JP2005252092A - Heatsink - Google Patents

Heatsink Download PDF

Info

Publication number
JP2005252092A
JP2005252092A JP2004062615A JP2004062615A JP2005252092A JP 2005252092 A JP2005252092 A JP 2005252092A JP 2004062615 A JP2004062615 A JP 2004062615A JP 2004062615 A JP2004062615 A JP 2004062615A JP 2005252092 A JP2005252092 A JP 2005252092A
Authority
JP
Japan
Prior art keywords
flow path
refrigerant
heat exchange
refrigerant flow
heat sink
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004062615A
Other languages
Japanese (ja)
Inventor
Hiroaki Ishikawa
博章 石川
Noriyuki Nakayama
敬之 中山
Toshiyuki Umemoto
俊行 梅本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2004062615A priority Critical patent/JP2005252092A/en
Publication of JP2005252092A publication Critical patent/JP2005252092A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a heatsink which can have sufficient cooling performance even for a heating body with large heat value, and perform epoch-making reduction of deterioration in cooling performance due to clogging of a refrigerant flow passage with foreign matter in a refrigerant. <P>SOLUTION: In the heatsink provided with the refrigerant flow passage 2 extending nearby a part where a heating body 3 is mounted in a heatsink main body 1 mounted with the heating body 3, a heat exchange plate 5 extending along a flow of the refrigerant nearby the part where the heating body 3 is mounted is arranged in the refrigerant flow passage 2 while being coupled with a container 1 in one body. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、例えば半導体素子等の発熱体を冷却するためのヒートシンクに係わり、特に、冷媒を用いたヒートシンクに関するものである。   The present invention relates to a heat sink for cooling a heating element such as a semiconductor element, and more particularly to a heat sink using a refrigerant.

従来のこの種のヒートシンクとして、半導体素子等の発熱体に対する冷却性能を高めるために、3枚の平板状銅製部材(以下、平面部材という)を重ね合わせることにより、その中間平面部材と下側平面部材との間に流入水路を、かつ、中間平面部材と上側平面部材との間に流出水路をそれぞれ形成すると共に、前記中間平面部材の一端側には前記流入水路と流出水路とを連通する複数の孔径が小さな導水孔を一列状に設け、その導水孔側において前記上側平面部材の上部に前記発熱体を実装した構成とし、前記流入水路に供給された水などの冷媒を前記上側平面部材の発熱体実装壁部に噴出させることで前記発熱体の効果的冷却を意図したものは既に知られている(例えば、特許文献1参照)。   As a conventional heat sink of this type, in order to enhance the cooling performance for a heating element such as a semiconductor element, three flat copper members (hereinafter referred to as planar members) are overlapped to obtain an intermediate planar member and a lower planar surface. A plurality of inflow water passages are formed between the intermediate planar member and the upper planar member, and the inflow water passage and the outflow water channel are communicated with one end of the intermediate planar member. The water supply holes having a small hole diameter are provided in a row, and the heating element is mounted on top of the upper planar member on the water conveyance hole side, and a coolant such as water supplied to the inflow water channel is supplied to the upper planar member. The thing which intended the effective cooling of the said heat generating body by making it spray on a heat generating body mounting wall part is already known (for example, refer patent document 1).

特開2003−273441号公報(第5〜6頁、図3)Japanese Patent Laying-Open No. 2003-273441 (pages 5-6, FIG. 3)

従来のヒートシンクは以上のように構成されているので、中間平面部材に設けられた小孔径の複数の導水孔によって発熱体冷却領域での放熱面積が大幅に抑制され、その放熱面積を十分に確保できないため、より高い発熱量の発熱体に対して十分な冷却性能が得られないという課題があった。しかも、前記小孔径の導水孔には、これを通る冷媒中の異物が詰まり易く、異物が詰まった導水孔は閉塞状態となって冷媒が流れなくなり、これに起因して冷媒流量が低下するため、冷却性能が大幅に劣化するという課題があった。   Since the conventional heat sink is configured as described above, the heat dissipation area in the cooling zone of the heating element is greatly suppressed by the plurality of small-diameter water guide holes provided in the intermediate plane member, and the heat dissipation area is sufficiently secured. Therefore, there is a problem that sufficient cooling performance cannot be obtained for a heating element having a higher calorific value. In addition, since the foreign material in the refrigerant passing through the small-diameter water guide hole is easily clogged, the water guide hole clogged with the foreign material is blocked and the refrigerant does not flow, resulting in a decrease in the refrigerant flow rate. There was a problem that the cooling performance deteriorated significantly.

この発明は上記のような課題を解決するためになされたもので、たとえ発熱量が高い発熱体が実装されていても、冷媒流路を流れる冷媒への十分な放熱面積が得られて冷却性能を大幅に向上させることができる信頼性の高いヒートシンクを得ることを目的とする。   The present invention has been made to solve the above-described problems, and even if a heating element having a high calorific value is mounted, a sufficient heat radiation area for the refrigerant flowing through the refrigerant flow path can be obtained and the cooling performance can be obtained. An object of the present invention is to obtain a highly reliable heat sink that can greatly improve the temperature.

この発明に係るヒートシンクは、発熱体が実装されたヒートシンク本体の内部に、前記発熱体の実装部近傍を通る冷媒流路が設けられたヒートシンクにおいて、前記冷媒流路の内部に、発熱体の実装部近傍で冷媒の流れ方向に沿って延びる熱交換プレートを前記ヒートシンク本体の壁部と一体結合させて配置したものである。   The heat sink according to the present invention is a heat sink in which a refrigerant flow path that passes through the vicinity of the mounting portion of the heating element is provided inside the heat sink body in which the heating element is mounted, and the heating element is mounted inside the refrigerant flow path. A heat exchanging plate extending in the refrigerant flow direction in the vicinity of the portion is integrally coupled to the wall portion of the heat sink body.

この発明によれば、ヒートシンク本体の内部に設けられている冷媒流路に、前記ヒートシンク本体における発熱体の実装部近傍で冷媒の流れ方向に沿って延びる熱交換プレートを前記ヒートシンク本体の壁部と一体結合させて配置するように構成したので、ヒートシンク本体の発熱体実装部近傍において、発熱体からヒートシンク本体に伝わる熱を、ヒートシンク本体と一体結合された熱交換プレートに効率よく伝導させることができ、このため、ヒートシンク本体の発熱体実装部近傍を流れる冷媒に対する放熱面積が前記熱交換プレートによって増大し、しかも、その熱交換プレートは、前記冷媒流路を流れる冷媒に常に浸されるので、頗る効率的な熱交換が行われて冷却効率が大幅に向上するという効果がある。   According to this invention, the heat exchange plate extending along the flow direction of the refrigerant in the vicinity of the mounting portion of the heat generating body in the heat sink main body is provided in the refrigerant flow path provided in the heat sink main body with the wall portion of the heat sink main body. Since it is configured to be integrally coupled, the heat transferred from the heating element to the heat sink body can be efficiently conducted to the heat exchange plate integrally coupled to the heat sink body in the vicinity of the heating element mounting portion of the heat sink body. For this reason, the heat radiation area for the refrigerant flowing in the vicinity of the heating element mounting portion of the heat sink body is increased by the heat exchange plate, and the heat exchange plate is always immersed in the refrigerant flowing through the refrigerant flow path. There is an effect that cooling efficiency is greatly improved by performing efficient heat exchange.

実施の形態1.
図1はこの発明の実施の形態1によるヒートシンクの要部を示す横断平面図、図2は図1の縦断側面図である。
図1および図2に示すヒートシンクは、銅などの熱伝導率の高い部材で形成されたヒートシンク本体となる平面矩形状(詳しくは平面長方形状)の容器1の内部に形成した冷媒流路2を有し、その容器1の前面壁(以下、ヒートシンク前壁という)1a側の上壁面に実装した半導体素子等の発熱体3を備えている。図示例の冷媒流路2は、容器1内に流路画成部材4を一体的に嵌着結合することにより、その流路画成部材4の側壁面と前記容器1の内壁面との間に形成されているもので、さらに詳しくは、前記容器1の一側壁内面に沿った冷媒入口側の流路(以下、入口側冷媒流路という)2aと、前記容器1の他側壁内面に沿った冷媒出口側の流路(以下、出口側冷媒流路という)2cと、前記容器1における発熱体3の実装領域近傍で前面壁1aに沿って前記入口側冷媒流路3aと出口側冷媒流路3cとを一連に接続する中継冷媒流路2bとからなっている。
Embodiment 1 FIG.
1 is a cross-sectional plan view showing a main part of a heat sink according to Embodiment 1 of the present invention, and FIG. 2 is a longitudinal side view of FIG.
The heat sink shown in FIG. 1 and FIG. 2 includes a refrigerant flow path 2 formed inside a flat rectangular (specifically, flat rectangular) container 1 serving as a heat sink main body formed of a member having high thermal conductivity such as copper. And a heating element 3 such as a semiconductor element mounted on the upper wall surface of the container 1 on the front wall (hereinafter referred to as the front wall of the heat sink) 1a. In the illustrated example, the refrigerant flow path 2 is formed by integrally fitting and coupling the flow path defining member 4 in the container 1, so that the side wall surface of the flow path defining member 4 and the inner wall surface of the container 1 are interposed. More specifically, the refrigerant inlet side flow path (hereinafter referred to as inlet side refrigerant flow path) 2a along the inner surface of one side wall of the container 1 and the inner surface of the other side wall of the container 1 are described in more detail. The refrigerant outlet side flow path (hereinafter referred to as the outlet side refrigerant flow path) 2c and the inlet side refrigerant flow path 3a and the outlet side refrigerant flow along the front wall 1a in the vicinity of the mounting area of the heating element 3 in the container 1 The relay refrigerant flow path 2b connects the path 3c in series.

このような流路構成の冷媒流路2において、容器1の発熱体3の実装領域近傍を通る中継冷媒流路2b内には、冷媒の流れ方向に沿った熱交換プレート5の複数枚が流路幅方向に所定の間隔で平行に配置されている。それらの熱交換プレート5は、各々の熱交換プレート5を肉厚方向に貫通する複数の冷媒通孔5aが設けられた同一寸法の有孔平板からなり、それぞれの上下端部が前記中継冷媒流路2bの上下壁面に一体結合されている。このような熱交換プレート5は、前記容器1の材質と同様に、銅などの熱伝導率が高い部材で形成されるが、熱伝導率が高く、冷媒に腐食され難い材料であれば、どのような材料であってもよい。   In the refrigerant flow path 2 having such a flow path structure, a plurality of heat exchange plates 5 along the flow direction of the refrigerant flow in the relay refrigerant flow path 2b passing through the vicinity of the mounting region of the heating element 3 of the container 1. They are arranged in parallel in the road width direction at predetermined intervals. These heat exchange plates 5 are made of perforated flat plates having the same dimensions and provided with a plurality of refrigerant through holes 5a penetrating each heat exchange plate 5 in the thickness direction. The upper and lower wall surfaces of the path 2b are integrally coupled. Such a heat exchange plate 5 is formed of a member having a high thermal conductivity such as copper as in the case of the material of the container 1. However, any material can be used as long as it has a high thermal conductivity and is not easily corroded by the refrigerant. Such a material may be used.

図3は前記熱交換プレート5の寸法および配置間隔等を説明するための斜視図である。図3において、WLは隣り合う熱交換プレート5の間隔幅、WFは前記熱交換プレート5の厚さ、HFは前記熱交換プレート5の高さ、dは冷媒通孔5aの孔径である。
冷媒流路2の中継冷媒流路2bに配置する熱交換プレート5の間隔幅WLは狭いほど、さらに枚数が多いほど冷却性能が高くなるが、これに反して冷媒の流動抵抗も増大する。
そこで、この実施の形態1においては、例えば発熱体3の寸法が長さ10mm×幅2mmで、発熱体3の発熱量が約50W程度の場合には、熱交換プレート5の厚さWFを0.2〜1.0mm、熱交換プレート5の枚数を10枚以下、隣り合う熱交換プレート5の間隔幅WLを0.1〜1.0mm程度にすることが好ましい。また、冷媒通孔5aの孔径dは、隣り合う熱交換プレート5の間隔幅WLの2〜3倍程度大きくするのが最も効率がよい。さらに、冷媒通孔5aの数は、一枚の熱交換プレート5における冷媒通孔5aの合計開口面積が、隣り合う熱交換プレート5の間隔幅WL×高さHF=面積と同等程度となるように設定することが好ましい。
なお、上述した熱交換プレート5の寸法および配置間隔等は、理想的な冷却性能を得るために例示したにすぎず、必ずしも上述のように特定されるものではない。
FIG. 3 is a perspective view for explaining the dimensions and arrangement intervals of the heat exchange plate 5. In FIG. 3, WL is the interval width between adjacent heat exchange plates 5, WF is the thickness of the heat exchange plate 5, HF is the height of the heat exchange plate 5, and d is the hole diameter of the refrigerant through hole 5a.
As the interval width WL of the heat exchange plate 5 arranged in the relay refrigerant flow path 2b of the refrigerant flow path 2 is narrower and the number of sheets is further increased, the cooling performance is improved. On the other hand, the flow resistance of the refrigerant is also increased.
Therefore, in the first embodiment, for example, when the dimension of the heating element 3 is 10 mm in length × 2 mm in width and the heating value of the heating element 3 is about 50 W, the thickness WF of the heat exchange plate 5 is set to 0. It is preferable that the number of heat exchange plates 5 is 10 or less and the interval width WL between adjacent heat exchange plates 5 is about 0.1 to 1.0 mm. Further, it is most efficient to make the hole diameter d of the refrigerant passage hole 5a about 2 to 3 times the interval width WL between the adjacent heat exchange plates 5. Further, the number of refrigerant through holes 5a is such that the total opening area of the refrigerant through holes 5a in one heat exchange plate 5 is approximately equal to the interval width WL × height HF = area between adjacent heat exchange plates 5. It is preferable to set to.
In addition, the dimension, arrangement | positioning space | interval, etc. of the heat exchange plate 5 mentioned above were only illustrated in order to acquire ideal cooling performance, and are not necessarily specified as mentioned above.

次に動作について説明する。
図4はヒートシンク本体としての容器1における発熱体3の実装部近傍での熱の流れを点線矢印で示す動作説明図、図5は複数枚の熱交換プレート5間での冷媒の流れを実線矢印で示す動作説明図である。
発熱体3が発した熱は、図4の点線矢印で示すように、容器1の上面壁(ヒートシンク上壁)およびヒートシンク前部壁1aに伝導されると共に、冷媒流路2の中継冷媒流路2b内に配置された複数枚の熱交換プレート5にそれぞれ伝導され、それらの熱交換プレート5の全表面から中継冷媒流路2bの冷媒に放熱されることにより、その冷媒と効率よく熱交換される。ここで、冷媒流路2を流れる水などの冷媒は、図1に矢印で示すように、入口側冷媒流路2aから中継冷媒流路2bを通って出口側冷媒流路2cに向かう流れとなるが、その流れにおいて、前記入口側冷媒流路2aから前記中継冷媒流路2bに流入する冷媒に含まれた異物Sが、図5に示すように、前記中継冷媒流路2b内で流路幅方向に隣り合う熱交換プレート5の上流端間に詰まることも考えられる。その詰まりが生じた場合においても、前記各熱交換プレート5には、それぞれの肉厚方向に貫通する複数の冷媒通孔5aが設けられているため、前記異物Sによる目詰まりが生じた熱交換プレート5間の冷媒流路に隣り合う目詰まりのない冷媒流路を流れる冷媒が、図5の矢印で示すように、前記目詰まりの生じた熱交換プレート5間の流路に当該熱交換プレート5の冷媒通孔5aから流入する。このため、前記異物Sによる目詰まりが生じた熱交換プレート5間の流路においても冷媒の流れを維持することができる。
Next, the operation will be described.
FIG. 4 is an operation explanatory view showing the flow of heat in the vicinity of the mounting portion of the heating element 3 in the container 1 as the heat sink main body with dotted arrows, and FIG. 5 is the solid arrow showing the flow of refrigerant between the plurality of heat exchange plates 5. It is operation | movement explanatory drawing shown by.
The heat generated by the heating element 3 is conducted to the upper wall (heat sink upper wall) of the container 1 and the heat sink front wall 1a as shown by the dotted arrows in FIG. Each of the heat exchange plates 5 arranged in 2b is conducted to the heat exchange plate 5 and radiated from the entire surface of the heat exchange plates 5 to the refrigerant in the relay refrigerant flow path 2b, so that heat is efficiently exchanged with the refrigerant. The Here, the refrigerant such as water flowing in the refrigerant flow path 2 flows from the inlet side refrigerant flow path 2a through the relay refrigerant flow path 2b to the outlet side refrigerant flow path 2c as shown by arrows in FIG. However, in the flow, the foreign matter S contained in the refrigerant flowing into the relay refrigerant flow path 2b from the inlet-side refrigerant flow path 2a is, as shown in FIG. 5, the flow path width in the relay refrigerant flow path 2b. It is also conceivable that the upstream end of the heat exchange plate 5 adjacent in the direction is clogged. Even in the case where the clogging occurs, each of the heat exchange plates 5 is provided with a plurality of refrigerant through holes 5a penetrating in the thickness direction, so that the heat exchange in which clogging with the foreign matter S has occurred. As shown by the arrows in FIG. 5, the refrigerant flowing in the refrigerant flow path adjacent to the refrigerant flow path between the plates 5 flows into the flow path between the heat exchange plates 5 where the clogging occurs. 5 from the refrigerant passage hole 5a. For this reason, the flow of the refrigerant can be maintained also in the flow path between the heat exchange plates 5 in which the clogging due to the foreign matter S has occurred.

以上説明した実施の形態1によれば、上壁面に発熱体3が実装されたヒートシンク本体となる容器1の内部に形成された冷媒流路2において、前記容器1の発熱体3の実装領域近傍を通る箇所の冷媒流路である中継冷媒流路2b内に、冷媒の流れ方向に沿う方向に延びて流路幅方向に所定の間隔で平行する平板状をなした複数の熱交換プレート5をそれぞれの上下端部で前記容器1の壁部と一体結合させて配置するように構成したので、前記容器1における発熱体3の実装部近傍での前記冷媒流路2の冷媒に対する放熱面積が前記複数枚の熱交換プレート5によって著しく増大し、しかも、それら全ての熱交換プレート5が前記冷媒流路2を流れる冷媒に常に浸されるので、たとえ発熱量が高い発熱体3が実装されたヒートシンクであっても、その発熱体3の実装部付近を通る箇所の冷媒流路での十分な放熱面積を確保することができ、これにより頗る効率的な熱交換が行われて冷却効率が大幅に向上するという効果がある。   According to the first embodiment described above, in the refrigerant flow path 2 formed inside the container 1 serving as the heat sink body with the heating element 3 mounted on the upper wall surface, in the vicinity of the mounting region of the heating element 3 of the container 1. A plurality of heat exchanging plates 5 having a flat plate shape extending in a direction along the flow direction of the refrigerant and parallel to the width direction of the flow path at a predetermined interval in the relay refrigerant flow path 2b which is a refrigerant flow path passing through Since each upper and lower end portion is arranged so as to be integrally coupled with the wall portion of the container 1, the heat radiation area for the refrigerant in the refrigerant flow path 2 in the vicinity of the mounting portion of the heating element 3 in the container 1 is The heat exchanger plate 5 is remarkably increased by the plurality of heat exchange plates 5 and all of the heat exchange plates 5 are always immersed in the refrigerant flowing through the refrigerant flow path 2, so that the heat sink on which the heating element 3 having a high calorific value is mounted is mounted. Even It is possible to secure a sufficient heat radiation area in the refrigerant flow path in the place passing through the vicinity of the mounting portion of the heating element 3, thereby performing an effective heat exchange and greatly improving the cooling efficiency. is there.

特に、前記実施の形態1によれば、前記熱交換プレート5にそれぞれの肉厚方向へ貫通する複数の冷媒通孔5aを設けるように構成したので、前記熱交換プレート5間の冷媒流路である中継冷媒流路2bに冷媒中の異物Sによる目詰まりが生じた場合でも、その目詰まり中継冷媒流路2bに隣り合う目詰まりのない中継冷媒流路2bを流れる冷媒が、前記目詰まり側の熱交換プレート5の冷媒通孔5aを通って前記目詰まり中継冷媒流路2bに流入することとなる。このため、前記目詰まり中継冷媒流路2bでの冷媒流動抵抗の低下を最小限に抑えることができ、さらには、その目詰まり中継冷媒流路2bにおいても熱交換プレート5の伝導熱を冷媒に放熱できるため、冷媒中の異物Sによる冷媒流路の詰まりに起因した冷却性能の劣化を画期的に低減できるという効果がある。   In particular, according to the first embodiment, since the plurality of refrigerant through holes 5a penetrating in the thickness direction are provided in the heat exchange plate 5, the refrigerant flow path between the heat exchange plates 5 is provided. Even when clogging due to foreign matter S in the refrigerant occurs in a certain relay refrigerant flow path 2b, the refrigerant flowing through the non-clogging relay refrigerant flow path 2b adjacent to the clogged relay refrigerant flow path 2b becomes the clogging side. The heat exchange plate 5 flows into the clogged relay refrigerant flow path 2b through the refrigerant passage hole 5a. For this reason, it is possible to minimize a decrease in refrigerant flow resistance in the clogged relay refrigerant flow path 2b, and furthermore, in the clogged relay refrigerant flow path 2b, the conduction heat of the heat exchange plate 5 is used as the refrigerant. Since heat can be dissipated, there is an effect that the deterioration of the cooling performance due to the clogging of the refrigerant flow path due to the foreign matter S in the refrigerant can be dramatically reduced.

また、前記実施の形態1によれば、各熱交換プレート5の冷媒通孔5aの孔径dを、隣り合う熱交換プレート5の間隔幅WLの2〜3倍程度の大きさに設定するように構成したので、冷媒中の異物Sによって前記冷媒通孔5aが目詰まりする可能性が極めて少ないという効果がある。さらには、一枚毎の熱交換プレート5における冷媒通孔5aの合計開口面積が、隣り合う熱交換プレート5の間隔幅WL×高さHF=面積と同等程度となるように設定したので、前記冷媒通孔5aを通る冷媒の流動抵抗の増大を最低限に抑えることができるという効果がある。さらに、前記各々の熱交換プレート5は、前記中継冷媒流路2bで冷媒の流れ方向に沿ってヒートシンク前壁1aと平行し、かつ前記中継冷媒流路2bの流路幅方向へ所定の間隔で平行して隣り合う配置となるように構成したので、前記中継冷媒流路2bでの冷媒の整流効果も得られ、その中継冷媒流路2bでの冷媒の流れ分布を均一化できるという効果もある。   Further, according to the first embodiment, the hole diameter d of the refrigerant passage hole 5a of each heat exchange plate 5 is set to a size of about 2 to 3 times the interval width WL between the adjacent heat exchange plates 5. Since it comprised, there exists an effect that there is very little possibility that the said coolant through-hole 5a will be clogged with the foreign material S in a coolant. Furthermore, since the total opening area of the refrigerant through holes 5a in each heat exchange plate 5 is set to be approximately equal to the interval width WL × height HF = area between adjacent heat exchange plates 5, There is an effect that an increase in flow resistance of the refrigerant passing through the refrigerant passage hole 5a can be minimized. Further, each of the heat exchange plates 5 is parallel to the heat sink front wall 1a along the flow direction of the refrigerant in the relay refrigerant flow path 2b, and at a predetermined interval in the flow path width direction of the relay refrigerant flow path 2b. Since it is configured so as to be arranged adjacent to each other in parallel, the refrigerant rectifying effect in the relay refrigerant flow path 2b can be obtained, and the refrigerant flow distribution in the relay refrigerant flow path 2b can be made uniform. .

実施の形態2.
図6はこの発明の実施の形態2によるヒートシンクの要部を示す横断平面図であり、図1〜図5と同一または相当部分には同一符号を付して重複説明を省略する。
この実施の形態2では、冷媒流路2の中継冷媒流路2bに所定の平行間隔で配置した複数の熱交換プレート5を、前記中継冷媒流路2bの冷媒流れ方向に沿った方向の長さが異なるように形成したものである。すなわち、前記実施の形態1では、それぞれが同一寸法の複数枚の熱交換プレート5を前記中継冷媒流路5bに平行配置したが、この実施の形態2では、互いに隣り合う複数枚の熱交換プレート5を、前記中継冷媒流路2bでの冷媒流れ方向に沿った長さが流路画成部材4の幅寸法よりも長い熱交換プレート51と、この熱交換プレート51よりも前記冷媒流れ方向に沿った長さが短い熱交換プレート52との組み合わせとし、それらの熱交換プレート51,52を前記中継冷媒流路2bに交互に平行配置したものである。
Embodiment 2. FIG.
FIG. 6 is a cross-sectional plan view showing the main part of the heat sink according to Embodiment 2 of the present invention. The same or corresponding parts as those in FIGS.
In the second embodiment, a plurality of heat exchange plates 5 arranged at predetermined parallel intervals in the relay refrigerant flow path 2b of the refrigerant flow path 2 are arranged in a direction along the refrigerant flow direction of the relay refrigerant flow path 2b. Are formed differently. That is, in the first embodiment, a plurality of heat exchange plates 5 each having the same size are arranged in parallel to the relay refrigerant flow path 5b. However, in the second embodiment, a plurality of heat exchange plates adjacent to each other. 5 is a heat exchange plate 51 whose length along the refrigerant flow direction in the relay refrigerant flow path 2b is longer than the width dimension of the flow path defining member 4, and more in the refrigerant flow direction than the heat exchange plate 51. The heat exchanging plate 52 is combined with a short heat exchanging plate 52, and the heat exchanging plates 51 and 52 are alternately arranged in parallel with the relay refrigerant flow path 2b.

このように構成した実施の形態2によれば、前記実施の形態1の場合と同様の効果が得られることに加え、長さの長い熱交換プレート51によって、入口側冷媒流路2aからの冷媒を隣り合う熱交換プレート5間の中継冷媒流路2bに指向し、また、その中継冷媒流路2bを流れる冷媒を出口側冷媒流路2cに指向することができるという効果がある。なお、前記実施の形態2では、前述のように長さが異なる2枚の熱交換プレート51,52を図示し、長さが長い方の熱交換プレート51をヒートシンク前壁1a側、つまり発熱体3の実装部に近づくように配置したが、それぞれの長さが異なる3枚以上の熱交換プレート5を、長さが長い方の熱交換プレートが発熱体3の実装部側に順次近づくように配置してもよく、この場合も同様の効果が得られる。   According to the second embodiment configured as described above, the same effect as in the first embodiment can be obtained, and the refrigerant from the inlet-side refrigerant flow path 2a can be obtained by the heat exchange plate 51 having a long length. Can be directed to the relay refrigerant flow path 2b between the adjacent heat exchange plates 5, and the refrigerant flowing through the relay refrigerant flow path 2b can be directed to the outlet-side refrigerant flow path 2c. In the second embodiment, the two heat exchange plates 51 and 52 having different lengths are illustrated as described above, and the heat exchange plate 51 having the longer length is arranged on the heat sink front wall 1a side, that is, the heating element. Although the three heat exchange plates 5 having different lengths are arranged so that the heat exchange plate having the longer length approaches the mounting portion side of the heating element 3 sequentially, The same effect can be obtained in this case.

図7はこの発明の実施の形態1,2によるヒートシンクに適用した熱交換プレートの変形例を示す正面図、図8は図7の熱交換プレートの冷媒通孔の配置を異ならせた変形例を示す正面図である。
前記実施の形態1,2では、熱交換プレート5の冷媒通孔5aを円形孔としたが、その冷媒通孔5aは、図7および図8に示すような角穴形状および配置としてもよく、この場合も前記実施の形態1,2と同様の効果が得られる。要するに、熱交換プレート5に設ける冷媒通孔5aは、隣り合う熱交換プレート5間の冷媒流路に冷媒を分流させ得るものであれば、どのような形状・配置であってもよい。
FIG. 7 is a front view showing a modification of the heat exchange plate applied to the heat sink according to the first and second embodiments of the present invention, and FIG. 8 is a modification in which the arrangement of the refrigerant through holes of the heat exchange plate in FIG. FIG.
In the first and second embodiments, the refrigerant through hole 5a of the heat exchange plate 5 is a circular hole. However, the refrigerant through hole 5a may have a square hole shape and arrangement as shown in FIGS. In this case, the same effect as in the first and second embodiments can be obtained. In short, the refrigerant through hole 5a provided in the heat exchange plate 5 may have any shape and arrangement as long as the refrigerant can be divided into the refrigerant flow path between the adjacent heat exchange plates 5.

実施の形態3.
図9はこの発明の実施の形態3によるヒートシンクの要部を示す横断平面図である。
この実施の形態3では、前記実施の形態1,2における熱交換プレート5の冷媒通孔5aを、前記熱交換プレート5の高さ方向に設けた切欠部5bに置き換え、その切欠部5bを冷媒通孔としたものである。このように熱交換プレート5の切欠部5bを冷媒通孔とした実施の形態3によれば、前記実施の形態1と同様の効果が得られることに加え、隣り合う熱交換プレート5の冷媒上流端間に異物Sによる目詰まりが生じた際に、前記切欠部5bによって、熱交換プレート5間の目詰まり冷媒流路に対しこれに隣り合う目詰まりのない冷媒流路から多量の冷媒を流入させることができ、このため、目詰まり冷媒流路での冷却性能の劣化をいっそう低減できるという効果がある。
Embodiment 3 FIG.
FIG. 9 is a cross-sectional plan view showing the main part of the heat sink according to Embodiment 3 of the present invention.
In the third embodiment, the refrigerant passage hole 5a of the heat exchange plate 5 in the first and second embodiments is replaced with a cutout portion 5b provided in the height direction of the heat exchange plate 5, and the cutout portion 5b is replaced with a refrigerant. It is a through hole. Thus, according to the third embodiment in which the cutout portion 5b of the heat exchange plate 5 is used as the refrigerant passage hole, the same effect as that of the first embodiment can be obtained, and the refrigerant upstream of the adjacent heat exchange plate 5 can be obtained. When clogging due to foreign matter S occurs between the ends, a large amount of refrigerant flows into the clogged refrigerant flow path between the heat exchange plates 5 from the adjacent clogged refrigerant flow path by the notch 5b. Therefore, there is an effect that the deterioration of the cooling performance in the clogged refrigerant flow path can be further reduced.

実施の形態4.
図10はこの発明の実施の形態4によるヒートシンクの要部を示す縦断側面図、図11は図10の横断平面図であり、図1〜図4と同一または相当部分には同一符号を付して重複説明を省略する。
前記実施の形態1〜3では、容器1内に冷媒を水平方向に流す冷媒流路2を形成したヒートシンクについて説明したが、この実施の形態4では、前記冷媒流路2を、容器1の内部空間を上下に仕切ってその下部空間から上部空間に向って冷媒が流れる流路構成としたもので、その詳細を以下に説明する。
この実施の形態4では、容器1の内部空間を、当該容器1と一体結合された水平方向の仕切り板(流路画成部材)4で上下に仕切ることで、その上部空間を出口側冷媒流路(上側冷媒流路)2c、下部空間を入口側冷媒流路(下側冷媒流路)2aとして区画形成すると共に、前記仕切り板4におけるヒートシンク前壁1a側(発熱体3実装方向)の端部を切り欠くことで前記入口側冷媒流路2aと出口側冷媒流路2cとを連通する中継冷媒流路2bを形成したものである。そして、前述のような仕切り板4の端部切り欠きからなる中継冷媒流路2bから垂直方向に立ち上がる複数枚の熱交換プレート5を所定の間隔で平行配置したものである。ここで、前記熱交換プレート5は、その上端が容器1の上壁に、かつ、一側端面が容器1の前面壁1aに、他側端面の下部が前記仕切り板4の切り欠き端面にそれぞれ一体結合されているものである。
Embodiment 4 FIG.
FIG. 10 is a longitudinal side view showing a main part of a heat sink according to Embodiment 4 of the present invention, and FIG. 11 is a cross-sectional plan view of FIG. 10. The same or corresponding parts as those in FIGS. Therefore, duplicate explanation is omitted.
In the first to third embodiments, the heat sink in which the refrigerant flow path 2 for flowing the refrigerant in the horizontal direction in the container 1 is described. However, in the fourth embodiment, the refrigerant flow path 2 is disposed inside the container 1. The space is divided up and down and the flow path configuration is such that the refrigerant flows from the lower space toward the upper space, and the details will be described below.
In the fourth embodiment, the internal space of the container 1 is divided up and down by a horizontal partition plate (flow path defining member) 4 integrally coupled to the container 1, so that the upper space is separated from the outlet side refrigerant flow. A path (upper refrigerant flow path) 2c and the lower space are partitioned and formed as an inlet side refrigerant flow path (lower refrigerant flow path) 2a, and an end of the partition plate 4 on the heat sink front wall 1a side (heating element 3 mounting direction) The relay refrigerant flow path 2b which connects the said inlet side refrigerant flow path 2a and the outlet side refrigerant flow path 2c is formed by notching a part. A plurality of heat exchange plates 5 rising in the vertical direction from the relay refrigerant flow path 2b made of the end notches of the partition plate 4 as described above are arranged in parallel at a predetermined interval. Here, the heat exchange plate 5 has an upper end on the upper wall of the container 1, one side end face on the front wall 1 a of the container 1, and a lower part on the other end face on the notch end face of the partition plate 4. It is integrally connected.

以上において、ヒートシンク前壁1aと仕切り板4との間の中継冷媒流路2bの流路面積は、冷媒の流速を増速するために入口側冷媒流路2aの断面積よりも狭くなるように設定する。ここで、前記入口側冷媒流路2aの高さとしては一般的に5mm以下とするため、前記ヒートシンク前壁1aと仕切り板4との間の中継冷媒流路2bの流路幅は5mm以下とすれば、冷却効率が高まるために好ましい。このような寸法設定は、理想的な冷却性能を得るための代表例として示したが、容器1における発熱体3の実装部上壁(ヒートシンク上壁)の下面に冷媒が衝突する構造であれば、同様の効果が得られるため、どのような寸法であってもよい。   In the above, the flow passage area of the relay refrigerant flow path 2b between the heat sink front wall 1a and the partition plate 4 is smaller than the cross-sectional area of the inlet side refrigerant flow path 2a in order to increase the flow rate of the refrigerant. Set. Here, since the height of the inlet side refrigerant flow path 2a is generally 5 mm or less, the flow width of the relay refrigerant flow path 2b between the heat sink front wall 1a and the partition plate 4 is 5 mm or less. This is preferable because the cooling efficiency is increased. Such a dimension setting is shown as a representative example for obtaining an ideal cooling performance. However, as long as the refrigerant collides with the lower surface of the mounting portion upper wall (heat sink upper wall) of the heating element 3 in the container 1. Since the same effect can be obtained, any size may be used.

次に動作について説明する。図12は前記実施の形態4によるヒートシンクの発熱体からの熱の流れを示す動作説明図である。
容器1内の冷媒流路2において、冷媒は、図10および図11に矢印で示すように、仕切り板4下部の入口側冷媒流路2aから熱交換プレート5間の中継冷媒流路2bを通って発熱体3の実装部におけるヒートシンク上壁の下面に衝突した後に前記仕切り板4上部の出口側冷媒流路2cへと流れる。この状態において、発熱体3が発する熱は、図12に点線矢印で示すように、熱伝導率の高いヒートシンク前壁1aおよびヒートシンク上壁に伝導され、それらのヒートシンク前壁1aおよびヒートシンク上壁に伝導された熱は、次いで熱交換プレート5に伝導された後、それぞれの熱交換プレート5の全表面から冷媒に放熱される。
Next, the operation will be described. FIG. 12 is an operation explanatory view showing the flow of heat from the heat generating element of the heat sink according to the fourth embodiment.
In the refrigerant flow path 2 in the container 1, the refrigerant passes through the relay refrigerant flow path 2 b between the inlet side refrigerant flow path 2 a at the lower part of the partition plate 4 and the heat exchange plate 5, as indicated by arrows in FIGS. 10 and 11. Then, after colliding with the lower surface of the upper wall of the heat sink in the mounting portion of the heating element 3, it flows to the outlet side refrigerant flow path 2c above the partition plate 4. In this state, the heat generated by the heating element 3 is conducted to the heat sink front wall 1a and the heat sink upper wall having high thermal conductivity as shown by the dotted arrows in FIG. The conducted heat is then conducted to the heat exchange plate 5 and then radiated from the entire surface of each heat exchange plate 5 to the refrigerant.

以上説明した実施の形態4によれば、仕切り板4下部の入口側冷媒流路2aから仕切り板4上部の出口側冷媒流路2cに向って冷媒が流れる流路構成とした冷媒流路2を備えるヒートシンクにおいて、前記仕切り板4の端部を切り欠いて当該仕切り板4の切り欠き端部とヒートシンク前壁1aとの間に中継冷媒流路2bを形成し、この中継冷媒流路2bから立ち上がる複数の熱交換プレート5を平行配置し、それらの熱交換プレート5をヒートシンク前壁1aおよびヒートシンク上壁と仕切り板4の切り欠き端部に一体結合するように構成したので、発熱体3からヒートシンク前壁1aおよびヒートシンク上壁に伝導された熱を冷媒流路2内の複数の熱交換プレート5に効率よく伝導させることができ、それらの熱交換プレート5の全表面から冷媒流路2内の冷媒に放熱されるため、冷媒流路2を流れる冷媒への放熱面積を前記複数の熱交換プレート5によって増大することができ、良好な冷却性能を得ることができるという効果がある。   According to the fourth embodiment described above, the refrigerant flow path 2 having a flow path configuration in which the refrigerant flows from the inlet side refrigerant flow path 2a at the lower part of the partition plate 4 toward the outlet side refrigerant flow path 2c at the upper part of the partition plate 4 is provided. In the heat sink provided, a relay refrigerant channel 2b is formed between the notched end of the partition plate 4 and the heat sink front wall 1a by cutting out the end portion of the partition plate 4, and rises from the relay refrigerant channel 2b. Since the plurality of heat exchange plates 5 are arranged in parallel, and the heat exchange plates 5 are integrally coupled to the heat sink front wall 1a, the heat sink upper wall, and the cut-out end portions of the partition plate 4, the heat generator 3 can be connected to the heat sink. The heat conducted to the front wall 1 a and the heat sink upper wall can be efficiently conducted to the plurality of heat exchange plates 5 in the refrigerant flow path 2. Since heat is radiated to the refrigerant in the refrigerant flow path 2, the heat radiation area to the refrigerant flowing through the refrigerant flow path 2 can be increased by the plurality of heat exchange plates 5, and good cooling performance can be obtained. There is.

また、この実施の形態4では、仕切り板4下部の入口側冷媒流路2aから中継冷媒流路2bで隣り合う熱交換プレート5間に流入した冷媒が、発熱体3の実装部付近にてヒートシンク上壁の下面に衝突することによる冷却効果も得られ、このため、前記実施の形態1の場合よりもさらに良好な冷却性能を得ることができるという効果がある。さらには、この実施の形態4においても、前記熱交換プレート5のそれぞれには、前記実施の形態1と同様の冷媒通孔5aが設けられているので、隣り合う熱交換プレート5の上流端間に冷媒中の異物Sによる目詰まりが生じた際に、前記実施の形態1の場合と同様の画期的な効果が得られるものである。   Further, in the fourth embodiment, the refrigerant that flows between the adjacent heat exchange plates 5 in the relay refrigerant flow path 2b from the inlet-side refrigerant flow path 2a at the lower part of the partition plate 4 is heated near the mounting portion of the heating element 3. A cooling effect by colliding with the lower surface of the upper wall is also obtained, and therefore, there is an effect that a better cooling performance can be obtained than in the case of the first embodiment. Furthermore, also in this fourth embodiment, each of the heat exchange plates 5 is provided with the same refrigerant passage hole 5a as in the first embodiment, so that the upstream end of adjacent heat exchange plates 5 is between When clogging occurs due to the foreign matter S in the refrigerant, the same epoch-making effect as in the first embodiment can be obtained.

実施の形態5.
図13はこの発明の実施の形態5によるヒートシンクの要部を示す縦断側面図であり、図10〜図12と同一部分には同一符号を付して重複説明を省略する。
この実施の形態5では、前記実施の形態4による熱交換プレート5を、仕切り板4の切欠幅(中継冷媒流路2bの流路幅)よりも幅狭く形成し、その熱交換プレート5の上端をヒートシンク上壁に、かつ前記熱交換プレート5のヒートシンク前壁1aとは反対側の端縁部を前記仕切り板4の切り欠き端部にそれぞれ一体結合させるように構成したものである。このような構成とした実施の形態5においても、ヒートシンク前壁1aに熱交換プレート5を結合させていない点を除いて前記実施の形態4と同様の効果が得られることに加え、前述のように幅狭に形成された熱交換プレート5をヒートシンク前壁1aから離すことにより、冷媒流動抵抗の増大を抑えることができるという効果がある。
Embodiment 5 FIG.
FIG. 13 is a longitudinal side view showing a main part of a heat sink according to Embodiment 5 of the present invention. The same parts as those in FIGS.
In the fifth embodiment, the heat exchange plate 5 according to the fourth embodiment is formed to be narrower than the notch width of the partition plate 4 (the flow width of the relay refrigerant flow channel 2b), and the upper end of the heat exchange plate 5 is formed. And the end edge of the heat exchange plate 5 on the side opposite to the heat sink front wall 1a are integrally coupled to the notched end of the partition plate 4, respectively. In the fifth embodiment configured as described above, the same effect as in the fourth embodiment can be obtained except that the heat exchange plate 5 is not coupled to the heat sink front wall 1a. Further, by separating the heat exchange plate 5 formed so as to be narrow from the heat sink front wall 1a, an increase in refrigerant flow resistance can be suppressed.

実施の形態6.
図14はこの発明の実施の形態6によるヒートシンクの要部を示す縦断側面図である。この実施の形態6では、前記実施の形態5の場合と同様に形成された熱交換プレート5を横向きにしてヒートシンク前壁1aと仕切り板4の切り欠き端部に一体結合させ、前記熱交換プレート5の上端をヒートシンク上壁から離すように構成したものである。このように構成した実施の形態6においても、熱交換プレート5の上端をヒートシンク上壁から離した点を除いて前記実施の形態4と同様の効果が得られる。また、前述のように熱交換プレート5の上端をヒートシンク上壁から離して熱交換プレート5の高さを短くしたことにより、冷媒流動抵抗の増大を抑えることができるという効果がある。
Embodiment 6 FIG.
FIG. 14 is a longitudinal side view showing a main part of a heat sink according to Embodiment 6 of the present invention. In this sixth embodiment, the heat exchange plate 5 formed in the same manner as in the fifth embodiment is turned sideways so as to be integrally coupled to the heat sink front wall 1a and the notch ends of the partition plate 4, and the heat exchange plate The upper end of 5 is configured to be separated from the upper wall of the heat sink. In the sixth embodiment configured as described above, the same effect as in the fourth embodiment can be obtained except that the upper end of the heat exchange plate 5 is separated from the upper wall of the heat sink. Further, as described above, the height of the heat exchange plate 5 is shortened by separating the upper end of the heat exchange plate 5 from the upper wall of the heat sink, so that an increase in refrigerant flow resistance can be suppressed.

実施の形態7.
図15はこの発明の実施の形態7によるヒートシンクの要部を示す縦断側面図、図16は図15の横断平面図であり、図10〜図12と同一または相当部分には同一符号を付して重複説明を省略する。
この実施の形態7では、前記実施の形態4における熱交換プレート5の冷媒通孔5aをなくし、その冷媒通孔5aがない幅広の熱交換プレート53と、同様に前記冷媒通孔5aがない幅狭の熱交換プレート54との組み合わせとし、幅広の熱交換プレート53をヒートシンク前壁1aに、かつ幅狭の熱交換プレート54を仕切り板4の切り欠き端部にそれぞれ一体結合させることにより、複数枚の幅広の熱交換プレート53と幅狭の熱交換プレート54と交互に所定の間隔で平行配置すると共に、幅広の熱交換プレート53と幅狭の熱交換プレート54とでは高さが異なるように構成したものである。このような構成とした実施の形態7によれば、前記全ての熱交換プレート53,54に冷媒通孔がなくとも、隣り合う熱交換プレート53,54間の流路に仕切り板4下部の入口側冷媒流路2aから冷媒を流入させて仕切り板4上部の出口側冷媒流路2cに流すことことができ、前記実施の形態1の場合とほぼ同様の効果が得られる。
Embodiment 7 FIG.
15 is a longitudinal side view showing the main part of the heat sink according to Embodiment 7 of the present invention, and FIG. 16 is a cross-sectional plan view of FIG. 15. The same or corresponding parts as those in FIGS. Therefore, duplicate explanation is omitted.
In the seventh embodiment, the refrigerant passage hole 5a of the heat exchange plate 5 in the fourth embodiment is eliminated, the wide heat exchange plate 53 without the refrigerant passage hole 5a, and the width without the refrigerant passage hole 5a as well. By combining with the narrow heat exchange plate 54, the wide heat exchange plate 53 is integrally coupled to the heat sink front wall 1a, and the narrow heat exchange plate 54 is integrally coupled to the notch end portion of the partition plate 4, so that a plurality of The wide heat exchange plate 53 and the narrow heat exchange plate 54 are alternately arranged in parallel at a predetermined interval, and the wide heat exchange plate 53 and the narrow heat exchange plate 54 have different heights. It is composed. According to the seventh embodiment having such a configuration, even if all the heat exchange plates 53 and 54 do not have a refrigerant through hole, the inlet of the lower part of the partition plate 4 is provided in the flow path between the adjacent heat exchange plates 53 and 54. The refrigerant can be introduced from the side refrigerant flow path 2a and can be flowed to the outlet side refrigerant flow path 2c at the upper part of the partition plate 4, and the substantially same effect as in the first embodiment can be obtained.

この発明の実施の形態1によるヒートシンクの要部を示す横断平面図である。It is a cross-sectional top view which shows the principal part of the heat sink by Embodiment 1 of this invention. 図1の縦断側面図である。It is a vertical side view of FIG. 図1および図2に示された熱交換プレートの寸法関係を説明するための斜視図である。It is a perspective view for demonstrating the dimensional relationship of the heat exchange plate shown by FIG. 1 and FIG. この発明の実施の形態1によるヒートシンクの発熱体実装部近傍での熱の流れを示す動作説明図である。It is operation | movement explanatory drawing which shows the heat flow in the heat generating body mounting part vicinity of the heat sink by Embodiment 1 of this invention. この発明の実施の形態1によるヒートシンクの要部での冷媒の流れを説明するための動作説明図である。It is operation | movement explanatory drawing for demonstrating the flow of the refrigerant | coolant in the principal part of the heat sink by Embodiment 1 of this invention. この発明の実施の形態2によるヒートシンクの要部を示す横断平面図である。It is a cross-sectional top view which shows the principal part of the heat sink by Embodiment 2 of this invention. この発明の実施の形態1,2によるヒートシンクに適用した熱交換プレートの変形例を示す正面図である。It is a front view which shows the modification of the heat exchange plate applied to the heat sink by Embodiment 1, 2 of this invention. 図7の変形例を示す正面図である。It is a front view which shows the modification of FIG. この発明の実施の形態3によるヒートシンクの要部を示す横断平面図である。It is a cross-sectional plan view which shows the principal part of the heat sink by Embodiment 3 of this invention. この発明の実施の形態4によるヒートシンクの要部を示す縦断側面図である。It is a vertical side view which shows the principal part of the heat sink by Embodiment 4 of this invention. 図10の横断平面図である。It is a cross-sectional plan view of FIG. この発明の実施の形態4によるヒートシンクの動作説明図である。It is operation | movement explanatory drawing of the heat sink by Embodiment 4 of this invention. この発明の実施の形態5によるヒートシンクの要部を示す縦断側面図である。It is a vertical side view which shows the principal part of the heat sink by Embodiment 5 of this invention. この発明の実施の形態6によるヒートシンクの要部を示す縦断側面図である。It is a vertical side view which shows the principal part of the heat sink by Embodiment 6 of this invention. この発明の実施の形態7によるヒートシンクの要部を示す縦断側面図である。It is a vertical side view which shows the principal part of the heat sink by Embodiment 7 of this invention. 図15の横断平面図である。FIG. 16 is a transverse plan view of FIG. 15.

符号の説明Explanation of symbols

1 容器(ヒートシンク本体)、1a ヒートシンク前壁、2 冷媒流路、2a 入口側冷媒流路、2b 中継冷媒流路、2c 出口側冷媒流路、3 発熱体、4 流路画成部材、5 熱交換プレート、5a 冷媒通孔、5b 切欠部、51〜54 幅広熱交換プレート、S 異物。   DESCRIPTION OF SYMBOLS 1 Container (heat sink main body), 1a Heat sink front wall, 2 Refrigerant flow path, 2a Inlet side refrigerant flow path, 2b Relay refrigerant flow path, 2c Outlet side refrigerant flow path, 3 Heat generating body, 4 Flow path defining member, 5 Heat Exchange plate, 5a Refrigerant through hole, 5b Notch, 51-54 Wide heat exchange plate, S foreign matter.

Claims (5)

発熱体が実装されたヒートシンク本体の内部に、前記発熱体の実装部近傍を通る冷媒流路が設けられたヒートシンクにおいて、前記冷媒流路の内部に、前記発熱体の実装部近傍で冷媒の流れ方向に沿って延びる熱交換プレートを前記ヒートシンク本体の壁部と一体結合させて配置したことを特徴とするヒートシンク。   In a heat sink in which a refrigerant flow path passing through the vicinity of the mounting portion of the heating element is provided inside the heat sink body in which the heating element is mounted, the flow of the refrigerant in the vicinity of the mounting portion of the heating element in the refrigerant flow path. A heat sink, characterized in that a heat exchange plate extending along a direction is integrally coupled to a wall portion of the heat sink body. 熱交換プレートは、その複数枚が冷媒流路の幅方向に所定の平行間隔で配置されていることを特徴とする請求項1記載のヒートシンク。   The heat sink according to claim 1, wherein a plurality of the heat exchange plates are arranged at predetermined parallel intervals in the width direction of the refrigerant flow path. 熱交換プレートには、その肉厚方向に貫通する冷媒通孔が設けられていることを特徴とする請求項1または請求項2記載のヒートシンク。   The heat sink according to claim 1 or 2, wherein the heat exchange plate is provided with a refrigerant through hole penetrating in a thickness direction thereof. 冷媒通孔は、一枚の熱交換プレートに複数個が設けられていることを特徴とする請求項3記載のヒートシンク。   4. The heat sink according to claim 3, wherein a plurality of the refrigerant through holes are provided on one heat exchange plate. 冷媒流路は、ヒートシンク本体の内部空間を上下に仕切る流路画成部材によって上側冷媒流路と下側冷媒流路とに分割形成され、前記流路画成部材には、前記上側冷媒流路と下側冷媒流路とを連通する切欠部が設けられ、その切欠部に熱交換プレートが配置されていることを特徴する請求項1記載のヒートシンク。   The refrigerant flow path is divided and formed into an upper refrigerant flow path and a lower refrigerant flow path by a flow path defining member that divides the internal space of the heat sink body up and down. The flow path defining member includes the upper refrigerant flow path. The heat sink according to claim 1, wherein a notch portion that communicates with the lower refrigerant flow path is provided, and a heat exchange plate is disposed in the notch portion.
JP2004062615A 2004-03-05 2004-03-05 Heatsink Pending JP2005252092A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004062615A JP2005252092A (en) 2004-03-05 2004-03-05 Heatsink

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004062615A JP2005252092A (en) 2004-03-05 2004-03-05 Heatsink

Publications (1)

Publication Number Publication Date
JP2005252092A true JP2005252092A (en) 2005-09-15

Family

ID=35032271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004062615A Pending JP2005252092A (en) 2004-03-05 2004-03-05 Heatsink

Country Status (1)

Country Link
JP (1) JP2005252092A (en)

Similar Documents

Publication Publication Date Title
JP5184679B2 (en) Heat exchanger
KR102600257B1 (en) Water block assembly
JP6462737B2 (en) heatsink
JP2010056130A (en) Liquid-cooled-type cooling device
JP2007096306A (en) Heat sink
JP2010123881A (en) Cold plate
JP2015225953A (en) Liquid-cooled cooler
CN110036474A (en) Liquid-cooled-type cooling device Radiator and its preparation method
JP2016004806A (en) Liquid cooling type cooling device
WO2015114899A1 (en) Cooling device and cooling device production method
JP2010080455A (en) Cooling device and cooling method for electronic equipment
JP2008300447A (en) Heat radiation device
JP2011134978A (en) Fluid cooling type heat sink
JP5800429B2 (en) Radiators in liquid cooling systems for electronic equipment
JP2019021825A (en) Radiator and liquid-cooling type cooling device employing the same
JP7139656B2 (en) Cooling system
EP3770958B1 (en) Liquid-cooled cooler
JP6243232B2 (en) Method of manufacturing fin for heat exchanger, fin and heat exchanger
JP2005252092A (en) Heatsink
JP2019054224A (en) Liquid-cooled type cooling device
JP7363446B2 (en) Cooling system
CN113646886A (en) Plate laminated heat exchanger
JP2019079836A (en) Liquid-cooled cooler
JP2003258169A (en) Heat sink
CN214482008U (en) Liquid cooling heat radiation structure