JP2005248238A - Method for manufacturing aluminum matrix composite - Google Patents

Method for manufacturing aluminum matrix composite Download PDF

Info

Publication number
JP2005248238A
JP2005248238A JP2004059324A JP2004059324A JP2005248238A JP 2005248238 A JP2005248238 A JP 2005248238A JP 2004059324 A JP2004059324 A JP 2004059324A JP 2004059324 A JP2004059324 A JP 2004059324A JP 2005248238 A JP2005248238 A JP 2005248238A
Authority
JP
Japan
Prior art keywords
heat source
crucible
powder
furnace
matrix composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004059324A
Other languages
Japanese (ja)
Other versions
JP4184998B2 (en
Inventor
Takaharu Echigo
隆治 越後
Hiroto Shoji
広人 庄子
Soji Matsuura
聡司 松浦
Masashi Hara
昌司 原
Takujiyu Takano
拓樹 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2004059324A priority Critical patent/JP4184998B2/en
Publication of JP2005248238A publication Critical patent/JP2005248238A/en
Application granted granted Critical
Publication of JP4184998B2 publication Critical patent/JP4184998B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve a production efficiency of an aluminum matrix composite, by placing crucibles used for manufacturing the aluminum matrix composite at maximum density in a heating furnace used for manufacturing the aluminum matrix composite. <P>SOLUTION: The method for manufacturing the aluminum matrix composite comprises: the first step of placing an aluminum alloy 82 on a powder 81 in the crucible 25; the second step of accommodating magnesium in the furnace along with the crucible; and the third step of obtaining the aluminum matrix composite by making the molten metal of an aluminum alloy penetrate into gaps among the powders by heating the inside of the furnace and reducing the pressure in the furnace at a predetermined timing. The third step includes, by using a heat source 23 consisting of an upper heat source 43 located above the crucible and a lower heat source 44 located below it, setting the output of the lower heat source higher than that of the upper heat source before a reduction reaction is completed, and the output of the upper heat source higher than that of the lower heat source after the reduction reaction has been completed. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、アルミニウム基複合材の製造方法に関するものである。   The present invention relates to a method for producing an aluminum-based composite material.

アルミニウム基複合材は、アルミニウムと酸化物系セラミックスとからなり、酸化物系セラミックスは、例えば、アルミナ(Al)を用いた。このようなアルミニウム基複合材を製造する方法の概要は、まず、炉で酸化物系セラミックスからなる多孔質成形体を加熱するとともに窒化マグネシウムにて多孔質成形体を還元する。 The aluminum-based composite material is made of aluminum and oxide ceramics, and alumina (Al 2 O 3 ) is used as the oxide ceramics, for example. The outline of the method for producing such an aluminum-based composite material is as follows. First, a porous molded body made of an oxide-based ceramic is heated in a furnace and the porous molded body is reduced with magnesium nitride.

続けて、還元した多孔質成形体に溶解したアルミニウムを浸透させることで、アルミニウム基複合材を得る。その際に、減圧又は加圧を行うアルミニウム基複合材の製造方法が知られている(例えば、特許文献1参照。)。
特開2002−30361公報(第6頁、図3)
Subsequently, aluminum dissolved in the reduced porous molded body is infiltrated to obtain an aluminum-based composite material. At that time, a method for producing an aluminum-based composite material that performs depressurization or pressurization is known (for example, see Patent Document 1).
Japanese Patent Laid-Open No. 2002-30361 (page 6, FIG. 3)

特許文献1を次図に基づいて説明する。
図7(a),(b)は、従来の技術の基本原理を説明する図である。
(a)において、アルミニウム基複合材製造装置101は、雰囲気炉102と、アルゴンガス供給手段103と、窒素ガス供給手段104と、真空ポンプ105と、を備える。
Patent document 1 is demonstrated based on the following figure.
7A and 7B are diagrams for explaining the basic principle of the conventional technique.
In (a), the aluminum-based composite material manufacturing apparatus 101 includes an atmosphere furnace 102, an argon gas supply unit 103, a nitrogen gas supply unit 104, and a vacuum pump 105.

この製造装置101で製造する複合材の製造工程の概要を次ぎに説明する。
まず、坩堝106に多孔質成形体107、アルミナ(Al)の粉末からなる多孔性仕切り体108及びアルミニウム合金109を入れる。多孔質成形体107は、多孔質アルミナ(アルミナ111)にマグネシウムを含有させたものである。
The outline of the manufacturing process of the composite material manufactured by the manufacturing apparatus 101 will be described below.
First, a porous molded body 107, a porous partition body 108 made of alumina (Al 2 O 3 ) powder, and an aluminum alloy 109 are placed in a crucible 106. The porous molded body 107 is made by containing magnesium in porous alumina (alumina 111).

(b)において、引き続き、雰囲気炉102にアルゴンガス供給手段103からアルゴンガス(Ar)を入れて置換し、加熱を開始する。所定時間後、雰囲気炉101に窒素ガス供給手段104から窒素ガス(N)を供給し、雰囲気炉101を減圧下に設定し、減圧開始から所定時間経過後、加圧する。 In (b), argon gas (Ar) is subsequently put into the atmosphere furnace 102 from the argon gas supply means 103 and replaced, and heating is started. After a predetermined time, nitrogen gas (N 2 ) is supplied from the nitrogen gas supply means 104 to the atmosphere furnace 101, the atmosphere furnace 101 is set under reduced pressure, and the pressure is increased after a predetermined time has elapsed from the start of the pressure reduction.

このような過程を経る雰囲気炉102内では、加熱によって、マグネシウム112と窒素ガス113とが反応して窒化マグネシウム114を生成するとともに窒化マグネシウム114は多孔質成形体107のアルミナを減圧下で還元し、溶解したアルミニウム合金は、還元した多孔質成形体107に加圧下で浸透する。従って、浸透不良部をなくすることができる。   In the atmosphere furnace 102 that has undergone such a process, the magnesium 112 and the nitrogen gas 113 react with each other to produce magnesium nitride 114 by heating, and the magnesium nitride 114 reduces the alumina of the porous molded body 107 under reduced pressure. The dissolved aluminum alloy penetrates into the reduced porous molded body 107 under pressure. Therefore, the poor penetration portion can be eliminated.

しかし、特許文献1のアルミニウム基複合材の製造方法では、窒化マグネシウムが生成される前に、アルミニウム合金109が溶解し始めることがあり、健全な複合化が起こらない場合がある。このため、窒化マグネシウムの還元作用による濡れが不足し、結合が不十分になることがあった。特に、雰囲気炉102に最大の密度で坩堝106を置き、最速の昇温速度で加熱すると、気流の上昇によって上部に置いたアルミニウム合金109は溶解しやすくなり、結果的に、アルミニウム基複合材の歩留まりは悪く、生産効率は低くなった。   However, in the method for producing an aluminum-based composite material disclosed in Patent Document 1, the aluminum alloy 109 may begin to dissolve before magnesium nitride is generated, and a sound composite may not occur. For this reason, wetting due to the reducing action of magnesium nitride is insufficient, and bonding may be insufficient. In particular, when the crucible 106 is placed at the maximum density in the atmosphere furnace 102 and heated at the fastest heating rate, the aluminum alloy 109 placed on the top is easily melted by the rise of the air flow, and as a result, the aluminum-based composite material Yield was bad and production efficiency was low.

本発明は、アルミニウム基複合材を製造する加熱炉にアルミニウム基複合材を製造する際に用いる坩堝を最大の密度で置き、アルミニウム基複合材の生産効率の向上を図ることを課題とする。   An object of the present invention is to place a crucible used for producing an aluminum matrix composite at a maximum density in a heating furnace for producing the aluminum matrix composite to improve the production efficiency of the aluminum matrix composite.

請求項1に係る発明は、坩堝に酸化物系セラミックスからなる多孔質成形体又は粉末を置き、この多孔質成形体又は粉末の上にアルミニウム合金を載せる第1工程と、坩堝とともにマグネシウム又はマグネシウム発生源を炉内に収める第2工程と、炉を窒素雰囲気下にするとともに加熱することで、窒化マグネシウムを生成し、窒化マグネシウムの作用によって多孔質成形体又は粉末を還元するとともに炉内を減圧下し、還元した多孔質成形体又は粉末にアルミニウム合金の溶湯を浸透させてアルミニウム基複合材を得る第3工程と、からなるアルミニウム基複合材の製造方法において、第3工程では、坩堝の上方に位置する上部熱源と下方に位置する下部熱源とからなるとともにこれらの上・下部熱源を別々に制御可能な熱源を用い、還元完了までは上部熱源の出力より、下部熱源の出力を高くし、還元後は下部熱源の出力より、上部熱源の出力を高くすることを特徴とする。   The invention according to claim 1 is a first step of placing a porous molded body or powder made of an oxide-based ceramic in a crucible and placing an aluminum alloy on the porous molded body or powder, and generation of magnesium or magnesium together with the crucible. The second step of placing the source in the furnace, and heating the furnace in a nitrogen atmosphere and heating to produce magnesium nitride, reducing the porous molded body or powder by the action of magnesium nitride, and reducing the pressure in the furnace A third step of obtaining an aluminum matrix composite by infiltrating a molten aluminum alloy into the reduced porous molded body or powder, and in the method of manufacturing an aluminum matrix composite, Reduction using a heat source that consists of an upper heat source located below and a lower heat source located below, and which can control these upper and lower heat sources separately. Until completion from the output of the upper heat source, to increase the output of the lower heat source, after reduction from the output of the lower heat source, characterized by increasing the output of the upper heat source.

請求項1に係る発明の第3工程では、坩堝の上方に位置する上部熱源と下方に位置する下部熱源とからなるとともにこれらの上・下部熱源を別々に制御可能な熱源を用い、還元完了までは上部熱源の出力より、下部熱源の出力を高くし、還元後は下部熱源の出力より、上部熱源の出力を高くするので、坩堝の上部に位置するアルミニウム合金の昇温速度に比べ、坩堝の下部に位置する多孔質成形体又は粉末の昇温速度は速くなり、アルミニウム合金を溶解させることなく、多孔質成形体又は粉末の温度を先行して上げると同時に、多孔質成形体内又は粉末内のマグネシウムの温度を先行して上げることができる。その結果、熱源から遠い坩堝と熱源に近い坩堝との間で起きる還元完了のタイミングの差を短くすることができ、坩堝の配置に伴う還元完了のタイミングのばらつきは小さくなる。従って、加熱炉内に最大の密度で坩堝を置いて、アルミニウム基複合材の生産効率の向上を図れるという利点がある。   In the third step of the invention according to claim 1, the upper heat source located above the crucible and the lower heat source located below are used and a heat source capable of separately controlling these upper and lower heat sources is used to complete the reduction. Since the output of the lower heat source is higher than the output of the upper heat source, and the output of the upper heat source is higher than the output of the lower heat source after reduction, the temperature of the crucible is higher than that of the aluminum alloy located above the crucible. The temperature rise rate of the porous molded body or powder located in the lower portion is increased, and the temperature of the porous molded body or powder is increased in advance without dissolving the aluminum alloy. The temperature of magnesium can be raised in advance. As a result, the difference in reduction completion timing between the crucible far from the heat source and the crucible close to the heat source can be shortened, and the variation in the reduction completion timing due to the crucible arrangement is reduced. Therefore, there is an advantage that the production efficiency of the aluminum-based composite material can be improved by placing the crucible at the maximum density in the heating furnace.

本発明を実施するための最良の形態を添付図に基づいて以下に説明する。なお、図面は符号の向きに見るものとする。
図1は、本発明の製造方法に用いるアルミニウム基複合材の製造装置の断面図である。 アルミニウム基複合材の製造装置11は、加熱炉12と、この加熱炉12に接続し、ガスを供給するガス供給装置13と、加熱炉12内を減圧する真空ポンプ14と、これらの加熱炉12、ガス供給装置13及び真空ポンプ14を制御する制御装置15と、を備える。減圧とは、大気圧より低い圧力を意味する。
The best mode for carrying out the present invention will be described below with reference to the accompanying drawings. The drawings are viewed in the direction of the reference numerals.
FIG. 1 is a cross-sectional view of an apparatus for producing an aluminum matrix composite used in the production method of the present invention. The aluminum matrix composite manufacturing apparatus 11 includes a heating furnace 12, a gas supply apparatus 13 connected to the heating furnace 12 for supplying gas, a vacuum pump 14 for reducing the pressure in the heating furnace 12, and the heating furnace 12. And a control device 15 for controlling the gas supply device 13 and the vacuum pump 14. Reduced pressure means a pressure lower than atmospheric pressure.

加熱炉12は、圧力容器21内に断熱手段22を取り付け、この断熱手段22の内側に熱源としての加熱手段23を配置し、この加熱手段23の内側にタイトボックス24を設け、このタイトボックス24内に坩堝25を載せる載置台26を配置した炉である。   In the heating furnace 12, a heat insulating means 22 is attached in the pressure vessel 21, a heating means 23 as a heat source is disposed inside the heat insulating means 22, a tight box 24 is provided inside the heating means 23, and the tight box 24 This is a furnace in which a mounting table 26 on which the crucible 25 is placed is arranged.

圧力容器21は、本体部28の両端に第1・第2ヘッド31,32を開閉機構(図に示していない)を介して開閉可能に取り付け、本体部28の下部に架台33,33を取り付け、本体部28に第1ノズル34・・・(・・・は複数を示す。以下同様。)、第2ノズル35,35、第3ノズル36を取り付け、所定の減圧下又は加圧下でワークを処理する。   In the pressure vessel 21, first and second heads 31 and 32 are attached to both ends of the main body portion 28 via an opening / closing mechanism (not shown), and mounts 33 and 33 are attached to the lower portion of the main body portion 28. The first nozzle 34 (... indicates a plurality; the same applies hereinafter), the second nozzles 35, 35, and the third nozzle 36 are attached to the main body 28, and the workpiece is placed under a predetermined reduced pressure or pressure. To process.

なお、処理するものによっては、圧力容器21の内面全体に内面の腐蝕を防止するステンレス鋼を溶接(オーバーレイ)することも可能である。また、必要に応じて圧力容器21にさらに大小のノズルを形成してもよい。   In addition, depending on what is processed, it is also possible to weld (overlay) stainless steel for preventing corrosion of the inner surface to the entire inner surface of the pressure vessel 21. Moreover, you may form a larger or smaller nozzle in the pressure vessel 21 as needed.

加熱手段23は、電気ヒータ(カーボンヒータを含む。)であり、坩堝25の上方に位置する上部熱源43と下方に位置する下部熱源44と、坩堝25の上方に配置した熱電対45と、下方に配置した熱電対46と、を備える。   The heating means 23 is an electric heater (including a carbon heater), and includes an upper heat source 43 located above the crucible 25, a lower heat source 44 located below the crucible 25, a thermocouple 45 disposed above the crucible 25, and a lower part. And a thermocouple 46 disposed in the.

ガス供給装置13は、不活性ガス供給手段47と、窒素供給手段(窒素ガス供給手段)48と、切換え弁49と、第2ノズル35,35に接続した管51とを備え、管51を介して不活性ガス又は窒素ガス(N)を流す。 The gas supply device 13 includes an inert gas supply means 47, a nitrogen supply means (nitrogen gas supply means) 48, a switching valve 49, and a pipe 51 connected to the second nozzles 35, 35. Then, an inert gas or nitrogen gas (N 2 ) is supplied.

切換え弁49は、制御装置15の情報に基づいて不活性ガス入口52又は窒素入口53を出口54に導き、必要に応じて不活性ガス入口52及び窒素入口53を閉じる。
窒素ガス供給手段48は、加熱炉12内の熱源(加熱手段)23の近傍に設けたガス予備加熱室56と、このガス予備加熱室56に取り付けて坩堝25内に向けガスを供給するノズル57と、を備える。
The switching valve 49 guides the inert gas inlet 52 or the nitrogen inlet 53 to the outlet 54 based on the information of the control device 15 and closes the inert gas inlet 52 and the nitrogen inlet 53 as necessary.
The nitrogen gas supply means 48 includes a gas preheating chamber 56 provided near the heat source (heating means) 23 in the heating furnace 12, and a nozzle 57 that is attached to the gas preheating chamber 56 and supplies gas into the crucible 25. And comprising.

図2は、図1の2−2線断面図であり、加熱炉12と、ガス供給装置13と、真空ポンプ14と、制御装置15と、加熱炉12内に配置した加熱手段23と、ガス予備加熱室56を示す。   2 is a cross-sectional view taken along the line 2-2 of FIG. 1, and shows a heating furnace 12, a gas supply device 13, a vacuum pump 14, a control device 15, a heating means 23 disposed in the heating furnace 12, and a gas. A preheating chamber 56 is shown.

加熱手段23は、既に説明したように上部熱源43と下部熱源44とからなる。
上部熱源43は、第1ノズル34,34に第1ヒータ61,61を取り付けたもので、これらの第1ヒータ61,61を制御装置15は同一条件で制御する。
The heating means 23 includes the upper heat source 43 and the lower heat source 44 as already described.
The upper heat source 43 is obtained by attaching the first heaters 61, 61 to the first nozzles 34, 34, and the control device 15 controls the first heaters 61, 61 under the same conditions.

下部熱源44は、図下方の第1ノズル34,34に第2ヒータ62,62を取り付けたもので、第2ヒータ62,62を制御装置15は同一条件で制御する。つまり、上・下部熱源43,44を別々に制御可能な熱源である。
第1〜第2ヒータ61,62はともに同じ構造であり、既存のものを用いた。
The lower heat source 44 is obtained by attaching the second heaters 62 and 62 to the first nozzles 34 and 34 in the lower part of the figure, and the control device 15 controls the second heaters 62 and 62 under the same conditions. That is, the heat source can control the upper and lower heat sources 43 and 44 separately.
Both the first and second heaters 61 and 62 have the same structure, and existing ones were used.

図3(a),(b)は、本発明の製造方法の第1工程の説明図である。
(a):まず、坩堝25に酸化物系セラミックスからなる粉末81を置き、この粉末81の上にアルミニウム合金82を載せる。
ここでは、さらに粉末81とアルミニウム合金82との間に多孔性仕切り体85を介在させた。
3A and 3B are explanatory views of the first step of the manufacturing method of the present invention.
(A): First, a powder 81 made of an oxide ceramic is placed in the crucible 25, and an aluminum alloy 82 is placed on the powder 81.
Here, a porous partition body 85 is further interposed between the powder 81 and the aluminum alloy 82.

粉末81は、アルミナ(Al)とマグネシウム(Mg)を混合した混合粉である。 多孔性仕切り体85は、アルミナ(Al)の粉末86を0.5mm〜2.0mmの厚さにしたシートであり、粉末86の平均粒径は、50μm〜100μmが望ましい。 The powder 81 is a mixed powder obtained by mixing alumina (Al 2 O 3 ) and magnesium (Mg). The porous partition 85 is a sheet in which an alumina (Al 2 O 3 ) powder 86 has a thickness of 0.5 mm to 2.0 mm, and the average particle size of the powder 86 is desirably 50 μm to 100 μm.

アルミニウム合金82は、例えば、Al−Mg−Si系合金の一種であるJIS−A6061である。
なお、酸化物系セラミックスからなる粉末81を用いたが、酸化物系セラミックスからなる多孔質成形体を用いてもよい。
また、多孔性仕切り体85は、シートを採用したが、粉末を堆積させたものでもよい。
The aluminum alloy 82 is, for example, JIS-A6061 which is a kind of Al—Mg—Si alloy.
In addition, although the powder 81 which consists of oxide type ceramics was used, you may use the porous molded object which consists of oxide type ceramics.
Moreover, although the porous partition body 85 employ | adopted the sheet | seat, what deposited the powder may be used.

(b):その次に、粉末81、多孔性仕切り体85、アルミニウム合金82を入れた坩堝25・・・を図1の加熱炉12へ搬送する。
なお、既に粉末81内にマグネシウム(Mg)を分散させた状態なので、マグネシウムを入れた容器を用意しないが、粉末81内又は坩堝25内にマグネシウムを入れない場合には、坩堝25とは別に、マグネシウムを入れた容器を用意する。
(B): Next, the crucible 25... Containing the powder 81, the porous partition 85, and the aluminum alloy 82 is conveyed to the heating furnace 12 of FIG.
Since magnesium (Mg) has already been dispersed in the powder 81, a container containing magnesium is not prepared. Prepare a container containing magnesium.

坩堝25・・・とともにマグネシウムをアルミニウム基複合材の製造装置11の加熱炉12内に収める。ここに示す一例では、既にマグネシウムを粉末81内に含めたから、マグネシウムを加熱炉12内に収める作業は省かれる。
図1の加熱炉12の第1ヘッド31を開き、載置台26の所定位置に16個の坩堝25・・・を置き、第1ヘッド31を閉じる。
Magnesium is stored in the heating furnace 12 of the aluminum-based composite material manufacturing apparatus 11 together with the crucibles 25. In the example shown here, since magnesium has already been included in the powder 81, the operation of storing magnesium in the heating furnace 12 is omitted.
The first head 31 of the heating furnace 12 in FIG. 1 is opened, 16 crucibles 25... Are placed at predetermined positions on the mounting table 26, and the first head 31 is closed.

図4は、本発明の製造方法の第3工程の説明図(その1)で、タイトボックス24(図2参照)を省いた図である。作用を模式的に示す。
加熱炉12を窒素雰囲気下にするとともに加熱することで、窒化マグネシウム(Mg)を生成する。具体的には、加熱炉12内の酸素を除去するために加熱炉12内を真空ポンプ14(図1参照)で真空引きし、一定の真空度に達したら、真空ポンプ14を止め、切換え弁49(図1参照)の作動で不活性ガス供給手段47(図1参照)から加熱炉12のガス予備加熱室56(図1参照)に不活性ガス(例えば、アルゴンガス(Ar))を矢印eの如く供給し、加熱手段23で粉末81(マグネシウム(Mg)を含む。)及びアルミニウム合金82の加熱を開始する。
FIG. 4 is an explanatory view (No. 1) of the third step of the manufacturing method of the present invention, in which the tight box 24 (see FIG. 2) is omitted. The action is schematically shown.
Magnesium nitride (Mg 3 N 2 ) is generated by heating and heating the heating furnace 12 under a nitrogen atmosphere. Specifically, in order to remove oxygen in the heating furnace 12, the inside of the heating furnace 12 is evacuated by a vacuum pump 14 (see FIG. 1), and when a certain degree of vacuum is reached, the vacuum pump 14 is stopped and the switching valve is turned off. 49 (see FIG. 1), an inert gas (for example, argon gas (Ar)) is arrowed from the inert gas supply means 47 (see FIG. 1) to the gas preheating chamber 56 (see FIG. 1) of the heating furnace 12. Then, heating of the powder 81 (including magnesium (Mg)) and the aluminum alloy 82 is started by the heating means 23.

より具体的には、還元完了までは上部熱源43の出力Wtより、下部熱源44の出力Wbを高くする。
還元完了の情報は、加熱経過時間thであり、加熱経過時間thを制御装置15(図1参照)の図に示していないタイマーでカウントする。すなわち、制御装置15のタイマーの情報に基づいて上部熱源43の出力Wt及び下部熱源44の出力Wbのタイミングを制御する。
More specifically, the output Wb of the lower heat source 44 is made higher than the output Wt of the upper heat source 43 until the reduction is completed.
The reduction completion information is the heating elapsed time th, and the heating elapsed time th is counted by a timer not shown in the diagram of the control device 15 (see FIG. 1). That is, the timing of the output Wt of the upper heat source 43 and the output Wb of the lower heat source 44 is controlled based on the information of the timer of the control device 15.

加熱経過時間thは、制御装置15(図1参照)の加熱手段23用のスイッチを「ON」にした時点からアルミナの還元が完了するまでの時間であり、統計的に算出した時間である。   The heating elapsed time th is a time from when the switch for the heating means 23 of the control device 15 (see FIG. 1) is turned “ON” until the reduction of alumina is completed, and is a statistically calculated time.

上部熱源43によって加熱される雰囲気の温度を熱電対45(図2参照)で検出しつつ、下部熱源44によって加熱される雰囲気の温度を熱電対46(図2参照)で検出しつつ昇温(自動)させる。所定温度(例えば、約750℃〜約900℃)に達する過程では、加熱炉12内は不活性ガスの雰囲気下にあるので、アルミニウム合金82及びマグネシウム(Mg)32が酸化することはない。   While detecting the temperature of the atmosphere heated by the upper heat source 43 with a thermocouple 45 (see FIG. 2), the temperature of the atmosphere heated by the lower heat source 44 is detected while detecting with the thermocouple 46 (see FIG. 2) ( Auto). In the process of reaching a predetermined temperature (for example, about 750 ° C. to about 900 ° C.), since the inside of the heating furnace 12 is in an inert gas atmosphere, the aluminum alloy 82 and magnesium (Mg) 32 are not oxidized.

ここでは、上部熱源43の出力Wtより、下部熱源44の出力Wbを高くするので、上部に位置するアルミニウム合金82の昇温速度に比べ、下部に位置する粉末81の昇温速度は速くなり、アルミニウム合金82を溶解させることなく、粉末81の温度を上げることができると同時に、粉末81内のマグネシウムの温度を上げることができる。   Here, since the output Wb of the lower heat source 44 is made higher than the output Wt of the upper heat source 43, the temperature increase rate of the powder 81 located in the lower part is faster than the temperature increase rate of the aluminum alloy 82 located in the upper part. The temperature of the powder 81 can be increased without dissolving the aluminum alloy 82, and at the same time, the temperature of magnesium in the powder 81 can be increased.

図5は、本発明の製造方法の第3工程の説明図(その2)であり、模式的に示す。
窒化マグネシウム(Mg)の作用で粉末81を還元するとともに加熱炉12内を減圧下にする。詳しくは、図1の切換え弁49の作動で窒素ガス供給手段48から加熱炉12のガス予備加熱室56に窒素ガスを供給し、同時に真空ポンプ14で不活性ガスを抜き、加熱炉12内の雰囲気を窒素ガスに置換する。加熱炉12内が窒素ガスの雰囲気になると、窒素ガスは、マグネシウムと反応して窒化マグネシウム(Mg)を生成する。窒化マグネシウムは、粉末81のアルミナ、及び多孔性仕切り体85のアルミナを還元するので、アルミナは濡れ性がよくなる。
FIG. 5 is an explanatory diagram (part 2) of the third step of the production method of the present invention, schematically showing.
The powder 81 is reduced by the action of magnesium nitride (Mg 3 N 2 ) and the inside of the heating furnace 12 is reduced in pressure. Specifically, the operation of the switching valve 49 in FIG. 1 supplies nitrogen gas from the nitrogen gas supply means 48 to the gas preheating chamber 56 of the heating furnace 12, and at the same time, the inert gas is extracted by the vacuum pump 14, The atmosphere is replaced with nitrogen gas. When the inside of the heating furnace 12 is in an atmosphere of nitrogen gas, the nitrogen gas reacts with magnesium to generate magnesium nitride (Mg 3 N 2 ). Magnesium nitride reduces the alumina of the powder 81 and the alumina of the porous partition 85, so that the wettability of alumina is improved.

アルミナを還元後、窒素ガスの供給を停止し、加熱炉12内の気体を真空ポンプ14(図1参照)で真空引きし、所定の真空度にする。その際、粉末81間の隙間内(成形体の場合は気孔内)の気体、及び多孔性仕切り体85の隙間内の気体は吸引され、真空度は加熱炉12内と同様となる。   After reducing the alumina, the supply of nitrogen gas is stopped, and the gas in the heating furnace 12 is evacuated by the vacuum pump 14 (see FIG. 1) to obtain a predetermined degree of vacuum. At that time, the gas in the gap between the powders 81 (in the case of a molded body, in the pores) and the gas in the gap of the porous partition 85 are sucked, and the degree of vacuum is the same as in the heating furnace 12.

予め設定した所定の加熱経過時間thに達したことを知らせる制御装置15(図1参照)のタイマーの情報に基づいて、還元後は下部熱源44の出力Wbより、上部熱源43の出力Wtを高くし始め、アルミニウム合金82の溶解を促す。   Based on the information of the timer of the control device 15 (see FIG. 1) informing that the predetermined heating elapsed time th has been reached, the output Wt of the upper heat source 43 is made higher than the output Wb of the lower heat source 44 after reduction. Then, the melting of the aluminum alloy 82 is promoted.

図6は、本発明の製造方法の第3工程の説明図(その3)であり、模式的に示す。
還元した粉末81間にアルミニウム合金82の溶湯を浸透させてアルミニウム基複合材を得る。詳細には、還元後に、下部熱源44の出力Wbより、上部熱源43の出力Wtを高くすることで、アルミニウム合金82を積極的に溶解し、アルミニウム合金82の溶湯が多孔性仕切り体85の上面に溜まり始め、溶湯は上面を封じる。
FIG. 6 is an explanatory view (No. 3) of the third step of the manufacturing method of the present invention, which is schematically shown.
A molten aluminum alloy 82 is infiltrated into the reduced powder 81 to obtain an aluminum-based composite material. Specifically, after the reduction, the output Wt of the upper heat source 43 is made higher than the output Wb of the lower heat source 44, so that the aluminum alloy 82 is actively melted, and the molten aluminum alloy 82 becomes the upper surface of the porous partition 85. The molten metal seals the top surface.

引き続き、図1の加熱炉12に不活性ガスを不活性ガス供給手段47で供給する。そして、加熱炉12内の圧力を所望の圧力まで上げ、加圧すると、溶解したアルミニウム合金82は押され、多孔性仕切り体85のそれぞれ隙間に多量に入り始め、減圧状態の粉末81間に浸透する。アルミニウム合金が凝固し、アルミニウム基複合材が完成する。   Subsequently, an inert gas is supplied to the heating furnace 12 of FIG. Then, when the pressure in the heating furnace 12 is raised to a desired pressure and pressurized, the melted aluminum alloy 82 is pushed and begins to enter a large amount into each gap of the porous partition 85, and penetrates between the powders 81 in a reduced pressure state. To do. The aluminum alloy solidifies and the aluminum matrix composite is completed.

本発明のアルミニウム基複合材の製造方法は、母材がアルミニウム合金(アルミニウムを含む)である複合材料の製造に好適である。   The method for producing an aluminum-based composite material according to the present invention is suitable for producing a composite material whose base material is an aluminum alloy (including aluminum).

本発明の製造方法に用いるアルミニウム基複合材の製造装置の断面図Sectional drawing of the manufacturing apparatus of the aluminum matrix composite material used for the manufacturing method of this invention 図1の2−2線断面図2-2 sectional view of FIG. 本発明の製造方法の第1工程の説明図Explanatory drawing of the 1st process of the manufacturing method of this invention 本発明の製造方法の第3工程の説明図(その1)Explanatory drawing of the 3rd process of the manufacturing method of this invention (the 1) 本発明の製造方法の第3工程の説明図(その2)Explanatory drawing of the 3rd process of the manufacturing method of this invention (the 2) 本発明の製造方法の第3工程の説明図(その3)Explanatory drawing of the 3rd process of the manufacturing method of this invention (the 3) 従来の技術の基本原理を説明する図Diagram explaining the basic principle of conventional technology

符号の説明Explanation of symbols

12…炉(加熱炉)、23…熱源(加熱手段)、25…坩堝、43…上部熱源、44…下部熱源、81…粉末、82…アルミニウム合金。   DESCRIPTION OF SYMBOLS 12 ... Furnace (heating furnace), 23 ... Heat source (heating means), 25 ... Crucible, 43 ... Upper heat source, 44 ... Lower heat source, 81 ... Powder, 82 ... Aluminum alloy

Claims (1)

坩堝に酸化物系セラミックスからなる多孔質成形体又は粉末を置き、この多孔質成形体又は粉末の上にアルミニウム合金を載せる第1工程と、
前記坩堝とともにマグネシウム又はマグネシウム発生源を炉内に収める第2工程と、
炉を窒素雰囲気下にするとともに加熱することで、窒化マグネシウムを生成し、窒化マグネシウムの作用によって多孔質成形体又は粉末を還元するとともに炉内を減圧下し、還元した多孔質成形体又は粉末にアルミニウム合金の溶湯を浸透させてアルミニウム基複合材を得る第3工程と、からなるアルミニウム基複合材の製造方法において、
前記第3工程では、坩堝の上方に位置する上部熱源と下方に位置する下部熱源とからなるとともにこれらの上・下部熱源を別々に制御可能な熱源を用い、還元完了までは上部熱源の出力より、下部熱源の出力を高くし、還元後は下部熱源の出力より、上部熱源の出力を高くすることを特徴とするアルミニウム基複合材の製造方法。
A first step of placing a porous molded body or powder made of an oxide-based ceramic in a crucible, and placing an aluminum alloy on the porous molded body or powder;
A second step of storing magnesium or a magnesium source in the furnace together with the crucible;
By heating the furnace under a nitrogen atmosphere and heating, magnesium nitride is generated, and the porous molded body or powder is reduced by the action of magnesium nitride, and the inside of the furnace is reduced in pressure to form the reduced porous molded body or powder. A third step of obtaining an aluminum matrix composite by infiltrating a molten aluminum alloy;
In the third step, a heat source that is composed of an upper heat source located above the crucible and a lower heat source located below is used and the upper and lower heat sources can be controlled separately, and from the output of the upper heat source until the reduction is completed. A method for producing an aluminum-based composite material, wherein the output of the lower heat source is increased, and the output of the upper heat source is made higher than the output of the lower heat source after reduction.
JP2004059324A 2004-03-03 2004-03-03 Method for producing aluminum matrix composite Expired - Fee Related JP4184998B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004059324A JP4184998B2 (en) 2004-03-03 2004-03-03 Method for producing aluminum matrix composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004059324A JP4184998B2 (en) 2004-03-03 2004-03-03 Method for producing aluminum matrix composite

Publications (2)

Publication Number Publication Date
JP2005248238A true JP2005248238A (en) 2005-09-15
JP4184998B2 JP4184998B2 (en) 2008-11-19

Family

ID=35029001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004059324A Expired - Fee Related JP4184998B2 (en) 2004-03-03 2004-03-03 Method for producing aluminum matrix composite

Country Status (1)

Country Link
JP (1) JP4184998B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007297689A (en) * 2006-05-02 2007-11-15 Keiji Yamabe Method for producing metal-ceramic composite material for casting

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007297689A (en) * 2006-05-02 2007-11-15 Keiji Yamabe Method for producing metal-ceramic composite material for casting
JP4583334B2 (en) * 2006-05-02 2010-11-17 啓治 山部 Method for producing metal-ceramic composite material for casting

Also Published As

Publication number Publication date
JP4184998B2 (en) 2008-11-19

Similar Documents

Publication Publication Date Title
JP5263923B2 (en) Diffusion bonding method and apparatus
US6479095B1 (en) Composite material for heat sinks for semiconductor devices and method for producing the same
TWI607117B (en) Method for producing laminate and laminate
US20070051709A1 (en) Flushing lines or cavities of a laser processing machine
JP2004273736A (en) Joint member and electrostatic chuck
JP2007301590A (en) Method for manufacturing joined body
JP4184998B2 (en) Method for producing aluminum matrix composite
JP4233036B2 (en) Method and apparatus for producing aluminum matrix composite
JP6879482B1 (en) Manufacturing method of oxide-removed parts and oxide removal equipment
JP2011246316A (en) Method for firing ceramic and ceramic firing device
JP4323349B2 (en) Method for producing aluminum matrix composite
JP4184999B2 (en) Method for producing aluminum matrix composite
EP0409197A1 (en) Method for impregnating a melt into a porous body
JP4433482B2 (en) Method for producing aluminum matrix composite
JP4617027B2 (en) Method for manufacturing sintered body
JP2020171937A (en) Method for preheating continuous-casting nozzle
JPH05323067A (en) Manufacture of inclined function material
JPH10130702A (en) Production of functionally gradient material
JP4251518B2 (en) Method for producing aluminum matrix composite
JP3185037U (en) Sintering furnace for pre-sintering of sintered metal
CN112935508B (en) Large-size titanium alloy bar processing method
JP2008254010A (en) Brazing method
JP3185037U7 (en)
JP2003514122A (en) Metal / ceramic composite material and method of manufacturing the same
JP4365284B2 (en) Method for producing reinforced platinum / platinum composite material

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20061130

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080902

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20080904

Free format text: JAPANESE INTERMEDIATE CODE: A61

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20110912

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20110912

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20120912

LAPS Cancellation because of no payment of annual fees