JP2005251928A - Polycrystal silicon solar cell and its manufacturing method - Google Patents

Polycrystal silicon solar cell and its manufacturing method Download PDF

Info

Publication number
JP2005251928A
JP2005251928A JP2004059249A JP2004059249A JP2005251928A JP 2005251928 A JP2005251928 A JP 2005251928A JP 2004059249 A JP2004059249 A JP 2004059249A JP 2004059249 A JP2004059249 A JP 2004059249A JP 2005251928 A JP2005251928 A JP 2005251928A
Authority
JP
Japan
Prior art keywords
substrate
vicinity
conductivity type
grain boundary
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004059249A
Other languages
Japanese (ja)
Inventor
Yuji Yashiro
有史 八代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2004059249A priority Critical patent/JP2005251928A/en
Publication of JP2005251928A publication Critical patent/JP2005251928A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solar cell capable of enhancing photoelectric conversion efficiency. <P>SOLUTION: The polycrystal silicon solar cell comprises a first conductive type high concentration impurity region 7 formed in the vicinity of a crystal grain boundary 5 of a substrate from the surface side of a first conductive type polycrystal silicon substrate 1, and a second conductive type impurity layer 9 formed on the surface side of the substrate. Electric resistance is reduced in the vicinity of the crystal grain boundary 5 by the high concentration impurity region 7. As a dangling bond in the vicinity of the crystal grain boundary 5 is made inactive by high concentration impurities, the center of recoupling is decreased and the photoelectric conversion efficiency is enhanced. Further, since the dangling bond is made inactive by impurities of the same conductive type as the substrate 1, the high concentration impurity region 7 of the same conductive type as the substrate 1 is formed in the vicinity of the crystal grain boundary 5. For this reason, the electric resistance is decreased in the vicinity of the crystal grain boundary 5, thus leading to the enhancement of the photoelectric conversion efficiency. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、多結晶シリコン太陽電池、及びその製造方法に関する。   The present invention relates to a polycrystalline silicon solar cell and a method for manufacturing the same.

多結晶シリコン太陽電池では、結晶粒界の存在がその品質に大きく影響する。多結晶シリコンの結晶粒界には多数のダングリングボンドが存在するが、このダングリングボンドはキャリアの再結合中心として働くため、キャリアの寿命を大幅に短縮する。また結晶粒界部分に現れる歪により多結晶シリコン半導体中のエネルギーバンドが影響を受けて空乏領域が形成され、キャリアの移動を妨げる原因となっている。このように結晶粒界の存在は多結晶シリコンを用いたデバイス特性を非常に悪化させるため、従来は水素プラズマ処理、水素イオンの打ち込み等の方法による水素パッシベーションを用いた粒界の不活性化が行われている(例えば、特許文献1参照)。
特開平7−183552号公報
In polycrystalline silicon solar cells, the presence of crystal grain boundaries greatly affects the quality. A large number of dangling bonds exist at the crystal grain boundaries of polycrystalline silicon. Since these dangling bonds serve as carrier recombination centers, the lifetime of the carriers is greatly shortened. In addition, the strain appearing at the grain boundary portion affects the energy band in the polycrystalline silicon semiconductor to form a depletion region, which hinders carrier movement. Thus, the existence of crystal grain boundaries greatly deteriorates the device characteristics using polycrystalline silicon. Conventionally, inactivation of grain boundaries using hydrogen passivation by methods such as hydrogen plasma treatment and hydrogen ion implantation has been performed. (For example, refer to Patent Document 1).
JP-A-7-183552

しかし、水素パッシベーション等による粒界の不活性化により、光電変換効率がある程度は改善するものの十分ではない。   However, although the photoelectric conversion efficiency is improved to some extent by the inactivation of the grain boundaries by hydrogen passivation or the like, it is not sufficient.

本発明は、係る事情に鑑みてなされたものであり、光電変換効率をさらに向上させることができる太陽電池を提供するものである。   This invention is made | formed in view of the situation which concerns, and provides the solar cell which can further improve a photoelectric conversion efficiency.

本発明の多結晶シリコン太陽電池は、第1導電型の多結晶シリコン基板の表面側から基板の結晶粒界近傍に形成された第1導電型の高濃度不純物領域と、基板の表面側に形成された第2導電型の不純物層とを備え、高濃度不純物領域により結晶粒界近傍での基板の電気抵抗が低減されていることを特徴とする。   The polycrystalline silicon solar cell according to the present invention is formed on the surface side of the first conductivity type polycrystalline silicon substrate from the surface side of the first conductivity type and is formed on the surface side of the substrate. The second conductivity type impurity layer is provided, and the electrical resistance of the substrate in the vicinity of the crystal grain boundary is reduced by the high concentration impurity region.

本発明によれば、結晶粒界近傍のダングリングボンドが高濃度の不純物よって不活性化されるので、再結合中心が減少し、光電変換効率が向上する。   According to the present invention, the dangling bonds in the vicinity of the crystal grain boundaries are inactivated by a high concentration of impurities, so that the number of recombination centers is reduced and the photoelectric conversion efficiency is improved.

また、基板と同一の導電型の不純物によってダングリングボンドが不活性化されるため、基板と同一の導電型の高濃度不純物領域が結晶粒界近傍に形成される。そのため、結晶粒界近傍での基板の電気抵抗が低減され、光電変換効率の向上につながる。   In addition, since the dangling bond is inactivated by the impurity having the same conductivity type as that of the substrate, a high concentration impurity region having the same conductivity type as that of the substrate is formed in the vicinity of the crystal grain boundary. Therefore, the electrical resistance of the substrate in the vicinity of the crystal grain boundary is reduced, leading to an improvement in photoelectric conversion efficiency.

本発明の多結晶シリコン太陽電池は、第1導電型の多結晶シリコン基板の表面側から基板の結晶粒界近傍に形成された第1導電型の高濃度不純物領域と、基板の表面側に形成された第2導電型の不純物層とを備え、高濃度不純物領域により結晶粒界近傍での基板の電気抵抗が低減されていることを特徴とする。   The polycrystalline silicon solar cell of the present invention is formed on the surface side of the first conductivity type polycrystalline silicon substrate from the surface side of the first conductivity type and is formed on the surface side of the substrate. The second conductivity type impurity layer is provided, and the electrical resistance of the substrate in the vicinity of the crystal grain boundary is reduced by the high concentration impurity region.

1.多結晶シリコン基板
第1導電型の多結晶シリコン基板には、n型又はp型の多結晶シリコン基板を用いることができる。多結晶シリコン基板の不純物濃度は、1×1015atoms/cm3程度であることが好ましい。
1. Polycrystalline Silicon Substrate As the first conductivity type polycrystalline silicon substrate, an n-type or p-type polycrystalline silicon substrate can be used. The impurity concentration of the polycrystalline silicon substrate is preferably about 1 × 10 15 atoms / cm 3 .

2.高濃度不純物領域
2−1.構成
第1導電型の多結晶シリコン基板の表面側から基板の結晶粒界近傍に第1導電型の高濃度不純物領域を形成する。高濃度不純物領域は、基板の表面近傍、例えば、pn接合近傍に形成されてもよく、基板の裏面まで到達してもよい。何れの場合も、再結合中心を減少させ、かつ、結晶粒界近傍での基板の電気抵抗を低減するという効果が得られ、その結果、光電変換効率を向上させることができる。
2. High concentration impurity region 2-1. Configuration A first conductivity type high concentration impurity region is formed in the vicinity of a crystal grain boundary of the substrate from the surface side of the first conductivity type polycrystalline silicon substrate. The high concentration impurity region may be formed in the vicinity of the front surface of the substrate, for example, in the vicinity of the pn junction, or may reach the back surface of the substrate. In either case, the effect of reducing the recombination center and reducing the electrical resistance of the substrate in the vicinity of the crystal grain boundary can be obtained, and as a result, the photoelectric conversion efficiency can be improved.

高濃度不純物領域は、その濃度が1×1018〜1×1020atoms/cm3であることが好ましい。なぜなら、1×1018より小さい場合、高濃度不純物領域を設けた効果が十分でなく、1×1020より大きい場合、Siの結晶構造の歪みが大きくなり、太陽電池の特性を悪化させるためである。また、高濃度不純物領域は、B又はAlが基板の結晶粒界近傍にドーピングされて形成されることが好ましい。 The high concentration impurity region preferably has a concentration of 1 × 10 18 to 1 × 10 20 atoms / cm 3 . This is because when the density is smaller than 1 × 10 18 , the effect of providing the high-concentration impurity region is not sufficient, and when the density is larger than 1 × 10 20 , the distortion of the crystal structure of Si increases and the characteristics of the solar cell are deteriorated. is there. The high concentration impurity region is preferably formed by doping B or Al in the vicinity of the crystal grain boundary of the substrate.

2−2.形成方法
高濃度不純物領域は、例えば、(a)第1導電型の不純物からなる不純物層を基板表面上に形成し、(b)熱処理により不純物を基板の結晶粒界近傍に拡散させる工程を備える方法を用いて、形成することができる。
2-2. Formation Method The high-concentration impurity region includes, for example, a process of (a) forming an impurity layer made of a first conductivity type impurity on the substrate surface, and (b) diffusing the impurity near the crystal grain boundary of the substrate by heat treatment. The method can be used to form.

結晶粒界近傍では原子の拡散速度が大きいため、不純物層に含まれる第1導電型の不純物は、優先的に結晶粒界近傍に拡散し、高濃度不純物領域を形成する。   Since the diffusion rate of atoms is large in the vicinity of the crystal grain boundary, the first conductivity type impurity contained in the impurity layer is preferentially diffused in the vicinity of the crystal grain boundary to form a high concentration impurity region.

第1導電型の不純物からなる不純物層は、その厚さが1〜50μmであることが好ましい。1μmより小さい場合、第1導電型の不純物を結晶粒界近傍に十分に拡散させることができないからあり、50μmより大きい場合、後工程での不純物層の除去に手間がかかるからである。この不純物層は、例えば、スクリーン印刷法により形成することができる。
また、第1導電型の不純物は、ホウケイ酸鉛、B23、又はAlからなることが好ましい。
The impurity layer made of the first conductivity type impurity preferably has a thickness of 1 to 50 μm. This is because when the thickness is smaller than 1 μm, the first conductivity type impurity cannot be sufficiently diffused in the vicinity of the crystal grain boundary, and when it is larger than 50 μm, it takes time to remove the impurity layer in a subsequent process. This impurity layer can be formed by, for example, a screen printing method.
The first conductivity type impurity is preferably composed of lead borosilicate, B 2 O 3 , or Al.

また、熱処理は、800℃で以下で行われることが好ましい。800℃より高い場合、p型多結晶シリコン基板の粒界以外の部分にも不純物が拡散し、この結果、基板の不純物濃度の設計値からのずれが生じ、素子特性が悪化する場合があるからである。また、熱処理は、不純物層の融点以上の温度で行われることが好ましい。融点より低い温度では、不純物が十分に拡散しないからである。   Moreover, it is preferable that heat processing is performed at 800 degreeC below. When the temperature is higher than 800 ° C., the impurity diffuses also in the portion other than the grain boundary of the p-type polycrystalline silicon substrate. As a result, the impurity concentration of the substrate deviates from the design value, and the device characteristics may be deteriorated. It is. The heat treatment is preferably performed at a temperature equal to or higher than the melting point of the impurity layer. This is because impurities are not sufficiently diffused at a temperature lower than the melting point.

2−3.後処理
高濃度不純物領域を形成した後に、第1導電型の不純物からなる不純物層を除去することが好ましい。また、高濃度不純物領域を形成する工程で形成されるSi合金層も除去することが好ましい。これらは、酸により除去することが好ましい。また、酸には、塩酸又はフッ酸を用いることが好ましい。これらの酸を用いるのが好ましいのは、充分に除去効果があることと、これらの酸は太陽電池の他の洗浄工程での使用頻度が高く、工程を簡便化することができるためである。
2-3. Post-processing It is preferable to remove the impurity layer made of the first conductivity type impurity after forming the high-concentration impurity region. It is also preferable to remove the Si alloy layer formed in the step of forming the high concentration impurity region. These are preferably removed with an acid. Moreover, it is preferable to use hydrochloric acid or hydrofluoric acid as the acid. It is preferable to use these acids because they have a sufficient removal effect, and because these acids are frequently used in other cleaning steps of the solar cell, the steps can be simplified.

3.第2導電型の不純物層
3−1.構成
第2導電型の不純物層が、基板の表面側に形成される。「基板の表面側」とは、基板の表面上又は基板の表面近傍を意味する。
3. Second conductivity type impurity layer 3-1. Configuration An impurity layer of the second conductivity type is formed on the surface side of the substrate. “Substrate surface side” means on the surface of the substrate or in the vicinity of the surface of the substrate.

3−2.製造方法
第2導電型の不純物層は、基板の表面上に形成する場合、例えば、CVD法により形成することができる。また、第2導電型の不純物層は、例えば、基板の表面近傍に形成する場合、基板表面上に第2導電型の不純物からなる不純物層を形成し、熱処理により不純物を拡散させることにより、形成することができる。また、第2導電型の不純物層は、基板の表面近傍に第2導電型の不純物をイオン注入することにより形成してもよい。何れの方法を用いる場合でも、第2導電型の不純物層は、公知の条件で形成することができる。
3-2. Manufacturing Method When the second conductivity type impurity layer is formed on the surface of the substrate, it can be formed by, for example, a CVD method. In addition, when the second conductivity type impurity layer is formed near the surface of the substrate, for example, an impurity layer made of the second conductivity type impurity is formed on the substrate surface, and the impurity is diffused by heat treatment. can do. The second conductivity type impurity layer may be formed by ion implantation of the second conductivity type impurity near the surface of the substrate. Regardless of which method is used, the second conductivity type impurity layer can be formed under known conditions.

4.その他
4−1.反射防止膜
本発明の多結晶シリコン太陽電池は、第2導電型の不純物層上に反射防止膜をさらに備えることが好ましい。この場合、太陽電池に入射する光の表面反射を低減させることができ、その結果、光電変換効率を向上させることができる。反射防止膜は、シリコン酸化膜などの透明膜からなることが好ましい。また、反射防止膜は、CVD法などにより形成することができる。
4). Others 4-1. Antireflection Film The polycrystalline silicon solar cell of the present invention preferably further includes an antireflection film on the second conductivity type impurity layer. In this case, surface reflection of light incident on the solar cell can be reduced, and as a result, photoelectric conversion efficiency can be improved. The antireflection film is preferably made of a transparent film such as a silicon oxide film. The antireflection film can be formed by a CVD method or the like.

4−2.裏面電界層
本発明の多結晶シリコン太陽電池は、基板の裏面側に、裏面電界層を備えることが好ましい。裏面電界層を形成することにより、キャリアの再結合ロスを低減させることができ、その結果、光電変換効率を向上させることができる。裏面電界層は、例えば、Alペーストを基板裏面に印刷し、その基板を熱処理することにより、形成することができる。
4-2. Back surface electric field layer The polycrystalline silicon solar cell of the present invention preferably includes a back surface electric field layer on the back surface side of the substrate. By forming the back surface electric field layer, carrier recombination loss can be reduced, and as a result, photoelectric conversion efficiency can be improved. The back surface electric field layer can be formed, for example, by printing an Al paste on the back surface of the substrate and heat-treating the substrate.

4−3.表面・裏面電極
上記の構成に加え、基板の表面・裏面側に表面・裏面電極を形成し、本発明の多結晶シリコン太陽電池が形成される。表面・裏面電極は、例えば、銀ペーストを用いて形成することができる。表面・裏面電極は、蒸着法などにより形成することができる。
4-3. Front / Back Electrodes In addition to the above configuration, the front / back electrodes are formed on the front / back sides of the substrate to form the polycrystalline silicon solar cell of the present invention. The front and back electrodes can be formed using a silver paste, for example. The front and back electrodes can be formed by a vapor deposition method or the like.

図1は、実施例1に係る多結晶シリコン太陽電池の製造工程を示す断面図である。以下、図1を用いて、本実施例に係る多結晶シリコン太陽電池の製造方法を説明する。   FIG. 1 is a cross-sectional view illustrating the manufacturing process of the polycrystalline silicon solar cell according to the first embodiment. Hereinafter, the manufacturing method of the polycrystalline silicon solar cell according to the present embodiment will be described with reference to FIG.

まず、p型多結晶シリコン基板1の表面上に、Alペーストからなるp型不純物層3を厚さ約50μmでスクリーン印刷し、図1(a)に示す構造を得る。   First, the p-type impurity layer 3 made of Al paste is screen-printed with a thickness of about 50 μm on the surface of the p-type polycrystalline silicon substrate 1 to obtain the structure shown in FIG.

次に、p型不純物層3を200℃で1分乾燥、700℃で1分焼成する。この工程により、Alが結晶粒界5近傍に拡散し、基板1の結晶粒界5近傍にp型の高濃度不純物領域7が形成され、図1(b)に示す構造を得る。高濃度不純物領域7が形成されるのは、結晶粒界5近傍では原子の拡散速度が大きいため、不純物層3に含まれるp型不純物が、結晶粒界5近傍に優先的に拡散するからである。高濃度不純物領域7が形成されることにより、結晶粒界5近傍のダングリングボンドが高濃度の不純物よって不活性化されるので、再結合中心が減少し、光電変換効率が向上する。また、基板1と同一の導電型の不純物によってダングリングボンドが不活性化されるため、結晶粒界5近傍に基板1と同一の導電型の高濃度不純物領域7が形成される。そのため、結晶粒界5近傍での電気抵抗が低減され、光電変換効率のさらなる向上につながる。   Next, the p-type impurity layer 3 is dried at 200 ° C. for 1 minute and baked at 700 ° C. for 1 minute. By this step, Al diffuses in the vicinity of the crystal grain boundary 5, and a p-type high concentration impurity region 7 is formed in the vicinity of the crystal grain boundary 5 of the substrate 1 to obtain the structure shown in FIG. The high-concentration impurity region 7 is formed because the diffusion rate of atoms is high in the vicinity of the crystal grain boundary 5, so that the p-type impurity contained in the impurity layer 3 is preferentially diffused in the vicinity of the crystal grain boundary 5. is there. By forming the high-concentration impurity region 7, dangling bonds in the vicinity of the crystal grain boundaries 5 are inactivated by the high-concentration impurities, so that the number of recombination centers is reduced and the photoelectric conversion efficiency is improved. Further, since the dangling bond is inactivated by the impurity having the same conductivity type as that of the substrate 1, a high concentration impurity region 7 having the same conductivity type as that of the substrate 1 is formed in the vicinity of the crystal grain boundary 5. Therefore, the electrical resistance in the vicinity of the crystal grain boundary 5 is reduced, which leads to further improvement in photoelectric conversion efficiency.

次に、得られた基板1を塩酸に10分間浸漬し、Alペースト層3及び焼成・拡散過程で生じるAlSi合金層を除去し、図1(c)に示す構造を得る。   Next, the obtained substrate 1 is immersed in hydrochloric acid for 10 minutes, and the Al paste layer 3 and the AlSi alloy layer generated in the firing / diffusion process are removed to obtain the structure shown in FIG.

次に、基板1裏面側にp+層8形成、受光側にn+層9を形成し、図1(d)に示す構造を得る。p+層8は、Alペーストを基板1裏面に印刷し、その基板1を熱処理することにより、形成する。n+層9は、POCl3を基板1表面側に塗布し、850℃、20分間で熱拡散させることにより、形成する。 Next, the p + layer 8 is formed on the back side of the substrate 1 and the n + layer 9 is formed on the light receiving side to obtain the structure shown in FIG. The p + layer 8 is formed by printing an Al paste on the back surface of the substrate 1 and heat-treating the substrate 1. The n + layer 9 is formed by applying POCl 3 to the surface of the substrate 1 and thermally diffusing it at 850 ° C. for 20 minutes.

次に、基板1の表面に反射防止膜10を形成し、さらに、基板1の表面・裏面側に表面・裏面電極11、12を形成し、図1(e)に示す構造を得て、本実施例の太陽電池の製造を完了する。表面・裏面電極は、銀ペーストを用いて、蒸着法により、形成する。   Next, the antireflection film 10 is formed on the surface of the substrate 1, and the front and back electrodes 11 and 12 are formed on the front and back sides of the substrate 1 to obtain the structure shown in FIG. The manufacture of the solar cell of the example is completed. The front and back electrodes are formed by vapor deposition using silver paste.

図1を用いて、実施例2に係る多結晶シリコン太陽電池の製造方法を説明する。   A method for manufacturing a polycrystalline silicon solar cell according to Example 2 will be described with reference to FIG.

まず、p型多結晶シリコン基板1の表面上に、B23からなるp型不純物層3を厚さ約50μmで塗布し、図1(a)に示す構造を得る。 First, the p-type impurity layer 3 made of B 2 O 3 is applied on the surface of the p-type polycrystalline silicon substrate 1 to a thickness of about 50 μm, thereby obtaining the structure shown in FIG.

次に、p型不純物層3を500℃で10分間熱処理する。この工程により、Bが結晶粒界5近傍に拡散し、基板1の結晶粒界5近傍にp型の高濃度不純物領域7が形成され、図1(b)に示す構造を得る。高濃度不純物領域7が形成される原理、その効果は、実施例1と同様である。   Next, the p-type impurity layer 3 is heat-treated at 500 ° C. for 10 minutes. By this step, B diffuses in the vicinity of the crystal grain boundary 5, and a p-type high concentration impurity region 7 is formed in the vicinity of the crystal grain boundary 5 of the substrate 1, thereby obtaining the structure shown in FIG. The principle of forming the high concentration impurity region 7 and the effect thereof are the same as those in the first embodiment.

次に、得られた基板1をフッ酸に10分間浸漬し、B23層3及び焼成・拡散過程で生じる合金層を除去し、図1(c)に示す構造を得る。 Next, the obtained substrate 1 is immersed in hydrofluoric acid for 10 minutes, and the B 2 O 3 layer 3 and the alloy layer generated in the firing / diffusion process are removed to obtain the structure shown in FIG.

次に、基板1裏面側にp+層8形成、受光側にn+層9を形成し、図1(d)に示す構造を得る。p+層8は、Alペーストを基板1裏面に印刷し、その基板1を熱処理することにより、形成する。n+層9は、POCl3を基板1表面側に塗布し、850℃、20分間で熱拡散させることにより、形成する。 Next, the p + layer 8 is formed on the back side of the substrate 1 and the n + layer 9 is formed on the light receiving side to obtain the structure shown in FIG. The p + layer 8 is formed by printing an Al paste on the back surface of the substrate 1 and heat-treating the substrate 1. The n + layer 9 is formed by applying POCl 3 to the surface of the substrate 1 and thermally diffusing it at 850 ° C. for 20 minutes.

次に、基板1の表面に反射防止膜10を形成し、さらに、基板1の表面・裏面側に表面・裏面電極11、12を形成し、図1(e)に示す構造を得て、本実施例の太陽電池の製造を完了する。表面・裏面電極は、銀ペーストを用いて、蒸着法により、形成する。   Next, the antireflection film 10 is formed on the surface of the substrate 1, and the front and back electrodes 11 and 12 are formed on the front and back sides of the substrate 1 to obtain the structure shown in FIG. The manufacture of the solar cell of the example is completed. The front and back electrodes are formed by vapor deposition using silver paste.

図1を用いて、実施例3に係る多結晶シリコン太陽電池の製造方法を説明する。   A method for manufacturing a polycrystalline silicon solar cell according to Example 3 will be described with reference to FIG.

まず、p型多結晶シリコン基板1の表面上に、ホウケイ酸鉛からなるp型不純物層3を厚さ約50μmでスクリーン印刷し、図1(a)に示す構造を得る。   First, a p-type impurity layer 3 made of lead borosilicate is screen-printed with a thickness of about 50 μm on the surface of the p-type polycrystalline silicon substrate 1 to obtain the structure shown in FIG.

次に、p型不純物層3を200℃で1分間乾燥させ、さらに、700℃で1分間焼成する。この工程により、Bが結晶粒界5近傍に拡散し、基板1の結晶粒界5近傍にp型の高濃度不純物領域7が形成され、図1(b)に示す構造を得る。高濃度不純物領域7が形成される原理、その効果は、実施例1と同様である。   Next, the p-type impurity layer 3 is dried at 200 ° C. for 1 minute, and further baked at 700 ° C. for 1 minute. By this step, B diffuses in the vicinity of the crystal grain boundary 5, and a p-type high concentration impurity region 7 is formed in the vicinity of the crystal grain boundary 5 of the substrate 1, thereby obtaining the structure shown in FIG. The principle of forming the high concentration impurity region 7 and the effect thereof are the same as those in the first embodiment.

次に、得られた基板1をフッ酸に10分間浸漬し、ホウケイ酸鉛層3及び焼成・拡散過程で生じる合金層を除去し、図1(c)に示す構造を得る。   Next, the obtained substrate 1 is immersed in hydrofluoric acid for 10 minutes, and the lead borosilicate layer 3 and the alloy layer generated in the firing / diffusion process are removed to obtain the structure shown in FIG.

次に、基板1裏面側にp+層8形成、受光側にn+層9を形成し、図1(d)に示す構造を得る。p+層8は、Alペーストを基板1裏面に印刷し、その基板1を熱処理することにより、形成する。n+層9は、POCl3を基板1表面側に塗布し、850℃、20分間で熱拡散させることにより、形成する。 Next, the p + layer 8 is formed on the back side of the substrate 1 and the n + layer 9 is formed on the light receiving side to obtain the structure shown in FIG. The p + layer 8 is formed by printing an Al paste on the back surface of the substrate 1 and heat-treating the substrate 1. The n + layer 9 is formed by applying POCl 3 to the surface of the substrate 1 and thermally diffusing it at 850 ° C. for 20 minutes.

次に、基板1の表面に反射防止膜10を形成し、さらに、基板1の表面・裏面側に表面・裏面電極11、12を形成し、図1(e)に示す構造を得て、本実施例の太陽電池の製造を完了する。表面・裏面電極は、銀ペーストを用いて、蒸着法により、形成する。   Next, the antireflection film 10 is formed on the surface of the substrate 1, and the front and back electrodes 11 and 12 are formed on the front and back sides of the substrate 1 to obtain the structure shown in FIG. The manufacture of the solar cell of the example is completed. The front and back electrodes are formed by vapor deposition using silver paste.

本発明の実施例1に係る多結晶シリコン太陽電池の製造工程を示す断面図である。It is sectional drawing which shows the manufacturing process of the polycrystalline silicon solar cell which concerns on Example 1 of this invention.

符号の説明Explanation of symbols

1 p型多結晶シリコン基板
3 p型不純物層
5 結晶粒界
7 高濃度不純物領域
8 p+
9 n+
10 反射防止膜
11 表面電極
12 裏面電極
1 p-type polycrystalline silicon substrate 3 p-type impurity layer 5 crystal grain boundary 7 high-concentration impurity region 8 p + layer 9 n + layer 10 antireflection film 11 surface electrode 12 back electrode

Claims (11)

第1導電型の多結晶シリコン基板の表面側から基板の結晶粒界近傍に形成された第1導電型の高濃度不純物領域と、基板の表面側に形成された第2導電型の不純物層とを備え、高濃度不純物領域により結晶粒界近傍での基板の電気抵抗が低減されていることを特徴とする多結晶シリコン太陽電池。   A first conductivity type high concentration impurity region formed in the vicinity of a grain boundary of the substrate from the surface side of the first conductivity type polycrystalline silicon substrate; a second conductivity type impurity layer formed on the surface side of the substrate; A polycrystalline silicon solar cell characterized in that the electrical resistance of the substrate in the vicinity of the crystal grain boundary is reduced by the high concentration impurity region. 高濃度不純物領域は、その濃度が1×1018〜1×1020atoms/cm3である請求項1に記載の太陽電池。 The solar cell according to claim 1, wherein the high concentration impurity region has a concentration of 1 × 10 18 to 1 × 10 20 atoms / cm 3 . 高濃度不純物領域は、B又はAlが基板の結晶粒界近傍にドーピングされて形成される請求項1に記載の太陽電池。   The solar cell according to claim 1, wherein the high concentration impurity region is formed by doping B or Al in the vicinity of a crystal grain boundary of the substrate. 高濃度不純物領域は、(a)第1導電型の不純物からなる不純物層を基板表面上に形成し、(b)熱処理により不純物を基板の結晶粒界近傍に拡散させることにより、形成されている請求項1に記載の太陽電池。   The high concentration impurity region is formed by (a) forming an impurity layer made of an impurity of the first conductivity type on the substrate surface, and (b) diffusing the impurity near the crystal grain boundary of the substrate by heat treatment. The solar cell according to claim 1. 第1導電型の不純物からなる不純物層は、その厚さが1〜50μmである請求項4に記載の太陽電池。   The solar cell according to claim 4, wherein the impurity layer made of the first conductivity type impurity has a thickness of 1 to 50 μm. 第1導電型の不純物は、ホウケイ酸鉛、B23、又はAlからなる請求項4に記載の太陽電池。 The solar cell according to claim 4, wherein the first conductivity type impurity is composed of lead borosilicate, B 2 O 3 , or Al. 熱処理は、800℃以下で行われる請求項4に記載の太陽電池。   The solar cell according to claim 4, wherein the heat treatment is performed at 800 ° C. or less. (1)第1導電型の多結晶シリコン基板の表面側から基板の結晶粒界近傍に第1導電型の高濃度不純物領域を形成し、(2)基板の表面側に第2導電型の不純物層を形成する工程を備え、高濃度不純物領域により結晶粒界近傍での基板の電気抵抗が低減される多結晶シリコン太陽電池の製造方法。   (1) A first conductivity type high-concentration impurity region is formed in the vicinity of a grain boundary of the substrate from the surface side of the first conductivity type polycrystalline silicon substrate, and (2) a second conductivity type impurity is formed on the surface side of the substrate. A method for manufacturing a polycrystalline silicon solar cell, comprising a step of forming a layer, wherein the electrical resistance of the substrate in the vicinity of the crystal grain boundary is reduced by the high concentration impurity region. 工程(1)は、(a)第1導電型の不純物からなる不純物層を基板表面上に形成し、(b)熱処理により不純物を基板の結晶粒界近傍に拡散させることにより、基板の結晶粒界近傍に第1導電型の高濃度不純物領域を形成する工程である請求項8に記載の製造方法。   In step (1), (a) an impurity layer made of an impurity of the first conductivity type is formed on the substrate surface, and (b) the impurities are diffused in the vicinity of the crystal grain boundary of the substrate by heat treatment. 9. The manufacturing method according to claim 8, which is a step of forming a high-concentration impurity region of the first conductivity type in the vicinity of the boundary. 工程(1)の後に、第1導電型の不純物からなる不純物層及び工程(1)で形成されるSi合金層を酸により除去する工程をさらに備える請求項9に記載の製造方法。   The manufacturing method according to claim 9, further comprising a step of removing the impurity layer made of the first conductivity type impurity and the Si alloy layer formed in the step (1) with an acid after the step (1). 酸は、塩酸又はフッ酸である請求項10に記載の製造方法。   The production method according to claim 10, wherein the acid is hydrochloric acid or hydrofluoric acid.
JP2004059249A 2004-03-03 2004-03-03 Polycrystal silicon solar cell and its manufacturing method Pending JP2005251928A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004059249A JP2005251928A (en) 2004-03-03 2004-03-03 Polycrystal silicon solar cell and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004059249A JP2005251928A (en) 2004-03-03 2004-03-03 Polycrystal silicon solar cell and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2005251928A true JP2005251928A (en) 2005-09-15

Family

ID=35032133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004059249A Pending JP2005251928A (en) 2004-03-03 2004-03-03 Polycrystal silicon solar cell and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2005251928A (en)

Similar Documents

Publication Publication Date Title
US8921968B2 (en) Selective emitter solar cells formed by a hybrid diffusion and ion implantation process
JP4837662B2 (en) Method for manufacturing solar cell element
JP5440433B2 (en) Solar cell manufacturing method and film forming apparatus
JP5058184B2 (en) Method for manufacturing photovoltaic device
JP2005116906A (en) Silicon solar battery cell and its manufacturing method
KR102120147B1 (en) Solar cell and method of manufacturing the same
JPWO2007060744A1 (en) Solar cell and manufacturing method thereof
TW201911588A (en) Solar cell and manufacturing method thereof
JP5338702B2 (en) Manufacturing method of solar cell
JP2011023526A (en) Method of manufacturing photovoltaic device
JP2989373B2 (en) Method for manufacturing photoelectric conversion device
JP5745653B2 (en) Photovoltaic device, manufacturing method thereof, and photovoltaic module
JP2007019259A (en) Solar cell and its manufacturing method
KR100995654B1 (en) Solar cell and method for manufacturing the same
JP2005251928A (en) Polycrystal silicon solar cell and its manufacturing method
JP3346907B2 (en) Solar cell and method of manufacturing the same
JP6257803B2 (en) Method for manufacturing photovoltaic device
JP4614655B2 (en) Method for manufacturing photovoltaic device
KR101321538B1 (en) Bulk silicon solar cell and method for producing same
KR20110047828A (en) Silicon heterojunction solar cell and method for fabricating the same
JP2014130943A (en) Solar cell and manufacturing method therefor
JP5573854B2 (en) Dopant adsorbing member and solar cell manufacturing method
JP5316491B2 (en) Manufacturing method of solar cell
JP2011243726A (en) Solar cell manufacturing method
JP5994895B2 (en) Manufacturing method of solar cell