JP2005254452A - セクタギヤ - Google Patents

セクタギヤ Download PDF

Info

Publication number
JP2005254452A
JP2005254452A JP2005105651A JP2005105651A JP2005254452A JP 2005254452 A JP2005254452 A JP 2005254452A JP 2005105651 A JP2005105651 A JP 2005105651A JP 2005105651 A JP2005105651 A JP 2005105651A JP 2005254452 A JP2005254452 A JP 2005254452A
Authority
JP
Japan
Prior art keywords
gear
axis
grindstone
workpiece
grinding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005105651A
Other languages
English (en)
Inventor
Ikuya Oneda
郁也 尾根田
Haruo Sugano
春雄 菅野
Hiroshi Saga
弘 嵯峨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unisia JKC Steering Systems Co Ltd
Original Assignee
Unisia JKC Steering Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unisia JKC Steering Systems Co Ltd filed Critical Unisia JKC Steering Systems Co Ltd
Priority to JP2005105651A priority Critical patent/JP2005254452A/ja
Publication of JP2005254452A publication Critical patent/JP2005254452A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Gears, Cams (AREA)
  • Transmission Devices (AREA)

Abstract

【課題】円周部分歯を有する歯車(セクタギヤ)2のすべての歯の歯面を研削する。
【解決手段】ワーク(上記歯車)2をC軸により回転可能に支持するとともに、ラック状の断面を有する円形の研削砥石10を、歯車2の回転軸線(C軸)に向かってX軸方向へ進退動可能に、また、この砥石10を歯車2の軸線に直交する方向(Y軸方向)と平行な方向(Z軸方向)とに移動可能に配置する。歯車2と砥石10とを歯車の歯幅方向の端部の、噛合いの開始点において噛合わせる。歯車2を両者の噛合いの終了点まで回転させるとともに、砥石10をこの回転に同期させてY軸方向に直線移動させて創成運動を行わせる。次に、砥石10を歯車2の歯すじ方向に分割量ΔZだけ移動させて、上記創成運動を繰り返す。このようにラック状の断面を有する円形砥石10と、円周部分歯を有する歯車2とに創成運動を行わせてすべての歯の歯面に研削を行う。
【選択図】図11

Description

本発明はセクタギヤに係り、特に、その全ての歯の歯面が研削加工されたセクタギヤに関するものである。
歯車の円周の一部だけを用いた歯車(セクタギア)は、一般に広く用いられている。例えば、図1および図2に示す歯車は、インテグラル型パワーステアリング装置に用いられるセクタギア2で、図示しないピストンの側面に形成されたラックに噛合い、ピストンの進退動に伴なって所定の角度範囲で往復回転する。このようなパワーステアリング装置用のセクタギア2では、浸炭による熱処理変形を除くため、あるいは歯当りを改善してギアの伝達効率を向上させ、また、初期摩耗を低減する等の目的で、セクタギアの歯面に研削加工を施して歯面の精度を向上させるようにしている。
上記のようなパワーステアリング装置用のセクタギアに限らず、歯車は、浸炭等の熱処理による歪みを除くため等の理由により、研削等の仕上加工を歯面に施して精度を向上させることが一般に行なわれている。このような歯面の研削加工法として従来から種々の方法が知られている。
例えば、ライスハウエル方式は、断面がラック歯形を有するウオーム状の砥石を用いて、ワークを連続的に回転させつつ研削を行なう方法である。また、マーグ方式は、皿型の砥石を用いて行なうもので、一定の基礎円をもつピッチブロックに鋼帯を強く巻付け、テーブルを左右に動かすことによりワークと砥石との間に理想的なピニオンとラックの運動を行なわせることにより、正しい歯形曲線を創成する。この方式では、1歯の研削が終ると、割り出しを行ない次の歯の加工に移る。さらに、ナイルス方式は、1枚のラック歯形を表わす円錐形砥石を用いて歯車を創成研削する。ワークには、このラックと噛合ってころがるような運動を送りねじと親ウオームギアで与える。行きの工程で片側の歯面を、戻り工程で他方の側の歯面をそれぞれ研削し、一往復で両歯面の研削が終る。その他、総形砥石を用いた研削法も知られている。この方法は、歯みぞと同じ輪郭に成形した砥石を歯すじに沿って移動し、1歯ずつ割り出して研削する。
しかしながら、パワーステアリング装置のセクタギア2は、一般に上記図1に示すように、各歯2A,2B,2Cが、セクタギア2の軸線O に対して傾斜した円錐歯車が用いられており、また、操舵感を向上させるために、3枚の歯のうちの中央の歯2Bと両側の歯2A,2Cとの圧力角を変えたり、ピッチ円径を変化させてバリアブルギアレシオの歯車としたものも用いられている。そのため従来から知られた上記各歯面の研削方法によっては、研削による仕上加工を行なうことが不可能あるいは困難であった。
すなわち、上記第1の創成研削法(ライスハウエル方式)は、ワークが連続的に回転するので、セクタギアのような円周の一部に歯が形成され、歯数が非整数である場合には、加工を行なうことは不可能であった。また、バリアブルギアレシオの歯車の場合には、ワークの歯が砥石に当たりだしてから外れるまでの間に、高速で回転している砥石またはワークの回転数を変える制御が必要であり、極めて困難である。さらに、各歯毎に圧力角が異なる歯車の場合には、ラックの歯とワークの歯とが一対一の対応関係になければならないが、ウオーム状の砥石ではこのように対応させることは不可能である。
また、第2の創成研削法(マーグ方式)では、歯すじ方向へ連続的に転位する円錐歯車の場合には、軸方向へ砥石が移動する毎に、鋼帯上の砥石の位置を変えなければならず、現実には不可能である。しかも、この方法では、ワークと砥石との相対移動速度が不変であるため、バリアブルギアレシオの歯車に対応することは不可能である。さらに、ラックの圧力角が変わるということは、歯車の基礎円が変わるということであり、マーグ法では、圧力角の違う歯面毎にピッチブロックを取替えなければならないので、現実的には不可能である。
さらに、第3の創成研削法(ナイルス法)では、1歯毎に圧力角の異なる歯車の研削を行なうためには、各歯毎に砥石を交換しなければならないという問題がある。また、総形砥石方式では、歯すじ方向に連続転位する円錐歯車には適用不可能であり、しかも創成運動ではないため、砥石の形状を正確にバリアブルギアレシオの歯形に一致させて成形することは不可能である。
以上述べたように、従来から知られた研削による歯面の仕上方法では、いずれの方法も、非整数歯数の歯車、円錐歯車、バリアブルギアレシオの歯車および各歯毎に圧力角が異なる歯車等には対応することができず、パワーステアリング装置等に用いられる特別な形状の円周部分歯を有する歯車(セクタギア)に対して、すべての歯面の研削を行なうことは不可能であった。従って、従来のパワーステアリング装置用の円周部分歯を有する歯車(セクタギア)としては、中央歯だけに歯面の研削仕上を行なったものはすでに用いられているが、すべての歯の歯面に研削仕上を行なったものは存在していない。
そこで、本発明の目的は、すべての歯の歯面に研削加工を行なうことにより、例えばパワーステアリング装置における据え切り時等のように大きな出力を必要とする端部の歯の歯面の精度を向上させて、歯車の効率を向上させるようにしたセクタギヤを提供することを目的とするものである。
請求項1に記載の発明は、棒状に形成されたセクタシャフトと、このセクタシャフトの外周部の所定範囲に設けられた複数の歯とを備え、上記複数の歯のうち少なくとも一つは、この歯と噛合うラックとの噛合い接点と上記セクタシャフトの回転中心とを結ぶ直線を半径とするピッチ円が他の歯と異なるバリアブルギヤレシオに形成され、上記複数の歯の歯面であって、上記ラックと噛合う領域の全ては研削が施された砥石目を有し、この砥石目は、層状に形成されることを特徴とするものである。
請求項2に記載の発明は、上記砥石目は、上記歯の軸線方向と略平行に形成されることを特徴とするものである。
請求項3に記載の発明は、周方向に複数本設けられた上記砥石目は互いに略平行であって、上記歯の歯先に対して所定角傾けて設けられ、この複数の砥石目のうち少なくとも1本は、セクタギヤの軸方向一端側から他端側へ向かって設けられることを特徴とするものである。
請求項4に記載の発明は、周方向に複数本設けられた上記砥石目の夫々の中間点は、等角度間隔で設けられることを特徴とするものである。
請求項5に記載の発明は、棒状に形成されたセクタシャフトと、このセクタシャフトの外周部の所定範囲に設けられた複数の歯とを備え、上記複数の歯の歯面であって、上記ラックと噛合う領域の全ては研削が施された砥石目を有し、上記砥石目は、層状に形成されるとともに、この砥石目は、上記歯の周方向に形成されることを特徴とするものである。
本発明に係るセクタギヤは、すべての歯の歯面に創成による研削が施されているので、例えばパワーステアリング装置に適用した場合には、据切り時のように大きい出力が必要な端部の歯におけるギアの伝達効率が向上する。
棒状に形成されたセクタシャフトの外周部の所定範囲に設けられた複数の歯のうち、少なくとも一つが、この歯と噛合うラックとの噛合い接点と上記セクタシャフトの回転中心とを結ぶ直線を半径とするピッチ円が他の歯と異なるバリアブルギヤレシオに形成され、上記複数の歯の歯面であって、上記ラックと噛合う領域の全てが、研削が施されて層状の砥石目を有している。
以下、図面を参照して本発明を説明する。図3および図4は、上記図1および図2に示す円周部分歯を有する歯車(セクタギア)2の研削に使用される円形の回転砥石10の正面図および側面図であり、その回転軸線O を通る断面形状は、図5に示すように、複数歯の直線ラック型形状をしている。なお、本実施例では、上記セクタギア2が3枚歯であるから、この円形砥石10は、これら3枚の歯2A,2B,2Cにそれぞれ対応する3本の歯溝を有するように、中央の2枚の完全な歯形10B,10Cと、両端のそれぞれ逆向きの片側歯面を有する2枚の歯10A,10Dとを有している。
また、上記セクタギア2の3枚の歯形2A,2B,2Cが、同一の圧力角を有するインボリュート歯車である場合には、ラック型断面を有する円形の回転砥石10の各圧力角(図5のα ,α 参照)も同一であるが、図2に示すように、セクタギア2の圧力角が中央の歯2Bと両側の歯2A,2Cとで異なっている場合には、このラック型断面を有する円形砥石10の圧力角α ,α も、上記セクタギア2の対応する各歯2A,2B,2Cの圧力角に応じてそれぞれ変化させる(α ≠α )。
次に、上記ラック型断面の円形砥石10を用いて、上記円周部分歯を有する歯車(セクタギア)2の歯形研削を行なう装置について説明する。図6は、本発明に係る歯車の研削方法の実施に使用する歯研盤の一例を示すもので、この歯研盤に、ワーク(上記セクタギア)2と研削工具(上記円形の回転砥石)10を取付け、これら両者2,10に、後に説明する相対運動を行なわせることにより歯形の研削を行なう。この研削盤は、上記円形の研削砥石10を、図7に示すように、水平に寝かせた状態で、鉛直方向の砥石軸(Y軸)に取付け、この砥石軸の回転によって円形の研削砥石10を回転させる。一方、セクタギア2を回転させるインデックスヘッドの回転軸(C軸)の中心が、上記円形砥石10を支持する砥石軸(Y軸)の回転軸線と直交して水平に配置されている。また、上記円形砥石10は、砥石軸(Y軸)およびワーク2の回転軸(C軸)の両軸に対して直交するX軸方向に進退動され、さらに、上記回転軸(C軸)の軸線と平行なZ軸方向に往復動される。これらX軸,Y軸,Z軸およびC軸が、NC制御されることにより歯形の創成研削を行なう運動を発生させる。
上記構成に係る歯研盤による歯形研削の創成運動の一例について説明する。先ず、上記セクタギア2がインボリュート歯車の場合について説明する。3枚歯のセクタギアであるワーク2とラック型断面の研削砥石10との噛合いの中立位置を基準点P ,P10(図8参照)とし、上記セクタギア2の回転軸(C軸)が、この基準点P ,P10から一方の噛合い端部まで回転する角度をθ とすると、噛合いの開始点(図8の(a))から終了点(図8の(b))までの全回転角Cは2θ となる。また、このセクタギア2と噛合って砥石軸(Y軸)の軸線方向へ直線移動するラック型断面を有する研削砥石10の、上記噛合いの開始点から終了点までの全移動量Yは2Y となる。
Y=2Y ……(1)
C=2θ ……(2)
但し、Y =rθ ……(3)
上記ワーク2と研削砥石10とをこれら両者2,10の噛合い端部(噛合いの開始点)で噛合わせた後、上記(1),(2)式で示す量だけ同時に相対移動(図8(a)から(b)までの回転および直線移動)させることにより創成運動が行なわれる。
上記創成研削の工程について図9により順次説明する。先ず、ラック型断面を有する研削砥石10を、X軸方向に所定量だけ後退させてワーク2から離隔させた状態にしておく。また、砥石10をZ軸方向(ワーク2の軸線に平行な方向)に移動させることにより、後に砥石10を前進させてワーク2に噛合わせた際に、この砥石10がワーク(セクタギア)2の歯幅方向の端部に噛合う位置にセットする。この位置で、ワーク2の回転軸(C軸)を上記基準点(噛合いの中立位置)からθ 回転させ、また、これと同期して砥石10をY軸方向にY だけ直線移動させる(図9(a)のワーク2と破線で示す砥石10参照)。次に、砥石10をX軸方向に前進(ワーク2に接近する方向の移動)させて、ワーク2と砥石10とをその噛合いの一方の端部(噛合いの開始点)で噛合わせる(図9(a)のワーク2と実線で示す砥石10参照)。
この状態から、ワーク2と砥石10とを同期させて、上記(1)式および(2)式に示す量(すなわち、C軸を2θ 、Y軸を2Y )だけ回転および直線移動させる。このように、両者2,10を、噛合いの開始位置から終点位置まで同時に回転および直線移動させることにより、ワーク(セクタギア)2の歯面の創成研削を行なう(図9(b)参照)。
上述のようにワーク2と砥石10とを、両者2,10の噛合いの開始点から終了点まで、同期させて回転および直線移動させることにより第1回目の創成研削を行なうが、この1回分の研削加工では、回転する円形砥石10がワーク(セクタギア)2の歯面の一部(すなわち、第1回目の工程では歯幅方向の端部)に接触してギアの噛合いと同様の相対運動を行なうものであるから、ワーク(セクタギア)2の歯幅方向には、限られた狭い範囲だけの研削加工が行なわれる。そこで、ワーク2の歯幅方向に分割して繰返し研削加工を行なう。次に、X軸によって砥石10を後退させ(図9(c)参照)、続いて、C軸によりワーク2を上記創成研削時と逆方向に2θ 回転させるとともに、Y軸により砥石10も逆方向に2Y だけ直線移動させることにより、これら両者2,10を最初の噛合いの開始点へ戻す(図9(d)参照)。
その後、上記研削砥石10を、Z軸方向すなわちワーク(セクタギア)2の歯幅方向(C軸の軸線方向)に、このワーク2の歯幅Lを分割した所定量ΔZだけ移動させる(図9(e)参照)。研削砥石10をZ軸方向にΔZだけ移動させた後、再び、研削砥石10をX軸方向に前進させて、ワーク2とその噛合い開始位置で互いに噛合わせる。なお、ワーク(セクタギア)2の歯先がその回転軸線と平行な歯車の場合には、砥石10のX軸方向の移動量は、上記第1回目の研削を開始する際の移動量と同一で良いが、図1に示すように、歯先がセクタギア2の回転軸線O に対して傾斜している円錐歯車の場合には、上記分割した歯幅方向の移動量ΔZに対し、その円錐角δに応じた移動量ΔXだけ余分に前進させる(図10参照)。
上記のように、第1回目の創成運動による研削を行なった位置から、砥石10を歯幅方向にΔZだけずらした位置で、再び、ワーク2と砥石10とを噛合わせた後、図9(b)に示すように、C軸を2θ 回転させるとともに、これに同期してY軸を2Y だけ直線移動させる。つまり、ワーク2と砥石10とを噛合いの開始点から終了点まで同期移動させて第2回目の創成研削を行なう。以後も、上記図9(a)から(e)までの各工程を、ワーク2の歯幅Lの間繰返すことにより、ワーク(セクタギア)2の3枚の歯2A,2B,2Cの歯面全体を研削加工する。この実施例では、歯幅方向に分割して限定された長さずつ繰返して研削を行なうので、研削加工された歯面には、図11(a)に示すような、砥石目が表われる。
このように、円周部分歯を有する歯車(ワーク)2と、複数歯の直線ラック状断面を有する円形の回転砥石10とを、同期して相対運動をさせることにより創成研削を行なうようにしたので、ワーク2の複数の歯のすべての歯面に研削加工を行なうことができる。また、ワーク2の歯形の圧力角が各歯毎に異なっている場合には、研削砥石10の圧力角を、上記ワーク2の各歯2A,2B,2Cの圧力角に対応させて異ならせることにより、圧力角の異なる歯を有するギアの創成研削が可能になる。しかも、ワーク(円周部分歯を有する歯車)2の総回転量を1回転未満にできるので、非整数歯数の歯車であっても創成研削が可能である。また、円錐歯車に対しても容易に対応することができる。
なお、上記実施例では、噛合いの開始点から終了点まで、ワーク2の回転と砥石10の直線移動を同時に行なわせることにより1回の研削加工を行なった後、砥石10のX軸方向への後退(図9(c)の工程)およびC軸の逆方向の回転とY軸の逆方向への直線移動(図9(d)の工程)とを行ない、その後、砥石10をZ軸方向へ分割量ΔZ移動(図9(e)の工程)することにより、ワーク2と砥石10との位置決めをして、再び同方向への創成研削を行なうようにしているが、1回の創成運動による研削が終了した位置(図9(b)の位置)で、図9(e)に示すような、砥石10のZ軸方向の移動を行なった後、C軸の逆方向の回転とY軸の逆方向への直線移動をさせることによって次の創成研削を行なうことも可能である。すなわち、同方向の研削加工を繰返しても良く、また、往復方向の研削加工を行なうようにしても良い。
図12は、上記図6に示す研削盤を用いた、第2の実施例に係る創成研削方法を示すもので、図9に示す上記第1実施例方法と同一の部分には同一の符号を付してその説明を省略する。この実施例方法では、先ず、上記第1実施例方法と同様に、砥石10をX軸方向に後退させてワーク2から離隔させ、ワーク2と砥石10とをこれらの噛合い開始点に位置決めした後、砥石10をX軸方向に前進させて両者を噛合わせる(図12(a)参照)。この状態から、ワーク2の回転軸(C軸)の回転と、砥石10のY軸方向への直線移動とを、両者2,10の噛合い終了位置まで同時に行なわせるとともに、この両者2,10の相対運動中に、砥石10をZ軸方向にも移動させる(図12(b)参照)。また、ワーク2が円錐歯車の場合には、その円錐角δに対応して、Z軸方向およびX軸方向に移動させる。
このようにして第1回目の創成運動による研削を行なった後、砥石10をX軸方向へ後退させ、さらに、C軸によるワーク2の逆方向の回転とY軸による砥石10の逆方向への直線移動とを同期して行なわせる(図12(c)参照)。また、Z軸方向にも逆方向へ移動させて砥石10を元の歯幅方向の端部位置に戻す。次に、上記第1実施例方法と同様に、Z軸方向にΔZだけ移動してワーク2と砥石10との噛合い位置を歯幅方向にずらす。この位置で砥石10を前進させてワーク2に噛合わせ、上記1回目の工程と同様の次の創成運動による研削加工を行なう。以上の工程を歯幅の長さに渡って繰返してすべての歯形の歯面全体の創成研削加工を行なう。なお、上記戻り過程において、Z軸方向には、前回の創成運動中に移動させた量のすべてを戻さず、次の研削加工を行なうためにZ軸方向に移動させる量ΔZだけ前回の歯幅方向の加工開始位置からずらした位置まで戻すようにしても良い。
この第2実施例では、歯幅方向に分割して限定された長さ(ΔZ)ずつ繰返して研削を行ない、しかも、C軸によるワーク2の回転とY軸による砥石10の直線移動を同期させて行なう間に、砥石10のZ軸方向の移動も行なわせるので、研削加工が施された歯面には、図11(b)に示すような、傾斜した砥石目が表われる。
上記各実施例では、ワーク(セクタギア)2がインボリュート歯車である場合について説明したが、バリアブルギアレシオの歯車の場合にも、創成運動による研削加工が可能である。上記のようなインボリュート歯車とラックとの噛合いにおいては、歯車が一定の速度で回転するとき、ラックも一定の速度で直線移動する。これに対し、バリアブルギアレシオの歯車の場合には、歯車が一定速度で回転するとき、ラックの移動速度は一定ではなく変化する。従って、ラックの圧力角は変化せずに、歯車のピッチ円rが変化するので、基礎円も変化する。
バリアブルギアレシオの歯車が一定速度で回転する際の回転角度Δθに対する、ラックの移動量ΔYは以下の式で表わすことができる。そこで、歯車とラック型断面の砥石とを以下の関係で相対的に移動させることにより、バリアブルギアレシオの歯車の歯面について創成研削を行なうことが可能になる。図13は、バリアブルギアレシオの歯車20の回転角θと、ラック状砥石10の移動量Yとの関係を示す図であり、バリアブルギアレシオの歯車20の回転軸Cの回転角度がθのときに、ラック状砥石10のY軸方向の直線移動量Yは以下の式で表わすことができる。
−θ ≦θ≦−θ の時
Y=−Y +r (θ+θ
−θ ≦θ≦−θ の時
Y=−Y +r (θ+θ )+1/2k(θ+θ
−θ ≦θ≦θ の時
Y=−Y +r (θ+θ
θ ≦θ≦θ の時
Y= Y +r (θ−θ )−1/2k(θ−θ
θ ≦θ≦θ の時
Y= Y +r (θ−θ ) ……(1)´
C=θ=(θ −Δθn) ……(2)´
なお、Y ,θ は、Y軸およびC軸の研削開始点であり、
,θ ,Y ,θ はピッチ円rの変化点であり、
それぞれ以下の関係がある。
=r θ
=r θ −1/2k(θ −θ
=r θ −1/2k(θ −θ +r (θ −θ

k=−{(r −r )/(θ −θ )} ……(3)´
但し、r:ピッチ円半径
θ:歯車回転角
Y:ラック移動量
バリアブルギアレシオの歯車の場合には、上記(1)式および(2)式に変えて、この(1)´式および(2)´式により決定するθとYの値に応じて、上記ワーク(バリアブルギアレシオの歯車)20を回転させるC軸とラック状の砥石10を直線移動させるY軸との相対的な移動量を制御することにより、上記インボリュート歯車の場合と同様に、すべての歯の歯面を創成運動により研削することができる。
次に、図14および図15により、他の実施例に係る研削方法について説明する。上記図9および図12の各実施例では、ワーク2の回転軸(C軸)の回転と砥石軸(Y軸)の直線移動とを同期させて行なわせることにより創成研削をするとともに、砥石10をワーク2の歯すじ方向(Z軸方向)に分割した微小量(ΔZ)ずつ移動させていたが、この実施例では、ワーク2の回転軸(C軸)の回転と砥石軸(Y軸)の直線移動による創成運動を微小量ずつ分割して行ないつつ、砥石10を歯幅方向の端部から他方の端部まで一気に移動させることにより研削加工を行なうようになっている。
先ず、インボリュート歯車の場合について説明する。創成運動を行なう2つの制御軸(ワーク2を回転させるC軸と、砥石10をワーク2に噛合いつつ直線移動させるY軸)は以下のように制御される。すなわち、ワーク(セクタギア)2とラック型断面を有する研削砥石10との噛合いの中立位置を基準点P ,P10として、θ およびY は各軸の研削開始点であり、以下の関係にある。
=rθ ……(4)
(r:ピッチ円半径)
この噛合いの開始点から、C軸が、微小分割角Δθずつn回回転した時、各軸は以下のように位置決め制御される(図14(b)参照)。
Y=(−Y +Δθ×r×π×n/180°) ……(5)
C=(θ −Δθ×n) ……(6)
この実施例に係る研削方法では、ワーク2を回転させるC軸と砥石10を直線移動させるY軸とを、上記(5)および(6)式に従って微小分割量ずつ移動制御しつつ、砥石10をZ軸方向へ大きくストロークさせることによって研削を行なう。先ず、ラック状断面の砥石10をX軸方向に後退させるとともに、この砥石10をZ軸方向に移動させてワーク2の歯幅方向の外側に位置させる。このZ軸方向の移動量は、歯幅Lの端部側に、所要の余裕分をCb を加えた量だけストローク(ストローク量をSとする)するように決定する(図16参照)。また、ワーク2とラック状断面の砥石10との噛合いの中立位置から、この砥石10のY軸方向の直線移動とワーク2のC軸の回転を同期して行なわせ、それぞれY およびθ の噛合い開始点に移動させる(図15(a)のワーク2と破線の砥石10参照)。次に、砥石10をX軸方向に前進させて、ワーク2と砥石10とが噛合い可能な位置に移動させる(図15(a)のワーク2と実線の砥石10参照)。なお、この時点では、図16に示すように、ラック状断面の砥石10はZ軸方向に移動されて歯幅方向の外側に位置しているので、ワーク2と砥石10とは実際には噛合っていないが、砥石10をZ軸方向にストロークさせるとこれら砥石10とワーク2とが噛合った状態になる。
次に、ラック状砥石10をワーク(セクタギア)2の歯すじ方向に直線移動させる。図16に示すように、ワーク(セクタギア)2の歯が、その回転軸線(C軸)に平行な歯形の場合には、ラック状砥石10を上記C軸と平行に、すなわちZ軸方向だけに直線移動させる。また、図1に示すような円錐歯車の場合には、ラック状砥石10を、Z軸方向に移動させるとともに、この円錐歯車の円錐角δに対応させてX軸方向にも移動させる(図15(b)参照)。Z軸方向のストローク量Sは、上記セット時と同様に歯幅方向の逆の端部に対しても所要量の余裕分Cb を含めた量とする(図16参照)。
第1回目の研削加工を行なった後、X軸によって砥石10を後退させるとともに、Z軸方向にも、砥石10を元の位置すなわちワーク2の歯幅の外側まで戻す(図15(c)参照)。続いて、上述のように、ワーク2の回転軸(C軸)を分割した微小な回転角度Δθ、ラック状断面の砥石10をY軸方向にΔYだけ同期して相対移動させる(図15(d)参照)。その後、図15(a)および(b)に示すように、再びラック状砥石10をX軸方向に前進させた後、この砥石10をZ軸方向およびX軸方向に同期移動させて研削を行なう。このように、上記(5)式および(6)式に従って制御されるC軸とY軸との分割された微小な同期運動と、砥石10のZ軸方向の直線移動(または円錐歯車の場合にはZ軸とX軸の同期した直線移動)を、ワーク2とラック状砥石10との噛合いが外れる位置(図15(e)参照)迄、交互に繰返すことにより、ワーク(セクタギア)2のすべての歯の歯面に創成運動による研削加工を施すことができる。この実施例の研削加工方法を行なった場合には、図11の(c)に示す砥石目の加工面を得ることができる。
なお、この実施例では、ワーク2の停止中に砥石10をZ軸方向(またはZ軸+X軸方向)に直線移動させて1回の研削加工を行なった後、砥石10をX軸およびZ軸方向に戻して次の研削加工を行なっているが、このように常に同一方向に研削加工を行なうものに限らず、1回の研削加工が終了した後、砥石10をX軸およびZ軸方向に戻さずその位置で、C軸およびY軸をそれぞれΔθ,ΔYだけ同期移動させて両者の噛合い位置をずらした後、砥石10をZ軸方向(またはZ軸+X軸方向)に逆にストロークさせることにより次の研削加工工程を行なうようにすることもできる。
図17はさらに他の実施例に係る研削方法を示すものである。基本的には、上記図14ないし図16で説明した実施例方法と同様に、上記(5)式および(6)式に従って行なわれるC軸とY軸の分割された微小な同期運動と、砥石10のZ軸方向の直線移動(またはZ軸とX軸の同期した直線移動)とを交互に組み合せて行なうものであるが、本実施例ではさらに、砥石10を直線移動させて研削を行なう間に、ワーク2の回転方向への相対移動も付加したものである。
この実施例でも、先ず、ワーク2とラック状断面の砥石10との噛合い開始位置への回転方向の位置決めと、ワーク2の歯幅方向の外側への砥石10の移動(図16参照)とを行なった後、砥石10をX軸方向へ前進させて砥石10とワーク2とが噛合い可能なスタート点へ移動させる(図17(a)参照)。次に、砥石10をワーク2の軸線方向、すなわちZ軸方向に直線移動させるとともに、C軸によるワーク2の回転および砥石10のY軸方向への移動を同期して行なわせる(図17(b)参照)。なお、ワーク2が図1に示す円錐歯車の場合には、上記図15の実施例と同様に、円錐角δに対応させてZ軸とX軸の同期した直線移動を行なわせる。
上記のように、第1回目の研削加工を行なった後、ラック状断面の砥石10をX軸方向およびZ軸方向に戻すとともに、ワーク2をC軸の回転方向に、またこの回転に同期して砥石10をY軸方向に戻す(図17(c)参照)。
次に、C軸とY軸とをそれぞれ分割した微小量Δθ,ΔYだけ同期して移動させて、ワーク2と砥石10との噛合い位置をずらした後(図17(d)参照)、上記図17(a),(b)の工程を再び行なう。以後も、上記図17(a)ないし(d)に示す工程を順次繰返すことによりワーク(セクタギア)2のすべての歯の歯面の研削加工を行なう。この研削加工は、上記(5)式および(6)式に従ってC軸の回転とY軸の移動とを制御しつつ、ワーク2と砥石10との噛合いの終了点に至るまで繰返す(図17(e)参照)。この実施例に係る方法による研削加工を行なった場合には、ワーク2の歯面には、図11の(d)に示すような砥石目を有する加工面が形成される。
なお、ワーク2の回転軸であるC軸の回転と、ラック状断面の砥石10を上記ワーク2に噛合せつつ直線移動させるY軸の作動とを同期させて微小量(Δθ,ΔY)ずつ行なう創成運動と、砥石10のZ軸方向の直線移動(または円錐歯車の場合にはZ軸とX軸の同期した直線移動)とを交互に行なわせる図15の実施例でも、上記(5),(6)式による各軸(C軸およびY軸)の制御に変えて、上記(1)´式および(2)´式によって、ワーク2の回転角と砥石10の移動量とを制御することにより、バリアブルギアレシオの歯車の研削加工を行なうことができる。
図18は、本発明方法を実施する研削装置の他の実施例を示すものであり、この実施例では、ワーク2およびラック状断面を有する砥石10を回転または直線移動させる各軸の構成が、上記図6に示す歯研盤の構成と異なっている。すなわち、可動テーブル30上に、ワーク(セクタギア)2の回転軸線(この実施例ではワーク2の回転軸をA軸と呼ぶ)を支持するインデックスヘッドが設けられている。可動テーブル30は、上記ワーク2の回転軸(A軸)と直交する方向に配置されたZ軸と、ワーク2の回転軸(A軸)と平行な方向に配置されたX軸との両方向に、水平面内で直線移動する。一方、断面が複数歯のラック状をした円形の回転砥石10(図3ないし図5参照)は、水平な軸線O 周りに回転可能に支持され、Y軸によって鉛直方向に上下動できるようになっている。なお、ワーク(セクタギア)2の各歯2A,2B,2Cの圧力角が異なっている場合(図2参照)には、断面がラック状の砥石10(図3ないし図5参照)の各歯10A,10B,10C,10Dを、上記ワーク2の各歯2A,2B,2Cの圧力角に対応させて変化させることはいうまでもない。
この装置では、砥石10はY軸によって上下動だけを行ない、ワーク2は、A軸による回転およびX軸とZ軸による前後左右への直線移動を行なう。また、ワーク2の回転軸(A軸)、このA軸を支持する可動テーブル30を横方向に移動させるZ軸および回転砥石10を鉛直方向に上下動させるY軸はNC制御されるようになっており、一方、可動テーブル30をA軸の軸線方向に移動させるX軸は、NC制御によって、または油圧等によって駆動される。さらに、この実施例では、ワークであるセクタギア2が、図1に示すような円錐歯車であるので、このワーク2の回転軸線(A軸)を、可動テーブル30の水平面に対して、円錐角δだけ傾斜させて取付けている。但し、ワーク2が円錐歯車でなく、歯先が回転軸線(A軸)と平行な歯車の場合には、このA軸を傾斜させず水平な状態で可動テーブル30上に取付けて研削加工を行なえば良い。
図18の装置による研削加工の工程について説明する。X軸方向の移動についてもNC制御される場合には、ワーク2の軸線方向への移動を微小制御できるので、上記図9に示すような、ワーク2の回転と、このワーク2と砥石10との相対的な直線移動とを同期して行なう創成運動によって研削加工をすることが可能である。この場合には、先ず、Y軸により砥石10を上昇させてワーク2と離れた状態にして、A軸によるワーク2の回転とZ軸によるワーク2(すなわち可動テーブル30)の横方向移動により、ワーク2とラック状断面の砥石10との噛合い開始点に位置決めする(ワーク2と砥石10との相対的な位置関係を図9(a)と同様の状態にする)。また、X軸によるワーク2(可動テーブル30)の軸方向移動により、砥石10がワーク2の歯幅方向の端部に噛合うことができる状態にする。
次に、Y軸により砥石10を下降させて、この砥石10とワーク2とを噛合わせる。続いて、A軸によるワーク2の回転とZ軸によるワーク2自体の横方向移動を同期させて、ワーク2と砥石10との噛合いの終了点までの創成運動を行なう。この1回の創成運動により、すべての歯の歯面に対し、また、歯幅方向には限られた一部だけに研削加工が行なわれる。上記図6の装置では、ワーク2の回転(C軸の回転)と砥石10の直線移動(Y軸方向の移動)とを同期させることにより創成運動を行なったが、本実施例装置では、砥石10はY軸方向の昇降だけを行なうので、ワークの2回転とともにワーク2をZ軸方向に直線移動させることにより、砥石10とワーク2との、砥石10の回転軸線と平行な方向への相対移動を行なわせる。
1回目の研削加工を行なった後、Y軸により砥石10を上昇させるとともに、A軸によるワーク2の逆方向の回転とZ軸によるワーク2の逆方向の水平移動により、ワーク2と砥石10とを元の位置に戻し、その後、ワーク2が支持されている可動テーブル30を、X軸方向(すなわちセクタギア2の歯すじ方向)に分割された微小量ΔXだけ移動する。続いて上記1回目の研削加工と同様に、Y軸の下降および、A軸の回転とZ軸方向の移動による創成運動を行なって2回目の研削加工を行なう。以後も上記動作を繰返すことにより、ワーク(セクタギア)2のすべての歯の歯面の歯幅方向全域に亘る研削加工を行なう。以上の工程による研削加工を行なった場合には、上記図9の工程による場合と同様に、歯形の研削加工面に図11の(a)に示す砥石目が表われる。この装置を用いた場合にも上記装置を用いた場合と同様に、非整数歯数の歯車、円錐歯車、歯毎に圧力角の異なる歯車等に対応でき、同様の効果を奏することができる。
なお、上記研削工程の説明では、1回の創成運動を行なった後、この研削時の創成運動と逆方向に、A軸の回転とZ軸の移動を行なわせて元の位置に戻し、常に同方向から研削を行なうようにしていたが、各回の創成運動による研削加工の後、その位置でX軸方向にワークを微小量ΔXずつ移動させることにより、交互に逆方向に向かって創成運動を行なって研削加工をするようにしても良い。
また、上記実施例では、円錐歯車であるワーク2の回転軸(A軸)を水平面に対して、上記円錐角δだけ傾斜させることにより、研削加工をする位置を歯すじ方向に移動させる際に、可動テーブルをX軸方向に分割量(ΔX)ずつ移動させるようにしたが、円錐歯車の回転軸(A軸)を水平に支持させた場合には、可動テーブル30をX軸方向に分割量(ΔX)だけ移動させるとともに、円錐角δに対応する量(ΔY)だけY軸を昇降させて、歯すじ方向の噛合い位置をずらすようにすれば良い。
また、この研削装置を用いて研削を行なう場合にも、A軸によるワーク2の回転角度に対するワーク2(すなわち可動テーブル30)のZ軸方向の移動量を、上記(1)´式および(2)´式に従って変化させることにより、バリアブルギアレシオの歯車の歯形の研削加工を行なうことができる。なお、この場合には、上記(1)´式および(2)´式およびその説明中のC軸をA軸と、Y軸をZ軸と読み変えることはいうまでもない。
さらに、上記A軸によるワーク2の回転とZ軸によるワーク2の横方向移動とを同期して行なわせる創成運動によって研削加工をしている間に、X軸によるワーク2の軸方向への移動を付加することにより、上記図12の工程による場合と同様に、図11の(b)に示すような砥石目が表われる歯形の加工面を得ることができる。
X軸方向の移動がNC制御ではなく油圧等の駆動機構による場合には、ワーク2をその歯幅方向に微小移動させる制御ができないので、上記のように歯面を歯幅方向に分割し、ワーク2と砥石10とを噛合い開始点から噛合い終了点まで回転させることによる創成運動で研削加工を行なうことができない。そこで、この場合には、X軸によりワーク2をその軸線方向に一気にストロークさせることにより研削加工を行なう。この研削加工の工程について、図19により説明する。先ず、Y軸により砥石10を上昇させてワーク2から離隔させておく。また、A軸によるワーク2の回転と、Z軸によるワーク2の横方向移動により、ワーク2と砥石10とを噛合いの開始点において対向するように位置決めする(図19(a)のワーク2と破線で示す砥石10参照)。さらに、X軸によりワーク2を軸方向に移動させることによって、上記図16に示すように、砥石10が、ワーク2の歯幅方向の端部からさらにストロークSの余裕分Cbを含めた外側に位置するように移動させる。
上記状態から、Y軸により砥石10を下降させて研削のスタート地点に位置させる(図19(a)のワーク2と実線で示す砥石10参照)。次に、X軸によりワーク2をその軸線方向に一気にストロークさせる(図19の(b)参照)。このストローク終了位置も、上記ストロークの開始位置と同様に、歯幅方向の端部にストロークの余裕分Cbを加えた分だけワーク2の歯形よりも外側に位置するようになっている。
上記第1回目の軸方向への研削が終了した後、ワーク2を、A軸によって分割された所定角度(Δθ)回転させるとともに、この角度に対応する量(ΔZ=rΔθ)だけ、ワーク2をZ軸方向に直線移動させる(図19の(c)参照)。このように、砥石10とワーク2との噛合い位置を歯たけ方向に微小量だけずらした後、X軸によってワーク2を上記第1回目の研削時と逆方向に直線移動させて次の研削工程を行なう。以後も、上記X軸による往復方向の研削工程と、ワーク2のΔθの回転およびΔZの横方向移動による相対運動を、ワーク2と砥石10との噛合いが外れる位置まで交互に繰返し(図19の(d)参照)、ワーク(セクタギア)2のすべての歯形の歯面全体について研削加工を行なう。
なお、上記図19の方法では、ワーク2のX軸方向のストロークを往復方向に行なわせて研削加工をしていたが、1回のストロークによる研削加工を行なった後、一旦Y軸により砥石10を上昇させるとともに、ワーク2をX軸により逆方向に移動させて上記研削開始位置に戻し、その後、ワーク2のΔθの回転およびΔZの横方向移動による相対運動によって歯たけ方向に噛合い位置をずらし、再びY軸を下降させた後、X軸によりワーク2を上記工程と同方向にストロークさせて研削加工を行なうようにしても良い。また、ワーク2を支持するA軸を傾斜させない場合には、X軸によるワーク2のストロークと同期して、ワーク(セクタギア)2の円錐角δに対応する量だけY軸によって砥石10を昇降させるようにしても良い。この工程によって研削加工を行なった場合には、ワーク2の歯面には、上記図15の方法と同様に、図11の(c)に示す砥石目が表われる。
また、ワーク2をX軸方向にストロークさせる毎に行なう、ワーク2のA軸による分割量Δθの回転およびこの回転に対応するZ軸方向の微小量ΔZの直線移動に変えて、上記(1)´式および(2)´式に従ってA軸(上記式中ではC軸)の回転とZ軸(上記式中ではY軸)の移動とを制御すれば、バリアブルギアレシオの歯車の研削を行なうこともできる。
さらに、図19に示す工程によってワーク2をX軸方向にストロークさせて研削を行なう間に、A軸によるワーク2の回転とZ軸方向へのワーク2の横移動を付加するようにしても良い。この運動を付加することにより、上記図17による加工の場合と同様に、図11の(d)に示す砥石目を有する加工面を得ることができる。
なお、上記第2の研削装置には、ワーク2の軸線(A軸)上にドレッサ32が設けられており、砥石10は、研削加工を行なう毎にこのドレッサ32によってツルーイングが行なわれる。ツルーイングを行なう際には、ドレッサ32は常に垂直の姿勢を保ち、Y軸およびZ軸の制御によって、図20に示すように、砥石10のラック状の歯面が片側ずつ成形される。
次に、上述した実施形態の内容から把握し得る前記請求項に記載された発明以外の発明について記載する。
イ)円周部分歯を有し、これらすべての歯の歯面に創成研削が行なわれていることを特徴とする歯車。
この発明に係る円周部分歯を有する歯車は、すべての歯の歯面に創成による研削が施されているので、例えばパワーステアリング装置に適用した場合には、据切り時のように大きい出力が必要な端部の歯におけるギアの伝達効率が向上する。
ロ)上記歯車が、非整数歯数の円周部分歯を有していることを特徴とする。
ハ)上記歯車が、円錐歯車であることを特徴とする。
ニ)上記歯車が、バリアブルギアレシオ歯車であることを特徴とする。
ホ)上記歯車は、各歯のうち少なくとも1つの歯の圧力角が、他の歯の圧力角と異なっていることを特徴とする。。
ヘ)断面形状が複数歯の直線ラック型であり、円周部分歯を有する歯車に噛合って相対運動をすることにより上記歯車の全歯に創成研削を行なうことを特徴とする歯車の研削用砥石。
この発明に係る砥石は、一般的なNC制御の平面研削盤等の装置によって歯形研削を行なうことができる。
ト)上記ラック型の複数の歯のうち少なくとも1つの歯の圧力角が、他の歯の圧力角と異なっていることを特徴とする上記歯車研削用砥石。
チ)円周部分歯を有する歯車を回転可能に支持させるとともに、断面形状が上記歯車の各歯に噛合う複数歯のラック型である円形砥石を、上記歯車の回転軸線と直交する軸線を中心に回転自在に支持させ、かつ、上記円形砥石を上記歯車の回転軸線に向かって進退動可能に、また、上記歯車と円形砥石とを、円形砥石の回転軸線に平行に相対移動可能に、そして、上記歯車と円形砥石とを、歯車の軸線方向に沿って相対移動可能に構成し、上記歯車の回転と、この歯車と円形砥石との円形砥石の軸線方向への相対移動とを同期して行なわせることによる創成運動、および上記歯車と円形砥石との歯車の軸線方向への相対移動を交互に行なわせることにより、上記歯車のすべての歯の歯面の研削を行なうことを特徴とする円周部分歯を有する歯車の研削方法。
この発明に係る歯車の研削方法は、非整数歯数の円周部分歯を有する歯車のすべての歯の歯面の研削が可能である。また、バリアブルギアレシオの歯車の研削が可能である。さらに、各歯毎に圧力角が異なる円周部分歯を有する歯車の研削がである。
リ)円周部分歯を有する歯車を回転可能に支持させるとともに、断面形状が上記歯車の各歯に噛合う複数歯のラック型である円形砥石を、上記歯車の回転軸線と直交する軸線を中心に回転自在に支持させ、かつ、上記円形砥石を上記歯車の回転軸線に向かって進退動可能に、また、上記砥石をその回転軸線に平行な方向と歯車の軸線に平行な方向とにそれぞれ移動可能に構成し、砥石を歯車方向に前進させて両者を噛合わせた後、砥石の軸線方向の移動と歯車の回転を同期して行なわせることによる創成運動と、砥石を歯車の軸線方向に移動させる運動とを交互に行なわせることにより、上記歯車のすべての歯の歯面の研削を行なうことを特徴とする円周部分歯を有する歯車の研削方法。
ヌ)円周部分歯を有する歯車を回転可能に支持させるとともに、断面形状が上記歯車の各歯に噛合う複数歯のラック型である円形砥石を、上記歯車の回転軸線と直交する軸線を中心に回転自在に支持させ、かつ、上記円形砥石を上記歯車の回転軸線に向かって進退動可能に、また、上記歯車をその回転軸線の方向と上記砥石の軸線に平行な方向とにそれぞれ移動可能に構成し、砥石を歯車方向に前進させて両者を噛合わせた後、歯車の回転と砥石の軸線方向への歯車の移動とを同期して行なわせることによる創成運動と、歯車をその軸線方向に移動させる運動とを交互に行なわせることにより、上記歯車のすべての歯の歯面の研削を行なうことを特徴とする円周部分歯を有する歯車の研削方法。
ル)円形砥石を歯車側から後退させた位置で、歯車を所定角度回転させるとともに、円形砥石と歯車とを上記歯車の回転角に対応する距離だけ砥石の軸線方向に相対移動させて、歯車と砥石とを噛合開始点における離隔した位置に対向させ、その後、砥石を歯車方向に前進させ、歯車の歯幅方向の端部における噛合開始点で両者を噛合せ、次に、歯車の回転と、歯車と砥石との砥石の軸線方向への相対移動とを同期して行なわせて噛合終了点までの創成運動を行ない、続いて、歯車と砥石との歯車の軸線方向への微小な相対移動により、歯幅方向へ両者の噛合位置をずらした後、再度上記創成運動を行ない、以後、歯車の軸線方向の微小な相対移動と上記創成運動とを繰返して行なうことにより、上記歯車のすべての歯の歯面の研削を行なうことを特徴とする歯車の研削方法。
ヲ)上記歯車の回転と、歯車と砥石との砥石の軸線方向への相対移動を同期させて噛合い開始点から噛合い終了点までの創成運動を行なわせている間に、歯車と砥石とを歯車の軸線方向に相対移動させることを特徴とする上記歯車の研削方法。
ワ)砥石を歯車側から後退させた位置で、歯車を所定角度回転させるとともに、砥石を歯車の回転角に対応する距離だけその軸線方向に相対移動させて、歯車と砥石とを両者の噛合開始点における離隔した位置に対向させ、かつ、砥石と歯車との歯車の軸線方向への相対移動により、砥石を歯車の歯幅よりも外側に位置させ、その後、砥石を歯車方向に前進させて歯車との噛合可能な位置まで移動させ、次に、砥石と歯車とを歯車の軸線方向に歯幅の全長を越える距離に亘って相対移動させ、続いて、歯車の回転と、歯車と砥石との砥石の軸線方向への相対移動とを同期して行なわせることにより、砥石と歯車との噛合位置を歯たけ方向に微小移動させ、再び、砥石と歯車とを歯車の軸線方向に歯幅の全長を越える距離に渡って相対移動させ、以後、歯車の回転と、歯車と砥石との砥石の軸線方向への相対移動とを同期して行なわせる運動と、砥石と歯車との歯車の軸線方向への相対移動とを交互に繰返して行なうことにより、上記歯車のすべての歯の歯面の研削を行なうことを特徴とする上記歯車の研削方法。
カ)上記歯車と砥石とを歯車の軸線方向に相対移動させる間に、歯車の回転と、歯車と砥石との砥石の軸線方向への相対移動を同期させた創成運動を行なわせることを特徴とする上記歯車の研削方法。
ヨ)歯車の回転と、歯車と砥石との砥石の軸線方向への相対移動とを同期させた創成運動は、同一の方向から繰返し行なわれることを特徴とする上記歯車の研削方法。
タ)歯車の回転と、歯車と砥石との砥石の軸線方向への相対移動とを同期させた創成運動は、往復方向に行なわれることを特徴とする上記歯車の研削方法。
レ)砥石と歯車との歯車の軸線方向への移動による研削加工は、同一の方向から繰返し行なわれることを特徴とする上記歯車の研削方法。
ソ)砥石と歯車との歯車の軸線方向への移動による研削加工は、往復方向に行なわれることを特徴とする上記歯車の研削方法。
ツ)歯車の回転と、歯車と砥石との砥石の軸線方向への相対移動とを同期させた創成運動を行なう際に、歯車の回転角に対する、砥石と歯車との相対移動量を変化させることを特徴とする上記歯車の研削方法。
ネ)円周部分歯を有する歯車を回転自在に支持するワーク軸と、上記ワーク軸と直交する方向に配置され、断面形状が上記歯車の各歯に噛合う複数歯のラック型である円形の研削用砥石を回転自在に支持する砥石軸と、研削用砥石を上記ワーク軸に向かって進退動させる進退動手段と、上記ワークと砥石とを、砥石軸に平行に相対移動させる横方向移動手段と、上記ワークと砥石とを、ワークの軸線方向に相対移動させる軸方向移動手段とを備え、上記ワーク軸の回転と、横方向移動手段によるワークと研削用砥石との相対移動とを同期して行なわせることによる創成運動、および軸方向移動手段によるワークと研削用砥石との軸方向への相対移動を交互に行なわせることにより、上記歯車のすべての歯の歯面の研削を行なうことを特徴とする円周部分歯を有する歯車の研削装置。
この発明に係る研削装置は、ワーク軸の回転と、横方向移動手段によるワークと研削用砥石との相対移動とを同期して行なわせることによる創成運動、および軸方向移動手段によるワークと研削用砥石との軸方向への相対移動を交互に行なわせることにより、上記歯車のすべての歯の歯面の研削を行なうようにしたものであり、上記方法の実施に好適である。
ナ)円周部分歯を有する歯車を回転自在に支持するワーク軸と、上記ワーク軸と直交する方向に配置され、断面形状が上記歯車の各歯に噛合う複数歯のラック型である円形の研削用砥石を回転自在に支持する砥石軸と、研削用砥石を上記ワーク軸に向かって進退動させる進退動手段と、上記砥石を、砥石軸に平行に移動させる横方向移動手段と、上記砥石を、ワークの軸線方向に移動させる軸方向移動手段とを備え、進退動手段によって研削用砥石をワーク側に前進させて両者を噛合わせ、上記ワーク軸の回転と、横方向移動手段による砥石の移動とを同期して行なわせることによる創成運動および、軸方向移動手段によるワークの軸方向への砥石の移動を交互に行なわせることにより上記歯車のすべての歯の歯面の研削を行なうことを特徴とする円周部分歯を有する歯車の研削装置。
ラ)円周部分歯を有する歯車を回転自在に支持するワーク軸と、上記ワーク軸と直交する方向に配置され、断面形状が上記歯車の各歯に噛合う複数歯のラック型である円形の研削用砥石を回転自在に支持する砥石軸と、研削用砥石を上記ワーク軸に向かって進退動させる進退動手段と、上記ワークを、砥石軸に平行に移動させる横方向移動手段と、上記ワークを、ワークの軸線方向に向かって移動させる軸方向移動手段とを備え、進退動手段によって研削用砥石をワーク側に前進させて両者を噛合わせ、ワーク軸の回転と、横方向移動手段によるワークの移動とを同期して行なわせることによる創成運動および、軸方向移動手段によるワークの軸方向への移動を交互に行なわせることにより上記歯車のすべての歯の歯面の研削を行なうことを特徴とする円周部分歯を有する歯車の研削装置。
本発明の一実施例に係る円周部分歯を有する歯車(セクタギア)の側面図である。(実施例1) 上記円周部分歯を有する歯車の正面図である。 本発明の一実施例に係る研削用砥石の正面図である。 上記研削用砥石の側面図である。 上記研削用砥石の要部を拡大した縦断面図である。 本発明の一実施例に係る歯車の研削装置の斜視図である。 上記研削装置に取付けられて各方向に移動されるワーク(円周部分歯を有する歯車)と砥石との配置を説明する斜視図である。 上記研削装置によって行なわれる第1の実施例方法の制御方法を説明する図である。 上記研削装置によって行なわれる第1の実施例方法の研削工程を説明する図である。 円錐歯車の場合のワークに対する砥石の移動量を説明する図である。 各実施例方法により歯面に形成される砥石目をそれぞれ示す図である。 上記研削装置によって行なわれる第2の実施例方法の研削工程を説明する図である。 歯車がバリアブルギアレシオの歯車である場合の各軸の制御方法を説明する図である。 上記研削装置によって行なわれる第3の実施例方法の制御方法を説明する図である。 上記第3の実施例方法の研削工程を説明する図である。 上記第3の実施例方法におけるワークと砥石との位置関係を説明する図である。 上記研削装置によって行なわれる第4の実施例方法の研削工程を説明する図である。 本発明の他の実施例に係る歯車の研削装置の斜視図である。 この第2の研削装置によって行なわれる実施例方法の研削工程を説明する図である。 第2の研削装置に設けられたドレッサによるツルーイングの工程を説明する図である。
符号の説明
2 セクタギヤ
2A 上記セクタギヤの歯
2B 上記セクタギヤの歯
2C 上記セクタギヤの歯
10 ラック(砥石)

Claims (5)

  1. 棒状に形成されたセクタシャフトと、このセクタシャフトの外周部の所定範囲に設けられた複数の歯とを備え、
    上記複数の歯のうち少なくとも1つは、この歯と噛合うラックとの噛合い接点と上記セクタシャフトの回転中心とを結ぶ直線を半径とするピッチ円が他の歯と異なるバリアブルギヤレシオに形成され、
    上記複数の歯の歯面であって、上記ラックと噛合う領域の全ては研削が施された砥石目を有し、この砥石目は、層状に形成されることを特徴とするセクタギヤ。
  2. 請求項1に記載のセクタギヤにおいて、
    上記砥石目は、上記歯の軸線方向と略平行に形成されることを特徴とするセクタギヤ。
  3. 請求項1に記載のセクタギヤにおいて、
    周方向に複数本設けられた上記砥石目は互いに略平行であって、上記歯の歯先に対して所定角傾けて設けられ、この複数の砥石目のうち少なくとも1本は、セクタギヤの軸方向一端側から他端側へ向かって設けられることを特徴とするセクタギヤ。
  4. 請求項2または請求項3に記載のセクタギヤにおいて、
    周方向に複数本設けられた上記砥石目の夫々の中間点は、等角度間隔で設けられることを特徴とするセクタギヤ。
  5. 棒状に形成されたセクタシャフトと、このセクタシャフトの外周部の所定範囲に設けられた複数の歯とを備え、
    上記複数の歯の歯面であって、上記ラックと噛合う領域の全ては研削が施された砥石目を有し、
    上記砥石目は、層状に形成されるとともに、この砥石目は、上記歯の周方向に形成されることを特徴とするセクタギヤ
JP2005105651A 2005-04-01 2005-04-01 セクタギヤ Pending JP2005254452A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005105651A JP2005254452A (ja) 2005-04-01 2005-04-01 セクタギヤ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005105651A JP2005254452A (ja) 2005-04-01 2005-04-01 セクタギヤ

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP34760395A Division JP3709473B2 (ja) 1995-12-15 1995-12-15 歯車の研削方法および歯車の研削装置

Publications (1)

Publication Number Publication Date
JP2005254452A true JP2005254452A (ja) 2005-09-22

Family

ID=35080668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005105651A Pending JP2005254452A (ja) 2005-04-01 2005-04-01 セクタギヤ

Country Status (1)

Country Link
JP (1) JP2005254452A (ja)

Similar Documents

Publication Publication Date Title
CA2581724C (en) Method and apparatus for manufacturing a face gear
US6390894B1 (en) Face gear manufacturing method and apparatus
AU680743B2 (en) Threaded grinding wheel, method of dressing, and grinding a workpiece therewith
JPH10230460A (ja) 斜めホブ研削用研削ウォームのプロフィール形成方法、この方法を実施するためのディスク形状のプロフィール形成ツール、及びこの方法を実施するための装置
JP7224109B2 (ja) ワークピースの歯車製造機械加工方法
JPS61117013A (ja) インボリユート歯形の歯面を製作する方法也び機械
JPH06510242A (ja) 平歯車やはすば歯車を機械加工するための方法と装置
JP2000503602A (ja) 割出し中に歯車を加工する方法
JP2010142883A (ja) ドレッシングギアおよび歯車状砥石のドレス方法
CN104718042A (zh) 借助一种工具而修整齿轮的齿面的方法
US9073136B2 (en) Method for generating of non-straight gear teeth
JP6630484B2 (ja) ウォーム形状の研削工具を用いて加工物を硬質微細加工する方法
JP2012096251A (ja) 歯車の製造方法
JP2645735B2 (ja) 割出転動法により歯車歯面を研削する方法及びその方法に適した機械
JP3709473B2 (ja) 歯車の研削方法および歯車の研削装置
CN102211234B (zh) 碟形圆柱齿轮型螺旋渐开线齿轮的滚齿加工方法
JP2005254452A (ja) セクタギヤ
JP2002144150A (ja) 超音波を利用した歯車研削方法及び歯車研削装置
US1989652A (en) Method for finishing internal gears
GB309870A (en) Method and apparatus for lapping spur gears
CN109702276B (zh) 用于加工锥齿轮工件的齿侧面的方法
US1830952A (en) Method of and apparatus for grinding gears
RU2347650C1 (ru) Способ нарезания зубчатых колес с модифицированной формой зубьев
JP2006224240A (ja) ホーニング砥石のドレス方法及びドレス装置
JP2003266241A (ja) 歯車加工方法及び工具成形方法