JP4251518B2 - Method for producing aluminum matrix composite - Google Patents

Method for producing aluminum matrix composite Download PDF

Info

Publication number
JP4251518B2
JP4251518B2 JP2000210431A JP2000210431A JP4251518B2 JP 4251518 B2 JP4251518 B2 JP 4251518B2 JP 2000210431 A JP2000210431 A JP 2000210431A JP 2000210431 A JP2000210431 A JP 2000210431A JP 4251518 B2 JP4251518 B2 JP 4251518B2
Authority
JP
Japan
Prior art keywords
aluminum alloy
porous
molded body
furnace
porous partition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000210431A
Other languages
Japanese (ja)
Other versions
JP2002030361A (en
Inventor
靖宏 中尾
広人 庄子
有利 菅谷
崇 加藤
隆治 越後
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2000210431A priority Critical patent/JP4251518B2/en
Publication of JP2002030361A publication Critical patent/JP2002030361A/en
Application granted granted Critical
Publication of JP4251518B2 publication Critical patent/JP4251518B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はアルミニウム基複合材の製造方法に関する。
【0002】
【従来の技術】
アルミニウム基複合材の製造方法には、例えば、特開平10−183269号公報「金属・セラミックス複合材料の製造方法」に示されるものがある。同公報の段落番号[0009]〜[0019]によれば、この金属・セラミックス複合材料の製造方法は次の通りである。ただし、以下の説明は原文を要約した。
【0003】
坩堝5内に多孔質成形体6を入れ、その上にアルミニウム合金ブロック7を載せ、雰囲気炉1にマグネシウム発生源9とともにセットする。
アルゴンガス雰囲気で、且つ大気圧で加熱を開始し、その後、マグネシウムを減圧状態で蒸発させる。次に、同公報の図2のように、アルゴン(Ar)を窒素ガス(N2)に置換し、且つ大気圧で窒化マグネシウムを生成し、多孔質成形体6を還元する。
一方、アルミニウム合金ブロック7を加熱溶解し、溶解したアルミニウム合金を還元した多孔質成形体6に減圧状態で浸透させる。
【0004】
【発明が解決しようとする課題】
上記の製造方法では、アルミニウム合金ブロック7で覆われた多孔質成形体6の中心部には溶解アルミニウム合金が流れ込み難くなり、中心部に浸透不足が起きることがある。特に、アルミニウム合金ブロック7が大径の場合は、浸透不足が顕著になる。
【0005】
そこで、本発明の目的は、浸透不良部をなくすることができ、生産コストを削減することができるアルミニウム基複合材の製造方法を提供することにある。
【0006】
【課題を解決するための手段】
上記目的を達成するために請求項1は、酸化物系セラミックスからなる多孔質成形体とともに、アルミニウム合金及び、マグネシウム又はマグネシウム発生源を炉内に納め、炉内を昇温するとともに窒素ガスを供給し窒素ガスの雰囲気下にして、窒化マグネシウムを生成し、窒化マグネシウムの作用で酸化物系セラミックスを還元し、酸化物系セラミックスの多孔質にアルミニウム合金の溶湯を浸透させてアルミニウム基複合材を製造する方法において、アルミニウム合金の溶湯を、重力作用ではほとんど通さずに、溶湯に圧力を掛ければ通すような微細な孔のあいた多孔性仕切り体及び坩堝を準備し、坩堝に多孔質成形体を入れ、多孔質成形体に多孔性仕切り体を載せ、この多孔性仕切り体にアルミニウム合金を載せ、炉内を減圧するとともに、加熱することで、アルミニウム合金を溶かして多孔性仕切り体上に溜め、次に、炉内を加圧することで溶解アルミニウム合金の上面を加圧して多孔性仕切り体を強制的に通過させることで、坩堝と多孔性仕切り体の上面を封じる溶解アルミニウム合金により囲まれ炉内と連通していない減圧状態の多孔質成形体に浸透させることを特徴とする。
【0007】
多孔質成形体に多孔性仕切り体を載せ、この多孔性仕切り体にアルミニウム合金を載せ、炉内で昇温しつつ、還元後、炉内を減圧する。この際、多孔性仕切り体を設けることで、炉内の減圧と同時に、多孔性仕切り体の下に位置する多孔質成形体内の減圧を可能にする。
アルミニウム合金の溶解では、多孔性仕切り体を設けることで、アルミニウム合金の溶湯の浸透を阻止し、一旦アルミニウム合金の溶湯を溜めるとともに、多孔質成形体内を真空状態に封じる。その結果、所定量の溶湯を確保した後、全量を均等に浸透させることができる。
【0008】
また、溶解アルミニウム合金の上面を加圧して多孔性仕切り体を強制的に通過させると同時に、減圧状態の多孔質成形体が吸引するので、溶解アルミニウム合金は多孔質成形体内に積極的に流れ込む。従って、深層部まで均等に浸透させることができる。
さらに、多孔性仕切り体によって、溶湯の流れを制御するので、新たな機械的動作を行う装置を設置する必要がなく、生産コストの削減が図れる。
【0009】
【発明の実施の形態】
本発明の実施の形態を添付図に基づいて以下に説明する。なお、図面は符号の向きに見るものとする。
図1は本発明に係るアルミニウム基複合材の製造方法のフローチャートであり、STはステップを示す。
ST01:多孔質成形体、多孔性仕切り体及びアルミニウム合金を準備する。
【0010】
ST02:坩堝内に順に多孔質成形体、多孔性仕切り体及びアルミニウム合金を載せ、坩堝を炉内に置く。
ST03:炉内を加熱しながら、窒化マグネシウム雰囲気下で多孔質成形体を還元し、その後、炉内を減圧する。
【0011】
ST04:加熱、減圧状態でアルミニウム合金を溶かし、多孔性仕切り体上に溜める。
ST05:溶解アルミニウム合金の上面を加圧し、多孔性仕切り体を強制的に通過させて、多孔質成形体に浸透させる。
次に、ST01〜ST05を具体的に説明する。
【0012】
図2(a)〜(c)は本発明に係るアルミニウム基複合材の製造方法の第1説明図である。
(a):まず、素材である多孔質成形体11、多孔性仕切り体12及びアルミニウム合金13を準備する。詳しくは、多孔質成形体11は、多孔質アルミナ(Al23)にマグネシウム(Mg)を、例えば、3重量%含有させたものである。
【0013】
多孔性仕切り体12は、アルミナ(Al23)の粉末14を0.5mm〜2.0mmの厚さに堆積させて形成するものであり、粉末14の平均粒径は、50μm〜100μmが望ましい。
アルミニウム合金13は、例えば、Al−Mg−Si系合金の一種であるJIS−A6061(以下、A6061と略記する。)である。
【0014】
(b):その次に、坩堝15に多孔質成形体11を入れ、この多孔質成形体11の上にアルミナ(Al23)の粉末14を0.5mm〜2.0mmの厚さに平に置いて多孔性仕切り体12を形成し、この多孔性仕切り体12にアルミニウム合金13を載せる。
【0015】
この場合、多孔性仕切り体12は、粉末14によって、微細な孔であるところの30μm〜80μmの隙間を形成する。粉末14の平均粒径が50μm未満でれば、隙間が小さくなり過ぎ、浸透し難くなる。平均粒径が100μmを超えると、隙間が大きくなり、重力作用でも多孔性仕切り体12を通る量が多くなる。
また、粉末14の厚さが0.5mm未満だと、重力作用において多孔性仕切り体12を通る量が多くなり、厚さが2.0mmを超えると、浸透し難くなる。
【0016】
(c):素材を入れた坩堝15をアルミニウム基複合材製造装置20の雰囲気炉21内に置く。アルミニウム基複合材製造装置20は、雰囲気炉21と、この雰囲気炉21にガスを供給するアルゴンガス供給手段22及び窒素ガス供給手段23と、雰囲気炉21内を減圧する真空ポンプ24と、を備えたものである。ここで、減圧とは、大気圧より低い圧力を意味する。
【0017】
この坩堝15を置いた雰囲気炉21内の空気を真空ポンプ24で真空引きし、一定の真空度に達したら、真空ポンプ24を止め、アルゴンガス供給手段22から雰囲気炉21へアルゴンガス(Ar)26を矢印▲1▼の如く供給する。そして、雰囲気炉21内を所望の大気圧以上の圧力に設定する。図面では、白抜き矢印が図面下方に向いて雰囲気炉21内の圧力が大気圧より高いことを示す。引続いて、雰囲気炉21内を加熱コイル27で矢印▲2▼の如く加熱する。
【0018】
図3(a),(b)は本発明に係るアルミニウム基複合材の製造方法の第2説明図である。
(a):雰囲気炉21内を昇温し、多孔質成形体11に含有したマグネシウム28を矢印▲3▼の如く蒸発させる。そして、真空ポンプ24でアルゴンガス26を抜きながら窒素ガス(N2)29を窒素ガス供給手段23で流し込み、雰囲気炉21に窒素ガス29を矢印▲4▼の如く供給しつつ、大気圧以上に加圧し、窒素ガス29に置換する。
【0019】
雰囲気炉21内が窒素ガス29の雰囲気になると、窒素ガス(N2)29は蒸発したマグネシウム(Mg)28と反応して窒化マグネシウム(Mg32)31を生成する。この窒化マグネシウム31は多孔質成形体11のアルミナ(Al23)32、及び多孔性仕切り体12のアルミナ(Al23)の粉末14を還元するので、アルミナ32及び粉末14は濡れ性がよくなる。
しかし、粉末14の厚さが2.0mmを超えると、多孔性仕切り体12の内部の濡れ性は低下する。
【0020】
(b):アルミナ32を還元後、窒素ガスの供給を停止し、雰囲気炉21内の気体を真空ポンプ24で真空引きし、所定の真空度にする。その際、多孔質成形体11の気孔内の気体、及び多孔性仕切り体12の隙間内の気体は矢印▲5▼の如く吸引され、真空度は雰囲気炉21内と同様となる。図面では、白抜き矢印が図面上方に向いて雰囲気炉21内及び多孔質成形体11内の圧力が大気圧より低いことを示す。
【0021】
図4(a),(b)は本発明に係るアルミニウム基複合材の製造方法の第3説明図である。
(a):所定の真空度に達した後、アルミニウム合金13の温度は溶解が始まる温度に至り、アルミニウム合金13の溶湯が多孔性仕切り体12の上面に溜まり始め、溶湯は上面を封じる。
この場合、多孔性仕切り体12はアルミナの粉末14を用いたものなので、溶湯が通過しようとする隙間は小さく、重力作用では溶湯をほとんど通さない。
【0022】
(b):アルミニウム合金が全て溶解し、溶解アルミニウム合金33を得るとともに、溶解アルミニウム合金33が多孔性仕切り体12上に溜る。溶解が完了すると、再び溶解アルミニウム合金33の温度は上昇を始めるので、所定の上限の温度(例えば、900℃)で保持する。
【0023】
図5(a),(b)は本発明に係るアルミニウム基複合材の製造方法の第4説明図である。
(a):温度を保持しつつ、雰囲気炉21にアルゴンガス26をアルゴンガス供給手段22で矢印▲6▼の如く供給する。そして、雰囲気炉21内の圧力を所望の圧力まで上げ、保持する。図面では、雰囲気炉21内の白抜き矢印のみが図面下方に向いて大気圧より高いことを示し、一方、多孔質成形体11内の白抜き矢印が図面上方に向いて大気圧より低いことを示す。
【0024】
このようにアルゴンガス26で雰囲気炉21内を加圧すると、溶解アルミニウム合金33の上面が押され、溶解アルミニウム合金33は多孔性仕切り体12のそれぞれ隙間に多量に入り始める。このとき、一方の多孔質成形体11は真空であり、この真空によって、溶解アルミニウム合金33は多孔性仕切り体12に引き込まれるから、押し込みの抵抗を小さくすることができる。
【0025】
(b):溶解アルミニウム合金33の上面を加圧して多孔性仕切り体12を強制的に通過させることで、減圧状態の多孔質成形体11に溶解アルミニウム合金33を浸透させる。
【0026】
図に示す通り多孔性仕切り体12を設けることで、アルミニウム合金13(図4(a))が全て溶解するまで多孔質成形体11への浸透を一旦止め、所定量の溶解アルミニウム合金33を確保する。その結果、加圧によって所定量の溶解アルミニウム合金33を均等に多孔質成形体11に浸透させることができる。
【0027】
また、多孔性仕切り体12を設けることで、アルミニウム合金13(図4(a))が全て溶解するまで多孔質成形体11への浸透を一旦止め、浸透しやすい気孔のみから集中して浸透するのを防止する。その後、溶解アルミニウム合金33の上面を加圧して多孔性仕切り体12を強制的に通過させることで、減圧状態の多孔質成形体11に浸透させる。すなわち、多孔質成形体11の上方の全面からほぼ同時に溶湯の流し込みを開始し、流れやすさに影響されることなく、そのまま下方まで全体的に流しながら、浸透を進めることができる。従って、浸透不良部をなくすることができる。
【0028】
さらに、多孔性仕切り体12上に溶解アルミニウム合金33溜め、その次に、溶解アルミニウム合金33の上面を加圧して多孔性仕切り体12を強制的に通過させることで、減圧状態の多孔質成形体11に浸透させる。その結果、減圧状態の多孔質成形体11が溶解アルミニウム合金33を吸引するので、空気溜まりが発生しない。従って、浸透不良部をなくすることができる。
その上、減圧状態の多孔質成形体11が溶解アルミニウム合金33を吸引するので、加圧との相乗効果によって効率的に浸透させることができ、生産効率の向上を図ることができる。
【0029】
図6(a),(b)は本発明に係るアルミニウム基複合材の製造方法の第5説明図である。
(a):溶解アルミニウム合金33が多孔質成形体11の全体に浸透する。特に、本発明のアルミニウム基複合材の製造方法では、多孔質成形体11の深層に位置する中心部36にまで浸透させることができる。
(b):溶解アルミニウム合金が凝固し、アルミニウム基複合材34が完成する。
【0030】
図6(a)に示すように、多孔性仕切り体12にアルミナの粉末14を用いることで、多孔質成形体11内の気体の吸引、溶解アルミニウム合金33の溜め、及び通過といった流れを制御することができる。その結果、炉内で新たな機械的動作を行う装置を設置する必要がなく、生産コストを削減することができる。
また、アルミナの粉末14は安価であり、より生産コストを削減することができる。
さらに、アルミナの粉末14を用いると、多孔性仕切り体12は多孔質成形体11に対し同等の成分となり、多孔質成形体11に悪影響を及ぼさない。
【0031】
次に、本発明に係るアルミニウム基複合材の製造方法を線図で補足説明する。
図7は本発明に係るアルミニウム基複合材の製造方法の要領を示した線図であり、上段に圧力の線図、下段に時間と温度の関係を表した線図を示し、太実線は多孔質成形体11(図2参照)、太破線はアルミニウム合金13を示す。
【0032】
まず、アルゴン雰囲気下で昇温を開始し、昇温開始から時間Sm、温度Tmでマグネシウムを蒸発させ、時間Snで窒素ガスを供給しつつ、圧力Pnで加圧する。
時間Sc(温度Tc)〜時間Sbの間(所要時間Hc)で多孔質成形体11(図3参照)を還元し、時間Sbで多孔質成形体11の活性化を完了する。この際、活性化により多孔質成形体11(図3参照)の昇温速度は速くなる。
【0033】
時間Sbから吸引を実施し、所要時間Hbで所定の真空度Pbにする。
時間Ss、温度Tsでアルミニウム合金13(図2参照)の溶解が始まり、時間Sf、温度Tfでアルミニウム合金13が全て溶解し、溶解が完了する。その後、更に温度をTx、例えば、900℃まで上げ、保持する。
【0034】
時間Spでアルゴンガス26(図5参照)を供給し、雰囲気炉21内の圧力を所望の圧力まで上げ、浸透を開始する。
時間Syで浸透を完了させ、時間Szで凝固が完了する。
【0035】
尚、本発明の実施の形態に示した図7の時間と温度との関係及び圧力は代表的な一例であり、これに限定しない。
図2の多孔性仕切り体12は、アルミナ(Al23)に限定するものではなく、また、粉末に限定するものでもない。
多孔性仕切り体12はアルミナの粉末を用いたものであるが、この粉末を板状に成形し、この成形体を載せてもよい。
【0036】
図2のアルミニウム基複合材製造装置20はこれに限定するものではない。例えば、加熱、加圧及び減圧を専用の圧力容器内で実施してもよく、また、アルゴンガス供給手段22及び窒素ガス供給手段23を所望の圧力や純度が得られるように構成してもよい。
【0037】
【発明の効果】
本発明は上記構成により次の効果を発揮する。
請求項1では、坩堝に酸化物系セラミックスからなる多孔質成形体を入れ、多孔質成形体に微細な孔のあいた多孔性仕切り体を載せ、この多孔性仕切り体にアルミニウム合金を載せ、炉内を減圧するとともに、加熱することで、アルミニウム合金を溶かして多孔性仕切り体上に溜め、次に、炉内を加圧することで溶解アルミニウム合金の上面を加圧して多孔性仕切り体を強制的に通過させることで、坩堝と多孔性仕切り体の上面を封じる溶解アルミニウム合金により囲まれ炉内と連通していない減圧状態の多孔質成形体に浸透させる。
多孔性仕切り体を用いることで、アルミニウム合金を全て溶かし一旦溜める。その結果、所定量の溶解アルミニウム合金を加圧によって多孔質成形体に均等に供給することができ、供給不足を防ぐことができる。従って、浸透不良部をなくすることができる。
【0038】
また、多孔性仕切り体を載せることで、減圧の際に、多孔質成形体の気孔内の気体を同時に吸引して真空を形成することができ、一方、溶解アルミニウム合金を一旦溜めるとともに、必要な時点で溜めた溶解アルミニウム合金を流すことができる。すなわち、炉内を加圧することで溶解アルミニウム合金の上面を加圧して多孔性仕切り体を強制的に通過させることで、坩堝と多孔性仕切り体の上面を封じる溶解アルミニウム合金により囲まれ炉内と連通していない減圧状態の多孔質成形体の上方全面からほぼ同時に浸透を開始し、多孔質成形体の吸引による相乗効果で浸透し難い気孔にも強制的に溶解アルミニウム合金を流すことができるとともに、そのまま下方まで全体的に浸透を進めることができる。従って、浸透不良部をなくすることができる。
【0039】
さらに、多孔性仕切り体を、重力作用ではほとんどアルミニウム合金の溶湯を通さずに、溶湯に圧力を掛ければ通すような微細な孔で構成したので、気体及び溶湯の流れを制御することができる。その結果、炉内で新たな機械的動作を行う装置を設置する必要がなく、生産コストを削減することができる。
【図面の簡単な説明】
【図1】本発明に係るアルミニウム基複合材の製造方法のフローチャート
【図2】本発明に係るアルミニウム基複合材の製造方法の第1説明図
【図3】本発明に係るアルミニウム基複合材の製造方法の第2説明図
【図4】本発明に係るアルミニウム基複合材の製造方法の第3説明図
【図5】本発明に係るアルミニウム基複合材の製造方法の第4説明図
【図6】本発明に係るアルミニウム基複合材の製造方法の第5説明図
【図7】本発明に係るアルミニウム基複合材の製造方法の要領を示した線図
【符号の説明】
11…多孔質成形体、12…多孔性仕切り体、13…アルミニウム合金、28…マグネシウム、31…窒化マグネシウム、33…溶解アルミニウム合金、34…アルミニウム基複合材。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing an aluminum matrix composite.
[0002]
[Prior art]
As a method for producing an aluminum-based composite material, for example, there is one disclosed in Japanese Patent Application Laid-Open No. 10-183269 “Method for producing a metal / ceramic composite material”. According to paragraphs [0009] to [0019] of this publication, the method for producing this metal / ceramic composite material is as follows. However, the following explanation summarizes the original text.
[0003]
A porous molded body 6 is placed in a crucible 5, an aluminum alloy block 7 is placed thereon, and set in an atmosphere furnace 1 together with a magnesium generation source 9.
Heating is started in an argon gas atmosphere and at atmospheric pressure, and then magnesium is evaporated under reduced pressure. Next, as shown in FIG. 2 of the publication, argon (Ar) is replaced with nitrogen gas (N 2 ), and magnesium nitride is generated at atmospheric pressure, and the porous molded body 6 is reduced.
On the other hand, the aluminum alloy block 7 is heated and melted, and the melted aluminum alloy is permeated in a reduced pressure state into the reduced porous molded body 6.
[0004]
[Problems to be solved by the invention]
In the manufacturing method described above, it is difficult for the molten aluminum alloy to flow into the central portion of the porous molded body 6 covered with the aluminum alloy block 7, and insufficient penetration may occur in the central portion. In particular, when the aluminum alloy block 7 has a large diameter, insufficient permeation becomes significant.
