JP2005255496A - Method of manufacturing ceramic product using sewage sludge incineration ash and resultant ceramic product - Google Patents

Method of manufacturing ceramic product using sewage sludge incineration ash and resultant ceramic product Download PDF

Info

Publication number
JP2005255496A
JP2005255496A JP2004071779A JP2004071779A JP2005255496A JP 2005255496 A JP2005255496 A JP 2005255496A JP 2004071779 A JP2004071779 A JP 2004071779A JP 2004071779 A JP2004071779 A JP 2004071779A JP 2005255496 A JP2005255496 A JP 2005255496A
Authority
JP
Japan
Prior art keywords
sewage sludge
powder
incineration ash
mass
clay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004071779A
Other languages
Japanese (ja)
Other versions
JP4717364B2 (en
Inventor
Shinkichi Ooka
伸吉 大岡
Mitsuyoshi Cho
満良 張
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yoshika KK
Original Assignee
Yoshika KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yoshika KK filed Critical Yoshika KK
Priority to JP2004071779A priority Critical patent/JP4717364B2/en
Publication of JP2005255496A publication Critical patent/JP2005255496A/en
Application granted granted Critical
Publication of JP4717364B2 publication Critical patent/JP4717364B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/60Production of ceramic materials or ceramic elements, e.g. substitution of clay or shale by alternative raw materials, e.g. ashes

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a ceramic product using sewage sludge incineration ash in which the big change of the condition of firing of a formed body obtained by forming a body containing the sewage sludge incineration ash is not necessary even when the chemical composition of the the sewage sludge incineration ash is changed. <P>SOLUTION: The method of manufacturing the ceramic product using the sewage sludge incineration ash includes (i) a step for preparing the body containing a powdery mixture comprising the sewage sludge incineration ash, clay powder and ceramic powder (where ≥98 mass% of the clay powder is occupied by a particle having ≤50 μm particle diameter and the ratio of the particle diameter (d<SB>90</SB>) of the particle occupying 90% of the clay powder to the particle diameter (d<SB>50</SB>) of the particle occupying 50% of the clay powder is ≥3), (ii) a step for forming the resultant body and (iii) a step for firing the resultant formed boy. The resultant ceramic product has small water absorption, denseness and high mechanical strength. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、下水汚泥焼却灰、特にFeおよび/またはP含有量の多い下水汚泥焼却灰を主要原料の1つとして用いたセラミック製品の製造方法、およびこの方法によって得られた機械的強度が大きくかつ吸水率の小さいセラミック製品に関する。 The present invention provides a method for producing a ceramic product using sewage sludge incineration ash, particularly sewage sludge incineration ash having a high content of Fe 2 O 3 and / or P 2 O 5 as one of the main raw materials, and is obtained by this method. The present invention relates to a ceramic product having high mechanical strength and low water absorption.

一般家庭から排出された生活排水、工場排水、および下水管に流れ込んだ土砂を含む雨水等から構成されるいわゆる下水汚泥は、凝集剤の添加により固形成分を凝集した後、脱水、焼成することによって下水汚泥焼却灰に加工される。この下水汚泥焼却灰は、資源の有効利用の観点から、廃棄することなく再利用するのが望ましく、現在までに、煉瓦、透水性ブロック、陶管(セラミックパイプ)等のセラミック製品への加工の検討が行なわれている。   So-called sewage sludge composed of domestic wastewater discharged from ordinary households, industrial wastewater, and rainwater containing earth and sand flowing into the sewage pipes, agglomerates solid components by adding a flocculant, and then dehydrates and burns Processed into sewage sludge incineration ash. It is desirable to reuse this sewage sludge incineration ash without disposal from the viewpoint of effective use of resources. To date, the sewage sludge incineration ash has been processed into ceramic products such as bricks, permeable blocks, and ceramic pipes. Consideration is being made.

特に、下水汚泥焼却灰を原料として製造された吸水率が小さい陶管(セラミックパイプ)は、耐蝕性および機械的強度に優れることから、塩化ビニル管やヒューム管に代わる管として期待され、例えば特開2000−247730号公報(特許文献1)には、天然粘土、陶管を砕いたシャモット、および下水汚泥焼却灰からなる混合原料を管状に成形して焼成した吸水率が小さい陶管の製造方法が開示されており、SiO:50〜70重量%、Al:15〜25重量%、NaO:0.5〜2重量%、KO:1〜3重量%、CaO:1〜3重量%、MgO:0.5〜2重量%、Fe:4〜8重量%、P:2〜8重量%を含む混合原料が使用されている。また、特開2003−026468号公報(特許文献2)には、セラミック製品製造用の下水汚泥焼却灰と粉末状の粘土材とセラミック粉材とからなるセラミック成形用混合粉末において、該混合粉末を構成する全粒子のうちの85wt%以上を粒径50μm以下に、0.1wt%以下を粒径250μm以上にすることによって、下水汚泥焼却灰の利用率を高めるとともに得られるセラミック製品の機械的強度を高める方法が開示されている。この公報における実施例では、SiO:52.4wt%、Al:14.2wt%、NaO:0.9wt%、KO:1.6wt%、CaO:5.5wt%、MgO:1.5wt%、TiO:0.6wt%:Fe:6.5wt%、P:11.7wt%を含む下水汚泥焼却灰が使用されている。 In particular, ceramic pipes (ceramic pipes) made from sewage sludge incinerated ash as a raw material and having a low water absorption rate are expected to replace vinyl chloride pipes and fume pipes because of their excellent corrosion resistance and mechanical strength. Kai 2000-247730 (Patent Document 1) discloses a method for producing a ceramic pipe having a small water absorption rate, which is obtained by forming a mixed raw material made of natural clay, chamotte crushed ceramic pipe, and sewage sludge incinerated ash into a tubular shape and firing it. There is disclosed, SiO 2: 50-70 wt%, Al 2 O 3: 15~25 wt%, Na 2 O: 0.5~2 wt%, K 2 O: 1~3 wt%, CaO: A mixed raw material containing 1 to 3 wt%, MgO: 0.5 to 2 wt%, Fe 2 O 3 : 4 to 8 wt%, and P 2 O 5 : 2 to 8 wt% is used. JP 2003-026468 A (Patent Document 2) discloses a mixed powder for forming a ceramic comprising a sewage sludge incineration ash for producing ceramic products, a powdery clay material, and a ceramic powder material. The mechanical strength of the ceramic product obtained by increasing the utilization rate of sewage sludge incineration ash by making 85 wt% or more of the total particles constituting the particle size 50 μm or less and 0.1 wt% or less 250 μm or more. A method for enhancing the above is disclosed. In the examples in this publication, SiO 2 : 52.4 wt%, Al 2 O 3 : 14.2 wt%, Na 2 O: 0.9 wt%, K 2 O: 1.6 wt%, CaO: 5.5 wt%, MgO: 1.5wt%, TiO 2: 0.6wt%: Fe 2 O 3: 6.5wt%, P 2 O 5: sewage sludge ash containing 11.7wt% is used.

下水汚泥焼却灰は、上記実施例からもわかるように、主成分としてのSiO、Alの他に、NaO、KO、CaO、MgO、Fe、P等のいわゆるフラックス成分を比較的多く含んでいるが、下水汚泥焼却灰におけるこれらの成分の含有量は、下水汚泥の発生源(回収場所)、天候(降雨量)、使用される凝集剤等によって大きく変動する。例えば、雨天が連続すると雨水とともに土砂が下水に流れ込むため、下水汚泥焼却灰中のSiO量が増加する。また、下水汚泥に一般家庭等からの糞尿等の汚物が多く含まれる場合には、下水汚泥焼却灰中のP量が増加する。さらに、鉄分を多く含む工場排水が下水に混入された場合や、塩化第二鉄溶液、ポリ硫酸第二鉄溶液等の鉄系凝集剤が使用されたなど下水汚泥焼却灰に加工する処理の過程で鉄分が付加された場合には、下水汚泥焼却灰中のFe量が大幅に増加することになる。 The sewage sludge incineration ash is Na 2 O, K 2 O, CaO, MgO, Fe 2 O 3 , P 2 O in addition to SiO 2 and Al 2 O 3 as main components, as can be seen from the above examples. It contains a relatively large amount of so-called flux components such as 5 , but the content of these components in the sewage sludge incineration ash is the source of sewage sludge (recovery location), weather (rainfall), coagulant used, etc. It varies greatly depending on. For example, when rainy weather continues, earth and sand flows into sewage along with rainwater, and thus the amount of SiO 2 in the sewage sludge incineration ash increases. Further, when the sewage sludge contains a large amount of sewage such as manure from ordinary households, the amount of P 2 O 5 in the sewage sludge incineration ash increases. In addition, when industrial wastewater containing a lot of iron is mixed into sewage, or when iron-based flocculants such as ferric chloride solution and polyferric sulfate solution are used, it is processed into sewage sludge incineration ash When iron is added, the amount of Fe 2 O 3 in the sewage sludge incineration ash is significantly increased.

下水汚泥焼却灰中のFe量やP量が増加すると、これらはフラックス成分であるため、下水汚泥焼却灰を用いて形成した成形体を焼成する際に成形体が変形しやすくなり、また、焼成途中で成形体中に気泡が発生しやすくなるため、得られたセラミック製品の吸水率が増大するとともに機械的強度が低下する。そのため、品質が均一で吸水率が小さいセラミック製品を製造する場合には、下水汚泥焼却灰の化学組成変動に応じて成形体の焼成温度を予め設定しておき、そのうえで、使用する下水汚泥焼却灰の化学組成をその都度調べ、標準化学組成焼却灰との差異に応じて焼成条件が適宜調整される。例えばP含有量が1%異なると、焼成時の最高温度が10〜20℃程度調整される。また、特開2003−026467号公報(特許文献3)は、1箇月以上の所定の期間、その期間内に生産された下水汚泥焼却灰であって入手できたものを順次ストックしておき、その期間が経過した後に、その期間中ストックしておいた下水汚泥焼却灰のほぼ全量から相互にほぼ均等な化学組成となるように分割したものを順次セラミック製品製造のための原料として使用する方法を開示しており、均一な化学組成の下水汚泥焼却灰を使用することにより、焼成温度を大幅に変更することなく品質の均一なセラミック製品を得ることを提案している。 When the amount of Fe 2 O 3 or P 2 O 5 in the sewage sludge incineration ash increases, these are flux components, so that the molded body is deformed when the molded body formed using the sewage sludge incineration ash is fired. In addition, since air bubbles are easily generated in the molded body during firing, the water absorption of the obtained ceramic product increases and the mechanical strength decreases. Therefore, when producing ceramic products with uniform quality and low water absorption, the firing temperature of the compact is set in advance according to the chemical composition variation of the sewage sludge incineration ash, and then the sewage sludge incineration ash to be used is used. Each time the chemical composition is examined, and the firing conditions are appropriately adjusted according to the difference from the standard chemical composition incinerated ash. For example, if the P 2 O 5 content is different by 1%, the maximum temperature during firing is adjusted to about 10 to 20 ° C. Moreover, Unexamined-Japanese-Patent No. 2003-026467 (patent document 3) stocks what was obtained in the sewage sludge incineration ash produced within the predetermined period for the predetermined period of one month or more one by one. After the period has elapsed, a method in which the sewage sludge incinerated ash stocked during the period is divided into almost the same chemical composition from each other and used as a raw material for the production of ceramic products. It discloses and proposes to obtain a ceramic product of uniform quality without significantly changing the firing temperature by using sewage sludge incineration ash with a uniform chemical composition.

特開2000−247730号公報JP 2000-247730 A 特開2003−026468号公報JP 2003-026468 A 特開2003−026467号公報JP 2003-026467 A

しかし、セラミック製品を大量に低コストで製造しようとする場合に、使用する下水汚泥焼却灰の化学組成をその都度分析することは極めて煩雑であり、またセラミック製品の生産効率を低下させることにもつながる。さらに、特開2003−026467号公報の方法によると、均一な化学組成の下水汚泥焼却灰を使用して品質が均一なセラミック製品を製造することができるものの、例えば2〜4ヶ月もの長期間にわたって下水汚泥焼却灰をストックするための広い空間が必要となる上に、下水汚泥焼却灰をストックする期間はセラミック製品の製造を停止する必要が生じる。   However, it is extremely complicated to analyze the chemical composition of the sewage sludge incineration ash used every time when trying to manufacture a large amount of ceramic products at low cost, and also to reduce the production efficiency of ceramic products. Connected. Furthermore, according to the method of Japanese Patent Application Laid-Open No. 2003-026467, it is possible to produce a ceramic product having a uniform quality using sewage sludge incineration ash having a uniform chemical composition, but over a long period of, for example, 2 to 4 months. In addition to requiring a large space for stocking sewage sludge incineration ash, it is necessary to stop the production of ceramic products during the period of stocking sewage sludge incineration ash.

そこで、本発明の目的は、下水汚泥焼却灰を用いたセラミック製品の製造方法において、下水汚泥焼却灰の化学組成が変化しても、特にフラックス成分であるFe量および/またはP量が大幅に増加しても、下水汚泥焼却灰を含む坏土を成形して得た成形体の焼成条件を大幅に変更する必要のないセラミック製品の製造方法、従ってまた下水汚泥焼却灰を一定期間ストックしておくことにより下水汚泥焼却灰の化学組成の均一化を図る必要もないセラミック製品の製造方法を提供することである。 Accordingly, an object of the present invention is to produce a ceramic product using sewage sludge incineration ash, even if the chemical composition of the sewage sludge incineration ash changes, in particular, the amount of Fe 2 O 3 and / or P 2 as a flux component. Even if the amount of O 5 is greatly increased, a method for producing a ceramic product that does not require a significant change in the firing conditions of the molded body obtained by molding the clay containing sewage sludge incineration ash, and therefore also sewage sludge incineration ash It is to provide a method for producing a ceramic product that does not require uniform chemical composition of sewage sludge incineration ash by stocking for a certain period of time.

発明者等は、上記目的を達成すべく検討を重ねた結果、セラミック製品を製造するための下水汚泥焼却灰と粘土粉末とセラミック粉末とから成る混合粉末を含む坏土を調製する工程において、粘土粉末として実質的に粒径50μm以下の微粒子からなる粉末であって粉末の粒度分布が比較的広いものを使用すると、下水汚泥焼却灰の化学組成が大幅に変化した場合でも、下水汚泥焼却灰を含む坏土を成形して得た成形体の焼成温度を大幅に変更せずに吸水率が小さくかつ機械的強度が大きいセラミック製品が得られることを発見し、発明を完成させた。   As a result of repeated studies to achieve the above object, the inventors have prepared clay in a process for preparing a clay containing a mixed powder composed of sewage sludge incineration ash, clay powder and ceramic powder to produce a ceramic product. If a powder consisting essentially of fine particles with a particle size of 50 μm or less and having a relatively wide particle size distribution is used as the powder, even if the chemical composition of the sewage sludge incineration ash changes significantly, It was discovered that a ceramic product having a low water absorption rate and a high mechanical strength can be obtained without significantly changing the firing temperature of the molded body obtained by molding the kneaded clay.

即ち本発明は、下水汚泥焼却灰を用いたセラミック製品の製造方法であって、
i)下水汚泥焼却灰と粘土粉末とセラミック粉末とから成る混合粉末を含む坏土を調製する工程(但し、上記粘土粉末全体の98質量%以上が粒径50μm以下の粒子で占められており、かつ上記粘土粉末における90%粒径d90の50%粒径d50に対する比が3以上である。)、
ii)得られた坏土を成形する工程、および、
iii)得られた成形体を焼成する工程、
を含むことを特徴とする製造方法である。
That is, the present invention is a method for producing a ceramic product using sewage sludge incineration ash,
i) a step of preparing a clay containing mixed powder composed of sewage sludge incineration ash, clay powder and ceramic powder (however, 98% by mass or more of the entire clay powder is occupied by particles having a particle size of 50 μm or less, And the ratio of 90% particle size d 90 to 50% particle size d 50 in the clay powder is 3 or more).
ii) forming the obtained clay, and
iii) a step of firing the obtained molded body,
The manufacturing method characterized by including.

本明細書において、「粒径」の語はストークス径を意味し、「50%粒径d50」とは粉末全体の50質量%までがd50の値以下の粒径を有していることを意味し、「90%粒径d90」とは同様に粉末全体の90質量%までがd90の値以下の粒径を有していることを意味する。従って、90%粒径d90の50%粒径d50に対する比d90/d50の値が大きくなるほど粉末の粒度分布が広くなる。本発明において、d90/d50の値は一般には3以上である。このような粒子の粒度分布が広い粘土粉末、好ましくはさらに粘土粉末全体の15質量%以上が粒径10μm以上の粒子で占められている粉末を使用すると、下水汚泥焼却灰の化学組成が変化しても、特にフラックス成分であるFe量および/またはP量が大幅に増加しても、下水汚泥焼却灰を含む坏土を成形して得た成形体の焼成温度を大幅に変更せずに吸水率が小さくかつ機械的強度が大きいセラミック製品を得ることができる。また、本発明では、従来技術における温度(一般的には1100℃以上)よりも低温(1030〜1080℃)で成形体の焼成を行なっても吸水率が小さくかつ機械的強度が大きいセラミック製品が得られ、また焼成時の最高温度を30〜50℃程度変更しても吸水率および機械的強度の値がほぼ等しいセラミック製品が得られる。 In the present specification, the term “particle diameter” means the Stokes diameter, and “50% particle diameter d 50 ” means that up to 50 mass% of the whole powder has a particle diameter not more than the value of d 50 . “90% particle size d 90 ” means that up to 90% by mass of the whole powder has a particle size equal to or less than the value of d 90 . Therefore, the particle size distribution of the powder becomes wider as the value of the ratio d 90 / d 50 for 50% d 50 value of 90% particle diameter d 90 increases. In the present invention, the value of d 90 / d 50 is generally 3 or more. When such a clay powder having a wide particle size distribution, preferably a powder in which 15% by mass or more of the entire clay powder is occupied by particles having a particle size of 10 μm or more is used, the chemical composition of the sewage sludge incineration ash changes. However, even if the amount of Fe 2 O 3 and / or P 2 O 5 as the flux component is significantly increased, the firing temperature of the molded body obtained by molding the clay containing sewage sludge incineration ash is greatly increased. A ceramic product having a low water absorption rate and a high mechanical strength can be obtained without changing to. In the present invention, a ceramic product having a low water absorption and a high mechanical strength even when the molded body is fired at a lower temperature (1030 to 1080 ° C.) than the temperature in the prior art (generally 1100 ° C. or higher). Even if the maximum temperature during firing is changed by about 30 to 50 ° C., ceramic products having substantially the same water absorption and mechanical strength values can be obtained.

上述のような良好な結果が得られる理由は、以下のように考えられる。すなわち、様々な粒径の粒子を含む下水汚泥焼却灰の粒子どうしの間にやはり様々な粒径の粘土粒子が密に充填されるため、緻密な成形体が形成されると考えられる。また、坏土中の各成分の反応によって、例えば鉄成分とCやS等との反応によって、COやSO等の気体が成形体中に発生しうるが、下水汚泥焼却灰の粒子どうしの間に密に充填された粘土粒子が、これらの気体が焼成途中に成形体から脱離するための通路(細隙)を提供すると考えられる。その結果、比較的低温で焼成した場合でも緻密な焼結体が得られ、また、CやS等との反応を引き起こす鉄成分が多い下水汚泥焼却灰を使用した場合でも緻密な焼結体が得られるものと考えられる。 The reason why the above good results can be obtained is considered as follows. That is, it is considered that clay particles having various particle diameters are closely packed between particles of sewage sludge incineration ash containing particles having various particle diameters, so that a compact molded body is formed. Further, due to the reaction of each component in the clay, for example, the reaction between the iron component and C, S, etc., gas such as CO 2 and SO x can be generated in the molded body. It is considered that the clay particles closely packed in between provide a passage (slit) for these gases to be detached from the molded body during firing. As a result, a dense sintered body can be obtained even when fired at a relatively low temperature, and a dense sintered body can be obtained even when sewage sludge incinerated ash containing a large amount of iron components causing a reaction with C, S, etc. is used. It is considered to be obtained.

従って、本発明の製造方法は、従来は焼成温度の変更を余儀なくされていたフラックス成分の多い下水汚泥焼却灰を使用する場合、特に、Feの含有量が焼却灰全体の25質量%以上、および/または、Pの含有量が焼却灰全体の15質量%以上であるような下水汚泥焼却灰を使用する場合に好適である。本発明では、上記先行技術文献では使用されていない化学組成を有する混合粉末、具体的には、混合粉末全体に対してSiO:49〜54質量%、Al:18〜24質量%、Fe:10〜16質量%、TiO:0.5〜0.75質量%、CaO:1〜3質量%、MgO:1〜2.5質量%、NaO:1〜1.5質量%、KO:1〜2.5質量%、P:4〜7質量%の化学組成を有する混合粉末を使用することもできる。 Therefore, in the production method of the present invention, when using sewage sludge incinerated ash with a large amount of flux components that has conventionally been forced to change the calcination temperature, the content of Fe 2 O 3 is particularly 25% by mass of the entire incinerated ash. It is suitable when the above and / or sewage sludge incineration ash whose content of P 2 O 5 is 15% by mass or more of the entire incineration ash is used. In the present invention, a mixed powder having a chemical composition that is not used in the above-described prior art documents, specifically, SiO 2 : 49 to 54 mass%, Al 2 O 3 : 18 to 24 mass% with respect to the entire mixed powder. , Fe 2 O 3: 10~16 wt%, TiO 2: 0.5~0.75 wt%, CaO: 1 to 3 wt%, MgO: 1 to 2.5 wt%, Na 2 O: 1~1 It is also possible to use a mixed powder having a chemical composition of 0.5 mass%, K 2 O: 1 to 2.5 mass%, and P 2 O 5 : 4 to 7 mass%.

本発明のセラミック製品の製造方法において、粘土粉末は、カオリン(カオリナイト、ナクライト、ディッカイト、ハロイサイト、加水ハロイサイト等の1種以上からなる粘土)のようにAl含有量が多いものが望ましい。Al含有量は、粘土粉末全体に対して25質量%以上であるのが好ましい。このような粘土を使用すると、特にFeの含有量が多い下水汚泥焼却灰を使用する場合でも、機械的強度が大きい上に吸水率が小さい緻密質のセラミック製品を得ることができる。 In the method for producing a ceramic product of the present invention, it is desirable that the clay powder has a high Al 2 O 3 content such as kaolin (a clay composed of one or more of kaolinite, nacrite, dickite, halloysite, hydrous halloysite, etc.). . The Al 2 O 3 content is preferably 25% by mass or more based on the entire clay powder. When such a clay is used, a dense ceramic product having a high mechanical strength and a low water absorption rate can be obtained even when using sewage sludge incineration ash having a high Fe 2 O 3 content.

また、混合粉末に含まれるセラミック粉末全体の98質量%以上が粒径50μm以下の微粒子で占められているのが好ましく、下水汚泥焼却灰全体の98質量%以上が粒径200μm以下の粒子で占められているのが好ましい。このような各粉末を使用すると、得られるセラミック製品の均質性が増し、セラミック製品の強度の向上、吸水率の低下につながる上に、焼成温度が比較的低くても吸水率の小さいセラミック製品が得られるため、省エネルギー化に貢献することができる。   Further, 98% by mass or more of the entire ceramic powder contained in the mixed powder is preferably occupied by fine particles having a particle size of 50 μm or less, and 98% by mass or more of the entire sewage sludge incineration ash is occupied by particles having a particle size of 200 μm or less. It is preferred that The use of each of these powders increases the homogeneity of the resulting ceramic product, leading to an improvement in the strength of the ceramic product and a decrease in water absorption. In addition, a ceramic product having a low water absorption can be obtained even at a relatively low firing temperature. Therefore, it can contribute to energy saving.

さらに、上記混合粉末は、分級処理により粒径300μm以上の粒子が除去されているのが望ましい。粗い粒子が残っていると、得られたセラミック製品の表面が平坦でなくなる上に、セラミック製品の強度低下、吸水率の増加につながるため望ましくない。   Furthermore, it is desirable that particles having a particle size of 300 μm or more are removed from the mixed powder by classification treatment. If coarse particles remain, the surface of the obtained ceramic product is not flat, and the strength of the ceramic product is reduced and the water absorption rate is increased.

本発明のセラミック製品の製造方法において、下水汚泥焼却灰が混合粉末全体に対して20〜40質量%であり、セラミック粉末が混合粉末全体に対して30〜40質量%であり、粘土粉末が混合粉末全体に対して30〜40質量%であるのが好ましい。この範囲内で各成分が混合された混合粉末を使用すると、均質で機械的強度が大きく、その上吸水率の小さい緻密質のセラミック製品が得られる。   In the method for producing a ceramic product of the present invention, the sewage sludge incineration ash is 20 to 40% by mass with respect to the entire mixed powder, the ceramic powder is 30 to 40% by mass with respect to the entire mixed powder, and the clay powder is mixed. It is preferable that it is 30-40 mass% with respect to the whole powder. When a mixed powder in which the respective components are mixed within this range is used, a dense ceramic product having a high mechanical strength and a low water absorption rate can be obtained.

本発明のセラミック製品の製造方法における上記工程ii)において、脱気しながら成形を行なうのが望ましい。このようにすることによって、坏土を調製する間に坏土中の各成分の反応によって発生した気体、例えば鉄成分とCやS等との反応によって発生したCOやSOが成形体から脱離するため、緻密な成形体を得ることができ、従って成形体の焼成後に均質で緻密なセラミック製品を得ることができる。また、上述したように、工程iii)では、従来技術における焼成温度よりも低い1030〜1080℃で成形体の焼成を行なっても吸水率が小さくかつ機械的強度が大きいセラミック製品が得られ、従って省エネルギー化に貢献することができる。 In step ii) in the method for producing a ceramic product of the present invention, it is desirable to perform molding while deaeration. By doing in this way, the gas generated by the reaction of each component in the clay during the preparation of the clay, for example, CO 2 and SO x generated by the reaction between the iron component and C, S, etc. are formed from the molded body. Since it is desorbed, a dense molded body can be obtained, and thus a homogeneous and dense ceramic product can be obtained after firing of the molded body. Further, as described above, in step iii), a ceramic product having a low water absorption and a high mechanical strength can be obtained even when the molded body is fired at 1030 to 1080 ° C., which is lower than the firing temperature in the prior art. It can contribute to energy saving.

本発明はまた、上述の製造方法によって得られたセラミック製品にも関する。本発明のセラミック製品は、吸水率が好適には2.5%以下の緻密質である上に、化学的に安定でありかつ機械的強度が大きいセラミック製品である。   The invention also relates to a ceramic product obtained by the manufacturing method described above. The ceramic product of the present invention is a ceramic product which has a water absorption rate of preferably 2.5% or less, is chemically stable and has high mechanical strength.

本発明のセラミック製品の製造方法によると、下水汚泥焼却灰の化学組成が変化しても、特にフラックス成分であるFe量および/またはP量が大幅に増加しても、下水汚泥焼却灰を含む坏土を成形して得た成形体の焼成温度を大幅に変更せずに吸水率が小さくかつ機械的強度が大きいセラミック製品を得ることができる。本発明の製造方法によって得られたセラミック製品は、吸水率が小さく緻密質である上に化学的に安定でありかつ機械的強度が大きい。 According to the method for producing a ceramic product of the present invention, even if the chemical composition of the sewage sludge incineration ash is changed, especially the amount of Fe 2 O 3 and / or P 2 O 5 as the flux component is greatly increased, A ceramic product having a low water absorption rate and a high mechanical strength can be obtained without significantly changing the firing temperature of the molded body obtained by molding the clay containing sewage sludge incinerated ash. The ceramic product obtained by the production method of the present invention has a small water absorption rate, is dense, is chemically stable, and has a high mechanical strength.

本発明のセラミック製品の製造方法は、i)下水汚泥焼却灰と粘土粉末とセラミック粉末とから成る混合粉末を含む坏土を調製する工程(但し、上記粘土粉末全体の98質量%以上が粒径50μm以下の粒子で占められており、かつ上記粘土粉末における90%粒径d90の50%粒径d50に対する比が3以上である。)、ii)得られた坏土を成形する工程、および、iii)得られた成形体を焼成する工程、を含む。 The method for producing a ceramic product of the present invention comprises: i) a step of preparing a clay containing a mixed powder composed of sewage sludge incinerated ash, clay powder and ceramic powder (provided that 98% by mass or more of the entire clay powder has a particle size of 98% by mass or more). And the ratio of 90% particle size d 90 to 50% particle size d 50 in the clay powder is 3 or more)), ii) a step of molding the obtained clay; And iii) a step of firing the obtained molded body.

まず、上記工程i)について説明する。本発明の製造方法において、下水汚泥焼却灰は、種々の下水汚泥焼却灰を特に化学組成上の制限なしに用いることができる。典型的な下水汚泥焼却灰は、石灰長石、リン酸化合物、石英等から構成されており、SiO2、Al23の他、Fe23、TiO、Na2O、CaO、K2O、MgO、P25等を含有している。本発明では、種々の下水汚泥焼却灰をこれらの化学組成に関りなく用いることができ、また他の微量成分、例えばCd、Pb、Cr、As、Hg、Se等の重金属を含むものも利用することができる。本発明の製造方法は、Fe23およびP25等のフラックス成分の多い下水汚泥焼却灰を使用する場合、特に、焼却灰全体に対して25質量%以上のFeおよび/または焼却灰全体に対して15質量%以上のPを含む下水汚泥焼却灰を使用する場合に好適である。このようなフラックス成分の多い下水汚泥焼却灰を使用する場合には、従来は焼成条件を大幅に変更する必要があったが、本発明によると焼成条件をほとんど変更するがない。 First, the step i) will be described. In the production method of the present invention, various sewage sludge incineration ash can be used without particular chemical composition limitations. Typical sewage sludge incineration ash is composed of lime feldspar, phosphate compound, quartz and the like, and in addition to SiO 2 , Al 2 O 3 , Fe 2 O 3 , TiO 2 , Na 2 O, CaO, K 2. O, MgO, P 2 O 5 and the like are contained. In the present invention, various sewage sludge incineration ash can be used regardless of their chemical composition, and other sewage sludge incineration ash, including those containing other minor components such as Cd, Pb, Cr, As, Hg, Se, etc. can do. When the production method of the present invention uses sewage sludge incinerated ash having a large amount of flux components such as Fe 2 O 3 and P 2 O 5 , particularly 25% by mass or more of Fe 2 O 3 and / or or it is suitable when using sewage sludge ash containing P 2 O 5 more than 15% by weight with respect to the total ash. In the case of using such sewage sludge incineration ash with a large amount of flux components, it has been necessary to change the firing conditions significantly in the past. However, according to the present invention, the firing conditions are hardly changed.

本発明のセラミック製品の製造方法において、下水汚泥焼却灰の粒径はあまり影響を与えないが、粗大な粒子が存在する場合には、得られたセラミック製品の機械的強度が低下する場合があるため、粒径が300μm以下であるのが好ましい。より好ましくは下水汚泥焼却灰全体の98質量%以上が200μm以下であり、特に好ましくは100μm以下である。入手した下水汚泥焼却灰が粗大な粒子を含む場合には、篩分け、ボールミルやハンマーミルのような粉砕機による粉砕処理により粒度調製しておくのが好ましい。   In the method for producing a ceramic product of the present invention, the particle size of the sewage sludge incineration ash does not significantly affect the mechanical strength of the obtained ceramic product when coarse particles are present. Therefore, the particle size is preferably 300 μm or less. More preferably, 98% by mass or more of the entire sewage sludge incineration ash is 200 μm or less, and particularly preferably 100 μm or less. When the obtained sewage sludge incineration ash contains coarse particles, it is preferable to adjust the particle size by sieving and pulverizing with a pulverizer such as a ball mill or a hammer mill.

本発明において、セラミック粉末としては、耐火性に優れるセラミック焼成体を粉砕して得た粉末であれば、特に制限なく使用することができる。例えば、陶器や磁器等の陶磁器質材料、セメント、ガラス、煉瓦等を粉砕して得た破砕物を使用することができる。セラミック粉末としては、後述する工程iii)の焼成途中で成形体中に発生し得る気体(例えば、CO、SOx等)を外部に逃がすための細隙を提供し得るものが好ましい。本発明の製造方法において実施されるセラミック成形体の焼成温度よりも高温域(好適には1100℃以上)で焼成した陶管や瓦の粉状シャモットが特に好適である。このような粉状シャモットは、本発明の製造方法で形成される焼成体中においても粒子の形態でそのまま残存するため、これらの残存粒子によって、成形体中で発生した気体を外部に放出するための細隙(気孔)を確保することができる。 In the present invention, the ceramic powder can be used without particular limitation as long as it is a powder obtained by pulverizing a ceramic fired body having excellent fire resistance. For example, a crushed material obtained by pulverizing a ceramic material such as ceramic or porcelain, cement, glass, brick, or the like can be used. The ceramic powder is preferably a ceramic powder that can provide a slit for releasing a gas (for example, CO 2 , SOx, etc.) that can be generated in the molded body during firing in step iii) to be described later. A ceramic tube or tile powdery chamotte fired in a temperature range (preferably 1100 ° C. or higher) higher than the firing temperature of the ceramic molded body implemented in the production method of the present invention is particularly suitable. Since such a powdered chamotte remains in the form of particles even in the fired body formed by the production method of the present invention, the gas generated in the molded body is released to the outside by these remaining particles. Can be secured.

このようなセラミック粉末において、セラミック粉末全体の98質量%以上が粒径50μm以下、好適には30μm以下、の微粒子で占められているのが好ましい。このような微細なセラミック粉末を使用すると、坏土中にセラミック粉末が微細に分散し、坏土を所定形状に成形した際に、下水汚泥焼却灰粒子どうしの間に微細なセラミック粉末が充填されるため、成形体の緻密度が増し、従って、焼成後に得られるセラミック製品の均質性が増し、セラミック製品の機械的強度が向上するとともに吸水率が低下する。また従来技術における成形体の焼成温度(一般的には1100℃以上)よりも低い焼成温度を採用しても吸水率の小さいセラミック製品が得られるため、省エネルギー化に貢献することができる。入手したセラミック粉末が比較的粗大な粒子で構成されている場合には、篩分けの他、ボールミルやハンマーミル等の粉砕機を使用して粒度調製した上で使用する。   In such a ceramic powder, 98% by mass or more of the entire ceramic powder is preferably occupied by fine particles having a particle size of 50 μm or less, preferably 30 μm or less. When such a fine ceramic powder is used, the ceramic powder is finely dispersed in the clay, and when the clay is formed into a predetermined shape, the fine ceramic powder is filled between the sewage sludge incineration ash particles. For this reason, the density of the molded body is increased, so that the homogeneity of the ceramic product obtained after firing is increased, the mechanical strength of the ceramic product is improved, and the water absorption is decreased. Further, even if a firing temperature lower than the firing temperature of the molded body in the prior art (generally 1100 ° C. or higher) is adopted, a ceramic product having a low water absorption rate can be obtained, which can contribute to energy saving. When the obtained ceramic powder is composed of relatively coarse particles, the particle size is adjusted using a pulverizer such as a ball mill or a hammer mill in addition to sieving.

粘土粉末は、岩石または鉱物の風化、変成作用によって生じた含水珪酸塩を主体とした粒子の集合体である。本発明のセラミック製品の製造方法において、粘土粉末の種類に特に制限はなく、一般的なカオリン、ベントナイト、木節粘土、ガイロメ粘土等を使用することができるが、カオリンのようにAl含有量が多いものが望ましい。Alが全体の25質量%以上、好ましくは30質量%以上である粘土粉末を使用するのが好ましい。このような粘土粉末を使用すると、Fe23およびP25等のフラックス成分の多い下水汚泥焼却灰を使用する場合にも、機械的強度が大きくかつ緻密質のセラミック製品が製造されることがわかっている。 Clay powder is an aggregate of particles mainly composed of hydrous silicate generated by weathering or metamorphism of rocks or minerals. In the method for producing a ceramic product of the present invention, the kind of clay powder is not particularly limited, and general kaolin, bentonite, kibushi clay, gillome clay and the like can be used, but Al 2 O 3 like kaolin. A high content is desirable. It is preferable to use clay powder in which Al 2 O 3 is 25% by mass or more, preferably 30% by mass or more of the whole. When such clay powder is used, even when using sewage sludge incinerated ash having a large amount of flux components such as Fe 2 O 3 and P 2 O 5, a ceramic product having a high mechanical strength and a high density is produced. I know that.

本発明のセラミック製品の製造方法における主要な特徴は、粘土粉末として、粘土粉末全体の98質量%以上が粒径50μm以下の粒子で占められており、かつ90%粒径d90の50%粒径d50に対する比が3以上、好ましくは4以上、特に好ましくは5以上である粉末を使用することである。言い換えると、微粒子から構成される粒度分布の広い粘土粉末を使用することである(図1参照)。粘土粉末の15質量%以上は10μm以上の粒径を有しているのが好ましい。このような粘土粉末を使用すると、坏土中に粘土粉末が微細に分散し、坏土を所定形状に成形した際に、粒度分布の広い下水汚泥焼却灰粒子どうしの間に粘土粉末が緻密に充填されるため、成形体の緻密度が増し、また、下水汚泥焼却灰の粒子どうしの間に密に充填された粘土粒子が、坏土中の各成分の反応によって発生した気体(例えば鉄成分とCやS等との反応によって発生したCOやSO等)が焼成途中に成形体から脱離するための通路(細隙)を提供するため、焼成後に得られるセラミック製品の均質性が増し、セラミック製品の機械的強度が向上するとともに吸水率が低下すると考えられる。また、下水汚泥焼却灰の化学組成が変化しても、特にフラックス成分であるFe量および/またはP量が大幅に増加して、例えば、Feの含有量が焼却灰全体の25質量%以上、特に40質量%以上であり、および/または、Pの含有量が焼却灰全体の15質量%以上、特に20質量%以上であるような下水汚泥焼却灰を使用する場合でも、成形体の焼成温度を大幅に変更せずに吸水率が小さくかつ機械的強度が大きいセラミック製品を得ることができる。入手した粘土粉末が比較的粗大な粒子で構成されている場合には、篩分けの他、ボールミルやハンマーミル等の粉砕機を使用して粒度調製した上で使用する。 The main feature of the method for producing a ceramic product of the present invention is that, as clay powder, 98% by mass or more of the entire clay powder is occupied by particles having a particle size of 50 μm or less, and 50% of 90% particle size d 90 ratio of 3 or more to the diameter d 50, is to preferably 4 or more, particularly preferably using a powder is 5 or more. In other words, clay powder having a wide particle size distribution composed of fine particles is used (see FIG. 1). It is preferable that 15% by mass or more of the clay powder has a particle size of 10 μm or more. When such a clay powder is used, the clay powder is finely dispersed in the clay, and when the clay is formed into a predetermined shape, the clay powder becomes dense between the sewage sludge incineration ash particles having a wide particle size distribution. Since it is filled, the compactness of the compact is increased, and the clay particles closely packed between the sewage sludge incineration ash particles are generated by the reaction of each component in the clay (for example, iron component). CO 2 , SO x, etc. generated by the reaction of C with S, etc.) provide a passage (slit) for detachment from the compact during firing, so that the homogeneity of the ceramic product obtained after firing is improved. This is considered to increase the mechanical strength of the ceramic product and decrease the water absorption rate. In addition, even if the chemical composition of the sewage sludge incineration ash changes, the amount of Fe 2 O 3 and / or P 2 O 5 that is a flux component increases significantly, for example, the content of Fe 2 O 3 is increased. Sewage sludge incineration such that it is 25% by mass or more, especially 40% by mass or more of the entire incinerated ash, and / or the content of P 2 O 5 is 15% by mass or more, particularly 20% by mass or more of the entire incinerated ash Even when ash is used, a ceramic product having a low water absorption rate and a high mechanical strength can be obtained without significantly changing the firing temperature of the compact. When the obtained clay powder is composed of relatively coarse particles, the particle size is adjusted using a pulverizer such as a ball mill or a hammer mill in addition to sieving.

上述の下水汚泥焼却灰と粘土粉末とセラミック粉末とから成る混合粉末を含む坏土の調製に当たっては、分級処理により粒径300μm以上の粒子を除去するのが好ましい。粗い粒子が残っていると、得られたセラミック製品の表面が平坦でなくなる上に、セラミック製品の機械的強度の低下、吸水率の増加につながるため望ましくない。尚、分級処理は一般に篩を使用して行なわれる。分級処理は、下水汚泥焼却灰、粘土粉末、およびセラミック粉末のそれぞれについて行ってもよく、また下水汚泥焼却灰と粘土粉末とセラミック粉末のうちの少なくとも2つを混合した後に行ってもよい。さらには、各粉末または混合粉末を水等の媒体に分散させた後に分級処理を行ってもよい。   When preparing the clay containing the mixed powder composed of the sewage sludge incinerated ash, clay powder and ceramic powder, it is preferable to remove particles having a particle size of 300 μm or more by classification treatment. If coarse particles remain, the surface of the obtained ceramic product is not flat, and the mechanical strength of the ceramic product is decreased and the water absorption rate is increased. The classification process is generally performed using a sieve. The classification treatment may be performed for each of the sewage sludge incinerated ash, clay powder, and ceramic powder, or may be performed after mixing at least two of the sewage sludge incinerated ash, clay powder, and ceramic powder. Further, classification may be performed after each powder or mixed powder is dispersed in a medium such as water.

上述した下水汚泥焼却灰、粘土粉末、およびセラミック粉末を水とともに十分に混錬して坏土を調製する。坏土には、必要に応じてバインダーその他の添加剤が添加されていてもよい。このとき、下水汚泥焼却灰が混合粉末全体に対して20〜40質量%であり、セラミック粉末が混合粉末全体に対して30〜40質量%であり、粘土粉末が混合粉末全体に対して30〜40質量%であるのが好ましい。この範囲内で各成分が混合された混合粉末を使用すると、均質で機械的強度が大きく、その上吸水率の小さい緻密質のセラミック製品が得られる。混合粉末の化学組成は、例えば混合粉末全体に対して下水汚泥焼却灰30質量%、粘土粉末35質量%、セラミック粉末35質量%の量で配合した場合には、混合粉末全体に対してSiO:49〜64質量%、Al:18〜24質量%、Fe:4〜16質量%、TiO:0.5〜0.75質量%、CaO:1〜3質量%、MgO:1〜2.5質量%、NaO:1〜1.5質量%、KO:1〜2.5質量%、P:2〜7質量%となる。また、Feの含有量が焼却灰全体の25質量%以上であり、Pの含有量が焼却灰全体の15質量%以上であるような下水汚泥焼却灰を使用する場合には、混合粉末全体に対してSiO:49〜54質量%、Al:18〜24質量%、Fe:10〜16質量%、TiO:0.5〜0.75質量%、CaO:1〜3質量%、MgO:1〜2.5質量%、NaO:1〜1.5質量%、KO:1〜2.5質量%、P:4〜7質量%となる。 The above-mentioned sewage sludge incineration ash, clay powder, and ceramic powder are sufficiently kneaded with water to prepare a clay. Binders and other additives may be added to the clay as necessary. At this time, sewage sludge incineration ash is 20-40 mass% with respect to the whole mixed powder, ceramic powder is 30-40 mass% with respect to the whole mixed powder, and clay powder is 30- with respect to the whole mixed powder. It is preferably 40% by mass. When a mixed powder in which the respective components are mixed within this range is used, a dense ceramic product having a high mechanical strength and a low water absorption rate can be obtained. When the chemical composition of the mixed powder is, for example, 30% by mass of sewage sludge incineration ash, 35% by mass of clay powder, and 35% by mass of ceramic powder with respect to the entire mixed powder, SiO 2 with respect to the entire mixed powder. : 49 to 64 wt%, Al 2 O 3: 18 to 24 wt%, Fe 2 O 3: 4 to 16 wt%, TiO 2: 0.5 to 0.75 mass%, CaO: 1 to 3 mass%, MgO: 1 to 2.5 wt%, Na 2 O: 1~1.5 wt%, K 2 O: 1~2.5 wt%, P 2 O 5: the 2-7 wt%. Also, when using sewage sludge incineration ash in which the content of Fe 2 O 3 is 25% by mass or more of the entire incineration ash and the content of P 2 O 5 is 15% by mass or more of the entire incineration ash It is, SiO 2 on the entire mixed powder: 49 to 54 wt%, Al 2 O 3: 18~24 wt%, Fe 2 O 3: 10~16 wt%, TiO 2: 0.5 to 0.75 mass %, CaO: 1 to 3 mass%, MgO: 1 to 2.5 mass%, Na 2 O: 1 to 1.5 mass%, K 2 O: 1 to 2.5 mass%, P 2 O 5 : 4 -7% by mass.

坏土を調製する際の混合は、慣用の各種混合機、例えば、土練機、リボンミキサー、ローラーミキサー等を使用することにより行なうことができる。坏土の水分含有率は、一般的には坏土全体に対して15〜25質量%、好ましくは17〜23質量%である。坏土の水分含有率が15質量%よりも低すぎると坏土が固くなりすぎて押出し成形が困難になる場合があり、坏土の水分含有率が25質量%よりも高すぎるとセラミック成形体を成形した際の保形性が低下するため好ましくない。混練時間に特に制限がなく、均質な坏土が調製される時間でよいが、一般的には10分〜2時間の範囲である。   Mixing in preparing the kneaded clay can be performed by using various conventional mixers such as a kneader, a ribbon mixer, and a roller mixer. The moisture content of the clay is generally 15 to 25% by mass, preferably 17 to 23% by mass, based on the entire clay. If the moisture content of the clay is too lower than 15% by mass, the clay may become too hard and extrusion molding may be difficult. If the moisture content of the clay is too high, the ceramic molded body. Since shape retention at the time of molding is reduced, it is not preferable. There is no particular limitation on the kneading time, and it may be a time for preparing a homogeneous clay, but it is generally in the range of 10 minutes to 2 hours.

次に、本発明のセラミック製品の製造方法における工程ii)について説明する。工程ii)の成形工程におけるセラミック製品の成形方法に特に制限がなく、製造すべきセラミック製品に応じて公知の方法が選択され、セラミック製品の製造において慣用の種々の方法、例えば、一般的な鋳込み成形、押出し成形、プレス成形(1軸プレス法、CIP成形法等)により、所望形状の成形体を得ることができる。例えばセラミックパイプを製造する場合には、押出し成形が好適である。一定のサイズ・形状の口金を有する押出成形機に坏土を供給しつつ当該口金から成形体を押し出すことによって、一定の横断面形状を有するセラミックパイプを成形することができる。成形は、脱気しながら行なうのが望ましい。脱気により、坏土を調製する間または成形処理の間に坏土中に含まれる各成分の反応によって発生した気体、例えば鉄成分とCやS等との反応によって発生したCOやSO、が成形体から脱離するため、緻密な成形体を得ることができ、従って成形体の焼成後に均質で緻密なセラミック製品を得ることができる。脱気しながらの成形は、慣用の真空押出し成形機によって行なうことができる。 Next, step ii) in the method for producing a ceramic product of the present invention will be described. There is no particular limitation on the method of forming the ceramic product in the forming step of step ii), and a known method is selected according to the ceramic product to be manufactured. Various methods commonly used in the manufacture of ceramic products, for example, general casting A molded body having a desired shape can be obtained by molding, extrusion molding, press molding (uniaxial press method, CIP molding method, etc.). For example, when producing a ceramic pipe, extrusion molding is suitable. A ceramic pipe having a constant cross-sectional shape can be formed by extruding a molded body from the die while supplying clay to an extruder having a die having a certain size and shape. It is desirable to perform the molding while deaeration. By degassing, the gas generated by the reaction of each component contained in the clay during the preparation of the clay or during the molding process, for example, CO 2 and SO x generated by the reaction of the iron component with C, S, etc. Is detached from the molded body, so that a dense molded body can be obtained. Therefore, a homogeneous and dense ceramic product can be obtained after firing of the molded body. Molding while degassing can be performed by a conventional vacuum extrusion molding machine.

得られた成形体は、焼成処理前に乾燥させることが望ましい。特に残存水分量が2%またはそれよりも低くなるまで乾燥処理を施すことが好ましい。乾燥方法に特に制限がなく、自然乾燥のほか、定温乾燥機内に成形体を入れて乾燥することもできる。乾燥処理によって焼成時における水蒸気膨張を抑止することができ、従って緻密質のセラミック製品を得ることができる。   It is desirable to dry the obtained molded body before the firing treatment. In particular, it is preferable to carry out the drying treatment until the residual water content becomes 2% or lower. There is no particular limitation on the drying method. In addition to natural drying, the molded body can be put in a constant temperature dryer and dried. By the drying treatment, the expansion of water vapor during firing can be suppressed, and thus a dense ceramic product can be obtained.

次に、好ましくは乾燥後の成形品を、本発明のセラミック製品の製造方法における工程iii)において、焼成時の最高温度が1000〜1200℃、好ましくは1030〜1080℃で焼成する。最高温度が1000℃より低いと、得られるセラミック製品の機械的強度が十分でなく、また吸水率も大きくなる。本発明では、従来技術における温度(一般的には1100℃以上)よりも低温(1030〜1080℃)で焼成を行なっても吸水率が小さくかつ機械的強度が大きいセラミック製品が得られる。さらには焼成時の最高温度を30〜50℃程度変更しても吸水率および機械的強度の値がほぼ等しいセラミック製品が得られる。本発明では、混合粉末における下水汚泥焼却灰の含有率や下水汚泥焼却灰の化学組成によって焼成温度を大幅に変更する必要がないのでセラミック製品を大量に連続して製造する場合に特に有利である。最高温度に保持する時間は製造するセラミック製品の種類に依存するが、一般的には10分以上20時間以内である。   Next, the dried product is preferably fired at a maximum temperature of 1000 to 1200 ° C., preferably 1030 to 1080 ° C. in step iii) in the method for producing a ceramic product of the present invention. When the maximum temperature is lower than 1000 ° C., the resulting ceramic product has insufficient mechanical strength and also has a high water absorption rate. In the present invention, a ceramic product having a low water absorption and a high mechanical strength can be obtained even when firing is performed at a lower temperature (1030 to 1080 ° C.) than the temperature in the prior art (generally 1100 ° C. or higher). Furthermore, even if the maximum temperature during firing is changed by about 30 to 50 ° C., ceramic products having substantially the same water absorption rate and mechanical strength can be obtained. In the present invention, since it is not necessary to significantly change the firing temperature depending on the content ratio of the sewage sludge incineration ash in the mixed powder and the chemical composition of the sewage sludge incineration ash, it is particularly advantageous when manufacturing ceramic products continuously in large quantities. . The time for maintaining the maximum temperature depends on the type of ceramic product to be manufactured, but is generally 10 minutes or more and 20 hours or less.

焼成時の昇降温速度も製造するセラミック製品の種類に依存するが、常温から最高温度に到達するまでの昇温時間、最高温度から常温に到達するまでの降温時間は、一般的には少なくとも1時間、好ましくは4時間以上要するように設定することが好ましい。昇温速度が速すぎると、成形体中に発生した気体(CO、SO等)が外部に抜けずにセラミック製品内に残存してしまうおそれがある。また昇降温速度が速すぎると、成形体に過度の熱的歪がかかり、セラミック製品の変形、亀裂発生を助長してしまうおそれがある。 Although the temperature increasing / decreasing rate at the time of firing also depends on the type of ceramic product to be manufactured, the temperature rising time until reaching the maximum temperature from the normal temperature and the temperature decreasing time until reaching the normal temperature from the maximum temperature are generally at least 1 It is preferable to set the time so that it takes 4 hours or more, preferably 4 hours or more. If the rate of temperature increase is too fast, gas (CO 2 , SO x, etc.) generated in the molded body may remain in the ceramic product without coming out to the outside. On the other hand, if the temperature raising / lowering speed is too high, excessive thermal strain is applied to the molded body, which may promote deformation and crack generation of the ceramic product.

上述のセラミック製品の製造方法によると、吸水率が約4%以下、好ましくは2.5%以下、特に好ましくは1%以下の緻密質である上に、化学的に安定でありかつ機械的強度が大きいセラミック製品、例えば、セラミックパイプ、瓦、壁用パネル、マンホール内壁面補修用パネル等を好適に製造することができる。特に環状に成形して得たセラミックパイプは、塩ビ管やヒューム管に代わる地中埋設用等の管として好適に使用することができる。また、上述したように、本発明では重金属を含む下水汚泥焼却灰を使用することもできるが、重金属は焼成中に外部に放出されるため、得られたセラミック製品は重金属をほとんど含まない安全なものである。   According to the above-mentioned method for producing a ceramic product, the water absorption is not more than about 4%, preferably not more than 2.5%, particularly preferably not more than 1%, and is chemically stable and mechanical strength. Large ceramic products such as ceramic pipes, roof tiles, wall panels, and manhole inner wall surface repair panels can be suitably manufactured. In particular, the ceramic pipe obtained by molding into an annular shape can be suitably used as a pipe for underground burial or the like that replaces a PVC pipe or a fume pipe. In addition, as described above, sewage sludge incinerated ash containing heavy metals can be used in the present invention, but since the heavy metals are released to the outside during firing, the obtained ceramic product is safe and contains almost no heavy metals. Is.

以下に実施例によって本発明をさらに詳細に説明するが、本発明は以下の実施例に示す形態に限定されるものではない。   EXAMPLES The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to the forms shown in the following examples.

以下の実施例において、化学組成は、JIS K 0119に従い蛍光X線分析法によって測定した。但し、強熱減量は、JIS M 8853 7に従い測定した。粒度分布は、JIS R 1629に従い、レーザー回折方式で測定した。吸水率は、乾燥した試験片を水に浸漬した後の重量増加を測定して決定した。曲げ強度は、3点曲げ試験により測定した。試験における試験速度は1mm/分であり、押金具の半径は5mmであり、支え金具の半径は5mmであり、支点間の距離は50mmである。   In the following examples, the chemical composition was measured by fluorescent X-ray analysis according to JIS K 0119. However, the loss on ignition was measured according to JIS M 88537. The particle size distribution was measured by a laser diffraction method in accordance with JIS R 1629. The water absorption was determined by measuring the weight increase after the dried test piece was immersed in water. The bending strength was measured by a three-point bending test. The test speed in the test is 1 mm / min, the radius of the pressing metal is 5 mm, the radius of the supporting metal is 5 mm, and the distance between the fulcrums is 50 mm.

(1)下水汚泥焼却灰
使用した下水汚泥焼却灰の化学組成および粒径(分級処理後)を表1に示す。Fe含有量が28.77〜43.5質量%、P含有量が15.9〜20.07質量%と、フラックス成分の多い下水汚泥焼却灰を使用した。
(1) Sewage sludge incineration ash Table 1 shows the chemical composition and particle size (after classification treatment) of the sewage sludge incineration ash used. The sewage sludge incinerated ash with a large amount of flux components was used with an Fe 2 O 3 content of 28.77 to 43.5 mass% and a P 2 O 5 content of 15.9 to 20.07 mass%.

Figure 2005255496
Figure 2005255496

(2)セラミック粉末
使用したセラミック粉末(シャモット)の化学組成および粒径(分級処理後)を表2に示す。
(2) Ceramic powder Table 2 shows the chemical composition and particle size (after classification treatment) of the ceramic powder (chamotte) used.

Figure 2005255496
Figure 2005255496

(3)粘土粉末
使用した粘土粉末の化学組成を表3に示す。また、粒度分布の測定結果を図1および図2に示す。
(3) Clay powder Table 3 shows the chemical composition of the clay powder used. Moreover, the measurement result of a particle size distribution is shown in FIG. 1 and FIG.

Figure 2005255496
Figure 2005255496

(4)試験片の作成、および吸水率、曲げ強度の測定
実施例1〜15、比較例1〜9
以下の表4に示す組み合わせの下水汚泥焼却灰、セラミック粉末、および粘土粉末を、それぞれ混合粉末全体に対して30質量%、35質量%、35質量%にあたる量で小型ソイルミキサーSS−S−338(篠原製作所製)に投入し、10分間混錬を行なった。その後、坏土の水含有率が坏土全体に対して21質量%になるように加水し、さらに10分間混錬を行なった。次に、得られた坏土を真空押出し成形機PZVM8d(ヘンドレェ製)内に投入し、直径15mm、長さ100mmの円柱状に成形した。得られた成形体を、定温乾燥器SSN−155S(いすゞ製作所製)内に入れ、45℃で12時間、さらに90℃で2時間、さらに110℃で2時間、さらに150℃で12時間保持し、成形体を十分に乾燥した。次に、乾燥後の成形体を以下の表4に示す最高温度で焼成した。尚、焼成に当たって、1000℃まで28℃/分で昇温し、さらに1000℃で10分間保持し、さらに最高温度まで10℃/分で昇温し、さらに最高温度で10分間保持した。
(4) Preparation of test piece and measurement of water absorption rate and bending strength Examples 1 to 15 and Comparative Examples 1 to 9
The combination of sewage sludge incinerated ash, ceramic powder, and clay powder shown in Table 4 below is a small soil mixer SS-S-338 in an amount corresponding to 30% by mass, 35% by mass, and 35% by mass with respect to the entire mixed powder, respectively. (Shinohara Seisakusho Co., Ltd.) and kneaded for 10 minutes. Thereafter, the water was added so that the water content of the clay was 21% by mass with respect to the entire clay, and kneading was further performed for 10 minutes. Next, the obtained clay was put into a vacuum extrusion molding machine PZVM8d (manufactured by Hendley) and molded into a columnar shape having a diameter of 15 mm and a length of 100 mm. The obtained molded body is placed in a constant temperature dryer SSN-155S (manufactured by Isuzu Seisakusho) and held at 45 ° C for 12 hours, further at 90 ° C for 2 hours, further at 110 ° C for 2 hours, and further at 150 ° C for 12 hours. The molded body was sufficiently dried. Next, the dried molded body was fired at the maximum temperature shown in Table 4 below. In firing, the temperature was raised to 1000 ° C. at 28 ° C./min, held at 1000 ° C. for 10 minutes, further raised to the maximum temperature at 10 ° C./min, and further held at the maximum temperature for 10 minutes.

得られた試験片(焼結体)について、吸水率と曲げ強度を測定した。得られた結果を以下の表4にまとめた。尚、今回の実験において、曲げ強度60MPaは、呼び径150mmφのセラミックパイプの外圧強さに換算すると41.4kN/m(規格値は36kN/m)、呼び径200mmφのセラミックパイプの外圧強さに換算すると47.4kN/m(規格値は43kN/m)にあたる。従って、以下の表4において、曲げ強度の値が60MPa以上である場合には、規格値を満足するセラミックパイプが形成されると判断される。   About the obtained test piece (sintered body), the water absorption rate and the bending strength were measured. The results obtained are summarized in Table 4 below. In this experiment, the bending strength of 60 MPa is 41.4 kN / m (standard value is 36 kN / m) when converted to the external pressure strength of a ceramic pipe with a nominal diameter of 150 mmφ, and the external pressure strength of a ceramic pipe with a nominal diameter of 200 mmφ. This corresponds to 47.4 kN / m (standard value is 43 kN / m). Therefore, in Table 4 below, when the value of the bending strength is 60 MPa or more, it is determined that a ceramic pipe that satisfies the standard value is formed.

表4より、粘土粉末Bを使用した比較例1〜9においては、吸水率と曲げ強度の値は下水汚泥焼却灰の種類および焼成温度によって大きく変化するが、粘土粉末Aを使用した実施例1〜15においては、吸水率と曲げ強度の値は下水汚泥焼却灰の種類(化学組成等)および焼成温度が変化してもあまり変化せず、しかも吸水率の値が小さくかつ曲げ強度の値が大きい試験片が得られていることがわかる。すなわち、粘土粉末Aのような粒度分布幅の広い粉末を使用することにより、下水汚泥焼却灰の組成が大きく変化しても、焼成温度を大幅に変更せずに、機械的強度が大きくかつ吸水率が小さく緻密質のセラミック製品を得ることができる。   From Table 4, in Comparative Examples 1 to 9 using clay powder B, the values of water absorption and bending strength vary greatly depending on the type of sewage sludge incineration ash and the firing temperature, but Example 1 using clay powder A ~ 15, the water absorption and bending strength values do not change much even when the sewage sludge incineration ash type (chemical composition, etc.) and the firing temperature change, and the water absorption value is small and the bending strength value is small. It can be seen that a large specimen is obtained. That is, by using a powder having a wide particle size distribution width such as clay powder A, even if the composition of the sewage sludge incineration ash changes greatly, the mechanical strength is high and the water absorption is not changed without significantly changing the firing temperature. It is possible to obtain a dense ceramic product with a low rate.

さらに、比較例1につき環境告示第13号に定める方法により重金属の溶出試験を行なった。下水汚泥焼却灰Aは、Cdを0.010mg/l、Pbを0.02mg/l未満、Cr(VI)を0.04mg/l未満、Asを2.1mg/l、Hgを0.0005mg/l未満、Seを0.01mg/l未満含んでいたが、焼成後の試験片は、Cdを0.001mg/l未満、Pbを0.005mg/l未満、Cr(VI)を0.005mg/l未満、Asを0.004mg/l、Hgを0.00005mg/l未満、Seを0.001mg/l未満しか含んでおらず、環境基準値であるCd0.3mg/l以下、Pb0.3mg/l以下、Cr(VI)1.5mg/l以下、As0.3mg/l以下、Hg0.005mg/l以下、Se0.3mg/l以下の値と比較して、極めて少量の重金属しか含んでいなかった。   Furthermore, a heavy metal elution test was conducted for Comparative Example 1 by the method defined in Environmental Notification No. 13. Sewage sludge incineration ash A has Cd of 0.010 mg / l, Pb of less than 0.02 mg / l, Cr (VI) of less than 0.04 mg / l, As of 2.1 mg / l, and Hg of 0.0005 mg / l. 1 and less than 0.01 mg / l, but the test piece after firing had Cd less than 0.001 mg / l, Pb less than 0.005 mg / l, and Cr (VI) 0.005 mg / l. Less than l, As is 0.004 mg / l, Hg is less than 0.00005 mg / l, Se is less than 0.001 mg / l, environmental standard value is Cd 0.3 mg / l or less, Pb 0.3 mg / l Compared with values of 1 or less, Cr (VI) 1.5 mg / l or less, As 0.3 mg / l or less, Hg 0.005 mg / l or less, Se 0.3 mg / l or less, it contains very little heavy metal. It was.

Figure 2005255496
Figure 2005255496


Figure 2005255496

Figure 2005255496

本発明の実施例において使用した粘土粉末Aの粒度分布を示す図である。It is a figure which shows the particle size distribution of the clay powder A used in the Example of this invention. 本発明の比較例において使用した粘土粉末Bの粒度分布を示す図である。It is a figure which shows the particle size distribution of the clay powder B used in the comparative example of this invention.

Claims (12)

下水汚泥焼却灰を用いたセラミック製品の製造方法であって、
i)下水汚泥焼却灰と粘土粉末とセラミック粉末とから成る混合粉末を含む坏土を調製する工程(但し、前記粘土粉末全体の98質量%以上が粒径50μm以下の粒子で占められており、かつ前記粘土粉末における90%粒径d90の50%粒径d50に対する比が3以上である。)、
ii)得られた坏土を成形する工程、および、
iii)得られた成形体を焼成する工程、
を含むことを特徴とする製造方法。
A method for producing a ceramic product using sewage sludge incineration ash,
i) a step of preparing a clay containing mixed powder composed of sewage sludge incinerated ash, clay powder and ceramic powder (however, 98% by mass or more of the entire clay powder is occupied by particles having a particle size of 50 μm or less, And the ratio of 90% particle size d 90 to 50% particle size d 50 in the clay powder is 3 or more).
ii) forming the obtained clay, and
iii) a step of firing the obtained molded body,
The manufacturing method characterized by including.
前記粘土粉末全体の15質量%以上が粒径10μm以上の粒子で占められていることを特徴とする、請求項1に記載の製造方法。   The manufacturing method according to claim 1, wherein 15% by mass or more of the entire clay powder is occupied by particles having a particle size of 10 µm or more. 前記粘土粉末が該粉末全体に対して25質量%以上のAlを含有していることを特徴とする、請求項1または2に記載の製造方法。 The manufacturing method according to claim 1, wherein the clay powder contains 25% by mass or more of Al 2 O 3 with respect to the whole powder. 前記セラミック粉末全体の98質量%以上が粒径50μm以下の粒子で占められていることを特徴とする、請求項1〜3のいずれかに記載の製造方法。   The manufacturing method according to claim 1, wherein 98% by mass or more of the entire ceramic powder is occupied by particles having a particle size of 50 μm or less. 前記下水汚泥焼却灰全体の98質量%以上が粒径200μm以下の粒子で占められていることを特徴とする、請求項1〜4のいずれかに記載の製造方法。   The manufacturing method according to claim 1, wherein 98% by mass or more of the entire sewage sludge incineration ash is occupied by particles having a particle size of 200 μm or less. 前記混合粉末は、分級処理により粒径300μm以上の粒子が除去されている粉末であることを特徴とする、請求項1〜5のいずれかに記載の製造方法。   The manufacturing method according to claim 1, wherein the mixed powder is a powder from which particles having a particle size of 300 μm or more have been removed by classification treatment. 前記下水汚泥焼却灰が焼却灰全体の25質量%以上のFeおよび/または15質量%以上のPを含有していることを特徴とする、請求項1〜6のいずれかに記載の製造方法。 The sewage sludge incineration ash contains 25% by mass or more of Fe 2 O 3 and / or 15% by mass or more of P 2 O 5 with respect to the entire incineration ash. The manufacturing method as described in. 下水汚泥焼却灰が混合粉末全体に対して20〜40質量%であり、セラミック粉末が混合粉末全体に対して30〜40質量%であり、粘土粉末が混合粉末全体に対して30〜40質量%であることを特徴とする、請求項1〜7のいずれかに記載の製造方法。   Sewage sludge incineration ash is 20 to 40% by mass with respect to the entire mixed powder, ceramic powder is 30 to 40% by mass with respect to the entire mixed powder, and clay powder is 30 to 40% by mass with respect to the entire mixed powder. The production method according to claim 1, wherein: 前記工程ii)において、脱気しながら成形を行なうことを特徴とする、請求項1〜8のいずれかに記載の製造方法。   The manufacturing method according to claim 1, wherein in step ii), molding is performed while deaeration. 前記工程iii)において、成形体を最高温度1030〜1080℃で焼成することを特徴とする、請求項1〜9のいずれかに記載の製造方法。   The manufacturing method according to any one of claims 1 to 9, wherein in the step iii), the molded body is fired at a maximum temperature of 1030 to 1080 ° C. 請求項1〜10のいずれかに記載の製造方法によって得られたセラミック製品。   The ceramic product obtained by the manufacturing method in any one of Claims 1-10. 製品の吸水率が2.5%以下であることを特徴とする、請求項11に記載のセラミック製品。
The ceramic product according to claim 11, wherein the product has a water absorption of 2.5% or less.
JP2004071779A 2004-03-12 2004-03-12 Method for producing ceramic product using sewage sludge incineration ash and obtained ceramic product Expired - Fee Related JP4717364B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004071779A JP4717364B2 (en) 2004-03-12 2004-03-12 Method for producing ceramic product using sewage sludge incineration ash and obtained ceramic product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004071779A JP4717364B2 (en) 2004-03-12 2004-03-12 Method for producing ceramic product using sewage sludge incineration ash and obtained ceramic product

Publications (2)

Publication Number Publication Date
JP2005255496A true JP2005255496A (en) 2005-09-22
JP4717364B2 JP4717364B2 (en) 2011-07-06

Family

ID=35081591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004071779A Expired - Fee Related JP4717364B2 (en) 2004-03-12 2004-03-12 Method for producing ceramic product using sewage sludge incineration ash and obtained ceramic product

Country Status (1)

Country Link
JP (1) JP4717364B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006062917A (en) * 2004-08-27 2006-03-09 Yoshika Kk Method of producing tile for anticorrosive-repairing wall surface of concrete structure
KR101053658B1 (en) 2010-12-10 2011-08-02 이현주 Method of manufacturing sintering brick used sewage sludge ash
WO2014107032A1 (en) * 2013-01-03 2014-07-10 주식회사 넥스트윅 Composition for porous humidity control board reutilizing water purification sludge, and method for manufacturing porous humidity control board using same
JP2014136662A (en) * 2013-01-17 2014-07-28 Bridgestone Corp Silicon carbide sintered body and method of producing the same
CN109384405A (en) * 2018-11-19 2019-02-26 西安建筑科技大学 A kind of high-strength ceramic granule and the method and system that it is prepared using municipal sludge
CN113042676A (en) * 2021-03-05 2021-06-29 南阳仁创再生资源有限公司 Regeneration method of waste foundry sand and ceramsite sand prepared by method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001097765A (en) * 1999-09-28 2001-04-10 Noritake Co Ltd Mullite crystal-containing ceramic and its manufacturing

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001097765A (en) * 1999-09-28 2001-04-10 Noritake Co Ltd Mullite crystal-containing ceramic and its manufacturing

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006062917A (en) * 2004-08-27 2006-03-09 Yoshika Kk Method of producing tile for anticorrosive-repairing wall surface of concrete structure
JP4666978B2 (en) * 2004-08-27 2011-04-06 吉佳株式会社 Method of manufacturing tiles for repairing wall surface of concrete structures
KR101053658B1 (en) 2010-12-10 2011-08-02 이현주 Method of manufacturing sintering brick used sewage sludge ash
WO2014107032A1 (en) * 2013-01-03 2014-07-10 주식회사 넥스트윅 Composition for porous humidity control board reutilizing water purification sludge, and method for manufacturing porous humidity control board using same
KR101478422B1 (en) 2013-01-03 2015-01-02 주식회사 넥스트윅 Composite for humidity control porous board using water treatment sludge and manufacturing method of the humidity control porous board
JP2014136662A (en) * 2013-01-17 2014-07-28 Bridgestone Corp Silicon carbide sintered body and method of producing the same
CN109384405A (en) * 2018-11-19 2019-02-26 西安建筑科技大学 A kind of high-strength ceramic granule and the method and system that it is prepared using municipal sludge
CN113042676A (en) * 2021-03-05 2021-06-29 南阳仁创再生资源有限公司 Regeneration method of waste foundry sand and ceramsite sand prepared by method

Also Published As

Publication number Publication date
JP4717364B2 (en) 2011-07-06

Similar Documents

Publication Publication Date Title
Zhang et al. Self-cementation solidification of heavy metals in lead-zinc smelting slag through alkali-activated materials
US7655088B2 (en) Synthetic aggregates comprising sewage sludge and other waste materials and methods for producing such aggregates
EP1841708A2 (en) Synthetic aggregates comprising sewage sludge and other waste materials and methods for producing such aggregates
CN106747319A (en) Standby porous ceramics of a kind of utilization magnesium slag, coal ash for manufacturing and preparation method thereof
JP3188200B2 (en) Manufacturing method of artificial lightweight aggregate
Lee et al. Bloating mechanism of lightweight aggregates due to ramping rate
JP4717364B2 (en) Method for producing ceramic product using sewage sludge incineration ash and obtained ceramic product
JP2006272174A (en) Manufacturing method of sintered object
CN103951371A (en) Preparation method of sludge incineration ash baking-free ecological bricks
JP2011132111A (en) Hydraulic composition
JP2010180094A (en) Method for manufacturing water-retentive block
KR100450898B1 (en) production of incinerated construction materials using wastewater sludge
JP2008126185A (en) Calcined object and its manufacturing method
JP3398938B2 (en) Ceramics containing mullite crystal and method for producing the same
KR20000072111A (en) Composition for lightweight aggregate and method for manufacturing the same
CN104676595B (en) Method for lowering quantity and toxicity of flying ash of household garbage incineration plant
JP2001253740A (en) Artificial aggregate and its production process
JP4462526B2 (en) Method for producing lightweight mixed sintered product using waste as raw material
JP2006298730A (en) Method of firing incineration ash and sintered compact obtained by the same method
Liu et al. Construction ceramsite from low-silicon red mud: Design, preparation, and sintering mechanism analysis
JP2603599B2 (en) Artificial lightweight aggregate and manufacturing method thereof
CN105439535B (en) Desiccation/semi-oriented sludge physicochemical property conditioner, application process
KR20020044899A (en) Composition for lightweight aggregate and method for manufacturing the same
JP2002167288A (en) Method of manufacturing artificial lightweight aggregate
WO2014132877A1 (en) Porous ceramic sintered body and method for manufacturing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110322

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110330

R150 Certificate of patent or registration of utility model

Ref document number: 4717364

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees