝器を接続するピンに換えて挿入され、連結器に作用する引っ張り力、圧縮力(自連力)を検出するセンサにより容易に測定することができる。   Self-reaction force refers to the force acting in the axial direction of the connector between vehicles. Abbreviation for automatic coupling force. It can be easily measured by a sensor that detects the pulling force and compression force (self-linking force) that is inserted in place of the pin that connects the coupler and the shock absorber, and is called a self-link force measuring pin. .

横圧とは、車輪・レール間に作用する力のうち、レール方向に対して垂直な平面内にあり、かつ左右方向成分の分力をいう(図4における力Q参照)。   The lateral pressure refers to a component force in the horizontal direction component in the plane perpendicular to the rail direction among the forces acting between the wheels and the rails (see the force Q in FIG. 4).

図5はその横圧の説明図であり、図5(a)はその連結器力左右方向成分の発生の説明図、図5(b)はその自連力の説明図、図5(c)は横圧Qと輪重Pの説明図である。   FIG. 5 is an explanatory diagram of the lateral pressure, FIG. 5 (a) is an explanatory diagram of the generation of the horizontal component of the coupler force, FIG. 5 (b) is an explanatory diagram of the self-operating force, FIG. 5 (c). These are explanatory drawings of lateral pressure Q and wheel load P. FIG.

横圧は、歪みゲージを貼った測定輪軸を組み込んだ試験車両を用いた車上測定、または歪みゲージを貼った特定のレール上で車両を走行させることにより、運転条件や車種・車軸の差を比較する地上測定によって測定する。   Lateral pressure is measured on the vehicle using a test vehicle that incorporates a measuring wheel with a strain gauge, or by running the vehicle on a specific rail with a strain gauge. Measure by comparing ground measurements.

ジャーク制御とは、乗り心地ならびに力行・ブレーキ制御、電空協調制御における制御の一つである。鉄道車両制御においては、引っ張り力やブレーキ力の制御開始時のトルク変化率の制御のことを指す。力行や電気ブレーキの場合、主電動機電流によって制御される。空気ブレーキの場合、単純な絞り径切り換えの方法もある。なお、ジャークとは加・減速度の時間変化率を指し、位置の時間による3階微分値に相当する。   Jerk control is one of ride comfort, power running / brake control, and electro-pneumatic cooperative control. In railway vehicle control, it refers to control of the rate of change in torque at the start of control of pulling force and braking force. In the case of power running and electric brake, it is controlled by the main motor current. In the case of an air brake, there is also a simple method of switching the aperture diameter. Jerk refers to the rate of time change of acceleration / deceleration, and corresponds to a third-order differential value according to the position time.

粘着とは、列車を加速するための駆動力やブレーキ力の伝達を可能にするレール・車輪間の摩擦現象をいい、レール・車輪間で車輪円周方向に作用する摩擦力を粘着力という。   Adhesion refers to a friction phenomenon between rails and wheels that enables transmission of driving force and braking force for accelerating the train, and frictional force acting between the rails and wheels in the circumferential direction of the wheel is referred to as adhesive force.

粘着係数とは、レール・車輪間に作用する1車軸または1車輪当たりの車輪円周方向の接線力を、1車軸または1車輪当たりのレールへの垂直力で除した接線力係数F/Wの最大値を粘着係数(μ)という。   The adhesion coefficient is the tangential force coefficient F / W obtained by dividing the tangential force in the wheel circumferential direction per one axle or one wheel acting between the rail and the wheel by the normal force to the rail per one axle or one wheel. The maximum value is called adhesion coefficient (μ).

座屈脱線とは、複数の車両で組成された列車編成において、車両間に生じる圧縮連結器の作用力により支持するばね装置の作用範囲を越えて車体が大きく変位する現象をいう。   Buckling derailment refers to a phenomenon in which a vehicle body is largely displaced beyond the operating range of a spring device supported by the operating force of a compression coupler generated between vehicles in a train formation composed of a plurality of vehicles.

本発明においては、
(1)列車編成内の駆動軸に要する期待粘着係数については、従来の20%といった固定した値を用いる方法に代えて、車輪滑走時の情報から実際の粘着係数の推定値を算出し、その算出値が駆動軸の期待粘着係数値より小さい場合には算出値を期待粘着係数として用い、遅れ込め制御の量を削減する。なお、粘着係数の推定値の算出方法は、車輪滑走時の当該軸のブレーキ力を当該軸の軸重で割って求める。
In the present invention,
(1) For the expected adhesion coefficient required for the drive shaft in the train organization, instead of using the conventional fixed value such as 20%, the estimated value of the actual adhesion coefficient is calculated from the information at the time of wheel sliding. When the calculated value is smaller than the expected adhesion coefficient value of the drive shaft, the calculated value is used as the expected adhesion coefficient to reduce the amount of delay control. In addition, the calculation method of the estimated value of the adhesion coefficient is obtained by dividing the braking force of the shaft at the time of wheel sliding by the axial weight of the shaft.

このためには、主に従来から装備されているセンサや装置を用いることができ、新たに付加すべきセンサや装置はなくてすむが、本発明に基づく鉄道車両制御法の機能を追加する必要がある。
(2)電動車Mと付随車T間の遅れ込め制御の量については、従来の固定した値を用いる方法に代えて、編成車両数が所定の車両数より増大した場合や、MT比が1M2Tのように付随車Tに対する電動車Mの比率が少ない場合において、従来の遅れ込め制御の量を削減する。
For this purpose, sensors and devices that have been conventionally equipped can be used, and there is no need to add new sensors or devices, but it is necessary to add the functions of the railway vehicle control method based on the present invention. There is.
(2) As for the amount of delay control between the electric vehicle M and the accompanying vehicle T, instead of the conventional method using a fixed value, when the number of knitting vehicles increases from a predetermined number of vehicles, or when the MT ratio is 1M2T As described above, when the ratio of the electric vehicle M to the accompanying vehicle T is small, the amount of conventional delay control is reduced.

このためには、主に従来から装備されているセンサや装置を用いることができ、新たに付加すべきセンサや装置はなくてすむが、本発明の基づく鉄道車両制御法の機能を追加する必要がある。
(3)電動車と付随車間の遅れ込め制御の量については、従来の固定した値を用いる方法に代えて、急曲線通過時の線路情報、または過大な左右振動加速度の情報の何れかの情報を用いて、従来の遅れ込め制御の量を削減する。
For this purpose, sensors and devices that have been conventionally equipped can be used, and there is no need to add new sensors or devices, but it is necessary to add the functions of the rail vehicle control method based on the present invention. There is.
(3) For the amount of delay control between the electric vehicle and the accompanying vehicle, instead of the conventional method using a fixed value, either the track information when passing a sharp curve or the information of excessive lateral vibration acceleration To reduce the amount of conventional delay control.

このためには、編成列車の両端制御車への車両の左右方向Gの検出センサ(左右振動センサ)3か横圧の検出センサ7を付加する。または、GPS(衛星測位システム)9とデータ入力装置16から線路情報17を入力して用いる。
(4)電動車の電気ブレーキ力の演算については、従来のブレーキノッチ(減速度の指令量に相当)と速度と乗車重量の情報に加え、上記(1)で算出した期待粘着係数を用いて、電力回生ブレーキの分担を削減する。
For this purpose, a detection sensor (left / right vibration sensor) 3 in the lateral direction G of the vehicle or a lateral pressure detection sensor 7 is added to the both-end control vehicle of the train set. Alternatively, the track information 17 is input from the GPS (satellite positioning system) 9 and the data input device 16 and used.
(4) Regarding the calculation of the electric brake force of the electric vehicle, in addition to the information on the conventional brake notch (corresponding to the command amount of deceleration), speed and ride weight, the expected adhesion coefficient calculated in (1) above is used. Reduce the share of power regenerative braking.

このためには、主に従来から装備されているセンサや装置を用いることができ、新たに付加すべきセンサや装置はなくてすむが、本発明に基づく鉄道車両制御法の機能を追加する必要がある。
(5)パンタ点の架線電圧(パンタ点の電流測定による架線電圧)が高いなどの理由で電気ブレーキの分担を減らす場合、不足分を機械(空気)ブレーキで補う電空協調(ブレンディング)ブレーキ制御については、従来の各車両別の1両一括制御に代えて、編成の電気ブレーキ力を均等にするための、列車編成一括の電気ブレーキ制御用指令線(図示なし)を列車内に引き通し、その指令に基づいて編成内の各車両の電気ブレーキ力を均等に配分する。
For this purpose, sensors and devices that have been conventionally equipped can be used, and there is no need to add new sensors or devices, but it is necessary to add the functions of the railway vehicle control method based on the present invention. There is.
(5) Electro-pneumatic coordination (blending) brake control that compensates for the shortage with a mechanical (air) brake when the electric brake share is reduced because the overhead wire voltage at the punter point (the overhead wire voltage by measuring the current at the punter point) is high. For, instead of the conventional one-car collective control for each vehicle, a train formation collective electric brake control command line (not shown) is passed through the train in order to equalize the electric brake force of the formation. Based on the command, the electric brake force of each vehicle in the train is evenly distributed.

このためには、編成車両を連ねる電気ブレーキ制御指令線(図示なし)の付加と本発明に基づく鉄道車両制御法の機能を追加する。
(6)電動車のブレーキ制御方式については、従来の一般的な1両4軸一括制御式の電気指令式空気ブレーキ方式に代えて、1両各軸個別制御式の新電気指令式空気ブレーキ方式とし、滑走再粘着制御時の各軸個別の電空協調ブレーキ制御を行うと共に、遅れ込めの制御の量を最大ブレーキ力の半分以下まで制限する。
For this purpose, the addition of an electric brake control command line (not shown) connecting the trains and the function of the railway vehicle control method based on the present invention are added.
(6) As for the brake control system for electric vehicles, instead of the conventional one-car 4-axis batch control type electric command-type air brake system, a new electric command-type air brake system with individual control for each axis. In addition to performing electro-pneumatic cooperative brake control for each axis during sliding re-adhesion control, the amount of delay control is limited to less than half of the maximum braking force.

このためには、電動車のブレーキ制御装置の個別制御化(ブレーキ制御装置の交換)と本発明に基づく鉄道車両制御法の機能追加を行う。
(7)列車の減速度、あるいは編成車両数、あるいは自連力が、予め設定した値を超えた場合には、従来の電気と空気のブレーキの急峻なジャーク量に代えて、従来値より緩慢なジャーク量に制御する。
For this purpose, the brake control device for an electric vehicle is individually controlled (replacement of the brake control device) and the function of the railway vehicle control method based on the present invention is added.
(7) When the deceleration of the train, the number of trains set, or the autonomous force exceeds a preset value, it is slower than the conventional value instead of the sharp jerk amount of the conventional electric and air brakes. Control the amount of jerk.

このためには、主に従来から装備されているセンサや装置を用いることができ、新たに付加すべきセンサや装置はなくてすむが、本発明に基づく鉄道車両制御法の機能を追加する必要がある。あるいは、編成列車中間の一部車両に対する自連力センサ6を設ける。   For this purpose, sensors and devices that have been conventionally equipped can be used, and there is no need to add new sensors or devices, but it is necessary to add the functions of the railway vehicle control method based on the present invention. There is. Or the self-interaction force sensor 6 with respect to some vehicles in the middle of a formation train is provided.

そこで、本発明の鉄道車両制御は、上記した検出センサ1〜9からの情報に基づいて制御装置10によって、制御対象であるノッチ11、電動機13の電力を制御する電動機制御器12、電気ブレーキ14、機械ブレーキ15を制御することにより、上記したように、過大な自連力の発生やブレーキの不均等を抑制するようにしている。   Therefore, the railway vehicle control of the present invention is performed by the control device 10 based on the information from the detection sensors 1 to 9 described above, the motor controller 12 for controlling the power of the notch 11 and the motor 13 to be controlled, and the electric brake 14. By controlling the mechanical brake 15, as described above, the generation of excessive self-reaction force and brake unevenness are suppressed.

車両の制動の検出は、車両の制動力の検出手段1において、車両の速度計で速度の変化をみることによって検出することができる。   The vehicle braking can be detected by detecting the change in speed with the vehicle speedometer in the vehicle braking force detection means 1.

力行のノッチ段の検出は、運転席に配置されたノッチの段の位置を検出する力行のノッチ段の検出手段2によって検出することができる。   The power running notch step can be detected by the power running notch step detecting means 2 for detecting the position of the notch step disposed in the driver's seat.

車両の左右方向Gの検出は、曲線走行時の車両に作用する左右方向Gの力を検出する車両の左右方向Gの検出センサ3によって検出することができる。   The detection of the left-right direction G of the vehicle can be detected by the detection sensor 3 in the left-right direction G of the vehicle that detects the force in the left-right direction G acting on the vehicle during a curve run.

MT(電動車と付随車)比は、車両編成データに基づいて、MT(電動車と付随車)比の検出手段4によって検出することができる。   The MT (electric vehicle and associated vehicle) ratio can be detected by the MT (electric vehicle and associated vehicle) ratio detection means 4 based on the vehicle organization data.

線形・速度・滑走の有無の検出は、車両の変位と速度と加速度から線形・速度・滑走の有無の検出手段5によって検出することができる。   The presence / absence of linearity / speed / sliding can be detected by the detecting means 5 for the presence / absence of linearity / speed / sliding from the displacement, speed and acceleration of the vehicle.

自連力の検出は、連結器と緩衝器を接続する自連力測定ピンに配置された自連力の検出センサ6によって検出される。   The detection of the self-reaction force is detected by a self-reaction force detection sensor 6 arranged on a self-reaction force measurement pin connecting the coupler and the shock absorber.

必要な場合には、横圧の検出は、歪みゲージを貼った測定輪軸を組み込んだ試験車両による車上測定を行い、横圧の検出センサ7によって行うことができる。   If necessary, lateral pressure can be detected by on-board measurement using a test vehicle incorporating a measuring wheel shaft with a strain gauge attached, and can be performed by the lateral pressure detection sensor 7.

パンタ点電流の検出は、パンタ点電流を測定するパンタ点電流の検出手段8によって検出され、パンタ点の電圧情報を得ることができる。   The detection of the punter point current is detected by the punter point current detecting means 8 for measuring the punter point current, and the voltage information of the punter point can be obtained.

図6は本発明にかかる曲線線路における鉄道車両を示す図であり、図6(a)はその鉄道車両の配置を、図6(b)は車輪とレール間の粘着力の摩擦円のモデルを示す図である。   FIG. 6 is a diagram showing a railway vehicle on a curved track according to the present invention, FIG. 6 (a) shows the arrangement of the railway vehicle, and FIG. 6 (b) shows a friction circle model of the adhesive force between the wheel and the rail. FIG.

これらのの図において、26は横圧、27は自連力、28はブレーキに用いられるベクトル分、29は案内力に用いられるベクトル分、30は粘着係数に相当するベクトル分、31は曲線状のレール、32は台車、33は台車32上に配置される車両、34は連結器である。   In these figures, 26 is a lateral pressure, 27 is a self-operating force, 28 is a vector used for braking, 29 is a vector used for guiding force, 30 is a vector corresponding to the adhesion coefficient, and 31 is a curve. , 32 is a carriage, 33 is a vehicle disposed on the carriage 32, and 34 is a coupler.

そこで、カーブで横方向の案内力を取られると、進行方向のブレーキ力は、図6(b)に示すベクトル分だけに減少する。したがって、期待粘着係数の削減を要する。   Therefore, when the lateral guide force is taken by the curve, the braking force in the traveling direction decreases by the vector shown in FIG. Therefore, it is necessary to reduce the expected adhesion coefficient.

図7は本発明にかかる鉄道車両モデルを示す図である。   FIG. 7 is a diagram showing a railway vehicle model according to the present invention.

この図において、41は車体、42は台車枠、43は輪軸、44は空気ばね、45はヨーダンパとその緩衝ゴム、46は牽引リンクの緩衝ゴム、47は軸ばね、48は軸ばねダンパ、49は軸箱前後支持剛性である。   In this figure, 41 is a vehicle body, 42 is a bogie frame, 43 is a wheel shaft, 44 is an air spring, 45 is a yaw damper and its buffer rubber, 46 is a buffer rubber for a traction link, 47 is a shaft spring, 48 is a shaft spring damper, 49 Is the shaft box longitudinal support rigidity.

なお、本発明は上記実施例に限定されるものではなく、本発明の趣旨に基づき種々の変形が可能であり、これらを本発明の範囲から排除するものではない。   In addition, this invention is not limited to the said Example, Based on the meaning of this invention, a various deformation | transformation is possible and these are not excluded from the scope of the present invention.

本発明は、過大な自連力の発生やブレーキの不均等を抑制することができる安全な鉄道車両制御に利用可能である。   INDUSTRIAL APPLICABILITY The present invention can be used for safe railway vehicle control that can suppress the occurrence of excessive self-reaction force and brake unevenness.

本発明の実施例を示す鉄道車両の制御ブロック図である。It is a control block diagram of a railway vehicle showing an embodiment of the present invention. 編成列車の遅れ込め制御ブレーキ時における列車座窟(スネーク)現象例を示す図である。It is a figure which shows the example of a train cave (snake) phenomenon at the time of the delayed control brake of a formation train. 遅れ込め制御の説明図である。It is explanatory drawing of delaying control. レールに作用する力の説明図である。It is explanatory drawing of the force which acts on a rail. 横圧の説明図である。It is explanatory drawing of a lateral pressure. 本発明の実施例を示す車両の配置例を示す図である。It is a figure which shows the example of arrangement | positioning of the vehicle which shows the Example of this invention. 本発明の実施例を示す台車部の構造を示す図である。It is a figure which shows the structure of the trolley | bogie part which shows the Example of this invention.

符号の説明Explanation of symbols

1 車両の制動の検出手段
2 力行のノッチ段の検出手段
3 車両の左右方向Gの検出センサ
4 MT(電動車と付随車)比の検出手段
5 線形・速度・滑走の有無の検出手段
6 自連力の検出センサ
7 横圧の検出センサ
8 パンタ点電流の検出手段
9 GPS
10 制御装置
11 ノッチ
12 電動機の電力を制御する電動機制御器
13 電動機
14 電気ブレーキ
15 機械ブレーキ
16 データ入力装置
17 線路情報
26 横圧
27 自連力
28 ブレーキに用いられるベクトル分
29 案内力に用いられるベクトル分
30 粘着係数に相当するベクトル分、
31 曲線状のレール
32 台車
33 車両
34 連結器
41 車体
42 台車枠
43 輪軸
44 空気ばね
45 ヨーダンパとその緩衝ゴム
46 牽引リンクの緩衝ゴム
47 軸ばね
48 軸ばねダンパ
49 軸箱前後支持剛性
DESCRIPTION OF SYMBOLS 1 Vehicle braking detection means 2 Power running notch step detection means 3 Vehicle left-right direction G detection sensor 4 MT (electric vehicle and associated vehicle) ratio detection means 5 Linearity / speed / sliding presence detection means 6 Self Linkage detection sensor 7 Lateral pressure detection sensor 8 Punter point current detection means 9 GPS
DESCRIPTION OF SYMBOLS 10 Control apparatus 11 Notch 12 Electric motor controller which controls the electric power of an electric motor 13 Electric motor 14 Electric brake 15 Mechanical brake 16 Data input device 17 Line information 26 Lateral pressure 27 Self-reaction force 28 Vector component used for brake 29 Guide force Vector part 30 vector part corresponding to the adhesion coefficient,
31 Curvature rail 32 Bogie 33 Car 34 Coupler 41 Car body 42 Bogie frame 43 Wheel shaft 44 Air spring 45 Yaw damper and its buffer rubber 46 Traction link buffer rubber 47 Shaft spring 48 Shaft spring damper 49 Shaft box front / rear support rigidity

Claims (7)

過大な自連力の発生やブレーキの不均等を抑制する鉄道車両制御方法であって、列車編成内の駆動軸に要する期待粘着係数は、実際の粘着係数の推定値を、車輪滑走時の当該軸のブレーキ力を当該軸の軸重で割ることにより求め、その算出値が駆動軸の期待粘着係数値より小さい場合には、その算出値を期待粘着係数として用い、遅れ込め制御の量を削減することを特徴とする鉄道車両制御方法。   A railway vehicle control method that suppresses the occurrence of excessive self-interaction and brake non-uniformity, and the expected adhesion coefficient required for the drive shaft in the train organization is the estimated value of the actual adhesion coefficient. If the calculated value is smaller than the expected adhesion coefficient value of the drive shaft, the calculated value is used as the expected adhesion coefficient to reduce the amount of delay control. A railway vehicle control method comprising: 請求項1記載の鉄道車両制御方法において、前記遅れ込め制御の量の削減は、固定した値を用いるのではなく、編成車両数が所定の車両数より増大した場合や、付随車に対する電動車比率が少ない場合に実施することを特徴とする鉄道車両制御方法。   2. The railcar control method according to claim 1, wherein the amount of delay control is not reduced by using a fixed value, but when the number of trained vehicles increases from a predetermined number of vehicles, or the ratio of electric vehicles to associated vehicles. A railway vehicle control method, which is performed when the amount of the vehicle is small. 請求項1記載の鉄道車両制御方法において、前記遅れ込め制御の量の削減は、固定した値を用いるのではなく、急曲線通過時の線路情報、または過大な左右振動加速度の情報の何れかの情報を用いて実施することを特徴とする鉄道車両制御方法。   The railcar control method according to claim 1, wherein the amount of delay control is not a fixed value, but is any one of track information when passing a sharp curve or information on excessive lateral vibration acceleration. A railway vehicle control method, which is performed using information. 請求項1記載の鉄道車両制御方法において、前記軸のブレーキ力は、減速度の指令量に相当するブレーキノッチと速度と乗車重量の情報に加え、前記期待粘着係数を用いて、電力回生ブレーキの分担を削減することを特徴とする鉄道車両制御方法。   2. The railway vehicle control method according to claim 1, wherein the braking force of the shaft is calculated by using the expected adhesion coefficient in addition to information on a brake notch, a speed and a ride weight corresponding to a deceleration command amount. A railway vehicle control method characterized by reducing sharing. 請求項1記載の鉄道車両制御方法において、パンタ点の架線電圧が高いために電気ブレーキの分担を減らす場合、不足分を機械(空気)ブレーキで補う電空協調(ブレンディング)ブレーキ制御については、各車両別の1両一括制御に代えて、編成列車の電気ブレーキ力を均等にするに、編成列車一括の電気ブレーキ制御用指令線を列車内に引き通し、その指令に基づいて編成列車内の各車両の電気ブレーキ力を均等に配分することを特徴とする鉄道車両制御方法。   In the railway vehicle control method according to claim 1, when reducing the electric brake share because of the high overhead line voltage at the punter point, the electro-pneumatic coordination (blending) brake control for compensating the shortage with a mechanical (air) brake Instead of one-car batch control for each vehicle, in order to equalize the electric brake force of the train set, the command line for electric brake control of the train set is routed through the train, and each train in the train set is based on the command. A railway vehicle control method characterized by evenly distributing electric brake force of a vehicle. 請求項1記載の鉄道車両制御方法において、電動車のブレーキ制御方式については、1両各軸個別制御式の電気指令式空気ブレーキ方式とし、滑走再粘着制御時の各軸個別の電空協調ブレーキ制御を行うと共に、遅れ込めの制御の量を最大ブレーキ力の半分以下まで制限することを特徴とする鉄道車両制御方法。   2. The railway vehicle control method according to claim 1, wherein the electric vehicle brake control method is an electric command type air brake method for each one-axis individual control type, and an electro-pneumatic cooperative brake for each axis at the time of sliding re-adhesion control. A railcar control method characterized by performing control and limiting the amount of delay control to less than half of the maximum braking force. 請求項1記載の鉄道車両制御方法において、列車の減速度、編成車両数、あるいは自連力が、予め設定した値を超えた場合には、電気と空気のブレーキの急峻なジャーク量に代えて、緩慢なジャーク量に制御することを特徴とする鉄道車両制御方法。   In the railway vehicle control method according to claim 1, when the deceleration of the train, the number of trains, or the self-reaction force exceeds a preset value, it is replaced with a steep jerk amount of electric and air brakes. A railway vehicle control method characterized by controlling the amount of jerk slowly.
JP2004069958A 2004-03-12 2004-03-12 Railway vehicle control method Expired - Fee Related JP4271605B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004069958A JP4271605B2 (en) 2004-03-12 2004-03-12 Railway vehicle control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004069958A JP4271605B2 (en) 2004-03-12 2004-03-12 Railway vehicle control method

Publications (2)

Publication Number Publication Date
JP2005261095A true JP2005261095A (en) 2005-09-22
JP4271605B2 JP4271605B2 (en) 2009-06-03

Family

ID=35086283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004069958A Expired - Fee Related JP4271605B2 (en) 2004-03-12 2004-03-12 Railway vehicle control method

Country Status (1)

Country Link
JP (1) JP4271605B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1763228A2 (en) 2005-09-08 2007-03-14 Sony Corporation Flicker reduction method, flicker reduction circuit and image pickup apparatus
JP2008182849A (en) * 2007-01-25 2008-08-07 Toshiba Corp Train control system
WO2009129085A2 (en) * 2008-04-14 2009-10-22 Wabtec Holding Corp. Method and system for determining brake shoe effectiveness
JP2011126377A (en) * 2009-12-16 2011-06-30 Sinfonia Technology Co Ltd Antilock brake system for trailer
JP2014217088A (en) * 2013-04-22 2014-11-17 東洋電機製造株式会社 Brake control method and brake system for electric train
EP3056397A1 (en) * 2015-02-10 2016-08-17 Nabtesco Corporation Brake control device and brake control method
JP2019508996A (en) * 2016-10-20 2019-03-28 中▲車▼青▲島▼四方▲車▼▲輛▼研究所有限公司Crrc Qingdao Sifang Rolling Stock Research Institute Co.,Ltd. Heavy freight train grouping device and grouping method, and electronically controlled pneumatic brake system
CN109615269A (en) * 2018-12-28 2019-04-12 西南交通大学 A kind of railway freight train operating safety appraisal procedure and system

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1763228A2 (en) 2005-09-08 2007-03-14 Sony Corporation Flicker reduction method, flicker reduction circuit and image pickup apparatus
JP2008182849A (en) * 2007-01-25 2008-08-07 Toshiba Corp Train control system
WO2009129085A2 (en) * 2008-04-14 2009-10-22 Wabtec Holding Corp. Method and system for determining brake shoe effectiveness
WO2009129085A3 (en) * 2008-04-14 2010-01-07 Wabtec Holding Corp. Method and system for determining brake shoe effectiveness
US7765859B2 (en) 2008-04-14 2010-08-03 Wabtec Holding Corp. Method and system for determining brake shoe effectiveness
JP2011126377A (en) * 2009-12-16 2011-06-30 Sinfonia Technology Co Ltd Antilock brake system for trailer
JP2014217088A (en) * 2013-04-22 2014-11-17 東洋電機製造株式会社 Brake control method and brake system for electric train
EP3056397A1 (en) * 2015-02-10 2016-08-17 Nabtesco Corporation Brake control device and brake control method
JP2019508996A (en) * 2016-10-20 2019-03-28 中▲車▼青▲島▼四方▲車▼▲輛▼研究所有限公司Crrc Qingdao Sifang Rolling Stock Research Institute Co.,Ltd. Heavy freight train grouping device and grouping method, and electronically controlled pneumatic brake system
US10246110B2 (en) 2016-10-20 2019-04-02 Crrc Qingdao Sifang Rolling Stock Research Institute Co., Ltd. Heavy freight train marshalling device and marshalling method, and electronically controlled pneumatic brake system
CN109615269A (en) * 2018-12-28 2019-04-12 西南交通大学 A kind of railway freight train operating safety appraisal procedure and system

Also Published As

Publication number Publication date
JP4271605B2 (en) 2009-06-03

Similar Documents

Publication Publication Date Title
Sharma et al. Braking systems in railway vehicles
WO2014128820A1 (en) Brake control device, and brake control method
CN103813948A (en) Brake controller for vehicle
WO2006062056A1 (en) Friction control device for railway vehicle
KR101465525B1 (en) Linking system for anti-skid control of railway vehicle and method
RU2441785C2 (en) Motor bogie of high-speed railway vehicle
CN103241258A (en) Bogie frame
JP6436214B2 (en) Lateral pressure reduction method for railway vehicles
JPH09226576A (en) Axle steering device for rolling stock truck
JP4271605B2 (en) Railway vehicle control method
CN111216700A (en) Brake control method and device for rack rail train
CN109153380B (en) Method and device for controlling or regulating a brake system
Hasegawa et al. Braking systems
JP6629138B2 (en) Compressed air supply device
KR101396199B1 (en) Method and system for braking a railway vehicle
KR100962239B1 (en) bogie-unit brake system of railway vehicle
RU130277U1 (en) MOTOR TROLLEY OF SPEED RAILWAY VEHICLE
JP4372740B2 (en) Brake control device and brake control method
JPH05294237A (en) Train brake dispersion control method
JP6193483B2 (en) Railcar bogie
US10272928B2 (en) Adjustable weight transfer system for bogie
JP6715680B2 (en) Brake control device for railway vehicle and brake control system for railway vehicle
Gerlici et al. Increasing the Traction Properties of Locomotives for the Account of Improvement of Body and Bogies Connexions
JP2003092801A (en) Brake controller for rolling stock
KR20130080527A (en) Wheel-axle set steering system for railway vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080610

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090225

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140306

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees