JP4233036B2 - Method and apparatus for producing aluminum matrix composite - Google Patents

Method and apparatus for producing aluminum matrix composite Download PDF

Info

Publication number
JP4233036B2
JP4233036B2 JP2004059386A JP2004059386A JP4233036B2 JP 4233036 B2 JP4233036 B2 JP 4233036B2 JP 2004059386 A JP2004059386 A JP 2004059386A JP 2004059386 A JP2004059386 A JP 2004059386A JP 4233036 B2 JP4233036 B2 JP 4233036B2
Authority
JP
Japan
Prior art keywords
gas
aluminum
crucibles
nitrogen
nitrogen gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004059386A
Other languages
Japanese (ja)
Other versions
JP2005248241A (en
Inventor
隆治 越後
広人 庄子
聡司 松浦
昌司 原
拓樹 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2004059386A priority Critical patent/JP4233036B2/en
Publication of JP2005248241A publication Critical patent/JP2005248241A/en
Application granted granted Critical
Publication of JP4233036B2 publication Critical patent/JP4233036B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Description

本発明は、アルミニウム基複合材の製造方法及びその製造装置に関するものである。   The present invention relates to a method for manufacturing an aluminum matrix composite and an apparatus for manufacturing the same.

アルミニウム基複合材は、アルミニウムと酸化物系セラミックスとからなり、酸化物系セラミックスは、例えば、アルミナ(Al)を用いた。製造方法の概要は、まず、炉で酸化物系セラミックスからなる多孔質成形体を加熱するとともに窒化マグネシウムにて多孔質成形体を還元する。続けて、還元した多孔質成形体に溶解したアルミニウムを浸透させることで、アルミニウム基複合材を得る。 The aluminum-based composite material is made of aluminum and oxide ceramics, and alumina (Al 2 O 3 ) is used as the oxide ceramics, for example. The outline of the production method is as follows. First, a porous molded body made of an oxide ceramic is heated in a furnace, and the porous molded body is reduced with magnesium nitride. Subsequently, aluminum dissolved in the reduced porous molded body is infiltrated to obtain an aluminum-based composite material.

このような製造方法として、アルミニウム基複合材の製造方法が知られている(例えば、特許文献1参照。)。
特開2002−30361公報(第6頁、図3)
As such a manufacturing method, a manufacturing method of an aluminum-based composite material is known (see, for example, Patent Document 1).
Japanese Patent Laid-Open No. 2002-30361 (page 6, FIG. 3)

特許文献1を次図に基づいて説明する。
図12(a),(b)は、従来の技術の基本原理を説明する図である。
(a)において、アルミニウム基複合材製造装置101は、雰囲気炉102と、アルゴンガス供給手段103と、窒素ガス供給手段104と、真空ポンプ105と、を備える。
Patent document 1 is demonstrated based on the following figure.
12A and 12B are diagrams for explaining the basic principle of the conventional technique.
In (a), the aluminum-based composite material manufacturing apparatus 101 includes an atmosphere furnace 102, an argon gas supply unit 103, a nitrogen gas supply unit 104, and a vacuum pump 105.

この製造装置101で製造する複合材の製造工程の概要を次ぎに説明する。
まず、坩堝106に多孔質成形体107、アルミナ(Al)の粉末からなる多孔性仕切り体108及びアルミニウム合金109を入れる。多孔質成形体107は、多孔質アルミナ(アルミナ111)にマグネシウムを含有させたものである。
The outline of the manufacturing process of the composite material manufactured by the manufacturing apparatus 101 will be described below.
First, a porous molded body 107, a porous partition body 108 made of alumina (Al 2 O 3 ) powder, and an aluminum alloy 109 are placed in a crucible 106. The porous molded body 107 is made by containing magnesium in porous alumina (alumina 111).

(b)において、引き続き、雰囲気炉102にアルゴンガス供給手段103からアルゴンガス(Ar)を入れて置換し、加熱を開始する。所定時間後、雰囲気炉101に窒素ガス供給手段104から窒素ガス(N)を供給し、雰囲気炉101を減圧下に設定し、減圧開始から所定時間経過後、加圧する。 In (b), argon gas (Ar) is subsequently put into the atmosphere furnace 102 from the argon gas supply means 103 and replaced, and heating is started. After a predetermined time, nitrogen gas (N 2 ) is supplied from the nitrogen gas supply means 104 to the atmosphere furnace 101, the atmosphere furnace 101 is set under reduced pressure, and the pressure is increased after a predetermined time has elapsed from the start of the pressure reduction.

このような過程を経る雰囲気炉102内では、加熱によって、マグネシウム112と窒素ガス113とが反応して窒化マグネシウム114を生成するとともに窒化マグネシウム114は多孔質成形体107のアルミナを減圧下で還元し、溶解したアルミニウム合金は、還元した多孔質成形体107に加圧下で浸透する。従って、浸透不良部をなくすることができる。   In the atmosphere furnace 102 that has undergone such a process, the magnesium 112 and the nitrogen gas 113 react with each other to produce magnesium nitride 114 by heating, and the magnesium nitride 114 reduces the alumina of the porous molded body 107 under reduced pressure. The dissolved aluminum alloy penetrates into the reduced porous molded body 107 under pressure. Therefore, the poor penetration portion can be eliminated.

しかし、特許文献1のアルミニウム基複合材の製造方法では、雰囲気炉102内に窒素ガス113を充満させるのに時間がかかり、十分な量の窒化マグネシウムを生成するの時間を要した。特に、雰囲気炉102に最大の密度で坩堝106を置くと、場所によって窒素ガスの流量は減少する。その結果、窒化マグネシウムの生成が遅れ、製造のサイクルタイムが長くなり、生産効率は低かった。
窒素ガスの流量を多くすることで、窒化マグネシウムの生成遅れを解消することは可能ではあるが、過剰な量の窒素ガスを供給する必要があり、生産コストは高くなる。
However, in the method for producing an aluminum-based composite material of Patent Document 1, it takes time to fill the atmosphere furnace 102 with the nitrogen gas 113, and it takes time to generate a sufficient amount of magnesium nitride. In particular, when the crucible 106 is placed at the maximum density in the atmosphere furnace 102, the flow rate of nitrogen gas decreases depending on the location. As a result, the production of magnesium nitride was delayed, the manufacturing cycle time was prolonged, and the production efficiency was low.
Although it is possible to eliminate the delay in the formation of magnesium nitride by increasing the flow rate of nitrogen gas, it is necessary to supply an excessive amount of nitrogen gas, which increases the production cost.

本発明は、アルミニウム基複合材を製造する加熱炉にアルミニウム基複合材を製造する際に用いる坩堝を最大の密度で置いても、全ての坩堝に窒素ガスをほぼ均一にかつ短時間に供給して、全ての坩堝内での窒化マグネシウム生成時間を短縮し、製造のサイクルタイムを短縮し、窒素ガスの使用量を削減することを課題とする。   The present invention supplies nitrogen gas to all the crucibles almost uniformly and in a short time even if the crucible used for producing the aluminum matrix composite is placed at the maximum density in the heating furnace for producing the aluminum matrix composite. Thus, it is an object to shorten the production time of magnesium nitride in all the crucibles, shorten the production cycle time, and reduce the amount of nitrogen gas used.

請求項1に係る発明は、坩堝に酸化物系セラミックスからなる多孔質成形体又は粉末を置き、この多孔質成形体又は粉末の上にアルミニウム合金を載せる第1工程と、坩堝を複数とともにマグネシウム又はマグネシウム発生源を炉内に収める第2工程と、炉を窒素雰囲気下にするとともに加熱することで、窒化マグネシウムを生成し、窒化マグネシウムの作用で多孔質成形体又は粉末を還元し、還元した多孔質成形体又は粉末にアルミニウム合金の溶湯を浸透させてアルミニウム基複合材を得る第3工程と、からなるアルミニウム基複合材の製造方法において、窒素雰囲気は、複数の坩堝の真上から坩堝内部へ向けて直接窒素ガスを供給することで形成することを特徴とする。 The invention according to claim 1 includes a first step of placing a porous molded body or powder made of an oxide-based ceramic in a crucible and placing an aluminum alloy on the porous molded body or powder, and a plurality of crucibles together with magnesium or The second step of placing the magnesium generation source in the furnace, and heating the furnace in a nitrogen atmosphere and heating to produce magnesium nitride, the porous compact or powder is reduced by the action of magnesium nitride, reduced porous And a third step of obtaining an aluminum matrix composite by infiltrating a molten aluminum alloy into a green compact or powder, wherein the nitrogen atmosphere is from directly above a plurality of crucibles to the inside of the crucible. It forms by supplying nitrogen gas directly toward.

請求項2に係る発明は、窒素ガスは、予め加熱して供給することを特徴とする。   The invention according to claim 2 is characterized in that the nitrogen gas is supplied by heating in advance.

請求項3に係る発明は、ワークを加熱する加熱炉と、加熱炉に窒素を供給する窒素供給手段と、を備えたアルミニウム基複合材の製造装置において、窒素供給手段は、加熱炉内の熱源の近傍に設けたガス予備加熱室と、このガス予備加熱室に、ワークに含まれる複数の坩堝の中心軸線と同心にそれぞれ取り付けて坩堝内に向けガスを供給するノズルと、を備えたことを特徴とする。 The invention according to claim 3 is an aluminum-based composite material manufacturing apparatus comprising: a heating furnace for heating a workpiece; and a nitrogen supply means for supplying nitrogen to the heating furnace, wherein the nitrogen supply means is a heat source in the heating furnace. a gas preheating chamber provided in the vicinity of, in this gas preheating chamber, with a, a nozzle for supplying a gas to a plurality of crucibles central axis concentric with and attach each crucible that contained in the work It is characterized by that.

請求項1に係る発明では、窒素雰囲気は、坩堝の真上から坩堝内部へ向けて直接窒素ガスを供給することで形成するので、加熱炉内に最大の密度で坩堝を複数置いても、全ての坩堝に窒素ガスをほぼ均一にかつ短時間に供給することができ、結果的に、全ての坩堝内での窒化マグネシウム生成時間を短縮することができるという利点がある。
また、窒素雰囲気は、坩堝の真上から坩堝内部へ向けて直接窒素ガスを供給することで形成するので、窒素ガスの使用量を削減することができる。
In the invention according to claim 1, since the nitrogen atmosphere is formed by supplying nitrogen gas directly from directly above the crucible into the crucible, even if a plurality of crucibles are placed at the maximum density in the heating furnace, Nitrogen gas can be supplied to the crucibles almost uniformly in a short time, and as a result, there is an advantage that the time for forming magnesium nitride in all the crucibles can be shortened.
Further, since the nitrogen atmosphere is formed by supplying nitrogen gas directly from directly above the crucible toward the inside of the crucible, the amount of nitrogen gas used can be reduced.

請求項2に係る発明では、窒素ガスは、予め加熱して供給するので、マグネシウムの温度低下を防止して、窒化マグネシウム(Mg)の生成を促進する。その結果、加熱炉内に最大の密度で坩堝を置いても、全ての坩堝内での窒化マグネシウム生成時間をより短縮することができ、製造のサイクルタイムを短縮することができるという利点がある。 In the invention according to claim 2, since the nitrogen gas is heated and supplied in advance, the temperature of magnesium is prevented from lowering and the production of magnesium nitride (Mg 3 N 2 ) is promoted. As a result, even if crucibles are placed at the maximum density in the heating furnace, the magnesium nitride production time in all the crucibles can be further shortened, and the manufacturing cycle time can be shortened.

請求項3に係る発明では、窒素供給手段は、加熱炉内の熱源の近傍に設けたガス予備加熱室と、このガス予備加熱室に、ワークに含まれる複数の坩堝の中心軸線と同心にそれぞれ取り付けて坩堝内に向けガスを供給するノズルと、を備えたので、熱源によってガス予備加熱室内の温度は上昇し、温度の上昇したガス予備加熱室は、窒素ガスを流入させると、窒素ガスをノズルに向かう過程で昇温る。従って、坩堝内に所望の温度の窒素ガスを短時間で供給することができる。 In the invention according to claim 3, the nitrogen supply means includes a gas preheating chamber provided in the vicinity of the heat source in the heating furnace, and each of the gas preheating chambers concentrically with the central axes of a plurality of crucibles included in the workpiece. a nozzle for supplying gas towards the inside crucible attach, because with a temperature of the gas preheating chamber by the heat source rises, elevated gas preheating chamber temperature and flowing a nitrogen gas, nitrogen heating in the process towards the gas to the nozzle. Therefore, nitrogen gas at a desired temperature can be supplied into the crucible in a short time.

また、ガス予備加熱室のノズルを坩堝内に向け取り付けたので、加熱炉内に最大の密度で坩堝を置いても、全ての坩堝に窒素ガスを確実に供給することができる。   Further, since the nozzle of the gas preheating chamber is mounted in the crucible, even if the crucible is placed at the maximum density in the heating furnace, nitrogen gas can be reliably supplied to all the crucibles.

本発明を実施するための最良の形態を添付図に基づいて以下に説明する。なお、図面は符号の向きに見るものとする。
図1は、本発明のアルミニウム基複合材の製造装置の断面図である。
アルミニウム基複合材の製造装置11は、加熱炉12と、この加熱炉12に接続し、ガスを供給するガス供給装置13と、加熱炉12内を減圧する真空ポンプ14と、これらの加熱炉12、ガス供給装置13及び真空ポンプ14を制御する制御装置15と、を備える。減圧とは、大気圧より低い圧力を意味する。
The best mode for carrying out the present invention will be described below with reference to the accompanying drawings. The drawings are viewed in the direction of the reference numerals.
FIG. 1 is a sectional view of an apparatus for producing an aluminum-based composite material according to the present invention.
The aluminum matrix composite manufacturing apparatus 11 includes a heating furnace 12, a gas supply apparatus 13 connected to the heating furnace 12 for supplying gas, a vacuum pump 14 for reducing the pressure in the heating furnace 12, and the heating furnace 12. And a control device 15 for controlling the gas supply device 13 and the vacuum pump 14. Reduced pressure means a pressure lower than atmospheric pressure.

加熱炉12は、圧力容器21内に断熱手段22を取り付け、この断熱手段22の内側に加熱手段23を配置し、この加熱手段23の内側にタイトボックス24を設け、このタイトボックス24内に坩堝25を載せる載置台26を配置した炉である。   In the heating furnace 12, a heat insulating means 22 is attached in the pressure vessel 21, a heating means 23 is disposed inside the heat insulating means 22, a tight box 24 is provided inside the heating means 23, and a crucible is provided in the tight box 24. 25 is a furnace in which a mounting table 26 on which 25 is mounted is disposed.

圧力容器21は、本体部28の両端に第1・第2ヘッド31,32を開閉機構(図に示していない)を介して開閉可能に取り付け、本体部28の下部に架台33,33を取り付け、本体部28に第1ノズル34・・・(・・・は複数を示す。以下同様。)、第2ノズル35,35、第3ノズル36を取り付け、所定の減圧下又は加圧下でワークを処理する。   In the pressure vessel 21, first and second heads 31 and 32 are attached to both ends of the main body portion 28 through an opening / closing mechanism (not shown), and mounts 33 and 33 are attached to the lower portion of the main body portion 28. The first nozzle 34 (... indicates a plurality; the same applies hereinafter), the second nozzles 35, 35, and the third nozzle 36 are attached to the main body 28, and the workpiece is placed under a predetermined reduced pressure or pressure. To process.

なお、処理するものによっては、圧力容器21の内面全体に内面の腐蝕を防止するステンレス鋼を溶接(オーバーレイ)することも可能である。また、必要に応じて圧力容器21にさらに大小のノズルを形成してもよい。   In addition, depending on what is processed, it is also possible to weld (overlay) stainless steel that prevents corrosion of the inner surface to the entire inner surface of the pressure vessel 21. Moreover, you may form a larger or smaller nozzle in the pressure vessel 21 as needed.

断熱手段22は、圧力容器21内に円筒状の収納部37を取り付け、収納部37の両端に第1・第2扉部41,42を配置しかつ第1・第2扉部41,42を第1・第2ヘッド31,32に固定し、第1・第2扉部41,42を第1・第2ヘッド31,32と同時に開閉する。   The heat insulating means 22 has a cylindrical storage portion 37 attached to the pressure vessel 21, first and second door portions 41 and 42 are disposed at both ends of the storage portion 37, and the first and second door portions 41 and 42 are disposed. The first and second heads 31 and 32 are fixed, and the first and second door portions 41 and 42 are opened and closed simultaneously with the first and second heads 31 and 32.

加熱手段23は、電気ヒータであり、坩堝25の上方に位置する上部熱源43と下方に位置する下部熱源44と、坩堝25の上方に配置した熱電対45と、下方に配置した熱電対46と、を備える。   The heating means 23 is an electric heater, and includes an upper heat source 43 located above the crucible 25, a lower heat source 44 located below, a thermocouple 45 disposed above the crucible 25, and a thermocouple 46 disposed below. .

タイトボックス24は、グラファイト製で、ヒータ(加熱手段23)や断熱手段22など炉内の構成部位と雰囲気ガスや処理の際に発生する不純物とを仕切り、炉内の汚染を防止し、かつ、均熱化を図ることを目的とする。タイトボックス24を取り付けないで省くことも可能ではある。   The tight box 24 is made of graphite, partitions the components in the furnace such as the heater (heating means 23) and the heat insulating means 22 from the atmospheric gas and impurities generated during processing, prevents contamination in the furnace, and The purpose is to achieve soaking. It is also possible to omit the tight box 24 without attaching it.

ガス供給装置13は、不活性ガス供給手段47と、窒素供給手段(窒素ガス供給手段)48と、切換え弁49と、第2ノズル35,35に接続した管51とを備え、管51を介して不活性ガス又は窒素ガス(N)を流す。 The gas supply device 13 includes an inert gas supply means 47, a nitrogen supply means (nitrogen gas supply means) 48, a switching valve 49, and a pipe 51 connected to the second nozzles 35, 35. Then, an inert gas or nitrogen gas (N 2 ) is supplied.

切換え弁49は、制御装置15の情報に基づいて不活性ガス入口52又は窒素入口53を出口54に導き、必要に応じて不活性ガス入口52及び窒素入口53を閉じる。
窒素ガス供給手段48は、加熱炉12内の熱源(加熱手段)23の近傍に設けたガス予備加熱室56と、このガス予備加熱室56に取り付けて坩堝25内に向けガスを供給するノズル57・・・と、を備える。
The switching valve 49 guides the inert gas inlet 52 or the nitrogen inlet 53 to the outlet 54 based on the information of the control device 15 and closes the inert gas inlet 52 and the nitrogen inlet 53 as necessary.
The nitrogen gas supply means 48 includes a gas preheating chamber 56 provided near the heat source (heating means) 23 in the heating furnace 12, and a nozzle 57 that is attached to the gas preheating chamber 56 and supplies gas into the crucible 25. And so on.

図2は、図1の2−2線断面図であり、加熱炉12と、ガス供給装置13と、真空ポンプ14と、制御装置15と、加熱炉12内に配置した加熱手段23と、ガス予備加熱室56を示す。   2 is a cross-sectional view taken along the line 2-2 of FIG. 1, and shows a heating furnace 12, a gas supply device 13, a vacuum pump 14, a control device 15, a heating means 23 disposed in the heating furnace 12, and a gas. A preheating chamber 56 is shown.

加熱手段23は、既に説明したように上部熱源43と下部熱源44とからなる。
上部熱源43は、第1ノズル34,34に第1ヒータ61,61を取り付けたもので、これらの第1ヒータ61,61を制御装置15は同一条件で制御する。
The heating means 23 includes the upper heat source 43 and the lower heat source 44 as already described.
The upper heat source 43 is obtained by attaching the first heaters 61, 61 to the first nozzles 34, 34, and the control device 15 controls the first heaters 61, 61 under the same conditions.

下部熱源44は、図下方の第1ノズル34,34に第2ヒータ62,62を取り付けたもので、第2ヒータ62,62を制御装置15は同一条件で制御する。つまり、上・下部熱源43,44を別々に制御可能な熱源である。
第1〜第2ヒータ61,62はともに同じ構造であり、既存のものを用いた。
The lower heat source 44 is obtained by attaching the second heaters 62 and 62 to the first nozzles 34 and 34 in the lower part of the figure, and the control device 15 controls the second heaters 62 and 62 under the same conditions. That is, the heat source can control the upper and lower heat sources 43 and 44 separately.
Both the first and second heaters 61 and 62 have the same structure, and existing ones were used.

窒素ガス供給手段48は、既に述べたガス予備加熱室56と、ノズル57・・・と、からなり、ガス予備加熱室56は、タイトボックス24の上部に位置する円弧部65に仕切り板66を密着させて形成した部屋で、中央に遮蔽板67を有する。   The nitrogen gas supply means 48 is composed of the gas preheating chamber 56 and nozzles 57... Already described, and the gas preheating chamber 56 has a partition plate 66 on an arc portion 65 located above the tight box 24. It is a room formed in close contact with a shielding plate 67 in the center.

図3は、本発明のガス予備加熱室及びノズルの斜視図である。
ガス予備加熱室56は、具体的には、タイトボックスの円弧部65(図2参照)に密着する仕切り板66を幅Wに形成し、この仕切り板66の両端に封じ板71,71を円弧部65(図2参照)に密着するように取り付け、仕切り板66に16個の出口72・・・をピッチP1,P2で開け、中央に遮蔽板67を配置した構成である。出口72の中心軸線73と坩堝25の中心軸線74は同心であり、ピッチP1,P2は、坩堝25・・・を配置する際のピッチPm1,Pm2に等しい。
なお、出口72・・・の数は16個に限定されたものではない。
FIG. 3 is a perspective view of the gas preheating chamber and nozzle of the present invention.
Specifically, in the gas preheating chamber 56, a partition plate 66 closely contacting the arc portion 65 (see FIG. 2) of the tight box is formed in a width W, and sealing plates 71 and 71 are formed in arcs on both ends of the partition plate 66. It is configured to be attached so as to be in close contact with the portion 65 (see FIG. 2), with 16 outlets 72... Opened in the partition plate 66 at pitches P1, P2, and a shielding plate 67 disposed in the center. The central axis 73 of the outlet 72 and the central axis 74 of the crucible 25 are concentric, and the pitches P1, P2 are equal to the pitches Pm1, Pm2 when the crucibles 25 are arranged.
The number of outlets 72 is not limited to 16.

ノズル57・・・は、出口72・・・に取り付けた円錐状の管である。
なお、タイトボックスを取り付けない場合には、円弧部65(図2参照)に相当する板を取り付ける。
The nozzles 57 are conical tubes attached to the outlets 72.
In addition, when not attaching a tight box, the board equivalent to the circular arc part 65 (refer FIG. 2) is attached.

次に本発明の製造装置の作用を説明する。
図1に示す制御装置15を「ON」にして加熱手段23で昇温を開始すると、上部熱源43によってガス予備加熱室56内の温度は上昇し始める。所定時間経過した後、切換え弁49を作動させ、窒素ガスを加熱されたガス予備加熱室56内に流入させると、窒素ガスは温められて窒素ガスの温度は上昇する。具体的には、図3の第2ノズル35,35から流入した窒素ガスは遮蔽板67によって360度に矢印a,b,c,dの如く分散しつつ、16個の出口72・・・に至る間で熱の伝達を受け、所望の温度に達する。従って、坩堝25・・・内に所望の温度の窒素ガスを矢印eの如く供給することができる。
Next, the operation of the manufacturing apparatus of the present invention will be described.
When the controller 15 shown in FIG. 1 is turned “ON” and heating is started by the heating means 23, the temperature in the gas preheating chamber 56 starts to rise by the upper heat source 43. After a predetermined time has elapsed, when the switching valve 49 is operated and nitrogen gas is caused to flow into the heated gas preheating chamber 56, the nitrogen gas is warmed and the temperature of the nitrogen gas rises. Specifically, the nitrogen gas flowing in from the second nozzles 35, 35 in FIG. 3 is dispersed by the shielding plate 67 at 360 degrees as indicated by arrows a, b, c, d, and into the 16 outlets 72. Heat is transferred to reach the desired temperature. Therefore, nitrogen gas at a desired temperature can be supplied into the crucibles 25.

また、ガス予備加熱室56にノズル57・・・を所定の位置、つまり、坩堝25・・・内に向け取り付けたので、加熱炉12内に最大の密度となる16個の坩堝25・・・を置いても、16個の坩堝25・・・内に確実に窒素ガスを供給することができる。   Further, since the nozzles 57... Are attached to the gas preheating chamber 56 at predetermined positions, that is, into the crucibles 25..., The 16 crucibles 25. Even if it puts, nitrogen gas can be reliably supplied in 16 crucibles 25 ....

次に窒素供給手段の別の実施の形態を示す。
図4は、別の実施の形態図であり、上記図2及び図3に示す実施の形態と同様の構成については、同一符号を付し説明を省略する。
Next, another embodiment of the nitrogen supply means will be shown.
FIG. 4 is a diagram showing another embodiment. The same reference numerals are given to the same components as those in the embodiment shown in FIGS. 2 and 3 and the description thereof is omitted.

別の実施の形態の窒素供給手段(窒素ガス供給手段)48Bは、加熱炉12内の熱源(加熱手段)23(図2参照)の近傍に設けたガス予備加熱室56Bと、ガス予備加熱室56Bに取り付けて坩堝25・・・内に向けガスを供給するノズル57・・・と、を備える。
ガス予備加熱室56Bは、第2ノズル35,35に管部材76,76を連結したものである。
The nitrogen supply means (nitrogen gas supply means) 48B of another embodiment includes a gas preheating chamber 56B provided in the vicinity of the heat source (heating means) 23 (see FIG. 2) in the heating furnace 12, and a gas preheating chamber. 56B and nozzles 57 for supplying gas into the crucibles 25...
The gas preheating chamber 56 </ b> B is obtained by connecting the pipe members 76, 76 to the second nozzles 35, 35.

別の実施の形態の窒素ガス供給手段48Bは、窒素ガス供給手段48(図3参照)と同様の効果を発揮する。
すなわち、第2ノズル35,35から流入した窒素ガスは管部材76,76を通り、16個のノズル57・・・に至る過程で熱の伝達を受け、所望の温度に達する。従って、坩堝25・・・内に所望の温度の窒素ガスを供給することができる。
The nitrogen gas supply means 48B of another embodiment exhibits the same effect as the nitrogen gas supply means 48 (see FIG. 3).
That is, the nitrogen gas flowing in from the second nozzles 35, 35 passes through the pipe members 76, 76, receives heat transfer in the process of reaching the 16 nozzles 57, and reaches a desired temperature. Therefore, nitrogen gas at a desired temperature can be supplied into the crucibles 25.

ノズル57・・・を所定の位置、つまり、坩堝25・・・内に向け取り付けたので、加熱炉12内に最大の密度となる16個の坩堝25・・・を置いても、16個の坩堝25・・・内に確実に窒素ガスを矢印f,fの如く供給することができる。   Since the nozzles 57 are mounted in a predetermined position, that is, in the crucibles 25..., The 16 crucibles 25. Nitrogen gas can be reliably supplied into the crucibles 25 as indicated by arrows f and f.

次に本発明のアルミニウム基複合材の製造方法について説明する。
図5(a),(b)は、本発明の製造方法の第1工程の説明図である。
(a):まず、坩堝25に酸化物系セラミックスからなる粉末81を置き、この粉末81の上にアルミニウム合金82を載せる。
粉末81は、アルミナ(Al)とマグネシウム(Mg)を混合した混合粉である。 アルミニウム合金82は、例えば、Al−Mg−Si系合金の一種であるJIS−A6061である。
なお、酸化物系セラミックスからなる粉末81を用いたが、酸化物系セラミックスからなる多孔質成形体を用いてもよい。
Next, the manufacturing method of the aluminum matrix composite of this invention is demonstrated.
5A and 5B are explanatory diagrams of the first step of the manufacturing method of the present invention.
(A): First, a powder 81 made of an oxide ceramic is placed in the crucible 25, and an aluminum alloy 82 is placed on the powder 81.
The powder 81 is a mixed powder obtained by mixing alumina (Al 2 O 3 ) and magnesium (Mg). The aluminum alloy 82 is, for example, JIS-A6061 which is a kind of Al—Mg—Si alloy.
In addition, although the powder 81 which consists of oxide type ceramics was used, you may use the porous molded object which consists of oxide type ceramics.

(b):粉末81及びアルミニウム合金82を入れた坩堝25を加熱炉12(図1、図2参照)へ搬送する。
なお、既に粉末81内にマグネシウム(Mg)を分散させた状態なので、マグネシウムを入れた容器を用意しないが、粉末81内又は坩堝25内にマグネシウムを入れない場合には、坩堝25とは別に、マグネシウムを入れた容器を用意する。
(B): The crucible 25 containing the powder 81 and the aluminum alloy 82 is conveyed to the heating furnace 12 (see FIGS. 1 and 2).
In addition, since magnesium (Mg) is already dispersed in the powder 81, a container containing magnesium is not prepared. However, when magnesium is not put in the powder 81 or the crucible 25, separately from the crucible 25, Prepare a container containing magnesium.

図6は、本発明の製造方法の第2工程の説明図である。
坩堝25・・・とともにマグネシウムを加熱炉12内に収める。ここに示す一例では、既にマグネシウムを粉末81内に含めたから、マグネシウムを加熱炉12内に収める作業は省かれる。加熱炉12の第1ヘッド31を開き、載置台26の所定位置に16個の坩堝25・・・を置き、第1ヘッド31を閉じる。
FIG. 6 is an explanatory diagram of the second step of the manufacturing method of the present invention.
Magnesium is placed in the heating furnace 12 together with the crucibles 25. In the example shown here, since magnesium has already been included in the powder 81, the operation of storing magnesium in the heating furnace 12 is omitted. The first head 31 of the heating furnace 12 is opened, 16 crucibles 25... Are placed at predetermined positions on the mounting table 26, and the first head 31 is closed.

図7は、本発明の製造方法の第3工程の説明図(その1)であり、図6の7−7線断面図である。
加熱炉12の載置台26の所定位置に16個の坩堝25・・・を置き、加熱炉12を窒素雰囲気下にするとともに加熱する。具体的には、加熱炉12内の酸素を除去するために加熱炉12内を真空ポンプ14で真空引きし、一定の真空度に達したら、真空ポンプ14を止め、切換え弁49の作動で不活性ガス供給手段47から加熱炉12のガス予備加熱室56に不活性ガス(例えば、アルゴンガス(Ar))を矢印gの如く供給し、加熱手段23で粉末81(マグネシウム(Mg)を含む。)及びアルミニウム合金82の加熱を開始する。
FIG. 7 is an explanatory view (No. 1) of the third step of the manufacturing method of the present invention, and is a cross-sectional view taken along the line 7-7 in FIG.
Sixteen crucibles 25 are placed at predetermined positions on the mounting table 26 of the heating furnace 12 to heat the heating furnace 12 under a nitrogen atmosphere. Specifically, in order to remove oxygen in the heating furnace 12, the inside of the heating furnace 12 is evacuated by the vacuum pump 14, and when a certain degree of vacuum is reached, the vacuum pump 14 is stopped and the switching valve 49 is not operated. An inert gas (for example, argon gas (Ar)) is supplied from the active gas supply means 47 to the gas preheating chamber 56 of the heating furnace 12 as indicated by an arrow g, and the heating means 23 contains powder 81 (magnesium (Mg)). And heating of the aluminum alloy 82 is started.

加熱炉12内の温度を熱電対45,46で検出しつつ昇温(自動)させる。所定温度(例えば、約750℃〜約900℃)に達する過程では、加熱炉12内は不活性ガスの雰囲気下にあるので、アルミニウム合金82及びマグネシウムが酸化することはない。   The temperature inside the heating furnace 12 is raised (automatically) while being detected by thermocouples 45 and 46. In the process of reaching a predetermined temperature (for example, about 750 ° C. to about 900 ° C.), since the inside of the heating furnace 12 is in an inert gas atmosphere, the aluminum alloy 82 and magnesium are not oxidized.

図8は、本発明の製造方法の第3工程の説明図(その2)である。
続けて、窒素ガスを流し込む。詳しくは、切換え弁49(図7参照)の作動で窒素ガス供給手段48(図7参照)から加熱炉12のガス予備加熱室56に窒素ガスを矢印h・・・の如く供給するとともに、ノズル57・・・で坩堝25・・・内に向け窒素ガスを供給し、同時に真空ポンプ14(図7参照)で不活性ガスを抜き、加熱炉12内の雰囲気を窒素ガス(N)に置換する。置換の際に、窒素ガスを供給しつつ加圧(例えば、大気圧+約0.5kg/cm)してもよい。
FIG. 8 is explanatory drawing (the 2) of the 3rd process of the manufacturing method of this invention.
Next, nitrogen gas is introduced. Specifically, the operation of the switching valve 49 (see FIG. 7) supplies nitrogen gas from the nitrogen gas supply means 48 (see FIG. 7) to the gas preheating chamber 56 of the heating furnace 12 as indicated by the arrow h. 57... Supplies nitrogen gas into the crucible 25..., And simultaneously removes the inert gas with the vacuum pump 14 (see FIG. 7), and replaces the atmosphere in the heating furnace 12 with nitrogen gas (N 2 ). To do. At the time of replacement, pressurization (for example, atmospheric pressure + about 0.5 kg / cm 2 ) may be performed while supplying nitrogen gas.

このように、第3工程では、窒素雰囲気は、坩堝25・・・の真上から坩堝25・・・の内部へ向けて直接窒素ガスを供給することで形成するので、加熱炉12内に最大の密度となる16個の坩堝25・・・を置いても、全ての坩堝25・・・に窒素ガスをほぼ均一にかつ短時間に供給することができる。   Thus, in the third step, the nitrogen atmosphere is formed by supplying nitrogen gas directly from directly above the crucibles 25... To the inside of the crucibles 25. Even if 16 crucibles 25 with a density of 1 are placed, nitrogen gas can be supplied to all the crucibles 25.

図9は、本発明の製造方法の第3工程の説明図(その3)であり、模式的に示す。
加熱炉12のガス予備加熱室56に窒素ガスを矢印h・・・の如く供給すると、窒素ガスは、ガス予備加熱室56内で加熱されるので、予め窒素ガスを加熱して供給することができる。加熱炉12内が窒素ガスの雰囲気になると、窒素ガスは、マグネシウムと反応して窒化マグネシウム(Mg)を生成する。
FIG. 9 is an explanatory view (No. 3) of the third step of the manufacturing method of the present invention, schematically showing.
When nitrogen gas is supplied to the gas preheating chamber 56 of the heating furnace 12 as indicated by the arrow h..., The nitrogen gas is heated in the gas preheating chamber 56. it can. When the inside of the heating furnace 12 is in an atmosphere of nitrogen gas, the nitrogen gas reacts with magnesium to generate magnesium nitride (Mg 3 N 2 ).

このように、第3工程では、窒素雰囲気は、坩堝25・・・の真上から坩堝25・・・の内部へ向けて直接窒素ガスを供給することで形成するので、加熱炉12内に最大の密度となる16個の坩堝25・・・を置いても、全ての坩堝25・・・に窒素ガスをほぼ均一にかつ短時間に供給することができ、結果的に、全ての坩堝25・・・内での窒化マグネシウム生成時間を短縮することができるという利点がある。
また、窒素雰囲気は、坩堝25・・・の真上から坩堝25・・・の内部へ向けて直接窒素ガスを供給することで形成するので、窒素ガスの使用量を削減することができる。
In this way, in the third step, the nitrogen atmosphere is formed by supplying nitrogen gas directly from directly above the crucibles 25... To the inside of the crucibles 25. Even if 16 crucibles 25 of the density are placed, nitrogen gas can be supplied to all of the crucibles 25 almost uniformly in a short time. As a result, all the crucibles 25. .. There is an advantage that the magnesium nitride formation time in the inside can be shortened.
Further, since the nitrogen atmosphere is formed by supplying nitrogen gas directly from directly above the crucibles 25 to the inside of the crucibles 25, the amount of nitrogen gas used can be reduced.

図10は、本発明の製造方法の第3工程の説明図(その4)であり、模式的に示す。
予め窒素ガスを加熱して供給することで、マグネシウムの温度低下を防止し、窒化マグネシウム(Mg)の生成を促進する。
FIG. 10 is an explanatory view (No. 4) of the third step of the manufacturing method of the present invention, schematically showing.
Nitrogen gas is heated and supplied in advance to prevent the temperature of magnesium from decreasing and promote the production of magnesium nitride (Mg 3 N 2 ).

このように、第3工程では、加熱炉12内に最大の密度となる16個の坩堝25・・・を置いても、全ての坩堝25・・・内での窒化マグネシウム生成時間をより短縮することができ、製造のサイクルタイムを短縮することができる。
窒化マグネシウムは、アルミナ(Al)を還元するので、アルミナは濡れ性がよくなる。
窒化マグネシウムによる還元と並行して、アルミニウム合金82が溶解する。
Thus, in the third step, even if 16 crucibles 25... Having the maximum density are placed in the heating furnace 12, the time for producing magnesium nitride in all the crucibles 25. Manufacturing cycle time can be shortened.
Magnesium nitride reduces alumina (Al 2 O 3 ), so that alumina has better wettability.
In parallel with the reduction with magnesium nitride, the aluminum alloy 82 is dissolved.

図11は、本発明の製造方法の第3工程の説明図(その5)であり、模式的に示す。
還元し、濡れ性がよくなったアルミナからなる粉末81間の隙間にアルミニウム合金82の溶湯が浸透する。アルミニウム合金82が凝固してアルミニウム基複合材が完成する。
FIG. 11 is an explanatory view (No. 5) of the third step of the manufacturing method of the present invention, which is schematically shown.
The molten aluminum alloy 82 penetrates into the gaps between the powders 81 made of alumina that has been reduced and has improved wettability. The aluminum alloy 82 is solidified to complete the aluminum-based composite material.

本発明のアルミニウム基複合材の製造方法は、母材がアルミニウム合金(アルミニウムを含む)である複合材料の製造に好適である。   The method for producing an aluminum-based composite material according to the present invention is suitable for producing a composite material whose base material is an aluminum alloy (including aluminum).

本発明のアルミニウム基複合材の製造装置の断面図Sectional view of the aluminum matrix composite manufacturing apparatus of the present invention 図1の2−2線断面図2-2 sectional view of FIG. 本発明のガス予備加熱室及びノズルの斜視図The perspective view of the gas preheating chamber and nozzle of the present invention 別の実施の形態図Another embodiment diagram 本発明の製造方法の第1工程の説明図Explanatory drawing of the 1st process of the manufacturing method of this invention 本発明の製造方法の第2工程の説明図Explanatory drawing of the 2nd process of the manufacturing method of this invention 本発明の製造方法の第3工程の説明図(その1)Explanatory drawing of the 3rd process of the manufacturing method of this invention (the 1) 本発明の製造方法の第3工程の説明図(その2)Explanatory drawing of the 3rd process of the manufacturing method of this invention (the 2) 本発明の製造方法の第3工程の説明図(その3)Explanatory drawing of the 3rd process of the manufacturing method of this invention (the 3) 本発明の製造方法の第3工程の説明図(その4)Explanatory drawing of the 3rd process of the manufacturing method of this invention (the 4) 本発明の製造方法の第3工程の説明図(その5)Explanatory drawing of the 3rd process of the manufacturing method of this invention (the 5) 従来の技術の基本原理を説明する図Diagram explaining the basic principle of conventional technology

符号の説明Explanation of symbols

11…アルミニウム基複合材の製造装置、12…炉(加熱炉)、23…熱源(加熱手段)、25…坩堝、34…ノズル、48…窒素供給手段(窒素ガス供給手段)、56…ガス予備加熱室、81…粉末、82…アルミニウム合金。   DESCRIPTION OF SYMBOLS 11 ... Manufacturing apparatus of aluminum matrix composite material, 12 ... Furnace (heating furnace), 23 ... Heat source (heating means), 25 ... Crucible, 34 ... Nozzle, 48 ... Nitrogen supply means (nitrogen gas supply means), 56 ... Gas reserve Heating chamber, 81 ... powder, 82 ... aluminum alloy.

Claims (3)

坩堝に酸化物系セラミックスからなる多孔質成形体又は粉末を置き、この多孔質成形体又は粉末の上にアルミニウム合金を載せる第1工程と、
前記坩堝を複数とともにマグネシウム又はマグネシウム発生源を炉内に収める第2工程と、
炉を窒素雰囲気下にするとともに加熱することで、窒化マグネシウムを生成し、窒化マグネシウムの作用で多孔質成形体又は粉末を還元し、還元した多孔質成形体又は粉末にアルミニウム合金の溶湯を浸透させてアルミニウム基複合材を得る第3工程と、からなるアルミニウム基複合材の製造方法において、
前記窒素雰囲気は、複数の坩堝の真上から坩堝内部へ向けて直接窒素ガスを供給することで形成することを特徴とするアルミニウム基複合材の製造方法。
A first step of placing a porous molded body or powder made of an oxide-based ceramic in a crucible, and placing an aluminum alloy on the porous molded body or powder;
A second step of accommodating a plurality of the crucibles together with magnesium or a magnesium source in a furnace;
The furnace is placed in a nitrogen atmosphere and heated to produce magnesium nitride, the porous molded body or powder is reduced by the action of magnesium nitride, and the molten aluminum alloy is infiltrated into the reduced porous molded body or powder. A third step of obtaining an aluminum matrix composite, and a method for producing an aluminum matrix composite comprising:
The method for producing an aluminum-based composite material, wherein the nitrogen atmosphere is formed by supplying nitrogen gas directly from directly above a plurality of crucibles into the crucible.
前記窒素ガスは、予め加熱して供給することを特徴とする請求項1記載のアルミニウム基複合材の製造方法。   2. The method for producing an aluminum-based composite material according to claim 1, wherein the nitrogen gas is supplied by heating in advance. ワークを加熱する加熱炉と、加熱炉に窒素を供給する窒素供給手段と、を備えたアルミニウム基複合材の製造装置において、
前記窒素供給手段は、加熱炉内の熱源の近傍に設けたガス予備加熱室と、このガス予備加熱室に、前記ワークに含まれる複数の坩堝の中心軸線と同心にそれぞれ取り付けて前記坩堝内に向けガスを供給するノズルと、を備えたことを特徴とするアルミニウム基複合材の製造装置。
In an aluminum-based composite material manufacturing apparatus comprising a heating furnace for heating a workpiece, and a nitrogen supply means for supplying nitrogen to the heating furnace,
The nitrogen supply means includes a gas preheating chamber provided in the vicinity of the heat source in the heating furnace, to the gas preheating chamber, the crucible attach respectively to the central axis concentric with the plurality of crucibles contained in the work An apparatus for producing an aluminum-based composite material, comprising: a nozzle for supplying gas toward the inside.
JP2004059386A 2004-03-03 2004-03-03 Method and apparatus for producing aluminum matrix composite Expired - Fee Related JP4233036B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004059386A JP4233036B2 (en) 2004-03-03 2004-03-03 Method and apparatus for producing aluminum matrix composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004059386A JP4233036B2 (en) 2004-03-03 2004-03-03 Method and apparatus for producing aluminum matrix composite

Publications (2)

Publication Number Publication Date
JP2005248241A JP2005248241A (en) 2005-09-15
JP4233036B2 true JP4233036B2 (en) 2009-03-04

Family

ID=35029004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004059386A Expired - Fee Related JP4233036B2 (en) 2004-03-03 2004-03-03 Method and apparatus for producing aluminum matrix composite

Country Status (1)

Country Link
JP (1) JP4233036B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5016868B2 (en) * 2006-08-10 2012-09-05 本田技研工業株式会社 Method and apparatus for manufacturing molten metal for aluminum matrix composite
JP2008038238A (en) * 2006-08-10 2008-02-21 Honda Motor Co Ltd Method for producing aluminum-ceramics composite material
IT1394098B1 (en) * 2009-03-24 2012-05-25 Brembo Ceramic Brake Systems Spa INDUCTION OVEN AND INFILTRATION PROCESS

Also Published As

Publication number Publication date
JP2005248241A (en) 2005-09-15

Similar Documents

Publication Publication Date Title
US20200061922A1 (en) Powder bed fusion apparatus and methods
JP2006124832A (en) Vapor phase growth system and vapor phase growth method
CN102481650A (en) Heating and melting treatment device and heating and melting treatment method
JP4873544B2 (en) Manufacturing method of joined body
CN1251827C (en) Molten metal feeding method, its feeding system, molten aluminum producing method, aluminum die-cast product producing method, car mfg.method, transportation vehicle, container, and molten metal
CN111448019A (en) Device for additive manufacturing of three-dimensional workpieces and method for operating a device for additive manufacturing of three-dimensional workpieces
CN105679686A (en) Semiconductor device manufacturing method and junction assembly apparatus
JP2003509223A (en) Method and apparatus for cutting or welding workpieces
JP4233036B2 (en) Method and apparatus for producing aluminum matrix composite
EP2179808A1 (en) Process for producing electrode for discharge surface treatment, and electrode for discharge surface treatment
US20240159465A1 (en) Hot wall bell-type furnaces and associated methods
CN114901414B (en) Method for manufacturing oxide-removed member and oxide removal device
JP2015070053A (en) Junction assembly apparatus
JP2019183225A (en) Heat treatment method, and heat treatment jig
JP2011246316A (en) Method for firing ceramic and ceramic firing device
JP4184998B2 (en) Method for producing aluminum matrix composite
CN1113713C (en) Continuous casting process and continuous casting machine
EP0409197A1 (en) Method for impregnating a melt into a porous body
JP4523547B2 (en) Discharge surface treatment method and discharge surface treatment apparatus
EP1439041B1 (en) Apparatus for cutting or welding a workpiece with a metal jet
JP2006078138A (en) Heat treat furnace
JP5268103B2 (en) Heater unit and heat treatment device
JP3874221B2 (en) Method for producing diamond-containing sintered body and apparatus therefor
JP3185037U (en) Sintering furnace for pre-sintering of sintered metal
JP6678434B2 (en) Spark plasma sintering apparatus and continuous discharge plasma sintering apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees