JP2005253377A - Method for managing fertilizer application and apparatus therefor - Google Patents

Method for managing fertilizer application and apparatus therefor Download PDF

Info

Publication number
JP2005253377A
JP2005253377A JP2004070207A JP2004070207A JP2005253377A JP 2005253377 A JP2005253377 A JP 2005253377A JP 2004070207 A JP2004070207 A JP 2004070207A JP 2004070207 A JP2004070207 A JP 2004070207A JP 2005253377 A JP2005253377 A JP 2005253377A
Authority
JP
Japan
Prior art keywords
plant
growth stage
amount
growth
fertilization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004070207A
Other languages
Japanese (ja)
Other versions
JP4109211B2 (en
Inventor
Atsushi Shinohara
温 篠原
Tatsu Maruo
達 丸尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ESD KK
Original Assignee
ESD KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ESD KK filed Critical ESD KK
Priority to JP2004070207A priority Critical patent/JP4109211B2/en
Publication of JP2005253377A publication Critical patent/JP2005253377A/en
Application granted granted Critical
Publication of JP4109211B2 publication Critical patent/JP4109211B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • Y02P60/216

Landscapes

  • Fertilizing (AREA)
  • Hydroponics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To avoid excessive fertilizer application to a plant, and to prevent increases in a cost caused by the excessive fertilizer application and in environmental loading caused by flowing out of fertilizer, or the like. <P>SOLUTION: The subject method for managing the fertilizer application comprises deciding in which growth stage the plant is at the present time in its growth processes and conducting the fertilizer application to the plant in every growth stage in an amount of the fertilizer application (coefficient α1, α2, α3, α4) determined according to the growth stage at every time when an integrated value of the amount of solar radiation to the plant reaches a prescribed value (threshold value S1, S2, S3, S4) determined according to the growth stage. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、温室などにおける植物への施肥を管理する施肥管理方法および装置 に関するものである。   The present invention relates to a fertilization management method and apparatus for managing fertilization of plants in a greenhouse or the like.

従来、温室などにおける植物への施肥は、土壌に含まれる肥料の濃度を一定に保つように定期的に培養液を培養土に供給するようにしていた(例えば、非特許文献1参照)。   Conventionally, in fertilization to plants in a greenhouse or the like, a culture solution is regularly supplied to the culture soil so as to keep the concentration of the fertilizer contained in the soil constant (see, for example, Non-Patent Document 1).

「イチゴ高設栽培システム」、〔平成16年1月30日検索〕、インターネット<URL:http//www.tokaibussan.com/products/sunup.html>"Strawberry cultivation system" [searched on January 30, 2004], Internet <URL: http // www.tokaibussan.com / products / sunup.html>

しかしながら、従来の施肥方法では、植物の生長過程の各ステージ(生長ステージ)で適切な施肥量が異なるにも拘わらず、培地や水耕液に含まれる肥料の濃度が一定に保たれるので、生長ステージによっては必要以上の養分を与えかねず、過剰施肥によるコストアップと肥料流出による環境負荷の増大などの問題があった。また、肥料濃度管理などによる機器コストや労力の増大の問題もあった。また、成分吸収のアンバランス(例えば、過剰吸収が起こり、過繁茂になり、下葉の光不足や病気が出やすい、また果実の肥大が悪くなる)などが生じてしまう。   However, in the conventional fertilization method, the fertilizer concentration in the culture medium and hydroponic liquid is kept constant, although the amount of appropriate fertilization differs at each stage of the plant growth process (growth stage), Depending on the growth stage, it was possible to give more nutrients than necessary, and there were problems such as increased costs due to excessive fertilization and increased environmental load due to fertilizer runoff. There was also a problem of increase in equipment cost and labor due to fertilizer concentration management. Moreover, imbalance of component absorption (for example, excessive absorption occurs, overgrowth occurs, light shortage and disease of the lower leaf easily occur, and fruit enlargement worsens).

本発明は、このような課題を解決するためになされたもので、その目的とするところは、植物への余分な施肥をなくし、過剰施肥によるコストアップや肥料流出による環境負荷の増大などを抑えることが可能な施肥管理方法および装置を提供することにある。   The present invention has been made in order to solve such problems. The object of the present invention is to eliminate excessive fertilization to plants and to suppress an increase in cost due to excessive fertilization and an increase in environmental load due to fertilizer outflow. An object of the present invention is to provide a fertilization management method and apparatus capable of doing so.

このような目的を達成するために本発明に係る施肥管理方法は、植物への日射量を積算する工程と、植物への日射量の積算値が所定値に達する毎に植物への施肥を行う工程とを設けたものである。この発明によれば、植物への日射量が積算され、この日射量の積算値が所定値に達する毎に植物への施肥が行われる。なお、本発明は、この方法を適用した装置としても構成することができる。   In order to achieve such an object, the fertilization management method according to the present invention includes a step of integrating the amount of solar radiation to the plant and fertilizing the plant every time the integrated value of the amount of solar radiation to the plant reaches a predetermined value. The process is provided. According to this invention, the amount of solar radiation to a plant is integrated, and fertilization to a plant is performed every time the integrated value of this solar radiation amount reaches a predetermined value. The present invention can also be configured as an apparatus to which this method is applied.

この発明において、例えば、植物が現在その生長過程におけるどの生長ステージにあるかを判断するようにし、各生長ステージにおいて、植物への日射量の積算値がその生長ステージに対して定められた所定値に達する毎に、その生長ステージに対して定められた施肥量の施肥を植物に対して行うようにすれば、各生長ステージにおいて適切なタイミングで適切な量の施肥を行うことが可能となる。
なお、本発明において、植物が現在どの生長ステージにあるかの判断は、種を蒔いてからの経過時間(苗の場合は定植してからの経過時間)によって行う方法、植物の生長速度によって行う方法などが考えられる。例えば、葉の展開速度(葉の枚数が何枚あるかなど)や花房の開花(栄養生長から生殖生長に入ってくる)などによって生長ステージを判断することができる。この生長ステージの判断は人が行ってもよい。
In this invention, for example, it is determined which growth stage the plant is currently in the growth process, and in each growth stage, the integrated value of the amount of solar radiation to the plant is a predetermined value determined for the growth stage. If the fertilizer is applied to the plant every time when the growth stage is reached, an appropriate amount of fertilizer can be applied at an appropriate timing in each growth stage.
In the present invention, the growth stage at which a plant is currently present is determined by a method that is based on an elapsed time since planting (in the case of a seedling, an elapsed time after planting), or a growth rate of the plant. Possible methods. For example, the growth stage can be determined by the speed of leaf development (such as how many leaves are present) and flowering of the inflorescence (coming from vegetative growth to reproductive growth). This growth stage may be judged by a person.

本発明によれば、植物への日射量が積算され、この日射量の積算値が所定値に達する毎に植物への施肥が行われるものとなり、例えば、植物の生長過程における生長ステージ毎に植物への施肥量を定めるようにすることによって、植物への余分な施肥をなくし、過剰施肥によるコストアップや肥料流出による環境負荷の増大などを抑えることが可能となる。   According to the present invention, the amount of solar radiation applied to a plant is integrated, and fertilization to the plant is performed every time the integrated value of this solar radiation amount reaches a predetermined value. For example, each plant in each growth stage in the growth process of the plant By determining the amount of fertilization applied to the plant, it is possible to eliminate excessive fertilization to the plant, and to suppress an increase in cost due to excessive fertilization and an increase in environmental load due to fertilizer outflow.

以下、本発明を図面に基づいて詳細に説明する。
〔実施の形態1:循環式水耕栽培システム〕
図1は本発明に係る施設管理方法の実施に用いる循環式水耕栽培システムの一例を示す構成図である。同図において、1は温室、2は培養液が貯留されたタンク、3はポンプ、4は植物を水耕するベッドであり、タンク2とポンプ3とで肥料供給装置5が構成されている。肥料供給装置5は、ポンプ3の吐出力によって、タンク2に貯留された培養液をベッド4へ供給する。
Hereinafter, the present invention will be described in detail with reference to the drawings.
[Embodiment 1: Circulating hydroponic cultivation system]
FIG. 1 is a block diagram showing an example of a circulating hydroponic cultivation system used for implementing the facility management method according to the present invention. In the figure, 1 is a greenhouse, 2 is a tank in which a culture solution is stored, 3 is a pump, 4 is a bed for hydroponically cultivating plants, and the tank 2 and the pump 3 constitute a fertilizer supply device 5. The fertilizer supply device 5 supplies the culture solution stored in the tank 2 to the bed 4 by the discharge force of the pump 3.

温室1の屋根にはベッド4において水耕される植物への日射量を検出する日射センサ6が設けられている。7は制御装置であり、プロセッサや記憶装置からなるハードウェアと、これらのハードウェアと協働して制御装置としての各種機能を実現させるプログラムとによって実現され、本実施の形態特有の機能として施肥管理機能(後述)を有している。制御装置7は、施肥管理機能によって、日射センサ6からの日射量に基づき、肥料供給装置5によるベッド4への培養液の供給を制御する。   The roof of the greenhouse 1 is provided with a solar radiation sensor 6 that detects the amount of solar radiation on the plants hydroponically cultivated in the bed 4. Reference numeral 7 denotes a control device, which is realized by hardware including a processor and a storage device, and a program that realizes various functions as the control device in cooperation with these hardware. Fertilization is performed as a function unique to the present embodiment. It has a management function (described later). The control device 7 controls the supply of the culture solution to the bed 4 by the fertilizer supply device 5 based on the amount of solar radiation from the solar radiation sensor 6 by the fertilization management function.

通常、植物の生長過程は、例えば4段階の生長ステージに分けられる。図2に通常の植物の生長過程を示す。図2において、横軸は時間、縦軸は生長速度である。先ず、最初は発芽期(生長ステージI:t0〜t1)、次に葉面積が大きくなる栄養生長期(生長ステージII:t1〜t2)、次にある程度まで葉面積が大きくなると生殖生長期(生長ステージIII :t2〜t3)となり、最後に安定期(生長ステージIV:t3以降)を迎える。なお、生長ステージIは、苗の場合は定植期となる。安定期では栄養生長と生殖生長のバランスがとれる。   Usually, the plant growth process is divided into, for example, four stages of growth. FIG. 2 shows a normal plant growth process. In FIG. 2, the horizontal axis represents time, and the vertical axis represents the growth rate. First, the germination stage (growth stage I: t0 to t1), then the vegetative growth period (growth stage II: t1 to t2) where the leaf area increases, and then the reproductive growth period (growth) when the leaf area increases to some extent Stage III: t2 to t3), and finally the stable period (growth stage IV: after t3). The growth stage I is a fixed planting period in the case of seedlings. In the stable period, there is a balance between vegetative growth and reproductive growth.

本実施の形態において、制御装置7には、生長ステージ毎に植物への日射量の積算値に対する閾値(所定値)が定められている。例えば、生長ステージIに対して日射量の積算値に対する閾値S1として、日射センサ6からの日射量に応ずるパルス信号の5パルスが定められている。同様にして、生長ステージII,III については4パルスが閾値S2,S3として、生長ステージIVについては5パルスが閾値S4として定められている。なお、適切な閾値は植物によっても異なるため、植物の種類により、予め必要な閾値を設定するようにする。また、閾値は同じとしてもよい。   In the present embodiment, the control device 7 has a threshold value (predetermined value) for the integrated value of the amount of solar radiation to the plant for each growth stage. For example, for the growth stage I, five pulses of a pulse signal corresponding to the amount of solar radiation from the solar radiation sensor 6 are determined as the threshold S1 for the integrated value of the amount of solar radiation. Similarly, 4 pulses are defined as threshold values S2 and S3 for the growth stages II and III, and 5 pulses are defined as the threshold value S4 for the growth stage IV. In addition, since an appropriate threshold value changes with plants, it is made to set a required threshold value beforehand according to the kind of plant. The threshold values may be the same.

また、制御装置7には、生長ステージ毎に植物への施肥量(培養液の供給量)が定められている。例えば、生長ステージIII における施肥量を100とした場合、生長ステージIに対しては85、生長ステージIIに対しては95、生長ステージIVに対しては90として定められている。本実施の形態では、生長ステージIII における施肥量を設定し、この生長ステージIII における施肥量に対する係数α3を1(α3=1)とし、生長ステージI,II,IVに対する係数α1,α2,α4をα1=0.85、α2=0.95、α4=0.9として設定している。なお、生長ステージI,II,III ,IVに対する施肥量は、係数α1〜α4としてではなく、その施肥量を直に設定するようにしてもよい。また、適切な施肥量は、植物によっても異なるため、植物の種類により、予め必要な施肥量を設定するようにする。   Moreover, the fertilizer application amount (culture solution supply amount) to the plant is determined for each growth stage in the control device 7. For example, when the amount of fertilization in the growth stage III is 100, it is set as 85 for the growth stage I, 95 for the growth stage II, and 90 for the growth stage IV. In this embodiment, the amount of fertilization in the growth stage III is set, the coefficient α3 for the fertilization amount in the growth stage III is set to 1 (α3 = 1), and the coefficients α1, α2, and α4 for the growth stages I, II, and IV are set. α1 = 0.85, α2 = 0.95, and α4 = 0.9. It should be noted that the fertilization amount for the growth stages I, II, III, and IV may be set directly instead of the coefficients α1 to α4. In addition, since an appropriate fertilization amount varies depending on the plant, a necessary fertilization amount is set in advance depending on the type of plant.

図3に制御装置7がその施肥管理機能によって実行する培養液の供給制御処理を示す。制御装置7は図3に示した処理を定期的に繰り返す。先ず、ステップ301において、日射センサ6からの日射量を積算する。そして、種を蒔いてからの経過時間(苗の場合は定植してからの時間)tに基づき、現在の植物の生長ステージを判断する(ステップ302)。   FIG. 3 shows the supply control process of the culture solution executed by the control device 7 using its fertilization management function. The control device 7 periodically repeats the process shown in FIG. First, in step 301, the amount of solar radiation from the solar radiation sensor 6 is integrated. Then, based on the elapsed time since seeding (in the case of a seedling, the time after planting) t, the current growth stage of the plant is determined (step 302).

今、経過時間tがt0〜t1の期間にあるものとする。この場合、制御装置7は、植物は生長ステージIにあるものと判断する。植物が生長ステージIにある場合、制御装置7は、ステップ303へ進み、日射量の積算値が閾値S1に達したか否かを判断する。日射量の積算値が閾値S1に達していれば、生長ステージIII における施肥量に対して係数α1=0.85を乗じ、生長ステージIにおける施肥量を求める(ステップ304)。そして、この施肥量の施肥が行われるように、ポンプ3を駆動し、タンク2に貯留されている培養液をベッド4へ供給する。このようにして、生長ステージIにおいては、日射量の積算値が閾値S1に達する毎に、ベッド4内の植物に対して係数α1=0.85で定まる施肥量の施肥が行われる(図4に示すt0〜t1の期間参照)。   Assume that the elapsed time t is in the period from t0 to t1. In this case, the control device 7 determines that the plant is in the growth stage I. When the plant is in the growth stage I, the control device 7 proceeds to step 303 and determines whether or not the integrated value of the solar radiation amount has reached the threshold value S1. If the integrated value of the solar radiation amount has reached the threshold value S1, the fertilizer application amount in the growth stage I is obtained by multiplying the fertilizer application amount in the growth stage III by a coefficient α1 = 0.85 (step 304). Then, the pump 3 is driven to supply the culture solution stored in the tank 2 to the bed 4 so that this amount of fertilization is applied. In this way, in the growth stage I, every time the integrated value of the amount of solar radiation reaches the threshold value S1, fertilization with a fertilizer amount determined by the coefficient α1 = 0.85 is performed on the plants in the bed 4 (FIG. 4). (Refer to the period from t0 to t1).

経過時間tがt1〜t2の期間に入ると、制御装置7は、植物は生長ステージIIにあるものと判断する。植物が生長ステージIIにある場合、制御装置7は、ステップ305へ進み、日射量の積算値が閾値S2に達したか否かを判断する。日射量の積算値が閾値S2に達していれば、生長ステージIII における施肥量に対して係数α2=0.95を乗じ、生長ステージIIにおける施肥量を求める(ステップ306)。そして、この施肥量の施肥が行われるように、ポンプ3を駆動し、タンク2に貯留されている培養液をベッド4へ供給する。このようにして、生長ステージIIにおいては、日射量の積算値が閾値S2に達する毎に、ベッド4内の植物に対して係数α2=0.95で定まる施肥量の施肥が行われる(図4に示すt1〜t2の期間参照)。   When the elapsed time t enters the period from t1 to t2, the control device 7 determines that the plant is in the growth stage II. When the plant is in the growth stage II, the control device 7 proceeds to step 305 and determines whether or not the integrated value of the solar radiation amount has reached the threshold value S2. If the integrated value of the amount of solar radiation has reached the threshold value S2, the amount of fertilization in the growth stage III is multiplied by a coefficient α2 = 0.95 to obtain the amount of fertilization in the growth stage II (step 306). Then, the pump 3 is driven to supply the culture solution stored in the tank 2 to the bed 4 so that this amount of fertilization is applied. Thus, in the growth stage II, every time the integrated value of the amount of solar radiation reaches the threshold value S2, fertilization with a fertilizer amount determined by the coefficient α2 = 0.95 is performed on the plants in the bed 4 (FIG. 4). (Refer to the period from t1 to t2).

経過時間tがt2〜t3の期間に入ると、制御装置7は、植物は生長ステージIII にあるものと判断する。植物が生長ステージIII にある場合、制御装置7は、ステップ307へ進み、日射量の積算値が閾値S3に達したか否かを判断する。日射量の積算値が閾値S3に達していれば、係数α3=1とし、生長ステージIII における施肥量を読み出す(ステップ308)。そして、この施肥量の施肥が行われるように、ポンプ3を駆動し、タンク2に貯留されている培養液をベッド4へ供給する。このようにして、生長ステージIII においては、日射量の積算値が閾値S3に達する毎に、ベッド4内の植物に対して係数α1=1で定まる施肥量の施肥が行われる(図4に示すt2〜t3の期間参照)。   When the elapsed time t enters the period from t2 to t3, the control device 7 determines that the plant is in the growth stage III. When the plant is in the growth stage III, the control device 7 proceeds to step 307 and determines whether or not the integrated value of the solar radiation amount has reached the threshold value S3. If the integrated value of the solar radiation amount has reached the threshold value S3, the coefficient α3 = 1 is set, and the fertilizer application amount in the growth stage III is read (step 308). Then, the pump 3 is driven to supply the culture solution stored in the tank 2 to the bed 4 so that this amount of fertilization is applied. In this way, in the growth stage III, every time the integrated value of the amount of solar radiation reaches the threshold value S3, the fertilization amount determined by the coefficient α1 = 1 is applied to the plants in the bed 4 (shown in FIG. 4). (Refer to the period from t2 to t3).

経過時間tがt3以降の期間に入ると、制御装置7は、植物は生長ステージIVにあるものと判断する。植物が生長ステージIVにある場合、制御装置7は、ステップ309へ進み、日射量の積算値が閾値S4に達したか否かを判断する。日射量の積算値が閾値S4に達していれば、生長ステージIVにおける施肥量に対して係数α4=0.9を乗じ、生長ステージIVにおける施肥量を求める(ステップ310)。そして、この施肥量の施肥が行われるように、ポンプ3を駆動し、タンク2に貯留されている培養液をベッド4へ供給する。このようにして、生長ステージIVにおいては、日射量の積算値が閾値S4に達する毎に、ベッド4内の植物に対して係数α4=0.9で定まる施肥量の施肥が行われる(図4に示すt3以降の期間参照)。なお、施肥量は流量計等を用いて計測するものとする。   When the elapsed time t enters a period after t3, the control device 7 determines that the plant is in the growth stage IV. When the plant is in the growth stage IV, the control device 7 proceeds to step 309 and determines whether or not the integrated value of the solar radiation amount has reached the threshold value S4. If the integrated value of the solar radiation amount has reached the threshold value S4, the fertilizer application amount in the growth stage IV is obtained by multiplying the fertilizer application amount in the growth stage IV by a coefficient α4 = 0.9 (step 310). Then, the pump 3 is driven to supply the culture solution stored in the tank 2 to the bed 4 so that this amount of fertilization is applied. Thus, in the growth stage IV, every time the integrated value of the amount of solar radiation reaches the threshold value S4, fertilization with a fertilizer amount determined by the coefficient α4 = 0.9 is performed on the plants in the bed 4 (FIG. 4). (Refer to the period after t3). The amount of fertilizer applied shall be measured using a flow meter.

このようにして、本実施の形態では、各生長ステージでの最適な量の施肥を最適なタイミングで行うことが可能となり、植物への余分な施肥をなくし、過剰施肥によるコストアップや肥料流出による環境負荷の増大などを抑えることができるようになる。   In this way, in the present embodiment, it becomes possible to perform the optimum amount of fertilization at each growth stage at the optimum timing, eliminate the extra fertilization to the plant, increase the cost due to excessive fertilization and fertilizer outflow Increase in environmental load can be suppressed.

なお、本実施の形態では、各生長ステージでの最適な量の施肥を最適なタイミングで行うようにしたが、各ステージでの施肥量や施肥のタイミングを調整することによって、植物の生育制御を行うこともできる。このような生育制御を行うことによって、過度の栄養生長の抑制が可能となり、結果的に収穫期間が短縮される。また、生育制御を行うことにより、栽植密度に適合した葉面積が最適化され、単位面積あたりの収量が増大する。また、生育制御を行うことにより、過繁茂が抑制できれば、病害虫による被害が低減される。また、全ての養分が設定された量だけ施用・吸収されることにより、作物の生理障害が低減される。   In this embodiment, the optimum amount of fertilization at each growth stage is performed at the optimum timing, but the plant growth control is performed by adjusting the amount of fertilization and the timing of fertilization at each stage. It can also be done. By performing such growth control, excessive vegetative growth can be suppressed, and as a result, the harvest period is shortened. Further, by controlling the growth, the leaf area suitable for the planting density is optimized, and the yield per unit area is increased. Moreover, if overgrowth can be suppressed by performing growth control, the damage by a pest will be reduced. Moreover, the physiological disorder of a crop is reduced by applying and absorbing all the nutrients by the set amount.

また、本実施の形態では、生長ステージIとIVにおける日射量の積算値に対する閾値S1,S4を等しくし、生長ステップIIとIII における日射量の積算値に対する閾値S2,S3を等しくしたが、生長ステージ毎に閾値が異なる場合や全ての生長ステージについて閾値が同じである場合もあり得る。
また、本実施の形態では、植物が現在その生長過程におけるどの生長ステージにあるのかを経過時間tによって判断するようにしたが、植物の生長速度によって判断するようにしてもよい。植物の生長速度は例えば葉面積の大きさから知ることができる。
In the present embodiment, the thresholds S1 and S4 for the integrated values of solar radiation in the growth stages I and IV are made equal, and the thresholds S2 and S3 for the integrated values of solar radiation in the growth steps II and III are made equal. The threshold value may be different for each stage, or the threshold value may be the same for all the growth stages.
In the present embodiment, the growth stage in the growth process of the plant is determined based on the elapsed time t, but may be determined based on the growth rate of the plant. The growth rate of the plant can be known from the size of the leaf area, for example.

〔実施の形態2:土耕栽培システム〕
図5は本発明に係る施設管理方法の実施に用いる土耕栽培システムの一例を示す構成図である。同図において、図1と同一符号は図1を参照して説明した構成要素と同一或いは同等構成要素を示し、その説明は省略する。
[Embodiment 2: Soil cultivation system]
FIG. 5 is a block diagram showing an example of a soil cultivation system used for implementing the facility management method according to the present invention. 1, the same reference numerals as those in FIG. 1 denote the same or equivalent components as those described with reference to FIG. 1, and the description thereof will be omitted.

この実施の形態2では、植物の栽培を水耕ではなく土耕(隔離ベッド又は養液土耕)で行うものとし、温室1内の空間に配管L1を設け、灌水装置8からの液肥混入器9を介する水あるいは液肥を配管L1のノズルより、植物に対して供給するようにしている。なお、植物に対して液肥を供給する場合には、液肥混入器9を介して灌水装置8からの配管L1への水に肥料を加える。この実施の形態2においても、実施の形態1と同様にして、植物に対する液肥(培養液)の供給量が植物の生長ステージに応じて制御装置7によって制御される。なお、この例では、植物に対する灌水の供給は、培養液の供給とは別の制御で行うものとする。   In this second embodiment, the plant is cultivated not by hydroponics but by soil plowing (isolation bed or nutrient solution soil plowing), a pipe L1 is provided in the space in the greenhouse 1, and the liquid fertilizer mixer from the irrigation device 8 is provided. Water or liquid fertilizer through 9 is supplied to the plant from the nozzle of the pipe L1. In addition, when supplying liquid fertilizer with respect to a plant, a fertilizer is added to the water to the piping L1 from the irrigation apparatus 8 via the liquid fertilizer mixing device 9. FIG. Also in the second embodiment, similarly to the first embodiment, the supply amount of the liquid fertilizer (culture solution) to the plant is controlled by the control device 7 according to the growth stage of the plant. In this example, the supply of irrigation to the plant is performed under control different from the supply of the culture solution.

以上、実施の形態1,2として温室1における植物の栽培を行う場合について説明したが、本発明は温室に限らず、屋外での植物の栽培についても同様にして適用することが可能である。   As mentioned above, although the case where the cultivation of the plant in the greenhouse 1 was demonstrated as Embodiment 1, 2, this invention can be similarly applied not only to a greenhouse but to cultivation of a plant outdoors.

本発明に係る施設管理方法の実施に用いる循環式水耕栽培システムの一例(実施の形態1)を示す構成図である。It is a block diagram which shows an example (Embodiment 1) of the circulation type hydroponic cultivation system used for implementation of the facility management method which concerns on this invention. 通常の植物の生長過程を示す図である。It is a figure which shows the growth process of a normal plant. 制御装置がその施肥管理機能によって実行する培養液の供給制御処理を示す図である。It is a figure which shows the supply control process of the culture solution which a control apparatus performs with the fertilization management function. 植物の生長過程、日射量の積算値および施肥のタイミングを示す図である。It is a figure which shows the growth process of a plant, the integrated value of solar radiation amount, and the timing of fertilization. 本発明に係る施設管理方法の実施に用いる土耕栽培システムの一例(実施の形態2)を示す構成図である。It is a block diagram which shows an example (Embodiment 2) of the soil cultivation culture system used for implementation of the facility management method which concerns on this invention.

符号の説明Explanation of symbols

1…温室、2…タンク、3…ポンプ、4…ベッド、5…肥料供給装置、6…日射センサ、7…制御装置、8…灌水装置、L1…配管。
DESCRIPTION OF SYMBOLS 1 ... Greenhouse, 2 ... Tank, 3 ... Pump, 4 ... Bed, 5 ... Fertilizer supply apparatus, 6 ... Solar radiation sensor, 7 ... Control apparatus, 8 ... Irrigation apparatus, L1 ... Piping.

Claims (6)

植物への日射量を積算する工程と、
前記植物への日射量の積算値が所定値に達する毎に前記植物への施肥を行う工程と
を備えることを特徴とする施肥管理方法。
Integrating the amount of solar radiation on the plant;
And a step of fertilizing the plant every time an integrated value of the amount of solar radiation on the plant reaches a predetermined value.
植物が現在その成長過程におけるどの生長ステージにあるかを判断する成長ステージ判断工程と、
前記植物への日射量を積算する工程と、
前記各生長ステージにおいて、前記植物への日射量の積算値がその生長ステージに対して定められた所定値に達する毎に、その生長ステージに対して定められた施肥量の施肥を前記植物に対して行う工程と
を備えることを特徴とする施肥管理方法。
A growth stage determination process for determining which growth stage the plant is currently in the growth process;
Integrating the amount of solar radiation to the plant;
In each growth stage, whenever the integrated value of the amount of solar radiation on the plant reaches a predetermined value determined for the growth stage, fertilization of the amount of fertilization determined for the growth stage is applied to the plant. A fertilization management method comprising the steps of:
前記成長ステージ判断工程は、前記植物の生長速度によって植物が現在どの生長ステージにあるのかを判断することを特徴とする施肥管理方法。   The growth stage judging step judges which growth stage the plant is currently in based on the growth rate of the plant. 植物への日射量を積算する手段と、
前記植物への日射量の積算値が所定値に達する毎に前記植物への施肥を行う手段と
を備えることを特徴とする施肥管理装置。
Means for accumulating solar radiation on plants;
Means for applying fertilizer to the plant each time an integrated value of the amount of solar radiation to the plant reaches a predetermined value.
植物が現在その成長過程におけるどの生長ステージにあるかを判断する成長ステージ判断手段と、
前記植物への日射量を積算する手段と、
前記各生長ステージにおいて、前記植物への日射量の積算値がその生長ステージに対して定められた所定値に達する毎に、その生長ステージに対して定められた施肥量の施肥を前記植物に対して行う手段と
を備えることを特徴とする施肥管理装置。
Growth stage judgment means for judging which growth stage the plant is currently in the growth process,
Means for integrating the amount of solar radiation on the plant;
In each growth stage, whenever the integrated value of the amount of solar radiation on the plant reaches a predetermined value determined for the growth stage, fertilization of the amount of fertilization determined for the growth stage is applied to the plant. And a means for performing fertilization.
請求項5に記載された施肥管理装置において、
前記成長ステージ判断手段は、前記植物の生長速度によって植物が現在どの生長ステージにあるのかを判断することを特徴とする施肥管理装置。
In the fertilization management device according to claim 5,
The growth stage determining means determines which growth stage the plant is currently in based on the growth rate of the plant.
JP2004070207A 2004-03-12 2004-03-12 Fertilization management method and apparatus Expired - Fee Related JP4109211B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004070207A JP4109211B2 (en) 2004-03-12 2004-03-12 Fertilization management method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004070207A JP4109211B2 (en) 2004-03-12 2004-03-12 Fertilization management method and apparatus

Publications (2)

Publication Number Publication Date
JP2005253377A true JP2005253377A (en) 2005-09-22
JP4109211B2 JP4109211B2 (en) 2008-07-02

Family

ID=35079718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004070207A Expired - Fee Related JP4109211B2 (en) 2004-03-12 2004-03-12 Fertilization management method and apparatus

Country Status (1)

Country Link
JP (1) JP4109211B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008237161A (en) * 2007-03-28 2008-10-09 Shizuoka Prefecture Method and system for determining growth stage of plant
JP2012179006A (en) * 2011-03-01 2012-09-20 Kaneko Shubyo Kk Device and program for controlling fertilizer application
JP2015053882A (en) * 2013-09-11 2015-03-23 パナソニック株式会社 Hydroponic apparatus
JP7072711B1 (en) 2021-12-10 2022-05-20 株式会社吉野家ホールディングス Fertilization method for plants by quantitative management method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102134395B1 (en) * 2017-12-26 2020-07-15 한국과학기술연구원 Nutrient supplying system for controlling nutrient supply based on gap-adjusted band of target medium weight

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008237161A (en) * 2007-03-28 2008-10-09 Shizuoka Prefecture Method and system for determining growth stage of plant
JP2012179006A (en) * 2011-03-01 2012-09-20 Kaneko Shubyo Kk Device and program for controlling fertilizer application
JP2015053882A (en) * 2013-09-11 2015-03-23 パナソニック株式会社 Hydroponic apparatus
JP7072711B1 (en) 2021-12-10 2022-05-20 株式会社吉野家ホールディングス Fertilization method for plants by quantitative management method
JP2023086293A (en) * 2021-12-10 2023-06-22 株式会社吉野家ホールディングス Fertilization method to plant body by quantitative management method

Also Published As

Publication number Publication date
JP4109211B2 (en) 2008-07-02

Similar Documents

Publication Publication Date Title
Karandish et al. Two-dimensional modeling of nitrogen and water dynamics for various N-managed water-saving irrigation strategies using HYDRUS
CN100568127C (en) Underground drip irrigation water, fertilizer, the integrated autocontrol method of medicine
CN106688861B (en) It is a kind of can auto-control matrix salinity vegetable soilless culture method and system
NO20022946L (en) Process for fertilization of cultivated plants for optimization of quantity and quality of yield
CN202617890U (en) Nutrient solution circulating stand-column-type plant planting equipment
US20220053715A1 (en) Vertical hydroponically plant-growing tower system
JP4109211B2 (en) Fertilization management method and apparatus
JP2007295876A (en) Watering fertilizing controlling method and apparatus in watering fertilizing cultivation
JP4835904B2 (en) Hydroponic cultivation method and hydroponic cultivation apparatus for plants
KR100673601B1 (en) Production method for seed potatoes
JP5690173B2 (en) Fertilization control device and fertilization control program
JP4242629B2 (en) Circulating hydroponic equipment
JP2002058369A (en) Method for hydroponics of soil culture, nutrient solution control sheet for hydroponics of soil culture and nutrient solution control system for hydroponics of soil culture
KR20190076515A (en) Nutrient supplying apparatus for controlling nutrient supply based on the nutrient concentration in culture medium
KR20060129986A (en) Mass-production method for seed potatoes
Sandhu et al. Optimizing time distribution of water supply and fertilizer nitrogen rates in relation to targeted wheat yields
Pirman et al. IoT-Based Farming System: Soil Moisture and Temperature Control
JP7000553B2 (en) Cultivation system, management server and cultivation method
CN105631756A (en) System for adjusting fertilization according to difference of temperature accumulation amount and temperature accumulation amount, device and method thereof
JP6110984B1 (en) Irrigation monitoring system
CN108990784A (en) A kind of spinach soilless planting method
JPH01269439A (en) Nutrient water feeding unit
KR102721530B1 (en) A Nnutrient solution supply system of spray type hydroponics system
JPS59140821A (en) Plant culturing apparatus
CN106472290A (en) A kind of cassava time of infertility outside scenery device based on Nutrient Mist

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051226

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20051226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071009

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080403

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140411

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees