JP2006062917A - Method of producing tile for anticorrosive-repairing wall surface of concrete structure - Google Patents

Method of producing tile for anticorrosive-repairing wall surface of concrete structure Download PDF

Info

Publication number
JP2006062917A
JP2006062917A JP2004249034A JP2004249034A JP2006062917A JP 2006062917 A JP2006062917 A JP 2006062917A JP 2004249034 A JP2004249034 A JP 2004249034A JP 2004249034 A JP2004249034 A JP 2004249034A JP 2006062917 A JP2006062917 A JP 2006062917A
Authority
JP
Japan
Prior art keywords
tile
temperature
powder
sewage sludge
incineration ash
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004249034A
Other languages
Japanese (ja)
Other versions
JP4666978B2 (en
Inventor
Shinkichi Ooka
伸吉 大岡
Mitsuyoshi Cho
満良 張
Masaaki Kuwabara
正明 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yoshika KK
Original Assignee
Yoshika KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yoshika KK filed Critical Yoshika KK
Priority to JP2004249034A priority Critical patent/JP4666978B2/en
Publication of JP2006062917A publication Critical patent/JP2006062917A/en
Application granted granted Critical
Publication of JP4666978B2 publication Critical patent/JP4666978B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/60Production of ceramic materials or ceramic elements, e.g. substitution of clay or shale by alternative raw materials, e.g. ashes

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of producing tile for anticorrosive-repairing the wall surface of a concrete structure which uses a raw material containing sewage sludge incineration ash in a high mixing ratio and has ≤4% water absorption. <P>SOLUTION: A powdery mixture mainly containing the sewage sludge incineration ash, clay power and ceramic powder is prepared. Water is added into the powdery mixture and kneaded to make a body, the resultant body is formed into a prescribed tile shape, the formed tile is dried, the dried tile is fired in an oven while elevating a temperature up to a temperature at which the chemical reaction of the materials is finished and further heated to exceed the chemical reaction finishing temperature to induce melting state on the surface layer of the tile and after that, the atmosphere of the oven is turned to a reducing state. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、コンクリート構造物壁面防食補修用セラミックタイルの製造方法に関する。本発明で云うコンクリート構造物とは、例えばマンホール、下水道、隧道、排水管などであり、横断面形状が円形、卵形、矩形、馬蹄形など様々な形態のものを含み、限定するものではないが、特に人間が中に入って作業することができる大口径のコンクリート構造物である。しかしながら、その他のコンクリート構造物であってもよい。   The present invention relates to a method of manufacturing a ceramic tile for anticorrosion repair of a concrete structure wall surface. The concrete structures referred to in the present invention are, for example, manholes, sewers, canals, drain pipes, etc., including various shapes such as circular, oval, rectangular, and horseshoe-shaped cross sections, but are not limited thereto. Especially, it is a large-diameter concrete structure that allows humans to enter and work. However, other concrete structures may be used.

以下マンホールを例に説明する。一般に、下水道に付設されているマンホールはコンクリート製であり、その内壁面は下水道管内で発生する硫化水素や下水道管内へ流入する雨水中の硫黄酸化物によって長年月の間に徐々に腐蝕し、放置するとマンホールの崩壊に進展することがあり、或いは崩壊に至らないまでも、ひび割れが発生して漏水や水浸入といった事態を招き、下水処理量の増大、地盤沈下などの事態に発展するおそれがある。このような事態を防止するため、マンホールの劣化内壁面は適時に補修する必要がある。   Hereinafter, a manhole will be described as an example. In general, manholes attached to sewers are made of concrete, and their inner walls are gradually corroded over many years due to hydrogen sulfide generated in the sewer pipes and sulfur oxides in the rainwater flowing into the sewer pipes. Then, it may progress to the collapse of the manhole, or even if it does not collapse, it may crack and cause a situation such as water leakage or water intrusion, which may lead to an increase in the amount of sewage treatment, a situation such as land subsidence . In order to prevent such a situation, it is necessary to repair the deteriorated inner wall surface of the manhole in a timely manner.

従来、マンホール内壁面補修技術として、例えば下記特許文献1〜4に記載のものが提案されている。   Conventionally, as a manhole inner wall surface repair technique, for example, those described in Patent Documents 1 to 4 below have been proposed.

何れの場合も、先ず始めにマンホールの内壁面から劣化した表層部が削り取られる。次いで、露出せしめられた未劣化内壁面に補修材が接着材により貼り付けられる。   In any case, first, the deteriorated surface layer portion is scraped off from the inner wall surface of the manhole. Next, a repair material is attached to the exposed undegraded inner wall surface with an adhesive.

特許文献1〜4に記載の従来技術により補修されたマンホールの内壁面は、何れも、プラスチック製補修材が内壁面側に露出した状態になっている。   As for the inner wall surface of the manhole repaired by the prior art described in Patent Documents 1 to 4, the plastic repair material is exposed to the inner wall surface side.

しかしながら、プラスチック製補修材の場合、温度の影響を受け易く、特にマンホールや下水管路内では温度変化が繰り返し生じるため、受ける影響はかなり大きい。温度の影響を受けたプラスチック製補修材は僅かながらも次第に変形するので、所期の機能を長期に亘って維持し続けることは困難である。   However, in the case of a plastic repair material, it is easily affected by temperature, and the influence is considerably great because temperature changes occur repeatedly particularly in manholes and sewer pipes. Since the plastic repair material affected by the temperature is slightly deformed, it is difficult to maintain the intended function for a long time.

このような問題に対処するために、出願人は先に、マンホール内壁面の補修をセラミックタイルの接着により行なうことを提案した(特願2003−370839)。セラミックタイルは酸等に犯され難く、また熱にも強いので、これによって内壁面を補修されたマンホールは半永久的にその機能を持続し得る。   In order to deal with such a problem, the applicant has previously proposed that the inner wall surface of the manhole is repaired by bonding ceramic tiles (Japanese Patent Application No. 2003-370839). Ceramic tiles are not easily violated by acid or the like, and are resistant to heat, so that the manhole whose inner wall surface is repaired can maintain its function semipermanently.

セラミックタイルは一般に粘土や粘土質の材料を主体に製造されるが、本発明者等は、セラミックタイル製造材料として、現今大量に発生し、その有効利用が求められている下水汚泥焼却灰に着目した。   Ceramic tiles are generally manufactured mainly from clay and clay-like materials, but the present inventors are focusing on sewage sludge incineration ash, which is currently generated in large quantities as ceramic tile manufacturing materials and its effective use is required. did.

下水汚泥焼却灰は、一般家庭から排出された生活排水、工場排水、および下水管に流れ込んだ土砂を含む雨水等に含まれるいわゆる下水汚泥を、凝集剤の添加により固形成分を凝集した後、脱水、焼成することによって加工されたものである。   The sewage sludge incinerated ash is dewatered after coagulating solid components by adding flocculants to so-called sewage sludge contained in domestic wastewater discharged from ordinary households, industrial wastewater, and rainwater containing earth and sand that has flowed into sewage pipes. , And processed by firing.

下水汚泥焼却灰の有効利用については、例えば下記特許文献5及び特許文献6にセラミック製品、特にセラミックパイプの製造について記載がある。   Regarding the effective use of sewage sludge incineration ash, for example, the following Patent Document 5 and Patent Document 6 describe the manufacture of ceramic products, particularly ceramic pipes.

文献6には、下水汚泥焼却灰、粘土粉末、シャモット(陶管を粉砕したもの)を混合した材料を使用した陶管の製造方法が記載されているが、混合材料中のFeに言及して、この酸化鉄の含有量が8%を超えると発泡が発生するおそれがあると指摘している(段落0014)。 The literature 6, sewage sludge ash, clay powder, chamotte although manufacturing method of ceramic tubes using material mixed (ceramic tube were those pulverizing) a are described, in Fe 2 O 3 in the mixed material It is pointed out that foaming may occur when the iron oxide content exceeds 8% (paragraph 0014).

特開平8−74280号公報JP-A-8-74280 特開平8−27822号公報JP-A-8-27822 特開平9−13410号公報JP-A-9-13410 特開2001−248177号公報JP 2001-248177 A 特開2003−26468号公報JP 2003-26468 A 特開2000−247730号公報JP 2000-247730 A

コンクリート構造物壁面防食補修用セラミックタイルを製造するに当たっての重要なファクターは製造されたタイルの透水性であり、この透水性は実質的に吸水率と同等であるとみなすことができる。コンクリートの吸水率は約4%程度もしくはそれ以上であり、従って防食などの補修目的を果たすためには補修用セラミックタイルの吸水率は4%以下のできるだけ小さい値でないと十分な機能を果たすことはできない。   An important factor in the production of ceramic tiles for repairing concrete structure wall protection is the permeability of the manufactured tile, which can be regarded as substantially equivalent to the water absorption rate. The water absorption rate of concrete is about 4% or more. Therefore, the water absorption rate of ceramic tiles for repair must be as small as possible and less than 4% in order to fulfill the purpose of repair such as corrosion prevention. Can not.

また、一般に、下水汚泥焼却灰中の酸化鉄の含有量はかなり多く、下水汚泥焼却灰を使用する場合、上記のような酸化鉄の悪影響が大きな問題になる。   In general, the content of iron oxide in the sewage sludge incineration ash is considerably large, and when the sewage sludge incineration ash is used, the above-mentioned adverse effect of iron oxide becomes a big problem.

そこで本発明の目的は、原料中の下水汚泥焼却灰の配合割合が多く、従って酸化鉄の含有量が多くなっても、タイルの吸水率を4%以下にすることができ、更に発泡による悪影響を回避することのできるコンクリート構造物壁面補修用セラミックタイルの製造方法を提供することである。   Therefore, the object of the present invention is that the mixing ratio of the sewage sludge incineration ash in the raw material is large, so even if the content of iron oxide is increased, the water absorption rate of the tile can be reduced to 4% or less, and further the adverse effect due to foaming. It is providing the manufacturing method of the ceramic tile for concrete structure wall surface repair which can avoid.

上記目的を達成すべく検討を重ねた結果、下水汚泥焼却灰中に金属酸化物、特に鉄酸化物が多く含まれることが吸水率低下に利用可能であることを発見し、発明を完成させた。   As a result of repeated studies to achieve the above object, it was discovered that a large amount of metal oxides, particularly iron oxides, can be used for lowering the water absorption rate, and the invention was completed. .

即ち、請求項1に記載の発明は、コンクリート構造物壁面防食補修用タイルの製造方法であって、
(a)下水汚泥焼却灰、粘土粉末、及びセラミック粉末を主体として含む混合粉末に水を加えて混練する工程、
(b)混練して得られた坏土を所望のタイル形状に成形する工程、
(c)得られた生のタイルを乾燥する工程、
(d)得られた乾燥タイルを、窯内で材料の化学反応が終了する温度まで温度を逓増しつつ焼成する工程、
(e)窯内温度を前工程の化学反応終了温度より更に高め、少なくともタイル表層を溶融状態にする工程、
(f)溶融状態の発生後、前記窯内を還元性雰囲気にする工程、
を含むことを特徴とする。
That is, the invention according to claim 1 is a method for manufacturing a tile for anticorrosion repair of a concrete structure wall surface,
(A) a step of adding water to a mixed powder mainly containing sewage sludge incineration ash, clay powder, and ceramic powder and kneading the mixture;
(B) forming a kneaded material obtained by kneading into a desired tile shape;
(C) drying the resulting raw tile,
(D) a step of firing the obtained dry tile while gradually increasing the temperature to a temperature at which the chemical reaction of the material ends in the kiln,
(E) raising the temperature in the kiln further than the chemical reaction end temperature in the previous step, and at least bringing the tile surface layer into a molten state;
(F) a step of making the inside of the kiln a reducing atmosphere after the occurrence of a molten state;
It is characterized by including.

本発明で云う下水汚泥焼却灰とは、前記のとおり、一般家庭から排出された生活排水、工場排水、および下水管に流れ込んだ土砂を含む雨水等に含まれるいわゆる下水汚泥を、凝集剤の添加により固形成分を凝集した後、脱水、焼成することによって加工され、粉砕された粉体である。   The sewage sludge incineration ash referred to in the present invention is, as described above, a so-called sewage sludge contained in rainwater containing earth and sand flowing into a sewage pipe, domestic wastewater discharged from ordinary households, factory wastewater, etc. After the solid component is agglomerated by the above, the powder is processed and pulverized by dehydration and baking.

本発明で云う粘土とは、大部分が、一定量の水と混じると可塑性となり、主にシリカ、アルミニウムを含み、鉄、アルカリ、アルカリ土類等も含む細粒物質であり、粘土粉末は前記細粒物質を乾操させた粉体である。   The clay referred to in the present invention is mostly plastic when mixed with a certain amount of water, mainly containing silica and aluminum, and is a fine-grained material containing iron, alkali, alkaline earth, etc. It is a powder obtained by drying a fine-grained material.

また、本発明で云うセラミック粉末とは、瓦・セメント・ガラス・煉瓦等を包含する粉末状の陶磁器系無機材料であり、陶管を粉砕して得たセラミック粉砕物(陶管シャモット)や瓦を粉砕して得たセラミック粉砕物(瓦シャモット)は本発明で使用するセラミック粉末として好適である。   In addition, the ceramic powder referred to in the present invention is a powdery ceramic-based inorganic material including tile, cement, glass, brick, etc., and ceramic pulverized material (ceramic tube chamotte) or tile obtained by pulverizing the ceramic tube. A ceramic pulverized product (tile chamotte) obtained by pulverizing slag is suitable as the ceramic powder used in the present invention.

本発明方法において使用される下水汚泥焼却灰はSiO、Al、Fe、Pを主体とし、TiO、CaO、MgO、NaO、GOなどを含むものであるが、例えば下表1に示す組成の焼却灰が使用可能である。何れの下水汚泥焼却灰もFeの含有量が焼成灰全体の25質量%以上であり、またPの含有量が焼成灰全体の15質量%以上であるという特質を有している。 The sewage sludge incineration ash used in the method of the present invention is mainly composed of SiO 2 , Al 2 O 3 , Fe 2 O 3 , P 2 O 5 , and includes TiO 2 , CaO, MgO, Na 2 O, G 2 O and the like. For example, incinerated ash having the composition shown in Table 1 below can be used. Each sewage sludge incineration ash has the property that the content of Fe 2 O 3 is 25% by mass or more of the entire calcined ash, and the content of P 2 O 5 is 15% by mass or more of the entire calcined ash. ing.

Figure 2006062917
Figure 2006062917

粘土粉末は、例えば下表2に示す組成のものが使用可能である。   For example, clay powder having the composition shown in Table 2 below can be used.

Figure 2006062917
Figure 2006062917

セラミック粉末は、例えば下表3に示す組成のものが使用可能である。   For example, ceramic powder having the composition shown in Table 3 below can be used.

Figure 2006062917
Figure 2006062917

本発明の請求項1に記載の発明によれば、上記のような工程により、特に(f)の還元工程を経ることにより、タイル表層に鉄の緻密な結晶層がもたらされ、この結晶層の作用により吸水率の大幅な減少が達成される。また発泡による悪影響もこの緻密な結晶層の作用により回避することができる。   According to the invention described in claim 1 of the present invention, a dense crystal layer of iron is provided on the tile surface layer by the above-described steps, particularly through the reduction step (f). A significant reduction in water absorption is achieved by the action of. In addition, adverse effects due to foaming can be avoided by the action of the dense crystal layer.

このように、本発明によれば、下水汚泥焼却灰内に鉄分が多く含まれていることを利用して、吸水率が極めて低いタイルを製造することができる。   Thus, according to the present invention, a tile having a very low water absorption rate can be produced by utilizing the fact that a large amount of iron is contained in the sewage sludge incineration ash.

<工程(a)>
工程(a)において配合される粉末は、下水汚泥焼却灰が粉末全体(混合されるべき全部の粉末)に対して20〜40質量%であり、セラミック粉末が粉末全体に対して30〜40質量%であり、粘土粉末が粉末全体に対して30〜50質量%であることが好ましい。上記材料の組み合わせは、例えば、上記表中のA+D+F、B+D+F、C+D+F、A+E+Fなどが好ましいが、他の組み合わせであってもよい。
<Process (a)>
As for the powder mix | blended in a process (a), sewage sludge incineration ash is 20-40 mass% with respect to the whole powder (all powders to be mixed), and ceramic powder is 30-40 mass with respect to the whole powder. It is preferable that clay powder is 30-50 mass% with respect to the whole powder. The combination of the materials is preferably, for example, A + D + F, B + D + F, C + D + F, A + E + F or the like in the above table, but may be other combinations.

上記のように配合され、次いで混合された粉末は加水設定水分が約20%になるように加水調整され、更に真空土練機により約5分間混練され、均質に土練りされ且つ含まれている気泡が除去される。   The powder blended as described above and then mixed is adjusted so that the set water content is about 20%, and is further kneaded for about 5 minutes by a vacuum kneader, and is uniformly kneaded and contained. Bubbles are removed.

<工程(b)>
工程(a)において得られた坏土は所定形状の型内に装入され、プレス機により所定形状のタイルに成形される。
<Step (b)>
The clay obtained in the step (a) is charged into a mold having a predetermined shape and formed into a tile having a predetermined shape by a press.

<工程(c)>
この工程における乾燥は、タイル内に物理的に存在する水を排除するためのものであって、天日干しなどの自然乾燥により、若しくは乾燥炉を用いて行なわれる。乾燥炉による場合、例えば約60℃の温度で約100時間行なわれる。
<Step (c)>
Drying in this step is for removing water physically present in the tile, and is performed by natural drying such as sun drying or using a drying furnace. When using a drying furnace, for example, it is carried out at a temperature of about 60 ° C. for about 100 hours.

<工程(d)>
乾燥された素地タイルは焼成用の窯内に入れられ、窯内の温度を20時間前後の間に約900℃まで逓増させることによって素地タイルの焼成が行なわれる。
<Step (d)>
The dried base tile is placed in a firing kiln, and the base tile is fired by increasing the temperature in the kiln to about 900 ° C. in about 20 hours.

約120℃まで昇温する間に吸着水の脱水が行なわれ、更に約400℃まで上昇する間にタイル内の結晶水或いは結合水(化学結合によってタイル内に含まれている水であって、普通の乾燥では取り除くことができない水)の脱水が行なわれる。更に約900℃まで上昇する間に化学反応(酸化、熱分解)が行なわれる。化学反応は、例えば、鉄が酸化鉄、硫化鉄が酸化鉄、炭酸カルシウムが石灰に変化するような、酸化反応が多い。   The dehydrated water is dehydrated while the temperature is raised to about 120 ° C., and further the crystal water or bonded water in the tile (the water contained in the tile by chemical bonding) Water that cannot be removed by ordinary drying is dehydrated. Furthermore, chemical reaction (oxidation, thermal decomposition) is performed while the temperature rises to about 900 ° C. There are many chemical reactions in which, for example, iron changes to iron oxide, iron sulfide changes to iron oxide, and calcium carbonate changes to lime.

約400℃までの昇温は、一時間当たり35〜45℃、特に約40℃/時間前後の加熱速度で行なうことが好ましい。早すぎると素地タイルの粒子間に空隙が生じやすく、吸水率は減少しない。また、約900℃までの昇温は、一時間当たり50〜60℃の加熱速度で行なうことが好ましい。早すぎると素地の変形(反りなど)が大きくなり、粒子間の隙間は埋まらず、従って緻密性が良くならないため吸水率の減少も得られない。   The temperature rise to about 400 ° C. is preferably performed at a heating rate of about 35 to 45 ° C. per hour, particularly about 40 ° C./hour. If it is too early, voids are likely to occur between the particles of the base tile, and the water absorption rate does not decrease. Moreover, it is preferable to raise the temperature to about 900 ° C. at a heating rate of 50 to 60 ° C. per hour. If it is too early, the deformation (warp, etc.) of the substrate becomes large, the gaps between the particles are not filled, and therefore the compactness is not improved, so that the water absorption rate cannot be reduced.

<工程(e)>
約900℃までにおいて素地タイルの脱水、酸化、分解を行なった終、引き続いて素地タイルの焼結が行なわれる。窯内の温度は数時間、例えば約5〜8時間の間に1000〜1200℃、若しくはこれに近い値まで高められる。このような高温域において、素地タイルの粒子の表層が幾分溶融した状態になり、液体相が生成される。液体相は固体粒子を相互に強固に結合する作用をもたらすと共に粒子間の間隙を埋め、タイルの吸水率を減少させる作用を果たす。
<Process (e)>
After the base tile is dehydrated, oxidized and decomposed up to about 900 ° C., the base tile is subsequently sintered. The temperature in the kiln is raised to 1000-1200 ° C. or a value close to this in several hours, for example, about 5-8 hours. In such a high temperature region, the surface layer of the particles of the base tile is somewhat melted and a liquid phase is generated. The liquid phase serves to firmly bond the solid particles to each other, fills the gaps between the particles, and reduces the water absorption of the tile.

<工程(f)>
1000〜1200℃程度の温度に到達後、温度をそのまま維持しつつ、窯内が還元雰囲気になされる。還元雰囲気は、例えばガスバーナーを開けたまま空気弁を閉鎖することによってもたらすことができる。窯の中の環境は一酸化炭素が多くなった状態になる。
<Step (f)>
After reaching a temperature of about 1000 to 1200 ° C., the inside of the kiln is made a reducing atmosphere while maintaining the temperature as it is. A reducing atmosphere can be provided, for example, by closing the air valve with the gas burner open. The environment in the kiln is in a state of increasing carbon monoxide.

このような高温での還元状態をもたらすことにより、タイル内の酸化鉄がタイルの表層に移動集合し、表層での酸化鉄の濃度が高くなり、鉄の結晶層をもたらす。その結果、タイル表層の吸水率は更に減少せしめられる。還元時間は15〜20分程度が好ましい。還元時間が短すぎると結晶の生成が不十分となり、吸水率の十分な減少が望めない。また、還元時間が長すぎると、結晶層の形成が大きな凹凸を伴ったものとなり、タイルの表層性状は吸水率の減少をもたらすものとはならない。   By providing such a reduced state at a high temperature, the iron oxide in the tile moves and collects on the surface layer of the tile, and the concentration of iron oxide in the surface layer increases, resulting in an iron crystal layer. As a result, the water absorption rate of the tile surface layer is further reduced. The reduction time is preferably about 15 to 20 minutes. If the reduction time is too short, crystal formation is insufficient and a sufficient reduction in water absorption cannot be expected. On the other hand, if the reduction time is too long, the formation of the crystal layer is accompanied by large irregularities, and the surface layer property of the tile does not cause a decrease in water absorption.

上記工程(d)において昇温速度を好ましい値に選定すればタイル表層における発泡の発生は回避できるが、たとえタイル表層に発泡が生じたとしても、上記工程(e)における溶融表層の形成と、工程(f)における鉄の緻密な結晶層の生成により発泡による影響が解消される。   Generation of foaming in the tile surface layer can be avoided if the heating rate is selected to a preferable value in the step (d), but even if foaming occurs in the tile surface layer, formation of the molten surface layer in the step (e), The formation of a dense crystal layer of iron in the step (f) eliminates the influence of foaming.

還元後、窯内を酸化雰囲気にすると、タイル表層に結晶した鉄は酸化鉄になり、その結果タイルには酸化鉄結晶層が形成され、従って該表層の緻密性は増し、吸水率が更に減少する。   After the reduction, when the furnace is placed in an oxidizing atmosphere, the iron crystallized on the tile surface becomes iron oxide. As a result, an iron oxide crystal layer is formed on the tile, thus increasing the denseness of the surface layer and further reducing the water absorption rate. To do.

上記の吸水率は、請求項2に記載のように、前記混合粉末の粒径を制御することにより更に減少させることができる。例えば、前記混合粉末は、混合粉末の98質量%以上が粒径200μm以下の粒子で占められているようにする。   As described in claim 2, the water absorption rate can be further reduced by controlling the particle size of the mixed powder. For example, in the mixed powder, 98% by mass or more of the mixed powder is occupied by particles having a particle size of 200 μm or less.

この場合、前記混合粉末は、粒径200μm以下の粒子を98%以上含む下水汚泥焼却灰を少なくとも30質量%含み、粒径100μm以下の粒子を98%以上含む粘土粉末を少なくとも35質量%含むことが好ましい。   In this case, the mixed powder contains at least 30% by mass of sewage sludge incinerated ash containing 98% or more of particles having a particle size of 200 μm or less, and at least 35% by mass of clay powder containing 98% or more of particles having a particle size of 100 μm or less. Is preferred.

更に、前記粘土粉末は、粘土粉末全体の98質量%以上が粒径50μm以下の粒子で占められており、かつ粘土粉末全体の15質量%以上が粒径10μm以上の粒子で占められていることが特に好ましい。   Further, in the clay powder, 98% by mass or more of the entire clay powder is occupied by particles having a particle size of 50 μm or less, and 15% by mass or more of the entire clay powder is occupied by particles having a particle size of 10 μm or more. Is particularly preferred.

また、前記セラミック粉末は、セラミック粉末の98質量%以上が粒径50μm以下の粒子で占められていることが好ましい。   Further, in the ceramic powder, it is preferable that 98% by mass or more of the ceramic powder is occupied by particles having a particle size of 50 μm or less.

上記のような粒径の粉末を使用することにより、得られるセラミックタイルの均質性が増し、セラミックタイルの強度の向上、吸水率の減少につながる上に、焼成温度が比較的低くても吸水率の小さいセラミックタイルが得られるため、省エネルギー化に貢献することができる。   By using the powder with the particle size as described above, the homogeneity of the obtained ceramic tile is increased, leading to an improvement in the strength of the ceramic tile and a decrease in the water absorption rate, and also the water absorption rate even if the firing temperature is relatively low. Since ceramic tiles with small size can be obtained, it can contribute to energy saving.

請求項3に記載のように、前記下水汚泥焼却灰中のFeの含有量が少なくとも20%以上であれば、一般に入手可能の略全ての下水汚泥焼却灰が利用可能である。 If the content of Fe 2 O 3 in the sewage sludge incineration ash is at least 20% or more as described in claim 3, almost all sewage sludge incineration ash that is generally available can be used.

請求項4に記載のように、前記混合粉末中の下水汚泥焼却灰の含有量が少なくとも25%以上であれば、多くの量の下水汚泥焼却灰が消費されることになる。   If the content of the sewage sludge incineration ash in the mixed powder is at least 25% or more as described in claim 4, a large amount of sewage sludge incineration ash is consumed.

以下実施例によって本発明を更に詳細に説明する。   Hereinafter, the present invention will be described in more detail by way of examples.

図1〜図6はマンホール内壁面補修用タイルの例を示すものであって、図1〜図3は第1のタイルを示し、図4〜図6は第2のタイルを示している。   1 to 6 show examples of tiles for repairing the inner wall surface of a manhole. FIGS. 1 to 3 show a first tile, and FIGS. 4 to 6 show a second tile.

図1は第1タイル1を背面側、即ちマンホール内壁面と接触する側から見た図、図2は図1中のII−II線に沿う断面図、図3は図1に示すタイルを底面側から見た図である。   1 is a view of the first tile 1 as seen from the back side, that is, the side in contact with the inner wall of the manhole, FIG. 2 is a sectional view taken along line II-II in FIG. 1, and FIG. 3 is a bottom view of the tile shown in FIG. It is the figure seen from the side.

図4は第2タイル2の図1と同様の背面側から見た図、図5は図4中のV−V線に沿う断面図、図6は図4に示すタイルを底面側から見た図である。   4 is a view of the second tile 2 as seen from the back side as in FIG. 1, FIG. 5 is a cross-sectional view taken along line VV in FIG. 4, and FIG. 6 is a view of the tile shown in FIG. FIG.

両タイル1、2のタイル寸法は、長さ(L)312mm、幅(W)168mm、厚さ(T)20mmである。   The tile dimensions of both tiles 1 and 2 are length (L) 312 mm, width (W) 168 mm, and thickness (T) 20 mm.

タイル1は背面側に、周縁部の各縁辺に設けた20mm幅のリブ11a〜11dと、タイル幅方向中央部に設けた20mm幅のリブ11eとで形成される深さ8mmの凹陥部12a、12bを有している。タイル1の正面側は湾曲した平滑面である。   The tile 1 has a recessed portion 12a having a depth of 8 mm formed on the back side by 20 mm-wide ribs 11 a to 11 d provided on each edge of the peripheral edge portion and a 20 mm-wide rib 11 e provided in the center portion in the tile width direction. 12b. The front side of the tile 1 is a curved smooth surface.

一方、タイル2は背面側に、タイルの対角線方向へ延びる10mm幅の2つの交差リブ21a、21bと、周縁部の各縁辺に設けた15mm幅のリブ22a〜22dとで形成される深さ8mmの凹陥部23a〜23dを有している。このタイル2の正面側も湾曲した平滑面である。   On the other hand, the tile 2 has a depth of 8 mm formed on the back side by two intersecting ribs 21a and 21b each having a width of 10 mm extending in the diagonal direction of the tile and ribs 22a to 22d having a width of 15 mm provided on each edge of the peripheral edge. The concave portions 23a to 23d are provided. The front side of the tile 2 is also a curved smooth surface.

以下の実施例は何れも上記寸法形状のタイル1の製造に係るものであり、材料として、上記表1〜3に示す焼却灰(A〜C)、粘土粉末(D,E)、セラミック粉末(F)が組み合わせて使用された。   The following examples all relate to the production of tile 1 having the above-mentioned dimensions, and the materials include incinerated ash (AC), clay powder (D, E), ceramic powder (shown in Tables 1 to 3 above). F) was used in combination.

<実施例1a>
上記の焼却灰A、粘土粉末D、セラミック粉末Fを用い、各粉末は特に粒径を制御することなく使用した。A:D:Fを25質量%:50質量%:25質量%の比率で配合し、混合し、次いで、加水設定水分が21%になるように加水調整し、更に真空混練機により0.03Kgf/cmの気圧で5分間混練して坏土を得た(工程a)。
<Example 1a>
The above incinerated ash A, clay powder D, and ceramic powder F were used, and each powder was used without particularly controlling the particle size. A: D: F was blended at a ratio of 25% by mass: 50% by mass: 25% by mass, mixed, and then adjusted to have a water content of 21% by water, and further 0.03 kgf by a vacuum kneader. A kneaded material was obtained by kneading at a pressure of / cm 2 for 5 minutes (step a).

得られた坏土はそのまま一晩静置し、次いでこの坏土を成形型内に装入し、プレス成形して生の素地タイルを作成した(工程b)。   The obtained clay was left as it was overnight, and then this clay was placed in a mold and press-molded to produce a raw green tile (step b).

この素地タイルを自然条件で5日間乾燥した(工程c)。   This base tile was dried under natural conditions for 5 days (step c).

次に、この乾操タイルを焼成窯内に入れ、プロパンガスの燃焼により焼成温度を最初の2時間で100℃から180℃まで、次の5時間で320℃まで、次の1時間半で440℃まで、次の4時間で600℃まで、次の2時間で740℃まで、次の4時間で880℃まで、次の4時間で1060℃まで、次の4時間で1200℃まで連続的に逓増させた(工程d−工程e)。   Next, this dry operation tile is put in a firing kiln, and the firing temperature is increased from 100 ° C. to 180 ° C. in the first 2 hours, to 320 ° C. in the next 5 hours, and 440 in the next 1 hour and a half by burning propane gas. Up to 600 ° C in the next 4 hours, up to 740 ° C in the next 2 hours, up to 880 ° C in the next 4 hours, up to 1060 ° C in the next 4 hours, up to 1200 ° C in the next 4 hours Increased (step d-step e).

1200℃に達したとき、窯内への空気の供給を停止すると共に生ガスを注入し、生ガスを一酸化炭素化することによって、窯内を還元雰囲気にした。生ガスの注入は15分間行なった(工程f)。   When the temperature reached 1200 ° C., the supply of air into the kiln was stopped and raw gas was injected to convert the raw gas into carbon monoxide, whereby the kiln was made a reducing atmosphere. The raw gas was injected for 15 minutes (step f).

<実施例1b>
工程(a)において、混合粉末の98質量%以上が粒径200μm以下の粒子で占められているように制御した。この粒径制御以外、実施例1aの場合と実質的に同一の作業を工程(f)まで行なった。
<Example 1b>
In the step (a), control was performed so that 98% by mass or more of the mixed powder was occupied by particles having a particle diameter of 200 μm or less. Except for this particle size control, substantially the same operation as in Example 1a was performed up to step (f).

<比較例1a>
工程(a)〜工程(e)の作業を実施例1aの場合と実質的に同一に行ない、工程(f)は行なわなかった。
<Comparative Example 1a>
Steps (a) to (e) were performed substantially in the same manner as in Example 1a, and step (f) was not performed.

<比較例1b>
工程(a)において、混合粉末の98質量%以上が粒径200μm以下の粒子で占められているように制御し、それ以外は比較例1aの場合と実質的に同一の作業を行なった。
<Comparative Example 1b>
In the step (a), control was performed so that 98% by mass or more of the mixed powder was occupied by particles having a particle size of 200 μm or less, and the other operations were substantially the same as those in Comparative Example 1a.

<実施例2a>
工程(a)において、上記の焼却灰B、粘土粉末D、セラミック粉末Fを用い、各粉末は特に粒径を制御することなく使用した。それ以外は工程(f)まで実施例1aの場合と実質的に同様の作業を行なった。
<Example 2a>
In the step (a), the incinerated ash B, clay powder D, and ceramic powder F were used, and each powder was used without particularly controlling the particle size. Other than that, the substantially same operation as in Example 1a was performed until step (f).

<実施例2b>
工程(a)において、混合粉末の98質量%以上が粒径200μm以下の粒子で占められているように制御した以外、実施例2aの場合と実質的に同一の作業を工程(f)まで行なった。
<Example 2b>
In step (a), substantially the same operation as in Example 2a is performed up to step (f) except that control is performed so that 98% by mass or more of the mixed powder is occupied by particles having a particle size of 200 μm or less. It was.

<比較例2a>
工程(a)〜工程(e)の作業を実施例2aの場合と実質的に同一に行ない、工程(f)は行なわなかった。
<Comparative Example 2a>
Steps (a) to (e) were performed substantially in the same manner as in Example 2a, and step (f) was not performed.

<比較例2b>
工程(a)において、混合粉末の98質量%以上が粒径200μm以下の粒子で占められているように制御した以外は比較例2aの場合と実質的に同一の作業を行なった。
<Comparative Example 2b>
In the step (a), substantially the same operation as in the case of Comparative Example 2a was performed except that control was performed so that 98% by mass or more of the mixed powder was occupied by particles having a particle size of 200 μm or less.

<実施例3a>
工程(a)において、上記の焼却灰C、粘土粉末D、セラミック粉末Fを用い、各粉末は特に粒径を制御することなく使用した。それ以外は工程(f)まで実施例1aの場合と実質的に同様の作業を行なった。
<Example 3a>
In the step (a), the incinerated ash C, clay powder D, and ceramic powder F were used, and each powder was used without particularly controlling the particle size. Other than that, the substantially same operation as in Example 1a was performed until step (f).

<実施例3b>
工程(a)において、混合粉末の98質量%以上が粒径200μm以下の粒子で占められているように制御した以外、実施例3aの場合と実質的に同一の作業を工程(f)まで行なった。
<Example 3b>
In step (a), substantially the same operation as in Example 3a is performed up to step (f) except that control is performed so that 98% by mass or more of the mixed powder is occupied by particles having a particle size of 200 μm or less. It was.

<比較例3a>
工程(a)〜工程(e)の作業を実施例3aの場合と実質的に同一に行ない、工程(f)は行なわなかった。
<Comparative Example 3a>
Steps (a) to (e) were performed substantially in the same manner as in Example 3a, and step (f) was not performed.

<比較例3b>
工程(a)において、混合粉末の98質量%以上が粒径200μm以下の粒子で占められているように制御した以外は比較例2aの場合と実質的に同一の作業を行なった。
<Comparative Example 3b>
In the step (a), substantially the same operation as in the case of Comparative Example 2a was performed except that control was performed so that 98% by mass or more of the mixed powder was occupied by particles having a particle size of 200 μm or less.

<実施例4a>
工程(a)において、上記の焼却灰A、粘土粉末E、セラミック粉末Fを用い、各粉末は特に粒径を制御することなく使用した。それ以外は工程(f)まで実施例1aの場合と実質的に同様の作業を行なった。
<Example 4a>
In the step (a), the incinerated ash A, clay powder E, and ceramic powder F were used, and each powder was used without particularly controlling the particle size. Other than that, the substantially same operation as in Example 1a was performed until step (f).

<実施例4b>
工程(a)において、混合粉末の98質量%以上が粒径200μm以下の粒子で占められているように制御した以外、実施例4aの場合と実質的に同一の作業を工程(f)まで行なった。
<Example 4b>
In step (a), substantially the same operation as in Example 4a is performed up to step (f) except that control is performed so that 98% by mass or more of the mixed powder is occupied by particles having a particle size of 200 μm or less. It was.

<比較例4a>
工程(a)〜工程(e)の作業を実施例4aの場合と実質的に同一に行ない、工程(f)は行なわなかった。
<Comparative Example 4a>
Steps (a) to (e) were performed substantially in the same manner as in Example 4a, and step (f) was not performed.

<比較例4b>
工程(a)において、混合粉末の98質量%以上が粒径200μm以下の粒子で占められているように制御した以外は比較例4aの場合と実質的に同一の作業を行なった。
<Comparative Example 4b>
In the step (a), substantially the same operation as in the case of Comparative Example 4a was performed except that 98% by mass or more of the mixed powder was controlled by particles having a particle size of 200 μm or less.

上記実施例及び比較例における各混合粉末の化学組成は下表4に示すとおりであった。これら混合粉末の特質は、混合粉末中のFe23の含有量が約11〜17%であり、高含有率を示していることである。 The chemical composition of each mixed powder in the above Examples and Comparative Examples was as shown in Table 4 below. A characteristic of these mixed powders is that the content of Fe 2 O 3 in the mixed powder is about 11 to 17%, indicating a high content.

実施例1a〜4b、比較例1a〜4bによって得られたタイルについて吸水率を測定した結果は表5に示すとおりである。   The results of measuring the water absorption rate for the tiles obtained in Examples 1a to 4b and Comparative Examples 1a to 4b are as shown in Table 5.

<実施例5,比較例5>
実施例1aの場合と同じ材料を使用したが、材料の配合割合を変更し(A:30%、D:40%,F:30%)、実施例1aと実質的に同じ作業を行なって製作したタイルと、比較例1aと実質的に同じ作業を行なって製作したタイルの吸水率を比較した。結果は下表6に示すとおりであった。
<Example 5, Comparative Example 5>
The same material as in Example 1a was used, but the mixing ratio of the material was changed (A: 30%, D: 40%, F: 30%) and manufactured by performing substantially the same operation as Example 1a. The water absorption rates of the tiles manufactured and the tiles manufactured by performing substantially the same operation as Comparative Example 1a were compared. The results were as shown in Table 6 below.

Figure 2006062917
Figure 2006062917

Figure 2006062917
Figure 2006062917

Figure 2006062917
Figure 2006062917

上記表5の実施例1aと比較例1aとの対比から明らかなとおり、実施例1aのタイルは還元無しの比較例1aのタイルに比較して吸水率が大幅に減少(8.67%→2.33%)しており、実施例1aによって達成された吸水率(2.33%)は、コンクリート構造物壁面補修用タイルとして申し分のない値である。更に、粒度を制御した場合、吸水率が飛躍的に減少する傾向にあるが、粒度制御を伴う実施例1bの場合には、伴わない比較例1bの場合と比較して吸水率が更に減少する(3.21%→0.68%)ことが明らかである。   As apparent from the comparison between Example 1a and Comparative Example 1a in Table 5 above, the tile of Example 1a has a significantly reduced water absorption (8.67% → 2) compared to the tile of Comparative Example 1a without reduction. The water absorption rate (2.33%) achieved by Example 1a is a perfect value for a concrete structure wall repair tile. Furthermore, when the particle size is controlled, the water absorption rate tends to decrease dramatically. However, in the case of Example 1b with particle size control, the water absorption rate is further reduced as compared with the case of Comparative Example 1b. It is clear (3.21% → 0.68%).

同様に、混合粉末中の成分の割合が異なる場合でも、実施例2a:比較例2a、実施例2b:比較例2b、実施例3a:比較例3a、実施例3b:比較例3b、実施例4a:比較例4a、実施例4b:比較例4bの対比から明らかなように、本発明によるタイルの吸水率は減少し、この吸水率は粒度を制御することにより更に減少する。   Similarly, Example 2a: Comparative Example 2a, Example 2b: Comparative Example 2b, Example 3a: Comparative Example 3a, Example 3b: Comparative Example 3b, Example 4a even when the proportions of the components in the mixed powder are different. : Comparative Example 4a, Example 4b: As is clear from the comparison of Comparative Example 4b, the water absorption of the tile according to the present invention is reduced, and this water absorption is further reduced by controlling the particle size.

上記何れの実施例においても、混合粉末中のFe23の含有量が比較的多い(表4参照)にも拘わらず、コンクリート構造物壁面補修用タイルとして申し分のない吸水率がもたらされている。 In any of the above examples, despite the relatively high content of Fe 2 O 3 in the mixed powder (see Table 4), a satisfactory water absorption rate is provided as a concrete structure wall repair tile. ing.

実施例4a,4b、比較例4a,4bにおいて使用した粘土粉末Eは、表2に示すとおり、同粉末におけるAlの含有量が粘土粉末全体の23質量%以下であり、Feの含有量が粘土粉末全体の4.5質量%以下である。粘土において、SiOおよびAlは、実際上、含水ケイ酸アルミニウムとして存在し、Alの含有量が多い粘土はカオリン系粘土(カオリナイト、ナクライト、ディッカイト、ハロイサイト、加水ハロイサイト等の1種以上からなる粘土)である。従って、カオリン系粘土は材料として好適である。このようなカオリン系粘土を使用すると、特にFeの含有量が多い下水汚泥焼成灰を使用する場合でも、吸水率が小さい緻密質のセラミックタイルを得ることができることが表5から明らかである。 As shown in Table 2, the clay powder E used in Examples 4a and 4b and Comparative Examples 4a and 4b has an Al 2 O 3 content of 23% by mass or less of the entire clay powder, as shown in Table 2, and Fe 2 O The content of 3 is 4.5% by mass or less of the entire clay powder. In clay, SiO 2 and Al 2 O 3 are actually present as hydrous aluminum silicate, and clay having a high content of Al 2 O 3 is kaolin-based clay (kaolinite, nacrite, dickite, halloysite, hydrous halloysite, etc. 1 or more clays). Therefore, kaolin clay is suitable as a material. It is clear from Table 5 that when such a kaolin clay is used, a dense ceramic tile having a low water absorption rate can be obtained even when using a sewage sludge calcined ash having a high Fe 2 O 3 content. is there.

更に、実施例4a,4b、比較例4a,4bにおいて使用した粘土粉末Eについては、粘土粉末全体の98質量%以上が粒径50μm以下の粒子で占められており、かつ90%粒径d90の50%粒径d50に対する比が約3であるという特質を有している。これは、微粒子から構成される粒度分布の広い粘土粉末が使用されたことを意味している。実施例4a、4bによるタイルの吸水率が極めて好ましい結果を示しているのは、このような粒度分布の広い粘土粉末が使用されたことも一因であると考えられる。即ち、坏土中に微細な粘土粉末が分散し、坏土を所定形状に成形した際に、粒度分布の比較的広い下水汚泥焼成灰粒子どうしの間に粘土粉末が緻密に充填されるため、成形体の緻密度が増すと考えられる。 Further, in the clay powder E used in Examples 4a and 4b and Comparative Examples 4a and 4b, 98% by mass or more of the entire clay powder is occupied by particles having a particle size of 50 μm or less, and a 90% particle size d 90 Has a characteristic that the ratio of to 50% particle size d 50 is about 3. This means that a clay powder composed of fine particles and having a wide particle size distribution was used. The reason why the water absorption rate of the tiles according to Examples 4a and 4b shows extremely favorable results is considered to be due to the use of such clay powder having a wide particle size distribution. That is, when fine clay powder is dispersed in the clay and the clay is molded into a predetermined shape, the clay powder is densely packed between the sewage sludge calcined ash particles having a relatively wide particle size distribution. It is considered that the density of the molded body increases.

上記の表6から明らかなように、材料の配合割合を変更した場合であっても、本発明方法を実施することにより、吸水率の小さいタイルを製作することができる。   As is apparent from Table 6 above, even when the blending ratio of the materials is changed, a tile having a low water absorption rate can be manufactured by carrying out the method of the present invention.

なお、本発明は上記実施の形態に限定されることなく、発明の趣旨を逸脱しない範囲で種々変更可能である。例えば、A〜Gの材料は上記以外にも様々に組み合わせることができ、更に上掲以外の材料を使用してもよい。また、上記のようにして得られたタイルの表面、特にマンホール内空間に露出する側の表面に上薬を塗布し、窯内で焼成することによって表面に融着するようにしてもよい。更に、タイルは上記実施形態の図3、図6に示すような湾曲形状のみではなく、必要に応じ扁平又は平板形状のものも製作可能である。   In addition, this invention is not limited to the said embodiment, A various change is possible in the range which does not deviate from the meaning of invention. For example, the materials A to G can be variously combined in addition to the above, and materials other than those listed above may be used. Alternatively, the top surface of the tile obtained as described above, particularly the surface exposed to the space in the manhole, may be applied to the surface of the tile and fired in a kiln to be fused to the surface. Furthermore, the tiles can be produced not only in a curved shape as shown in FIGS. 3 and 6 of the above embodiment, but also in a flat or flat shape if necessary.

本発明方法によって製造されるマンホール内壁面補修用セラミックタイルの1例を、マンホール内壁面との接着面側から見た図である。It is the figure which looked at one example of the ceramic tile for manhole inner wall surface manufacture manufactured by the method of this invention from the adhesion surface side with the manhole inner wall surface. 図1中のII−II線に沿う断面図である。It is sectional drawing which follows the II-II line | wire in FIG. 図1のタイルを底面側から見た図である。It is the figure which looked at the tile of FIG. 1 from the bottom face side. 本発明方法によって製造されるマンホール内壁面補修用セラミックタイルの他の例を、マンホール内壁面との接着面側から見た図である。It is the figure which looked at the other example of the ceramic tile for manhole inner wall surface repair manufactured by the method of this invention from the adhesion surface side with the manhole inner wall surface. 図4中のV−V線に沿う断面図である。It is sectional drawing which follows the VV line in FIG. 図4のタイルを底面側から見た図である。It is the figure which looked at the tile of FIG. 4 from the bottom face side.

Claims (5)

コンクリート構造物壁面防食補修用タイルの製造方法であって、
(a)下水汚泥焼却灰、粘土粉末、及びセラミック粉末を主体として含む混合粉末に水を加えて混練する工程、
(b)混練して得られた坏土を所望のタイル形状に成形する工程、
(c)得られた生のタイルを乾燥する工程、
(d)得られた乾燥タイルを、窯内で材料の化学反応が終了する温度まで温度を逓増しつつ焼成する工程、
(e)窯内温度を前工程の化学反応終了温度より更に高め、少なくともタイル表層を溶融状態にする工程、
(f)溶融状態の発生後、前記窯内を還元性雰囲気にする工程、
を含むことを特徴とするコンクリート構造物壁面防食補修用タイルの製造方法。
A method for manufacturing a concrete structure wall anticorrosion repair tile,
(A) a step of adding water to a mixed powder mainly containing sewage sludge incineration ash, clay powder, and ceramic powder and kneading the mixture;
(B) forming a kneaded material obtained by kneading into a desired tile shape;
(C) drying the resulting raw tile,
(D) a step of firing the obtained dry tile while gradually increasing the temperature to a temperature at which the chemical reaction of the material ends in the kiln,
(E) raising the temperature in the kiln further than the chemical reaction end temperature in the previous step, and at least bringing the tile surface layer into a molten state;
(F) a step of making the inside of the kiln a reducing atmosphere after the occurrence of a molten state;
A method for manufacturing a tile for anti-corrosion repair of a wall surface of a concrete structure, characterized by comprising:
前記混合粉末の粒径を最大粒径200μm以下に制御することを特徴とする請求項1に記載の製造方法。   The manufacturing method according to claim 1, wherein a particle size of the mixed powder is controlled to a maximum particle size of 200 μm or less. 前記下水汚泥焼却灰中のFeの含有量が少なくとも20%以上であることを特徴とする請求項1または2に記載の製造方法。 The production method according to claim 1 or 2, wherein the content of Fe 2 O 3 in the sewage sludge incineration ash is at least 20% or more. 前記混合粉末中の下水汚泥焼却灰の含有量が少なくとも25%以上であることを特徴とする請求項1〜3のいずれか1つに記載の製造方法。   Content of the sewage sludge incineration ash in the said mixed powder is at least 25% or more, The manufacturing method as described in any one of Claims 1-3 characterized by the above-mentioned. 前記工程(d)において、約900℃までの昇温を一時間当たり50〜60℃の加熱速度で行なうことを特徴とする請求項1〜4のいずれか1つに記載の製造方法。
5. The method according to claim 1, wherein in step (d), the temperature is raised to about 900 ° C. at a heating rate of 50 to 60 ° C. per hour.
JP2004249034A 2004-08-27 2004-08-27 Method of manufacturing tiles for repairing wall surface of concrete structures Expired - Fee Related JP4666978B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004249034A JP4666978B2 (en) 2004-08-27 2004-08-27 Method of manufacturing tiles for repairing wall surface of concrete structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004249034A JP4666978B2 (en) 2004-08-27 2004-08-27 Method of manufacturing tiles for repairing wall surface of concrete structures

Publications (2)

Publication Number Publication Date
JP2006062917A true JP2006062917A (en) 2006-03-09
JP4666978B2 JP4666978B2 (en) 2011-04-06

Family

ID=36109714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004249034A Expired - Fee Related JP4666978B2 (en) 2004-08-27 2004-08-27 Method of manufacturing tiles for repairing wall surface of concrete structures

Country Status (1)

Country Link
JP (1) JP4666978B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111574193A (en) * 2020-05-25 2020-08-25 天津水泥工业设计研究院有限公司 Sludge ash ceramsite filter material and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5310614A (en) * 1976-07-16 1978-01-31 Nippon Steel Corp Manufacture of burned tiles
JPH026365A (en) * 1988-06-25 1990-01-10 Sumitomo Metal Mining Co Ltd Production of iron-refined powder-calcined black tile
JP2000247730A (en) * 1999-02-26 2000-09-12 Noritake Co Ltd Ceramic tube and its production
JP2003026468A (en) * 2001-07-16 2003-01-29 Noritake Co Ltd Method of manufacturing ceramic product using sewer sludge incineration ash as raw material
JP2004190814A (en) * 2002-12-12 2004-07-08 Toa Grout Kogyo Co Ltd Method of protecting inner wall surface of hume pipe
JP2005255496A (en) * 2004-03-12 2005-09-22 Yoshika Kk Method of manufacturing ceramic product using sewage sludge incineration ash and resultant ceramic product

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5310614A (en) * 1976-07-16 1978-01-31 Nippon Steel Corp Manufacture of burned tiles
JPH026365A (en) * 1988-06-25 1990-01-10 Sumitomo Metal Mining Co Ltd Production of iron-refined powder-calcined black tile
JP2000247730A (en) * 1999-02-26 2000-09-12 Noritake Co Ltd Ceramic tube and its production
JP2003026468A (en) * 2001-07-16 2003-01-29 Noritake Co Ltd Method of manufacturing ceramic product using sewer sludge incineration ash as raw material
JP2004190814A (en) * 2002-12-12 2004-07-08 Toa Grout Kogyo Co Ltd Method of protecting inner wall surface of hume pipe
JP2005255496A (en) * 2004-03-12 2005-09-22 Yoshika Kk Method of manufacturing ceramic product using sewage sludge incineration ash and resultant ceramic product

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111574193A (en) * 2020-05-25 2020-08-25 天津水泥工业设计研究院有限公司 Sludge ash ceramsite filter material and preparation method thereof

Also Published As

Publication number Publication date
JP4666978B2 (en) 2011-04-06

Similar Documents

Publication Publication Date Title
CN104555982A (en) Method for calcining high sulfur petroleum coke and special pot calciner and pot wall tile
CN101468919B (en) Refractory mortar cured material
JPWO2004011384A1 (en) Acid-resistant sulfur material and construction method of acid-resistant sulfur material
JP4666978B2 (en) Method of manufacturing tiles for repairing wall surface of concrete structures
KR100880587B1 (en) Self leveling bottom mortar agent manufacturing method
JPS5913470B2 (en) Silica brick manufacturing method
CN103833396B (en) High-strength high-alumina brick prepared from homogenized alumina for calcium carbide furnace and preparation method thereof
JP4717364B2 (en) Method for producing ceramic product using sewage sludge incineration ash and obtained ceramic product
JP4488404B2 (en) Porous sintered pavement material and manufacturing method thereof
KR100921649B1 (en) Method for Manufacturing Artificial Aggregate Having Lightweight and Optimized Blackcore Formation
CN105130459B (en) The unburned prefabricated syphon of aluminium anode carbon baking furnace flue wall
JP2000226242A (en) Production of lightweight aggregate for highly strong concrete
CN206721134U (en) A kind of fluidized-bed gasification furnace
JP3158086B2 (en) Coarse particle sintered body and method for producing the same
JP2008143766A (en) Method of manufacturing porous water absorbing ceramic
JPH0812465A (en) Production of porous sintered compact
JP3216034B2 (en) Porous sintered body and method for producing the same
JP4166702B2 (en) Method for producing modified sulfur-containing binder and method for producing modified sulfur-containing material
JP4093488B2 (en) Method for producing brick with high coal ash content and brick obtained by the method
CN116947508A (en) Sulfur-resistant magnesia-alumina spinel brick for cement kiln firing zone and method
JP4998694B2 (en) Ceramic fired body and method for producing the same
JPH11171635A (en) Production of ceramic for construction
JPH0259479A (en) Method for lightening fly-ash formed material
JPH11130515A (en) Production of ceramic product from aluminum residual ash
JP4315849B2 (en) Artificial aggregate firing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090508

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4666978

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees