JP2005259362A - Positive electrode material for lithium secondary battery, manufacturing method of the same, and lithium secondary battery using the material - Google Patents

Positive electrode material for lithium secondary battery, manufacturing method of the same, and lithium secondary battery using the material Download PDF

Info

Publication number
JP2005259362A
JP2005259362A JP2004065402A JP2004065402A JP2005259362A JP 2005259362 A JP2005259362 A JP 2005259362A JP 2004065402 A JP2004065402 A JP 2004065402A JP 2004065402 A JP2004065402 A JP 2004065402A JP 2005259362 A JP2005259362 A JP 2005259362A
Authority
JP
Japan
Prior art keywords
lithium
secondary battery
positive electrode
lithium secondary
mno
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004065402A
Other languages
Japanese (ja)
Other versions
JP4431785B2 (en
Inventor
Junji Akimoto
順二 秋本
Yasuhiko Takahashi
靖彦 高橋
Michihito Kijima
倫人 木嶋
Mitsuharu Tabuchi
光春 田渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2004065402A priority Critical patent/JP4431785B2/en
Publication of JP2005259362A publication Critical patent/JP2005259362A/en
Application granted granted Critical
Publication of JP4431785B2 publication Critical patent/JP4431785B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new positive material for stably charging and discharging in the same operation voltage area (almost 4 V) as that of the existing lithium cobalt oxide based positive electrode material, a manufacturing method of the same, and a lithium secondary battery including the material as a positive activator. <P>SOLUTION: The positive electrode material for lithium secondary battery, made of lithium-manganese oxide, represented by chemical composition formula: Li<SB>x</SB>MnO<SB>2</SB>(0.40<x<0.50), belonging to a rhombic crystal system as a crystal structure, having a tunnel structure occupied by lithium, is composed of lithium, manganese and oxygen, and of which the content of sodium is ≤0.05 at a molar ratio of Na/Li. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、リチウム二次電池正極材料、その製造方法及びその材料を正極活物質として含むリチウム二次電池に関し、さらに詳細には、安価なマンガン酸化物を原料とし、電池の作動電圧として4V以上の領域でも安定に放電可能であり、かつ、放電容量の大きいリチウム二次電池を提供する技術に関する。   The present invention relates to a lithium secondary battery positive electrode material, a method for producing the same, and a lithium secondary battery containing the material as a positive electrode active material. It is related with the technique which provides the lithium secondary battery which can discharge stably also in the area | region, and is large in discharge capacity.

現在我が国においては、携帯電話、ノートパソコンなどの携帯型電子機器に搭載されている二次電池のほとんどは、リチウム二次電池である。また、リチウム二次電池は、今後電気自動車、電力負荷平準化システムなどの大型電池としても実用化されるものと予測されており、その重要性はますます高まっている。   Currently, in Japan, most of the secondary batteries installed in portable electronic devices such as mobile phones and notebook computers are lithium secondary batteries. In addition, lithium secondary batteries are expected to be put into practical use as large batteries for electric vehicles and power load leveling systems in the future, and their importance is increasing.

このリチウム二次電池は、リチウム含有遷移金属複合酸化物を活物質とする正極と、リチウム金属、リチウム合金、金属酸化物あるいはカーボンのような、リチウムを吸蔵・放出することが可能な材料を活物質とする負極と、非水系電解液を含むセパレータまたは固体電解質を主要構成要素とする。   This lithium secondary battery uses a positive electrode having a lithium-containing transition metal composite oxide as an active material and a material capable of inserting and extracting lithium, such as lithium metal, lithium alloy, metal oxide, or carbon. A main component is a negative electrode as a substance and a separator or solid electrolyte containing a non-aqueous electrolyte.

これらの構成要素のうち、正極活物質として検討されているものには、層状岩塩型リチウムコバルト酸化物(LiCoO)、層状岩塩型リチウムニッケル酸化物(LiNiO)、スピネル型リチウムマンガン酸化物(LiMn)等が挙げられる。 Among these components, those studied as positive electrode active materials include layered rock salt type lithium cobalt oxide (LiCoO 2 ), layered rock salt type lithium nickel oxide (LiNiO 2 ), spinel type lithium manganese oxide ( LiMn 2 O 4 ) and the like.

特に、層状岩塩型リチウムコバルト酸化物LiCoOは、電池の作動電圧(正極中の遷移金属の酸化還元電位と負極元素の酸化還元電位との差)、充放電容量(正極から脱離・挿入可能なリチウム量)などの電池性能に優れ、リチウム二次電池の正極構成材料として今後の需要が一層増大するものと予測されている。
しかしながら、この化合物は、稀少金属であるコバルトを主成分として含むために、リチウム二次電池の高コストの要因の一つとなっている。さらに、現在すでに全世界のコバルト生産量の約20%が電池産業において用いられていることを考慮すれば、LiCoOからなる正極材料のみでは、今後の需要拡大に対応可能かどうかは、不明である。
In particular, the layered rock salt type lithium cobalt oxide LiCoO 2 has a battery operating voltage (difference between the redox potential of the transition metal in the positive electrode and the redox potential of the negative electrode element), charge / discharge capacity (can be desorbed and inserted from the positive electrode). It is expected that the future demand will increase further as a positive electrode constituent material of a lithium secondary battery.
However, since this compound contains cobalt, which is a rare metal, as a main component, it is one of the high-cost factors for lithium secondary batteries. Furthermore, considering that about 20% of the world's cobalt production is already used in the battery industry, it is unclear whether only the cathode material made of LiCoO 2 can meet future demand growth. is there.

また、コバルトよりも安価なニッケルを用いた層状岩塩型リチウムニッケル酸化物LiNiOは、コスト的にも容量的にも有利であり、リチウムコバルト酸化物の有力な代替材料として開発が進められている。しかしながら、このリチウムニッケル酸化物を正極活物質に用いたリチウム二次電池は、充電状態での正極活物質の不安定性から、高温に保持すると分解、発熱、発火などの危険性を有しており、安全性に関して解決しなければならない問題が多く残っている。 Further, the layered rock salt type lithium nickel oxide LiNiO 2 using nickel cheaper than cobalt is advantageous in terms of cost and capacity, and is being developed as a promising alternative material for lithium cobalt oxide. . However, the lithium secondary battery using this lithium nickel oxide as the positive electrode active material has the risk of decomposition, heat generation, ignition, etc. if kept at a high temperature due to the instability of the positive electrode active material in the charged state. There are still many issues that need to be resolved regarding safety.

また、スピネル型リチウムマンガン酸化物LiMnは、コバルトやニッケルよりもさらに安価なマンガンを用いており、かつ充電状態での安全性にも優れていることから、一部はLiCoOに代替して実用化されている。
しかしながら、LiCoOやLiNiOと比べて容量が小さいことが問題となっている。また、50℃以上におけるマンガンの電解液への溶解に起因する顕著な特性劣化という問題点も有しているので、この材料によるLiCoOの代替は、予期された程には進展していない。
Furthermore, the spinel-type lithium manganese oxide LiMn 2 O 4 is used less expensive manganese than cobalt and nickel, and since it is excellent in safety in the charged state, some alternative to LiCoO 2 Has been put to practical use.
However, there is a problem that the capacity is small compared to LiCoO 2 and LiNiO 2 . Further, since there is a problem of remarkable characteristic deterioration due to dissolution of manganese in an electrolytic solution at 50 ° C. or higher, substitution of LiCoO 2 by this material has not progressed as expected.

スピネル型リチウムマンガン酸化物(LiMn)では、リチウムイオンの挿入・脱離反応に伴って、3V(vs.Li/Li)と4V(vs.Li/Li)付近の2つの充放電に伴う電圧平坦領域を持つことが知られている。 一般には、4V領域のみを用いて充放電を行うため、LiとMnのみからなる化学量論組成のLiMnでは130mAh/g程度の容量しか得られない。一方、3Vと4Vの両方の領域を使用して充放電を行えば、200mAh/g以上の容量が得られるが、結晶構造の変化をともなうために、サイクル特性が非常に悪い点が問題である。 In the spinel-type lithium manganese oxide (LiMn 2 O 4), with the insertion and extraction reactions of lithium ions, 3V (vs.Li + / Li) and 4V (vs.Li + / Li) 2 near TsunoTakashi It is known to have a voltage flat region accompanying discharge. In general, since charging / discharging is performed using only the 4 V region, LiMn 2 O 4 having a stoichiometric composition composed only of Li and Mn can only provide a capacity of about 130 mAh / g. On the other hand, if charging / discharging is performed using both 3 V and 4 V regions, a capacity of 200 mAh / g or more can be obtained, but the problem is that the cycle characteristics are very poor due to the change in crystal structure. .

一方、従来のスピネル型リチウムマンガン酸化物(LiMn)とは異なる結晶構造を有するリチウムマンガン酸化物(LiMnO; 0<x<1)の研究も盛んに行われている。 On the other hand, research on lithium manganese oxide (Li x MnO 2 ; 0 <x <1) having a crystal structure different from that of the conventional spinel type lithium manganese oxide (LiMn 2 O 4 ) has been actively conducted.

LiCoOやLiNiOと類似した結晶構造を有する層状のリチウムマンガン酸化物(LiMnO)は、合成方法によって2種類の結晶構造が知られている。これらの層状リチウムマンガン酸化物を用いた電池で、2.0V〜4.5V(vs.Li/Li)の電位範囲で充放電サイクルを行うと、200mAh/g以上の高い初期容量が得られる。
しかしながら、充放電サイクルに伴って、結晶構造が徐々にスピネル構造へ変化してしまい、結局、スピネル型LiMnとして充放電することになってしまい、やはりサイクル数の増加にともない容量が大きく減少してしまう。
Layered lithium manganese oxide (LiMnO 2 ) having a crystal structure similar to LiCoO 2 or LiNiO 2 has two known crystal structures depending on the synthesis method. When a charge / discharge cycle is performed in a potential range of 2.0 V to 4.5 V (vs. Li + / Li) in a battery using these layered lithium manganese oxides, a high initial capacity of 200 mAh / g or more can be obtained. .
However, with the charge / discharge cycle, the crystal structure gradually changes to a spinel structure, eventually resulting in charge / discharge as spinel type LiMn 2 O 4 , and the capacity increases as the number of cycles increases. It will decrease.

一方、結晶構造の特徴として、一次元のトンネル構造をとるアルカリマンガン酸化物(例えばホランダイト型など)を出発原料として、高容量のリチウムマンガン酸化物についても多くの研究が行われている。これらの結晶構造は、大きなトンネルを持つことからイオン拡散が容易と考えられ、また、安価であることから、高容量の電極材料として注目されている。
しかしながら、電解液や負極を劣化させる、出発物質中に含まれるアルカリイオン、水和物イオン、結晶水などを、完全に除去し、リチウムイオンに交換することが困難な場合が多く、また放電電圧も、LiCoOの放電電圧と比べて、約1V以上低く、コバルト代替の材料としての使用は困難である。
On the other hand, as a feature of the crystal structure, many studies have been conducted on a high-capacity lithium manganese oxide using an alkali manganese oxide (for example, hollandite type) having a one-dimensional tunnel structure as a starting material. These crystal structures are considered to be easily diffused by ions because they have large tunnels, and are attracting attention as high-capacity electrode materials because they are inexpensive.
However, it is often difficult to completely remove alkali ions, hydrate ions, crystallization water, etc. contained in the starting material, which degrade the electrolyte and negative electrode, and replace them with lithium ions. However, it is lower than the discharge voltage of LiCoO 2 by about 1 V or more, and it is difficult to use it as a substitute material for cobalt.

同じくトンネル構造をとるNa0.44MnOを出発原料として、イオン交換法によってLi0.44MnOを合成する研究も行われている。この化合物は、2種類のサイズの異なるトンネルを有することからイオン拡散が容易と考えられ、例えば高出力(急速な充放電が可能)の正極材料として注目されている。(非特許文献1、2参照) Research is also being conducted on the synthesis of Li 0.44 MnO 2 by ion exchange using Na 0.44 MnO 2 having a tunnel structure as a starting material. Since this compound has two types of tunnels having different sizes, it is considered that ion diffusion is easy. For example, the compound has attracted attention as a positive electrode material having high output (capable of rapid charge / discharge). (See Non-Patent Documents 1 and 2)

A.R.Armstrong,H.Huang,R.A.Jennings,P.G.Bruce,J.Mater.Chem.,8,255−259(1998)A. R. Armstrong, H .; Huang, R.A. A. Jennings, P.M. G. Bruce, J. et al. Mater. Chem. 8, 255-259 (1998) M.M.Doeff,A.Anapolsky,L.Edman,T.J.Richardson,L.C.De Jonghe,J.Electrochem.Soc.,148,A230−A236(2001)M.M. M.M. Doeff, A.M. Anapolsky, L.A. Edman, T .; J. et al. Richardson, L.M. C. De Jonghe, J.A. Electrochem. Soc. , 148, A230-A236 (2001)

このLi0.44MnO型のトンネル構造を有する材料は、前記コバルト系酸化物代替の材料という観点からは、資源的な制約が少なくかつ安価なマンガン酸化物を原料として使用し、さらに、Mn3+とMn4+の酸化還元反応に伴うマンガンと酸素の化学結合の変化に耐え、かつ、充放電に伴ってスピネル構造へ変化しないような構造の安定性の観点から、有望な材料である。 The material having a tunnel structure of Li 0.44 MnO 2 uses manganese oxide as a raw material, which is less resource-constrained and inexpensive from the viewpoint of the cobalt-based oxide substitute material. It is a promising material from the viewpoint of structural stability that can withstand changes in the chemical bond between manganese and oxygen associated with the oxidation-reduction reaction of 3+ and Mn 4+ and that does not change into a spinel structure due to charge / discharge.

しかしながら、これまでに公知のLi0.44MnOは、放電電圧が約3Vで、かつ、リチウムを完全に脱離させることが不可能であったことから、構造から期待されるような高い充放電容量も得られていなかった。この原因として、出発原料として使用するナトリウム化合物のナトリウムが、イオン交換処理で完全にリチウムと交換されず、相当量残存していること、さらに、その残存したナトリウムが、電池反応に寄与するリチウムの拡散および挿入・脱離反応を妨害するためと考えられる。 However, since Li 0.44 MnO 2 known so far has a discharge voltage of about 3 V and it has not been possible to completely desorb lithium, it has a high charge as expected from the structure. The discharge capacity was not obtained. This is because the sodium of the sodium compound used as the starting material is not completely exchanged with lithium by the ion exchange treatment and remains in a considerable amount, and the remaining sodium contributes to the battery reaction. This is thought to interfere with diffusion and insertion / desorption reactions.

したがって、本発明は、上記のような現状の課題を解決し、上述のようなLi0.44MnO型のトンネル構造を有し、かつ、既存のリチウムコバルト酸化物系正極材料と同等の作動電圧領域(約4V)において安定に充放電させることができる新規なリチウム二次電池の正極材料、その製造方法、及びその材料を正極活物質として含むリチウム二次電池を提供することを目的とする。 Therefore, the present invention solves the above-mentioned current problems, has the Li 0.44 MnO 2 type tunnel structure as described above, and operates in the same manner as an existing lithium cobalt oxide-based positive electrode material. It is an object to provide a positive electrode material of a novel lithium secondary battery that can be stably charged and discharged in a voltage region (about 4 V), a manufacturing method thereof, and a lithium secondary battery containing the material as a positive electrode active material. .

本発明者は出発物質、合成条件を鋭意検討した結果、上記の非特許文献1と比べて、より高温でのイオン交換反応に対して構造が安定なナトリウム化合物を見出し、それを出発物質として用いることにより、前記Li0.44MnO型のトンネル構造を有する正極材料中の残存ナトリウム量を大きく低減させ、さらにリチウム二次電池の正極材料として使用する場合には、4V領域でも安定に充放電可能であり、期待される充放電容量が確認されたことで、本発明は完成するに至った。 As a result of intensive studies on starting materials and synthesis conditions, the present inventor has found a sodium compound having a stable structure with respect to an ion exchange reaction at a higher temperature as compared with Non-Patent Document 1 described above, and uses it as a starting material. As a result, the amount of residual sodium in the positive electrode material having the Li 0.44 MnO 2 type tunnel structure is greatly reduced, and when used as a positive electrode material of a lithium secondary battery, charging and discharging is stable even in the 4 V region. The present invention has been completed by confirming the expected charge / discharge capacity.

すなわち、本発明は、下記に示すリチウムマンガン酸化物からなるリチウム二次電池用正極材料、その製造方法、および該正極材料を使用したリチウム二次電池に関する。
1.化学組成式LiMnO(0.40<x<0.50)で表され、結晶構造として斜方晶系に属し、リチウムが占有するトンネル構造を有する、リチウム、マンガン、酸素から構成され、ナトリウムの含有量がNa/Liのモル比で0.05以下、好ましくは0.01以下であることを特徴とするリチウム二次電池用正極材料。
2.ナトリウム化合物とマンガン化合物を混合、焼成して調製したNaMnO(0.40<x<0.50)を出発物質として、リチウム化合物によりイオン交換処理することを特徴とする1に記載のリチウム二次電池用正極材料の製造方法。
3.イオン交換処理を、リチウム化合物を含有する溶融塩中において行うことを特徴とする2に記載のリチウム二次電池用正極材料の製造方法。
4.イオン交換処理を、280〜330℃の温度範囲で行うことを特徴とする3に記載のリチウム二次電池用正極材料の製造方法。
5.正極、負極及び電解質物質を有するリチウム二次電池の正極を、1に記載のリチウム二次電池用正極材料により構成したことを特徴とするリチウム二次電池。
6.電池の作動電圧として、4V以上の領域で安定に充放電が可能であることを特徴とする5に記載のリチウム二次電池。
That is, this invention relates to the positive electrode material for lithium secondary batteries which consists of a lithium manganese oxide shown below, its manufacturing method, and the lithium secondary battery using this positive electrode material.
1. It is represented by the chemical composition formula Li x MnO 2 (0.40 <x <0.50), belongs to the orthorhombic system as a crystal structure, and has a tunnel structure occupied by lithium, and is composed of lithium, manganese, and oxygen, A positive electrode material for a lithium secondary battery, wherein the sodium content is 0.05 or less, preferably 0.01 or less, in terms of a Na / Li molar ratio.
2. 2. Lithium according to 1, characterized in that an ion exchange treatment is performed with a lithium compound using Na x MnO 2 (0.40 <x <0.50) prepared by mixing and baking a sodium compound and a manganese compound as a starting material. A method for producing a positive electrode material for a secondary battery.
3. 3. The method for producing a positive electrode material for a lithium secondary battery according to 2, wherein the ion exchange treatment is performed in a molten salt containing a lithium compound.
4). 4. The method for producing a positive electrode material for a lithium secondary battery according to 3, wherein the ion exchange treatment is performed in a temperature range of 280 to 330 ° C.
5). 2. A lithium secondary battery, wherein the positive electrode of a lithium secondary battery having a positive electrode, a negative electrode, and an electrolyte substance is composed of the positive electrode material for a lithium secondary battery described in 1.
6). 6. The lithium secondary battery according to 5, wherein the battery can be stably charged and discharged in an area of 4 V or more as an operating voltage of the battery.

本発明によれば、安価な原料を使用して、既存のリチウムコバルト酸化物系正極材料と同等の作動電圧領域(約4V)において安定に充放電させることができる新規なリチウムマンガン酸化物正極材料を得ることができる。   According to the present invention, a novel lithium manganese oxide positive electrode material that can be stably charged and discharged in an operating voltage range (about 4 V) equivalent to that of an existing lithium cobalt oxide-based positive electrode material using an inexpensive raw material Can be obtained.

1)リチウム二次電池用正極材料及びその製造方法
本発明のLiMnO(0.40<x<0.50)正極材料は、出発原料であるNaMnO(0.40<x<0.50)をイオン交換処理することによって作製され、含有するナトリウム量が、イオン交換処理条件を最適化することによって、Na/Liのモル比で0.05以下としたことを特徴とする。
先に示した非特許文献に開示された正極材料では、イオン交換反応が不完全で、ナトリウム量が上記以上であると、4V以上の高電圧の領域で充放電できず、充分な特性が得られない。また、イオン交換処理の過程で、アルカリが脱離し、Li0.40MnOなる組成に変化した場合も、同様に4V以上での充放電が困難となる。
1) Positive electrode material for lithium secondary battery and method for producing the same Li x MnO 2 (0.40 <x <0.50) positive electrode material of the present invention is Na x MnO 2 (0.40 <x < 0.50) is prepared by ion exchange treatment, and the amount of sodium contained is optimized to be not more than 0.05 in terms of Na / Li molar ratio by optimizing the ion exchange treatment conditions.
In the positive electrode material disclosed in the above-mentioned non-patent document, if the ion exchange reaction is incomplete and the amount of sodium is more than the above, charging and discharging cannot be performed in a high voltage region of 4 V or more, and sufficient characteristics are obtained. I can't. Similarly, when the alkali is desorbed and changes to a composition of Li 0.40 MnO 2 during the ion exchange process, charging / discharging at 4 V or more is similarly difficult.

本発明のLiMnO正極材料は、その全体がLi0.44MnO型のトンネル構造を有することが望ましいが、本発明の効果を妨げない範囲内で他の結晶構造が一部含まれていても良い。 The Li x MnO 2 positive electrode material of the present invention desirably has a Li 0.44 MnO 2 type tunnel structure as a whole, but some other crystal structures are included within a range not impeding the effects of the present invention. May be.

以下、本発明をさらに詳しく説明する。
本発明の化学組成式LiMnO(0.40<x<0.50)で表される正極材料は、出発原料であるNaMnO(0.40<x<0.50)をイオン交換処理することによって作製される。はじめに出発原料であるNaMnOの製造方法について説明する。
Hereinafter, the present invention will be described in more detail.
The positive electrode material represented by the chemical composition formula Li x MnO 2 (0.40 <x <0.50) of the present invention ionizes Na x MnO 2 (0.40 <x <0.50) as a starting material. It is produced by an exchange process. First, a method for producing Na x MnO 2 as a starting material will be described.

ナトリウム原料としては、ナトリウム(金属ナトリウム)およびナトリウム化合物の少なくとも1種を用いる。ナトリウム化合物としては、ナトリウムを含有するものであれば特に制限されず、例えばNaO、Na等の酸化物、NaCO、NaNO等の塩類、NaOHなどの水酸化物等が挙げられる。これらの中でも、特にNaCO等が好ましい。 As the sodium raw material, at least one of sodium (metallic sodium) and a sodium compound is used. The sodium compound is not particularly limited as long as it contains sodium. For example, oxides such as Na 2 O and Na 2 O 2 , salts such as Na 2 CO 3 and NaNO 3 , hydroxides such as NaOH, etc. Is mentioned. Among these, Na 2 CO 3 is particularly preferable.

マンガン原料としては、マンガン(金属マンガン)及びマンガン化合物の少なくとも1種を用いる。マンガン化合物としては、マンガンを含有するものであれば特に制限されず、例えばMn、Mn、MnO等の酸化物、MnCO、MnCl等の塩類、Mn(OH)等の水酸化物、MnOOH等の酸化水酸化物等が挙げられる。これらの中でも、特にMn、MnO等が好ましい。 As the manganese raw material, at least one of manganese (metallic manganese) and a manganese compound is used. The manganese compound is not particularly limited as long as it contains manganese. For example, oxides such as Mn 3 O 4 , Mn 2 O 3 and MnO 2 , salts such as MnCO 3 and MnCl 2 , Mn (OH) 2 And hydroxides such as MnOOH and the like. Among these, Mn 2 O 3 , MnO 2 and the like are particularly preferable.

はじめに、これらを含む混合物を調製する。ナトリウム原料とマンガン原料の混合割合は、Na0.44MnO型構造が生成するような割合で混合することが好ましい。具体的には、NaMnO(0.40<x<0.50)の化学組成式となるようにすれば良い。例えば、モル比でNa/Mnが0.4〜0.7程度、好ましくは0.43〜0.55となるように混合すればよい。 First, a mixture containing these is prepared. The mixing ratio of the sodium raw material and the manganese raw material is preferably mixed at such a ratio that a Na 0.44 MnO 2 type structure is generated. Specifically, the chemical composition formula may be Na x MnO 2 (0.40 <x <0.50). For example, mixing may be performed so that the molar ratio of Na / Mn is about 0.4 to 0.7, preferably 0.43 to 0.55.

また、混合方法は、これらを均一に混合できる限り特に限定されず、例えばミキサー等の公知の混合機を用いて、湿式又は乾式で混合すれば良い。   Moreover, a mixing method is not specifically limited as long as these can be mixed uniformly, For example, what is necessary is just to mix by a wet type or a dry type using well-known mixers, such as a mixer.

次いで、混合物を焼成する。焼成温度は、混合物の組成等に応じて適宜設定することができるが、通常は600〜1200℃程度、好ましくは850〜1050℃とすればよい。850℃以上では、粒成長が顕著であり、より高温で安定な大きな粒径の焼成物を得ることが可能となる。
また、焼成雰囲気も特に限定的ではないが、通常は酸化性雰囲気又は大気中で実施すれば良い。焼成時間は、焼成温度等に応じて適宜変更することができる。冷却方法は特に限定されないが、通常は自然放冷(炉内放冷)又は徐冷すれば良い。
The mixture is then fired. The firing temperature can be appropriately set according to the composition of the mixture, but is usually about 600 to 1200 ° C., preferably 850 to 1050 ° C. Above 850 ° C., grain growth is remarkable, and it becomes possible to obtain a fired product having a large particle size that is stable at higher temperatures.
Also, the firing atmosphere is not particularly limited, but usually it may be carried out in an oxidizing atmosphere or air. The firing time can be appropriately changed according to the firing temperature and the like. The cooling method is not particularly limited, but it may be naturally cooled (cooled in the furnace) or gradually cooled.

焼成後は、必要に応じて焼成物を公知の方法で粉砕し、さらに上記の焼成工程を実施しても良い。すなわち、本発明方法では、上記混合物の焼成、徐冷及び粉砕を2回以上繰り返して実施することが好ましい。なお、粉砕の程度は、焼成温度などに応じて適宜調節すれば良い。   After firing, the fired product may be pulverized by a known method as necessary, and the above firing step may be further performed. That is, in the method of the present invention, it is preferable that the mixture is repeatedly fired, gradually cooled and pulverized twice or more. Note that the degree of pulverization may be appropriately adjusted according to the firing temperature and the like.

次いで、焼成されたNaMnO(0.40<x<0.50)に、イオン交換処理を施すことにより、残存して含有するナトリウムが交換したリチウムとのモル比Na/Liで0.05以下の化学組成式LiMnO(0.40<x<0.50)で表される化合物が得られる。 Next, the calcined Na x MnO 2 (0.40 <x <0.50) was subjected to an ion exchange treatment, whereby the molar ratio Na / Li with lithium exchanged by the remaining sodium was changed to 0.00. A compound represented by the chemical composition formula Li x MnO 2 (0.40 <x <0.50) of 05 or less is obtained.

この場合に、リチウム含有化合物を含む溶融塩中において、粉砕されたNaMnOを分散させながら、イオン交換処理を施すことが好適である。溶融塩としては、硝酸リチウム、塩化リチウム、臭化リチウム、ヨウ化リチウム等の低温で溶融する塩類のうちで、いずれか1種以上を含む溶融塩を用いることができる。好ましい方法としては、リチウム化合物とNaMnO焼成物の粉末をよく混合しておく。混合比は、通常、溶融塩中のLi/NaMnO中のNaのモル比で2〜40、好ましくは10〜30である。 In this case, it is preferable to perform the ion exchange treatment while dispersing the pulverized Na x MnO 2 in the molten salt containing the lithium-containing compound. As the molten salt, a molten salt containing any one or more of salts that melt at a low temperature such as lithium nitrate, lithium chloride, lithium bromide, and lithium iodide can be used. As a preferred method, a lithium compound and a powder of Na x MnO 2 fired product are mixed well. The mixing ratio is usually 2 to 40, preferably 10 to 30, in terms of the molar ratio of Na in Li / Na x MnO 2 in the molten salt.

イオン交換の温度は、280℃〜330℃である。イオン交換の温度が280℃よりも低い場合は、NaMnO中のナトリウムがリチウムに完全に交換されず、トンネル構造中に残存する。一方、イオン交換温度が330℃よりも高い場合は、一部がスピネル構造に変化するため、均一な結晶構造を得ることができない。処理時間は、通常2〜20時間、好ましくは5〜15時間である。 The temperature of ion exchange is 280 ° C to 330 ° C. When the ion exchange temperature is lower than 280 ° C., sodium in Na x MnO 2 is not completely exchanged for lithium and remains in the tunnel structure. On the other hand, when the ion exchange temperature is higher than 330 ° C., a part of the ion exchange temperature changes to a spinel structure, so that a uniform crystal structure cannot be obtained. The treatment time is usually 2 to 20 hours, preferably 5 to 15 hours.

イオン交換処理の後、得られた生成物を、蒸留水でよく洗浄した後、メタノール、エタノールで洗浄後、乾燥させることによって、目的とするLiMnOが得られる。洗浄方法、乾燥方法については、特に制限されず、通常の方法が用いられる他、自然乾燥でも良い。 After the ion exchange treatment, the obtained product is thoroughly washed with distilled water, then washed with methanol and ethanol, and dried to obtain the target Li x MnO 2 . The washing method and the drying method are not particularly limited, and a normal method may be used, or natural drying may be used.

2)リチウム二次電池
本発明のリチウム二次電池は、前記リチウム二次電池用正極材料を用いるものである。すなわち、正極材料として本発明のリチウムマンガン酸化物を用いる以外は、公知のリチウム二次電池(コイン型、ボタン型、円筒型等)の電池要素をそのまま採用することができる。
2) Lithium secondary battery The lithium secondary battery of the present invention uses the positive electrode material for a lithium secondary battery. That is, a battery element of a known lithium secondary battery (coin type, button type, cylindrical type, etc.) can be used as it is except that the lithium manganese oxide of the present invention is used as the positive electrode material.

従って、例えば本発明のリチウムマンガン酸化物に必要に応じて導電剤、結着剤等を配合してなる正極合材を調製し、これを集電体に圧着することにより正極を作製できる。
本発明のリチウム二次電池では、集電体としては、例えばステンレスメッシュ、アルミ箔等を用いることができる。導電剤としては、例えばアセチレンブラック、ケッチェンブラック等を用いることができる。結着剤としては、例えばテトラフルオロエチレン、ポリフッ化ビニリデン等を用いることができる。
Therefore, for example, a positive electrode mixture obtained by blending the lithium manganese oxide of the present invention with a conductive agent, a binder or the like as necessary can be prepared, and this can be pressure-bonded to a current collector to produce a positive electrode.
In the lithium secondary battery of the present invention, as the current collector, for example, a stainless mesh, an aluminum foil or the like can be used. As the conductive agent, for example, acetylene black, ketjen black and the like can be used. As the binder, for example, tetrafluoroethylene, polyvinylidene fluoride, or the like can be used.

正極合材におけるリチウムマンガン酸化物、導電剤、結着剤等の配合も特に限定的でなく、公知の配合比を採用すればよい。   The composition of the lithium manganese oxide, the conductive agent, the binder and the like in the positive electrode mixture is not particularly limited, and a known blending ratio may be adopted.

本発明のリチウム二次電池において、上記正極に対する対極としては、例えば金属リチウム、カーボン系材料、合金系材料等の公知のものを採用することができる。また、セパレータ、電池容器等も公知の電池要素を採用すれば良い。   In the lithium secondary battery of the present invention, as the counter electrode with respect to the positive electrode, known ones such as metallic lithium, a carbon-based material, an alloy-based material can be employed. Moreover, a well-known battery element should just be employ | adopted for a separator, a battery container, etc.

また、電解液としても公知のものが適用できる。例えば、過塩素酸リチウム、6フッ化リン酸リチウム等の電解質を、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)、プロピレンカーボネート(PC),ジエチルカーボネート(DEC)等の溶媒に溶解させたものを電解液として使用できる。   Moreover, a well-known thing is applicable also as electrolyte solution. For example, an electrolyte such as lithium perchlorate or lithium hexafluorophosphate dissolved in a solvent such as ethylene carbonate (EC), dimethyl carbonate (DMC), propylene carbonate (PC), or diethyl carbonate (DEC) It can be used as an electrolyte.

次に、実施例及び比較例を示し、本発明の特徴とするところをより一層明確にするが、本発明は、これらの具体例に限定されるものではない。   Next, examples and comparative examples will be shown to further clarify the features of the present invention, but the present invention is not limited to these specific examples.

(実施例1)
炭酸ナトリウム(NaCO)、酸化マンガン(MnO)をモル比で1:4の割合で均一に混合した。混合物を空気中900℃で10時間焼成した後、炉内で徐冷した。得られた焼成体を粉砕するという一連の操作(焼成、徐冷及び粉砕)を再度繰り返し、ほぼ単一相のNa0.44MnO型の結晶構造を有する出発原料を得た。得られた生成物のX線粉末回折図形を図1に示す。また、この結晶の横断面を示す模式図を図3に示す。図3において、黒丸はリチウムを表す。長方形で囲まれた部分の中央には、紙面に垂直方向にS字形の大きなトンネル構造が、またその上下には歪んだ六角形の小さなトンネル構造が認められる。
Na0.44MnOの結晶構造を仮定して、斜方晶系の格子定数を求めると、a=9.0888(8)A(図3の長方形で囲まれた部分の横の長さ)、b=26.4872(19)A(図3の長方形で囲まれた部分の縦の長さ)、c=2.8250(5)Aである。
(Example 1)
Sodium carbonate (Na 2 CO 3 ) and manganese oxide (MnO 2 ) were uniformly mixed at a molar ratio of 1: 4. The mixture was calcined in air at 900 ° C. for 10 hours and then gradually cooled in a furnace. A series of operations (calcination, slow cooling and pulverization) of pulverizing the obtained fired body was repeated again to obtain a starting material having a substantially single phase Na 0.44 MnO 2 type crystal structure. The X-ray powder diffraction pattern of the obtained product is shown in FIG. Moreover, the schematic diagram which shows the cross section of this crystal | crystallization is shown in FIG. In FIG. 3, black circles represent lithium. A large S-shaped tunnel structure in the direction perpendicular to the paper surface is observed at the center of the portion surrounded by the rectangle, and a distorted hexagonal small tunnel structure is observed above and below the tunnel structure.
Assuming the crystal structure of Na 0.44 MnO 2 , the orthorhombic lattice constant is obtained, and a = 9.0888 (8) A (the horizontal length of the portion surrounded by the rectangle in FIG. 3) B = 26.4872 (19) A (vertical length of the portion surrounded by the rectangle in FIG. 3), c = 2.8250 (5) A.

次に、この試料を、硝酸リチウムと塩化リチウムを88:12のモル比で混合した溶融塩中でイオン交換処理を行った。Na0.44MnOの溶融塩中における量は、モル比で、溶融塩中のLi:試料中のNa=20:1とし、溶融塩の温度は300℃とした。処理時間10時間で、イオン交換処理を行い、得られた固体を蒸留水、メタノール、エタノール等で洗浄、乾燥して試料を得た。この試料をICP発光分析法により、化学組成を分析した結果、Li0.44MnOの化学式で妥当であり、残存して含有するナトリウム量は、Na/Liのモル比で0.007であった。さらに、X線粉末回折図形を図2に示す。出発物質としたNa0.44MnOと同構造であると仮定して、斜方晶系の格子定数(a=8.9079(5)A、b=24.2532(11)A、c=2.82781(19)A)を有するほぼ単一相であることが確認された。
また、非特許文献1に記載されているLi0.40MnOの格子定数(a=8.9316(2)A、b=24.4350(5)A、c=2.83072(5)A)と比べて、a軸長、及びb軸長が明らかに短く、残留するナトリウム量等の化学組成の違いを顕著に示しているものと判断された。
Next, this sample was subjected to ion exchange treatment in a molten salt in which lithium nitrate and lithium chloride were mixed at a molar ratio of 88:12. The amount of Na 0.44 MnO 2 in the molten salt was a molar ratio: Li in the molten salt: Na in the sample = 20: 1, and the temperature of the molten salt was 300 ° C. An ion exchange treatment was performed for a treatment time of 10 hours, and the obtained solid was washed with distilled water, methanol, ethanol, etc. and dried to obtain a sample. As a result of analyzing the chemical composition of this sample by ICP emission spectrometry, the chemical formula of Li 0.44 MnO 2 is reasonable, and the remaining sodium content was 0.007 in terms of a Na / Li molar ratio. It was. Furthermore, an X-ray powder diffraction pattern is shown in FIG. Assuming that it has the same structure as Na 0.44 MnO 2 used as a starting material, the orthorhombic lattice constants (a = 8.9079 (5) A, b = 24.2532 (11) A, c = 2.82781 (19) A) was confirmed to be nearly single phase.
Further, the lattice constant of Li 0.40 MnO 2 described in Non-Patent Document 1 (a = 8.9316 (2) A, b = 24.4350 (5) A, c = 2.83072 (5) A) ), The a-axis length and the b-axis length were clearly shorter, and it was judged that the difference in chemical composition such as the amount of residual sodium was markedly exhibited.

(実施例2)
得られたLi0.44MnO試料を正極材料1とし、金属リチウムを負極材料3、6フッ化リン酸リチウムをエチレンカーボネート(EC)とジエチルカーボネート(DEC)との混合溶媒に溶解させた1M溶液を電解液2とする、図4にみられるようなリチウム二次電池(電気化学セル)を作製し、その充放電特性を測定した。電池の作製は、公知の電気化学セルの構成・組み立て方法に従って行った。
(Example 2)
The obtained Li 0.44 MnO 2 sample was used as the positive electrode material 1, 1M in which lithium metal was dissolved in a negative electrode material 3, and 6 hexafluorophosphate was dissolved in a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC). A lithium secondary battery (electrochemical cell) as shown in FIG. 4 was prepared using the solution as the electrolytic solution 2, and its charge / discharge characteristics were measured. The battery was produced according to a known electrochemical cell configuration / assembly method.

このリチウム二次電池について、室温で、電流密度0.057mA/cm、4.8V−2.5Vのカットオフ電位で充放電試験を行ったところ、平均放電電圧3.57V、初期放電容量163mAh/gで安定に充放電可能なことが判明した。10サイクル後の放電容量も157mAh/g程度を維持しており、サイクル特性も良好であった。10サイクルまでの充放電特性を図5に、また充放電容量を図6に示す。
図5において、1−10cはそれぞれ充電曲線を、また1−10dはそれぞれ放電曲線を示す。
When this lithium secondary battery was subjected to a charge / discharge test at room temperature with a current density of 0.057 mA / cm 2 and a cutoff potential of 4.8 V-2.5 V, the average discharge voltage was 3.57 V and the initial discharge capacity was 163 mAh. It was found that charging / discharging can be stably performed at / g. The discharge capacity after 10 cycles was maintained at about 157 mAh / g, and the cycle characteristics were also good. FIG. 5 shows the charge / discharge characteristics up to 10 cycles, and FIG. 6 shows the charge / discharge capacity.
In FIG. 5, 1-10c represents a charge curve, and 1-10d represents a discharge curve.

これまでの公知のLi0.44MnOにおいては、残存するナトリウムの影響で、4V以上の高電位では、充放電できなかったが、本試料では、図5に示すように、4V領域以上でも、初期放電容量が約60mAh/gであり、10サイクル後も約53mAh/gと、安定な充放電が可能であった。 Conventionally known Li 0.44 MnO 2 could not be charged / discharged at a high potential of 4 V or higher due to the influence of remaining sodium, but in this sample, as shown in FIG. The initial discharge capacity was about 60 mAh / g, and stable charging / discharging was possible at about 53 mAh / g even after 10 cycles.

(比較例1)
上記、実施例1で得られたNa0.44MnO試料について、イオン交換処理条件を変更した。すなわち、実施例1において、溶融塩の組成、混合の割合、処理時間、その後の洗浄、乾燥の工程はすべて同じとし、処理温度のみを260℃に低下させた。
得られた試料をICP発光分析法により、化学組成を分析した結果、Li0.42Na0.03MnOの化学式で妥当であり、Na/Liのモル比で0.07程度の残存して含有するナトリウムが確認された。この試料を正極材料として、実施例2と同様のリチウム二次電池を作製し、同条件で充放電試験を行ったところ、4V領域での安定な充放電は認められなかった。
(Comparative Example 1)
The ion exchange treatment conditions for the Na 0.44 MnO 2 sample obtained in Example 1 were changed. That is, in Example 1, the composition of the molten salt, the mixing ratio, the processing time, the subsequent washing and drying steps were all the same, and only the processing temperature was lowered to 260 ° C.
As a result of analyzing the chemical composition of the obtained sample by ICP emission spectrometry, the chemical formula of Li 0.42 Na 0.03 MnO 2 is reasonable, and the residual ratio of Na / Li is about 0.07. Containing sodium was confirmed. When this sample was used as a positive electrode material, a lithium secondary battery similar to that of Example 2 was produced, and a charge / discharge test was performed under the same conditions. As a result, stable charge / discharge in the 4 V region was not observed.

(比較例2)
さらに、上記実施例1で得られたNa0.44MnO試料について、リチウム化合物を溶解した有機溶媒中でのイオン交換処理方法についても検討した。すなわち、臭化リチウムをジエチレングルコールモノエチルエーテルに溶解し、この溶液にNa0.44MnOを投入し、150℃で24時間、攪拌しながらイオン交換処理を行った。得られた試料は、メタノールで洗浄後、メンブレンフィルターを用いて吸引濾過した。洗浄は、試料をメタノール中で約1日攪拌後、吸引濾過するサイクルを、ろ液が透明になるまで、数回繰り返した。最後に、エタノールでも洗浄し、吸引濾過後、デシケーター内で自然乾燥させた。
得られた試料をICP発光分析法により、化学組成を分析した結果、Li0.37Na0.16MnOの化学式となり、Na/Liのモル比で0.43程度の残存して含有するナトリウムが確認された。この試料を正極材料として、実施例2と同様のリチウム二次電池を作製し、充放電試験を行ったが、比較例1と同様に、4V領域での安定な充放電は認められなかった。
(Comparative Example 2)
Furthermore, the Na 0.44 MnO 2 sample obtained in Example 1 was also examined for an ion exchange treatment method in an organic solvent in which a lithium compound was dissolved. That is, lithium bromide was dissolved in diethylene glycol monoethyl ether, and Na 0.44 MnO 2 was added to this solution, followed by ion exchange treatment with stirring at 150 ° C. for 24 hours. The obtained sample was washed with methanol and then suction filtered using a membrane filter. In the washing, a cycle in which the sample was stirred in methanol for about 1 day and then suction filtered was repeated several times until the filtrate became transparent. Finally, it was washed with ethanol, and after suction filtration, it was naturally dried in a desiccator.
As a result of analyzing the chemical composition of the obtained sample by ICP emission spectrometry, the chemical formula of Li 0.37 Na 0.16 MnO 2 was obtained, and sodium contained in a residual ratio of about 0.43 in terms of a Na / Li molar ratio. Was confirmed. Using this sample as a positive electrode material, a lithium secondary battery similar to that in Example 2 was produced and a charge / discharge test was performed. However, as in Comparative Example 1, stable charge / discharge in the 4 V region was not observed.

本発明による得られるリチウムマンガン酸化物は、高容量で、かつ、サイクル劣化の少ない、低コストのリチウム二次電池正極材料として有用である。
また、上記リチウムマンガン酸化物材料を正極材料(正極活物質)とする本発明のリチウム二次電池は、高容量で、優れた充放電サイクル特性をも発揮することができ、実用性の高いものである。
The lithium manganese oxide obtained by the present invention is useful as a positive electrode material for a low-cost lithium secondary battery having a high capacity and little cycle deterioration.
The lithium secondary battery of the present invention using the lithium manganese oxide material as a positive electrode material (positive electrode active material) has a high capacity, can exhibit excellent charge / discharge cycle characteristics, and has high practicality. It is.

実施例1で得られたNa0.44MnOのX線粉末回折図である。 2 is an X-ray powder diffractogram of Na 0.44 MnO 2 obtained in Example 1. FIG. 実施例1で得られたLi0.44MnOのX線粉末回折図である。 2 is an X-ray powder diffraction pattern of Li 0.44 MnO 2 obtained in Example 1. FIG. 本発明のLi0.44MnO型のトンネル構造を説明するための模式図である。It is a schematic diagram for explaining a Li 0.44 MnO 2 type tunnel structure of the present invention. 本発明のリチウム二次電池(電気化学セル)の1例を示す模式図である。It is a schematic diagram which shows one example of the lithium secondary battery (electrochemical cell) of this invention. 実施例2のリチウム二次電池の10サイクルまでの充放電特性を示す図である。It is a figure which shows the charging / discharging characteristic to 10 cycles of the lithium secondary battery of Example 2. FIG. 実施例2のリチウム二次電池の10サイクルまでの充放電容量を示す図である。FIG. 4 is a diagram showing a charge / discharge capacity of up to 10 cycles of the lithium secondary battery of Example 2.

符号の説明Explanation of symbols

1 正極材料
2 電解液
3 負極材料
1 Positive electrode material 2 Electrolyte 3 Negative electrode material

Claims (6)

化学組成式LiMnO(0.40<x<0.50)で表され、結晶構造として斜方晶系に属し、リチウムが占有するトンネル構造を有する、リチウム、マンガン、酸素から構成され、ナトリウムの含有量がNa/Liのモル比で0.05以下であることを特徴とするリチウム二次電池用正極材料。 It is represented by the chemical composition formula Li x MnO 2 (0.40 <x <0.50), belongs to the orthorhombic system as a crystal structure, and has a tunnel structure occupied by lithium, and is composed of lithium, manganese, and oxygen, A positive electrode material for a lithium secondary battery, wherein the sodium content is 0.05 or less in terms of a Na / Li molar ratio. ナトリウム化合物とマンガン化合物を混合、焼成して調製したNaMnO(0.40<x<0.50)を出発物質として、リチウム化合物によりイオン交換処理することを特徴とする請求項1に記載のリチウム二次電池用正極材料の製造方法。 2. The ion exchange treatment with a lithium compound using Na x MnO 2 (0.40 <x <0.50) prepared by mixing and baking a sodium compound and a manganese compound as a starting material. Manufacturing method of positive electrode material for lithium secondary battery. イオン交換処理を、リチウム化合物を含有する溶融塩中において行うことを特徴とする請求項2に記載のリチウム二次電池用正極材料の製造方法。   The method for producing a positive electrode material for a lithium secondary battery according to claim 2, wherein the ion exchange treatment is performed in a molten salt containing a lithium compound. イオン交換処理を、280〜330℃の温度範囲で行うことを特徴とする請求項3に記載のリチウム二次電池用正極材料の製造方法。   The method for producing a positive electrode material for a lithium secondary battery according to claim 3, wherein the ion exchange treatment is performed in a temperature range of 280 to 330 ° C. 正極、負極及び電解質物質を有するリチウム二次電池の正極を、請求項1に記載のリチウム二次電池用正極材料により構成したことを特徴とするリチウム二次電池。   A lithium secondary battery comprising the positive electrode material for a lithium secondary battery according to claim 1, wherein the positive electrode of the lithium secondary battery having a positive electrode, a negative electrode, and an electrolyte substance. 電池の作動電圧として、4V以上の領域で安定に充放電が可能であることを特徴とする請求項5に記載のリチウム二次電池。   The lithium secondary battery according to claim 5, wherein the battery can be stably charged and discharged in an area of 4 V or more as an operating voltage of the battery.
JP2004065402A 2004-03-09 2004-03-09 Positive electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery using the same Expired - Lifetime JP4431785B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004065402A JP4431785B2 (en) 2004-03-09 2004-03-09 Positive electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004065402A JP4431785B2 (en) 2004-03-09 2004-03-09 Positive electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery using the same

Publications (2)

Publication Number Publication Date
JP2005259362A true JP2005259362A (en) 2005-09-22
JP4431785B2 JP4431785B2 (en) 2010-03-17

Family

ID=35084900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004065402A Expired - Lifetime JP4431785B2 (en) 2004-03-09 2004-03-09 Positive electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery using the same

Country Status (1)

Country Link
JP (1) JP4431785B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007007581A1 (en) * 2005-07-08 2007-01-18 National Institute Of Advanced Industrial Science And Technology Positive electrode material for lithium secondary battery, process for production of the same, and lithium secondary material manufactured using the same
JP2008198553A (en) * 2007-02-15 2008-08-28 National Institute Of Advanced Industrial & Technology Active material for lithium cell, its manufacturing method, and lithium cell using the active material
JP2008226798A (en) * 2007-03-16 2008-09-25 National Institute Of Advanced Industrial & Technology Method of manufacturing single crystal manganate sodium (na0.44mno2) nanowire, and lithium ion electrochemical cell for high rate using it
WO2015049796A1 (en) * 2013-10-04 2015-04-09 日産自動車株式会社 Positive electrode active material for nonaqueous electrolyte secondary batteries and method for producing same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102389411B1 (en) 2017-12-08 2022-04-22 주식회사 엘지에너지솔루션 Lithium cobalt based positive electrode active material, producing method thereof, positive electrode and secondary battery comprising the same
CN109216039B (en) * 2018-10-15 2020-02-11 吉首大学 Na 2Mn 5O 10Preparation method and application of nanorod

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007007581A1 (en) * 2005-07-08 2007-01-18 National Institute Of Advanced Industrial Science And Technology Positive electrode material for lithium secondary battery, process for production of the same, and lithium secondary material manufactured using the same
JP2008198553A (en) * 2007-02-15 2008-08-28 National Institute Of Advanced Industrial & Technology Active material for lithium cell, its manufacturing method, and lithium cell using the active material
JP2008226798A (en) * 2007-03-16 2008-09-25 National Institute Of Advanced Industrial & Technology Method of manufacturing single crystal manganate sodium (na0.44mno2) nanowire, and lithium ion electrochemical cell for high rate using it
WO2015049796A1 (en) * 2013-10-04 2015-04-09 日産自動車株式会社 Positive electrode active material for nonaqueous electrolyte secondary batteries and method for producing same
JPWO2015049796A1 (en) * 2013-10-04 2017-03-09 日産自動車株式会社 Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
US9705131B2 (en) 2013-10-04 2017-07-11 Nissan Motor Co., Ltd. Positive electrode active material for non-aqueous electrolyte secondary battery and method for producing the same

Also Published As

Publication number Publication date
JP4431785B2 (en) 2010-03-17

Similar Documents

Publication Publication Date Title
JP5158787B2 (en) NOVEL TITANIUM OXIDE, ITS MANUFACTURING METHOD, AND LITHIUM SECONDARY BATTERY USING THE SAME AS ACTIVE MATERIAL
JP5846482B2 (en) Sodium manganese titanium nickel composite oxide, method for producing the same, and sodium secondary battery using the same as a member
JP5294225B2 (en) Single crystal particles of oxide for lithium secondary battery electrode, method for producing the same, and lithium secondary battery using the same
JP2006107845A (en) Cathode active material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery using this, and its manufacturing method
JP5958926B2 (en) Lithium manganese composite oxide and method for producing the same
JP2001148249A (en) Negative electrode active material for lithium secondary battery and lithium secondary battery
JP2010123424A (en) Active material for lithium battery, manufacturing method thereof, and lithium battery using the same
JP6872816B2 (en) Nickel-manganese-based composite oxide and its manufacturing method
JP5644273B2 (en) Titanium oxide, method for producing the same, and electrochemical device using the same as member
JP4257426B2 (en) Alkali transition metal oxide crystal material and method for producing the same
JP4431786B2 (en) Positive electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery using the same
JP5880928B2 (en) Lithium manganese titanium nickel composite oxide, method for producing the same, and lithium secondary battery using the same as a member
JP5051770B2 (en) Positive electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery using the same
JP5207360B2 (en) Lithium manganese oxide powder particles, production method thereof, and lithium secondary battery using the same as a positive electrode active material
JP4431785B2 (en) Positive electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery using the same
CN103413928A (en) High-capacity high-compaction metal oxide anode material and preparation method thereof
JP4543156B2 (en) Lithium ferrite composite oxide and method for producing the same
JP2002321920A (en) Element substitution lithium manganese compound oxide granulated composition, its manufacturing method and its utilization for secondary battery
JP5093669B2 (en) Manganese oxide, battery electrode active material, production method thereof, and secondary battery using battery electrode active material
US20030047717A1 (en) Multi-doped nickel oxide cathode material
JP5120919B2 (en) Active material for lithium battery, method for producing the same, and lithium battery using the active material
JP2000128540A (en) Manganese oxide, its production, lithium manganese multiple oxide produced with the same and production of the same multiple oxide
JP2008133149A (en) Method for production of lithium-iron-manganese composite oxide
JP2002075361A (en) Lithium ion secondary battery
JP7133215B2 (en) Nickel-manganese composite oxide and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350