[0005]
Then, the objective of this invention is providing the manufacturing method of the aluminum matrix composite which can eliminate a penetration defect part and can reduce production cost.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, according to claim 1, an aluminum alloy and magnesium or a magnesium generation source are placed in a furnace together with a porous molded body made of oxide ceramics, and the temperature in the furnace is raised and nitrogen gas is supplied. Then, in a nitrogen gas atmosphere, magnesium nitride is produced , the oxide ceramic is reduced by the action of magnesium nitride, and the aluminum alloy melt is infiltrated into the porous oxide ceramic to produce an aluminum-based composite material In this method, a porous partition body and a crucible with fine pores that allow the molten aluminum alloy to pass through the molten metal with little pressure by gravity and pass through the molten metal are prepared, and the porous molded body is placed in the crucible. , placing a porous partition member in the porous shaped body, placing the aluminum alloy to the porous partition member, when pressure inside the furnace bets To, by heating, sump on a porous partition member by dissolving an aluminum alloy, then, be forced through the porous partition member pressurizes the upper surface of the dissolution of aluminum alloy by pressurizing the inside of the furnace Thus, the porous molded body in a reduced pressure state surrounded by a molten aluminum alloy that seals the upper surface of the crucible and the porous partition body and not communicating with the inside of the furnace is characterized by being penetrated.
[0007]
A porous partition is placed on the porous molded body, an aluminum alloy is placed on the porous partition, the temperature inside the furnace is raised, and after the reduction, the inside of the furnace is decompressed. At this time, by providing the porous partition, it is possible to reduce the pressure in the porous molded body located under the porous partition simultaneously with the pressure reduction in the furnace.
In the melting of the aluminum alloy, by providing a porous partition member, the penetration of the molten aluminum alloy is prevented, and the molten aluminum alloy is temporarily stored, and the porous molded body is sealed in a vacuum state. As a result, after securing a predetermined amount of molten metal, the entire amount can be uniformly permeated.
[0008]
Further, the upper surface of the molten aluminum alloy is pressurized and forced to pass through the porous partition body, and at the same time the porous molded body in a reduced pressure is sucked, so that the molten aluminum alloy actively flows into the porous molded body. Therefore, it can be made to penetrate even to the deep layer.
Furthermore, since the flow of the molten metal is controlled by the porous partition, it is not necessary to install a device for performing a new mechanical operation, and the production cost can be reduced.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the accompanying drawings. The drawings are viewed in the direction of the reference numerals.
FIG. 1 is a flowchart of an aluminum-based composite material manufacturing method according to the present invention, and ST indicates a step.
ST01: A porous molded body, a porous partition body, and an aluminum alloy are prepared.
[0010]
ST02: A porous molded body, a porous partition body and an aluminum alloy are placed in this order in the crucible, and the crucible is placed in the furnace.
ST03: While heating the inside of the furnace, the porous molded body is reduced in a magnesium nitride atmosphere, and then the inside of the furnace is decompressed.
[0011]
ST04: The aluminum alloy is melted under heating and reduced pressure, and collected on the porous partition.
ST05: Pressurize the upper surface of the molten aluminum alloy, forcibly pass through the porous partition, and permeate the porous molded body.
Next, ST01 to ST05 will be specifically described.
[0012]
FIGS. 2A to 2C are first explanatory views of the method for producing an aluminum-based composite material according to the present invention.
(A): First, a porous molded body 11, a porous partitioning body 12, and an aluminum alloy 13 as materials are prepared. Specifically, the porous molded body 11 is obtained by containing, for example, 3% by weight of magnesium (Mg) in porous alumina (Al 2 O 3 ).
[0013]
The porous partition 12 is formed by depositing alumina (Al 2 O 3 ) powder 14 to a thickness of 0.5 mm to 2.0 mm, and the average particle size of the powder 14 is 50 μm to 100 μm. desirable.
The aluminum alloy 13 is, for example, JIS-A6061 (hereinafter abbreviated as A6061) which is a kind of Al—Mg—Si based alloy.
[0014]
(B): Next, the porous molded body 11 is put into the crucible 15, and alumina (Al 2 O 3 ) powder 14 is formed on the porous molded body 11 to a thickness of 0.5 mm to 2.0 mm. A porous partition 12 is formed by placing it flat, and an aluminum alloy 13 is placed on the porous partition 12.
[0015]
In this case, the porous partition 12 forms a gap of 30 μm to 80 μm, which is a fine hole, by the powder 14. If the average particle diameter of the powder 14 is less than 50 μm, the gap becomes too small and it is difficult to penetrate. When the average particle diameter exceeds 100 μm, the gap becomes large, and the amount passing through the porous partitioning body 12 increases even by the gravitational action.
Moreover, when the thickness of the powder 14 is less than 0.5 mm, the amount passing through the porous partition 12 in the gravitational action increases, and when the thickness exceeds 2.0 mm, the penetration becomes difficult.
[0016]
(C): The crucible 15 containing the material is placed in the atmosphere furnace 21 of the aluminum-based composite material manufacturing apparatus 20. The aluminum-based composite material manufacturing apparatus 20 includes an atmosphere furnace 21, an argon gas supply means 22 and a nitrogen gas supply means 23 that supply gas to the atmosphere furnace 21, and a vacuum pump 24 that decompresses the atmosphere furnace 21. It is a thing. Here, the reduced pressure means a pressure lower than the atmospheric pressure.
[0017]
The air in the atmosphere furnace 21 in which the crucible 15 is placed is evacuated by a vacuum pump 24. When a certain degree of vacuum is reached, the vacuum pump 24 is stopped and argon gas (Ar) is supplied from the argon gas supply means 22 to the atmosphere furnace 21. 26 is supplied as shown by arrow (1). Then, the atmosphere furnace 21 is set to a pressure equal to or higher than a desired atmospheric pressure. In the drawing, the white arrow points downward in the drawing, indicating that the pressure in the atmospheric furnace 21 is higher than atmospheric pressure. Subsequently, the atmosphere furnace 21 is heated by the heating coil 27 as indicated by the arrow (2).
[0018]
FIGS. 3A and 3B are second explanatory views of the method for producing an aluminum-based composite material according to the present invention.
(A): The temperature in the atmosphere furnace 21 is raised, and the magnesium 28 contained in the porous molded body 11 is evaporated as shown by the arrow (3). Then, nitrogen gas (N 2 ) 29 is flowed by the nitrogen gas supply means 23 while the argon gas 26 is being evacuated by the vacuum pump 24, and the nitrogen gas 29 is supplied to the atmospheric furnace 21 as indicated by the arrow (4), and the atmospheric pressure or higher is reached. Pressurize and replace with nitrogen gas 29.
[0019]
When the atmosphere furnace 21 has an atmosphere of nitrogen gas 29, the nitrogen gas (N 2 ) 29 reacts with the evaporated magnesium (Mg) 28 to generate magnesium nitride (Mg 3 N 2 ) 31. This magnesium nitride 31 to reduce the powder 14 of alumina porous compact 11 (Al 2 O 3) 32 , and the alumina porous partition body 12 (Al 2 O 3), alumina 32 and powder 14 wettability Will be better.
However, when the thickness of the powder 14 exceeds 2.0 mm, the wettability inside the porous partition 12 decreases.
[0020]
(B): After reducing the alumina 32, the supply of nitrogen gas is stopped, and the gas in the atmosphere furnace 21 is evacuated by the vacuum pump 24 to obtain a predetermined degree of vacuum. At that time, the gas in the pores of the porous molded body 11 and the gas in the gap of the porous partitioning body 12 are sucked as indicated by the arrow (5), and the degree of vacuum is the same as in the atmosphere furnace 21. In the drawing, the white arrow points upward in the drawing, indicating that the pressure in the atmosphere furnace 21 and the porous molded body 11 is lower than atmospheric pressure.
[0021]
4 (a) and 4 (b) are third explanatory views of the method for producing an aluminum-based composite material according to the present invention.
(A): After reaching a predetermined degree of vacuum, the temperature of the aluminum alloy 13 reaches a temperature at which melting starts, the molten aluminum alloy 13 begins to accumulate on the upper surface of the porous partition 12, and the molten metal seals the upper surface.
In this case, since the porous partition 12 uses the alumina powder 14, the gap through which the molten metal tries to pass is small, and the molten metal hardly passes by gravity.
[0022]
(B): All of the aluminum alloy is melted to obtain the melted aluminum alloy 33, and the melted aluminum alloy 33 accumulates on the porous partitioning body 12. When the melting is completed, the temperature of the molten aluminum alloy 33 starts to rise again, and is maintained at a predetermined upper limit temperature (for example, 900 ° C.).
[0023]
FIGS. 5A and 5B are fourth explanatory views of the method for producing an aluminum-based composite material according to the present invention.
(A): While maintaining the temperature, argon gas 26 is supplied to the atmosphere furnace 21 by the argon gas supply means 22 as indicated by the arrow (6). Then, the pressure in the atmosphere furnace 21 is raised to a desired pressure and held. In the drawing, it is shown that only the white arrow in the atmosphere furnace 21 is lower than the atmospheric pressure in the downward direction of the drawing, while the white arrow in the porous molded body 11 is lower than the atmospheric pressure in the upper direction of the drawing. Show.
[0024]
When the atmosphere furnace 21 is pressurized with the argon gas 26 in this way, the upper surface of the molten aluminum alloy 33 is pushed, and the molten aluminum alloy 33 starts to enter a large amount in each gap of the porous partitioning body 12. At this time, one of the porous molded bodies 11 is a vacuum, and the melted aluminum alloy 33 is drawn into the porous partition body 12 by this vacuum, so that the pushing resistance can be reduced.
[0025]
(B): Pressurizing the upper surface of the molten aluminum alloy 33 and forcibly passing the porous partition body 12, thereby allowing the molten aluminum alloy 33 to permeate the porous molded body 11 in a reduced pressure state.
[0026]
By providing the porous partition body 12 as shown in the figure, the penetration into the porous molded body 11 is temporarily stopped until the aluminum alloy 13 (FIG. 4A) is completely dissolved, and a predetermined amount of the molten aluminum alloy 33 is secured. To do. As a result, a predetermined amount of molten aluminum alloy 33 can be uniformly permeated into the porous molded body 11 by pressurization.
[0027]
Moreover, by providing the porous partitioning body 12, the penetration into the porous molded body 11 is temporarily stopped until all the aluminum alloy 13 (FIG. 4A) is dissolved, and the penetration is concentrated only from the pores that are easily penetrated. To prevent. Thereafter, the upper surface of the molten aluminum alloy 33 is pressurized and forced to pass through the porous partitioning body 12 so as to permeate the porous molded body 11 in a reduced pressure state. That is, the pouring of the molten metal is started almost simultaneously from the entire upper surface of the porous molded body 11, and the infiltration can be advanced while being flowed downward as it is without being affected by the ease of flow. Therefore, the poor penetration portion can be eliminated.
[0028]
Further, the molten aluminum alloy 33 is accumulated on the porous partitioning body 12, and then the upper surface of the molten aluminum alloy 33 is pressurized to force the porous partitioning body 12 to pass therethrough, so that the porous molded body in a reduced pressure state is obtained. 11 to penetrate. As a result, the porous compact 11 in a reduced pressure sucks the molten aluminum alloy 33, so that no air pool is generated. Therefore, the poor penetration portion can be eliminated.
In addition, since the porous molded body 11 in a reduced pressure sucks the molten aluminum alloy 33, it can be efficiently infiltrated by a synergistic effect with pressurization, and the production efficiency can be improved.
[0029]
6 (a) and 6 (b) are fifth explanatory views of the method for producing an aluminum-based composite material according to the present invention.
(A): The molten aluminum alloy 33 penetrates the entire porous molded body 11. In particular, in the method for producing an aluminum-based composite material of the present invention, it is possible to penetrate into the central portion 36 located in the deep layer of the porous molded body 11.
(B): The molten aluminum alloy is solidified to complete the aluminum-based composite material 34.
[0030]
As shown in FIG. 6A, the use of alumina powder 14 for the porous partition 12 controls the flow of gas suction, accumulation of molten aluminum alloy 33, and passage through the porous molded body 11. be able to. As a result, it is not necessary to install a device for performing a new mechanical operation in the furnace, and the production cost can be reduced.
Further, the alumina powder 14 is inexpensive, and the production cost can be further reduced.
Further, when alumina powder 14 is used, the porous partition 12 becomes an equivalent component to the porous molded body 11 and does not adversely affect the porous molded body 11.
[0031]
Next, the method for producing an aluminum matrix composite according to the present invention will be supplementarily described with a diagram.
FIG. 7 is a diagram showing the outline of the method for producing an aluminum matrix composite according to the present invention, wherein the upper diagram shows the pressure diagram, the lower diagram shows the relationship between time and temperature, The molded body 11 (see FIG. 2) and the thick broken line indicate the aluminum alloy 13.
[0032]
First, temperature increase is started in an argon atmosphere, magnesium is evaporated at time Sm and temperature Tm from the start of temperature increase, and pressure is applied at pressure Pn while supplying nitrogen gas at time Sn.
The porous molded body 11 (see FIG. 3) is reduced between time Sc (temperature Tc) and time Sb (required time Hc), and the activation of the porous molded body 11 is completed at time Sb. At this time, the heating rate of the porous molded body 11 (see FIG. 3) is increased by activation.
[0033]
Suction is performed from time Sb, and a predetermined degree of vacuum Pb is obtained at the required time Hb.
The melting of the aluminum alloy 13 (see FIG. 2) starts at the time Ss and the temperature Ts, and all the aluminum alloy 13 is melted at the time Sf and the temperature Tf to complete the melting. Thereafter, the temperature is further increased to Tx, for example, 900 ° C. and held.
[0034]
Argon gas 26 (see FIG. 5) is supplied at time Sp, the pressure in the atmospheric furnace 21 is increased to a desired pressure, and infiltration is started.
Infiltration is completed at time Sy, and solidification is completed at time Sz.
[0035]
Note that the relationship between the time and temperature and the pressure in FIG. 7 shown in the embodiment of the present invention is a representative example, and the present invention is not limited to this.
The porous partition 12 in FIG. 2 is not limited to alumina (Al 2 O 3 ), and is not limited to powder.
The porous partition body 12 uses alumina powder, but the powder may be formed into a plate shape and placed on the formed body.
[0036]
The aluminum-based composite material manufacturing apparatus 20 in FIG. 2 is not limited to this. For example, heating, pressurization, and decompression may be performed in a dedicated pressure vessel, and the argon gas supply unit 22 and the nitrogen gas supply unit 23 may be configured to obtain a desired pressure and purity. .
[0037]
【The invention's effect】
The present invention exhibits the following effects by the above configuration.
In claim 1, a porous molded body made of an oxide-based ceramic is placed in a crucible, a porous partition body having fine pores is placed on the porous molded body, an aluminum alloy is placed on the porous partition body, The aluminum alloy is melted and accumulated on the porous partition by heating, and then the upper surface of the melted aluminum alloy is pressurized by pressurizing the inside of the furnace to force the porous partition. By passing, the porous molded body in a reduced pressure state surrounded by the molten aluminum alloy sealing the upper surface of the crucible and the porous partition body and not communicating with the inside of the furnace is infiltrated.
By using a porous partition, all the aluminum alloy is melted and temporarily stored. As a result, a predetermined amount of molten aluminum alloy can be evenly supplied to the porous compact by pressurization, and insufficient supply can be prevented. Therefore, the poor penetration portion can be eliminated.
[0038]
In addition, by placing the porous partition body, it is possible to form a vacuum by simultaneously sucking the gas in the pores of the porous molded body at the time of decompression. The molten aluminum alloy accumulated at the time can be poured. That is, by pressurizing the inside of the furnace to pressurize the upper surface of the molten aluminum alloy and forcibly pass the porous partition, the furnace is surrounded by the molten aluminum alloy that seals the upper surface of the crucible and the porous partition. Penetration starts almost simultaneously from the entire upper surface of the porous molded body under reduced pressure that is not in communication, and the molten aluminum alloy can be forced to flow into pores that are difficult to penetrate due to the synergistic effect of suction of the porous molded body. As a whole, the penetration can be continued down to the bottom. Therefore, the poor penetration portion can be eliminated.
[0039]
Further, since the porous partition member is configured with fine holes that pass through the molten metal by applying pressure to the molten aluminum alloy while hardly passing the molten aluminum alloy by gravity, the flow of gas and molten metal can be controlled. As a result, it is not necessary to install a device for performing a new mechanical operation in the furnace, and the production cost can be reduced.
[Brief description of the drawings]
FIG. 1 is a flowchart of an aluminum matrix composite manufacturing method according to the present invention. FIG. 2 is a first explanatory diagram of an aluminum matrix composite manufacturing method according to the present invention. FIG. 4 is a third explanatory diagram of the manufacturing method of the aluminum matrix composite according to the present invention. FIG. 5 is a fourth explanatory diagram of the manufacturing method of the aluminum matrix composite according to the present invention. FIG. 7 is a fifth explanatory view of the method for producing an aluminum matrix composite according to the present invention. FIG. 7 is a diagram showing the outline of the method for producing an aluminum matrix composite according to the present invention.
DESCRIPTION OF SYMBOLS 11 ... Porous molded object, 12 ... Porous partition, 13 ... Aluminum alloy, 28 ... Magnesium, 31 ... Magnesium nitride, 33 ... Molten aluminum alloy, 34 ... Aluminum group composite material.

Claims (1)

酸化物系セラミックスからなる多孔質成形体とともに、アルミニウム合金及び、マグネシウム又はマグネシウム発生源を炉内に納め、前記炉内を昇温するとともに窒素ガスを供給し窒素ガスの雰囲気下にして、窒化マグネシウムを生成し、該窒化マグネシウムの作用で酸化物系セラミックスを還元し、酸化物系セラミックスの多孔質にアルミニウム合金の溶湯を浸透させてアルミニウム基複合材を製造する方法において、
アルミニウム合金の溶湯を、重力作用ではほとんど通さずに、溶湯に圧力を掛ければ通すような微細な孔のあいた多孔性仕切り体及び坩堝を準備し、前記坩堝に前記多孔質成形体を入れ、該多孔質成形体に多孔性仕切り体を載せ、この多孔性仕切り体に前記アルミニウム合金を載せ、炉内を減圧するとともに、加熱することで、前記アルミニウム合金を溶かして多孔性仕切り体上に溜め、次に、炉内を加圧することで溶解アルミニウム合金の上面を加圧して多孔性仕切り体を強制的に通過させることで、前記坩堝と多孔性仕切り体の上面を封じる溶解アルミニウム合金により囲まれ炉内と連通していない減圧状態の多孔質成形体に浸透させることを特徴とするアルミニウム基複合材の製造方法。
Along with a porous molded body made of oxide ceramics, an aluminum alloy and magnesium or a magnesium generation source are placed in a furnace, the inside of the furnace is heated and nitrogen gas is supplied to bring it into an atmosphere of nitrogen gas. a method of generating, reducing the oxide-based ceramics by the action of magnesium the nitride, the aluminum alloy melt is infiltrated into the porous oxide ceramics for producing an aluminum-based composite material, and
A porous partition body and a crucible with fine holes that allow the molten aluminum alloy to pass through the molten metal with little pressure by gravitational action and put the porous molded body into the crucible are prepared. A porous partition body is placed on the porous molded body, the aluminum alloy is placed on the porous partition body, and the inside of the furnace is decompressed and heated to melt the aluminum alloy and collect it on the porous partition body, Next, by pressurizing the inside of the furnace to pressurize the upper surface of the molten aluminum alloy and forcibly pass the porous partition, the furnace surrounded by the molten aluminum alloy sealing the upper surface of the crucible and the porous partition A method for producing an aluminum-based composite material, which comprises infiltrating a porous molded body in a reduced pressure state not communicating with the inside .
JP2000210431A 2000-07-11 2000-07-11 Method for producing aluminum matrix composite Expired - Fee Related JP4251518B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000210431A JP4251518B2 (en) 2000-07-11 2000-07-11 Method for producing aluminum matrix composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000210431A JP4251518B2 (en) 2000-07-11 2000-07-11 Method for producing aluminum matrix composite

Publications (2)

Publication Number Publication Date
JP2002030361A JP2002030361A (en) 2002-01-31
JP4251518B2 true JP4251518B2 (en) 2009-04-08

Family

ID=18706704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000210431A Expired - Fee Related JP4251518B2 (en) 2000-07-11 2000-07-11 Method for producing aluminum matrix composite

Country Status (1)

Country Link
JP (1) JP4251518B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7944652B2 (en) 2005-11-22 2011-05-17 Rohm Co., Ltd. Inverter with protection function

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7944652B2 (en) 2005-11-22 2011-05-17 Rohm Co., Ltd. Inverter with protection function

Also Published As

Publication number Publication date
JP2002030361A (en) 2002-01-31

Similar Documents

Publication Publication Date Title
JP4278007B1 (en) Method for filling metal into fine space
JP2008311273A (en) Junction body, and electronic module, and bonding method
JP2004197153A (en) Diamond-metal composite material and method for manufacturing the same
US5503122A (en) Engine components including ceramic-metal composites
JP4251518B2 (en) Method for producing aluminum matrix composite
EP2970030B1 (en) Melt infiltration apparatus and method for molten metal control
JP4478354B2 (en) Method for producing aluminum matrix composite
JP4289775B2 (en) Porous metal matrix composite
JP4646202B2 (en) Composite comprising ceramic layers and method for producing the composite
TWI773794B (en) Hardfaced products for abrasive applications and processes for making the same
JP4184999B2 (en) Method for producing aluminum matrix composite
JP6406753B2 (en) Method for joining ceramic member and aluminum member
EP1407842B1 (en) Mold and method for manufacturing metal-ceramic composite member
JP4482511B2 (en) Method for producing aluminum matrix composite
JP4433482B2 (en) Method for producing aluminum matrix composite
JP3256216B2 (en) Method for producing macro composite
JP4184998B2 (en) Method for producing aluminum matrix composite
JP4323349B2 (en) Method for producing aluminum matrix composite
JP4579574B2 (en) Manufacturing method of fitting body
US5406029A (en) Electronic package having a pure metal skin
JP2002105557A (en) Metal matrix composite material and its manufacturing method
JPH09300060A (en) Sprue member for casting and manufacture thereof
JP2009154181A (en) Composite material and manufacturing method thereof
JP2007275965A (en) Method for insert-casting iron member
JP2002320832A (en) Selectively gas permeable membrane and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081014

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090114

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090116

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140130

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees