JP2005247600A - System and method of cutting brittle material - Google Patents

System and method of cutting brittle material Download PDF

Info

Publication number
JP2005247600A
JP2005247600A JP2004056679A JP2004056679A JP2005247600A JP 2005247600 A JP2005247600 A JP 2005247600A JP 2004056679 A JP2004056679 A JP 2004056679A JP 2004056679 A JP2004056679 A JP 2004056679A JP 2005247600 A JP2005247600 A JP 2005247600A
Authority
JP
Japan
Prior art keywords
substrate
processed
cooling
locally
cleaving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004056679A
Other languages
Japanese (ja)
Inventor
Hiroyuki Takada
田 弘 之 高
Masakazu Hayashi
正 和 林
Susumu Yahagi
作 進 矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Shibaura Mechatronics Corp
Original Assignee
Toshiba Corp
Shibaura Mechatronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Shibaura Mechatronics Corp filed Critical Toshiba Corp
Priority to JP2004056679A priority Critical patent/JP2005247600A/en
Publication of JP2005247600A publication Critical patent/JP2005247600A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Processing Of Stones Or Stones Resemblance Materials (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of carrying out high grade cutting work of a brittle material. <P>SOLUTION: The cutting system 1 is provided with a laser oscillator 11 for irradiating a substrate 30 to be worked with laser beam LB to locally heat, a cooling unit 12 for cooling the locally heated zone and a working stage 20 for relatively moving the substrate 30 to be worked to the laser beam oscillator 11 and the cooling unit 12. The cooling unit 12 has a cooling nozzle 14 for jetting a cooling agent C supplied from a main body 13 to the locally heated zone and a a guide member 16 for regulating the flow of the cooling agent C. The guide member 16 is fixed to the cooling unit main body 13 with a flange 15 and moves with the cooling nozzle 14 relatively to the substrate 30 to be worked to be in contact with and to slide on the substrate 30 to be worked. The guide member 16 has a wall part in which the cross-section along the substrate 30 to be worked is V-shaped and which has a symmetric shape with respect to a cutting planned line 31. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、脆性材料(硬く脆い材料)からなる被加工基板を局部的に加熱及び冷却し、その際に生じる熱応力(引張応力)によって当該被加工基板に亀裂を生じさせて割断加工を行う割断加工システム及びその方法に関する。   The present invention locally heats and cools a substrate to be processed made of a brittle material (hard and brittle material), and generates a crack in the substrate to be processed by thermal stress (tensile stress) generated at that time to perform cleaving. The present invention relates to a cleaving system and method.

従来から、液晶ディスプレイパネルやプラズマディスプレイパネルなどに用いられるガラス基板などを割断する方法として、ガラス基板などからなる被加工基板を局部的に加熱及び冷却し、その際に生じる熱応力(引張応力)によって当該被加工基板に亀裂を生じさせて割断加工を行う方法が提案されている。   Conventionally, as a method of cleaving glass substrates used in liquid crystal display panels and plasma display panels, a substrate to be processed such as a glass substrate is locally heated and cooled, and thermal stress (tensile stress) generated at that time Has proposed a method of cleaving by generating cracks in the substrate to be processed.

このような従来の方法では例えば、被加工基板に対してレーザビームを照射することにより被加工基板を局部的に加熱し、この局部的に加熱が行われた領域に生じる熱応力(引張応力)によって被加工基板に亀裂を生じさせる。また、このようにして被加工基板上で局部的に加熱が行われた領域を割断予定線に沿って移動させることにより、被加工基板に生じた亀裂を割断予定線に沿って進展させる。この場合、被加工基板のうち局部的に加熱が行われた領域を局部的に冷却すると、当該領域に生じる熱応力(引張応力)をより増大させることが可能となり、亀裂の進展を促進することができる。なお、このようにして被加工基板を冷却する方法としては例えば、被加工基板上で局部的に加熱が行われた領域へ向けて冷却ガスを噴射する方法が知られている(特許文献1参照)。
特開2003−34545号公報
In such a conventional method, for example, the processing substrate is locally heated by irradiating the processing substrate with a laser beam, and the thermal stress (tensile stress) generated in the locally heated region. To crack the substrate to be processed. In addition, by moving the region heated locally on the substrate to be processed along the planned cutting line, the crack generated in the processed substrate is propagated along the planned cutting line. In this case, when a locally heated region of the substrate to be processed is locally cooled, the thermal stress (tensile stress) generated in the region can be further increased, and the progress of cracks is promoted. Can do. In addition, as a method for cooling the substrate to be processed in this manner, for example, a method of injecting a cooling gas toward a region where heating is locally performed on the substrate to be processed is known (see Patent Document 1). ).
JP 2003-34545 A

しかしながら、上述した従来の方法では、被加工基板を冷却する方法として、被加工基板上で局部的に加熱が行われた領域へ向けて冷却ガスを噴射する方法を用いているので、被加工基板上で冷却ガスが接触する冷却領域のパターンを制御することが困難であり、冷却領域の最先端部の形状が割断予定線に関して非対照的なものとなりやすいという問題がある。   However, in the conventional method described above, as a method for cooling the substrate to be processed, a method of injecting a cooling gas toward a region that is locally heated on the substrate to be processed is used. There is a problem in that it is difficult to control the pattern of the cooling region in contact with the cooling gas, and the shape of the leading edge of the cooling region tends to be asymmetric with respect to the planned cutting line.

ここで、被加工基板を局部的に加熱及び冷却することにより形成される亀裂は一般的には、被加工基板上で冷却ガスが接触する冷却領域の最先端部で生じることとなるが、この冷却領域のパターンが割断予定線に関して非対称的なものとなると、冷却領域で生じる熱応力(引張応力)も非対称的なものとなる。図4は従来の方法による非加工基板の加熱時及び冷却時の熱応力(引張応力)の様子を示すものであり、符号33はレーザビームの照射スポット、符号34は冷却ガスの噴射スポット、符号36はレーザービームの照射により生じる熱応力(引張応力)の分布、符号37は冷却剤の噴射により生じる熱応力(引張応力)の分布を示す。図4に示すように、被加工基板30上で冷却ガスが接触する冷却領域(噴射スポット34を中心とした領域)で生じる熱応力(引張応力)は割断予定線31に関して非対称的なものとなり(図4の符号37参照)、その結果、冷却領域の最先端部で生じる亀裂の直進性が悪化し、必然的に割断加工の品位が低下してしまう。   Here, cracks formed by locally heating and cooling the substrate to be processed generally occur at the forefront portion of the cooling region where the cooling gas contacts on the substrate to be processed. When the pattern of the cooling region becomes asymmetric with respect to the planned cutting line, the thermal stress (tensile stress) generated in the cooling region also becomes asymmetric. FIG. 4 shows the state of thermal stress (tensile stress) during heating and cooling of a non-processed substrate by a conventional method. Reference numeral 33 denotes a laser beam irradiation spot, reference numeral 34 denotes a cooling gas injection spot, reference numeral Reference numeral 36 denotes a distribution of thermal stress (tensile stress) caused by laser beam irradiation, and reference numeral 37 denotes a distribution of thermal stress (tensile stress) caused by jetting of the coolant. As shown in FIG. 4, the thermal stress (tensile stress) generated in the cooling region (region centered on the injection spot 34) where the cooling gas contacts on the workpiece substrate 30 becomes asymmetric with respect to the planned cutting line 31 ( As a result, the straightness of cracks generated at the most distal portion of the cooling region is deteriorated, and the quality of the cleaving process is inevitably lowered.

本発明はこのような点を考慮してなされたものであり、脆性材料の高品位な割断加工を実現することができる、脆性材料の割断加工システム及びその方法を提供することを目的とする。   The present invention has been made in consideration of such points, and an object of the present invention is to provide a brittle material cleaving system and method capable of realizing high-quality cleaving of a brittle material.

本発明は、第1の解決手段として、脆性材料からなる被加工基板を局部的に加熱及び冷却し、その際に生じる熱応力によって当該被加工基板に亀裂を生じさせて割断加工を行う割断加工システムにおいて、被加工基板を局部的に加熱する加熱装置と、前記加熱装置により前記被加工基板上で局部的に加熱が行われた領域を局部的に冷却する冷却装置と、前記加熱装置及び前記冷却装置に対して前記被加工基板を相対的に移動させ、前記被加工基板上で局部的に加熱及び冷却が行われる領域を割断予定線に沿って移動させる移動装置とを備え、前記冷却装置は、前記被加工基板上で局部的に加熱が行われた領域へ向けて流動性のある冷却剤を噴射する冷却ノズルと、前記冷却ノズルにより噴射された冷却剤が前記被加工基板上で前記割断予定線に関して対称的に流れるよう前記被加工基板上での前記冷却剤の流れを規制するガイド部材とを有することを特徴とする割断加工システムを提供する。   As a first solution, the present invention provides a cleaving process in which a substrate to be processed made of a brittle material is locally heated and cooled, and the substrate to be processed is cracked by thermal stress generated at that time. In the system, a heating device that locally heats the substrate to be processed, a cooling device that locally cools a region heated locally on the substrate to be processed by the heating device, the heating device, and the A moving device that moves the substrate to be processed relative to a cooling device, and moves a region that is locally heated and cooled on the substrate to be processed along a planned cutting line. Is a cooling nozzle that injects a fluid coolant toward a region where heating is locally performed on the substrate to be processed, and the coolant sprayed by the cooling nozzle is on the substrate to be processed. Scheduled cutting line Providing splitting processing system characterized by having a guide member for regulating the flow of the cooling agent on the substrate to be processed to flow symmetrically regarding.

なお、上述した本発明の第1の解決手段において、前記ガイド部材は、前記被加工基板に対して滑動可能に接触した状態で前記冷却ノズルとともに前記被加工基板に対して相対的に移動する壁部を有し、この壁部は前記割断予定線に関して対称的な形状をなすことが好ましい。具体的には、前記ガイド部材の前記壁部は前記被加工基板に沿った断面がV字状またはU字状であることが好ましい。   In the first solving means of the present invention described above, the guide member is a wall that moves relative to the substrate to be processed together with the cooling nozzle in a state in which the guide member is slidably in contact with the substrate to be processed. It is preferable that the wall portion has a symmetrical shape with respect to the planned cutting line. Specifically, the wall portion of the guide member preferably has a V-shaped or U-shaped cross section along the substrate to be processed.

また、上述した本発明の第1の解決手段においては、前記冷却装置の前記ガイド部材に回動可能に取り付けられたローラ部材であって、前記被加工基板の表面のうち前記割断予定線の近傍を押圧するローラ部材と、前記被加工基板のうち前記ローラ部材により押圧される側と反対側の表面に位置する前記割断予定線に対応する部分を支持する切り離し支えであって、前記ローラ部材との協働により前記被加工基板の割断線に対応する部分に対して機械的な応力を加える切り離し支えとをさらに備えることが好ましい。   Further, in the first solving means of the present invention described above, the roller member is rotatably attached to the guide member of the cooling device, and is in the vicinity of the planned cutting line on the surface of the substrate to be processed. A separation member that supports a portion of the substrate to be processed that corresponds to the planned cutting line located on the surface opposite to the surface pressed by the roller member, the roller member; It is preferable to further include a separation support that applies mechanical stress to a portion corresponding to the breaking line of the substrate to be processed by the cooperation of the above.

本発明は、第2の解決手段として、脆性材料からなる被加工基板を局部的に加熱及び冷却し、その際に生じる熱応力によって当該被加工基板に亀裂を生じさせて割断加工を行う割断加工方法において、割断加工の対象となる被加工基板を準備する工程と、前記被加工基板を局部的に加熱及び冷却しつつ、当該被加工基板上で局部的に加熱及び冷却が行われる領域を割断予定線に沿って移動させる工程とを含み、前記被加工基板を局部的に冷却する際に、前記被加工基板上で局部的に加熱が行われた領域へ向けて流動性のある冷却剤を噴射するとともに、前記冷却剤が前記被加工基板上で前記割断予定線に関して対称的に流れるよう前記被加工基板上での前記冷却剤の流れを規制することを特徴とする割断加工方法を提供する。   As a second solution, the present invention provides a cleaving process in which a substrate to be processed made of a brittle material is locally heated and cooled, and the substrate to be processed is cracked by thermal stress generated at that time. In the method, a step of preparing a substrate to be cleaved and a region in which heating and cooling are locally performed on the substrate to be processed while the substrate to be processed is locally heated and cooled. And a step of moving along a predetermined line, and when the substrate to be processed is locally cooled, a coolant having fluidity toward a region heated locally on the substrate to be processed There is provided a cleaving method characterized by spraying and regulating the flow of the coolant on the substrate to be processed so that the coolant flows symmetrically on the substrate to be processed with respect to the planned cutting line. .

本発明によれば、冷却装置の冷却ノズルにより噴射された冷却剤が被加工基板上で割断予定線に関して対称的に流れるようガイド部材により被加工基板上での冷却剤の流れを規制するようにしているので、被加工基板上で冷却剤が接触する冷却領域の最先端部の形状を、割断予定線に関して対称的なものとし、これによって冷却領域の最先端部で生じる熱応力(引張応力)も割断予定線に関して対称的なものとすることができる。このため、冷却領域の最先端部で生じる亀裂の直進性を向上させて、割断加工の品位を向上させることができる。   According to the present invention, the flow of the coolant on the substrate to be processed is regulated by the guide member so that the coolant sprayed by the cooling nozzle of the cooling device flows symmetrically on the substrate to be processed on the planned cutting line. Therefore, the shape of the leading edge of the cooling area where the coolant contacts on the substrate to be processed is symmetric with respect to the planned cutting line, and this causes the thermal stress (tensile stress) generated at the leading edge of the cooling area. Can also be symmetric with respect to the planned cutting line. For this reason, it is possible to improve the straightness of cracks generated at the most distal portion of the cooling region and improve the quality of the cleaving process.

また、本発明によれば、ガイド部材により被加工基板上での冷却剤の流れ(特に被加工基板上で冷却剤が接触する冷却領域の最先端部での流れ)を規制するようにしているので、冷却ノズルによる冷却剤の噴出位置や噴出角度などを割断予定線に対して厳密に位置決めしなくとも十分に対称的な冷却分布及び応力分布を得ることができ、このため、冷却領域の最先端部で生じる亀裂の直進性を容易に向上させることができる。   Further, according to the present invention, the flow of the coolant on the substrate to be processed (particularly, the flow at the most distal portion of the cooling region where the coolant contacts on the substrate to be processed) is regulated by the guide member. Therefore, a sufficiently symmetric cooling distribution and stress distribution can be obtained without precisely positioning the coolant jetting position and jetting angle by the cooling nozzle with respect to the planned cutting line. It is possible to easily improve the straightness of the crack generated at the tip.

以下、図面を参照して本発明の実施の形態について説明する。   Embodiments of the present invention will be described below with reference to the drawings.

まず、図1により、本発明の一実施の形態に係る割断加工システムの全体構成について
説明する。
First, the overall configuration of the cleaving system according to one embodiment of the present invention will be described with reference to FIG.

図1に示すように、割断加工システム1は、ガラスなどの脆性材料からなる被加工基板30を局部的に加熱及び冷却し、その際に生じる熱応力(引張応力)によって被加工基板30に亀裂32を生じさせて割断加工を行うものであり、被加工基板30にレーザビームLBを照射して被加工基板30を局部的に加熱するレーザ発振器(加熱装置)11と、レーザ発振器11により被加工基板30上で局部的に加熱が行われた領域へ向けて流動性のある冷却剤Cを噴射して当該領域を局部的に冷却する冷却ユニット(冷却装置)12と、レーザ発振器11及び冷却ユニット12に対して被加工基板30を相対的に移動させる加工ステージ(移動装置)20とを備えている。   As shown in FIG. 1, the cleaving system 1 locally heats and cools a substrate 30 made of a brittle material such as glass, and cracks in the substrate 30 due to thermal stress (tensile stress) generated at that time. 32 is generated to perform the cleaving process. A laser oscillator (heating device) 11 that irradiates the substrate 30 to be processed with a laser beam LB to locally heat the substrate to be processed 30, and a workpiece to be processed by the laser oscillator 11. A cooling unit (cooling device) 12 for locally cooling the region by spraying a fluid coolant C toward the region heated locally on the substrate 30, the laser oscillator 11, and the cooling unit 12, a processing stage (moving device) 20 that moves the substrate 30 to be processed relative to the processing substrate 30 is provided.

このうち、冷却ユニット12は、レーザ発振器11から所定の距離(例えば数10mm程度)だけ離間した位置に配置されており、冷却ユニット本体13と、冷却ユニット本体13から供給された冷却剤Cを被加工基板30上で局部的に加熱が行われた領域へ向けて噴射する冷却ノズル14と、冷却ノズル14により噴射された冷却剤Cの流れを規制するガイド部材16とを有している。なお、冷却ノズル14により噴射される冷却剤Cは、流動性のあるものであれば液体でも気体でも固体の集合物でもよく、例えば水やアルコールなどの液体(霧状のものを含む)、水蒸気などの気体、二酸化炭素粒子などの微粒子固体の集合物を用いることができる。   Among them, the cooling unit 12 is disposed at a position separated from the laser oscillator 11 by a predetermined distance (for example, about several tens of millimeters), and receives the cooling unit body 13 and the coolant C supplied from the cooling unit body 13. It has the cooling nozzle 14 injected toward the area | region heated locally on the process board | substrate 30, and the guide member 16 which regulates the flow of the coolant C injected by the cooling nozzle 14. FIG. The coolant C sprayed by the cooling nozzle 14 may be liquid, gas, or a solid aggregate as long as it has fluidity, for example, liquid such as water or alcohol (including mist), water vapor A gas solid such as carbon dioxide particles or an aggregate of fine particle solids such as carbon dioxide particles can be used.

ここで、ガイド部材16は、冷却ユニット本体13にフランジ15を介して固定されており、被加工基板30に対して滑動可能に接触した状態で冷却ノズル14とともに被加工基板30に対して相対的に移動するようになっている。また、ガイド部材16は、図2(a)に示すように、その被加工基板30に沿った断面がV字状でかつ割断予定線31に関して対称的な形状をなす壁部16aを有しており、冷却ノズル14により噴射された冷却剤Cが被加工基板30上で割断予定線31に関して対称的に流れるよう被加工基板30上での冷却剤Cの流れ(特に被加工基板30上で冷却剤Cが接触する冷却領域の最先端部での流れ)を規制するようになっている。なお、図2において、符号34は冷却剤Cの噴射スポット、符号35は冷却剤Cの流れを規制するガイド部材16の壁部16aの内部領域を示す。なお、ガイド部材16の材料としては、ガラスなどの脆性材料からなる被加工基板30を傷つけない程度に柔らかく、かつ、ガイド部材16の形が崩れない程度の強度を有する材料を用いることが好ましく、例えばテフロン(登録商標)などの樹脂などを用いることができる。   Here, the guide member 16 is fixed to the cooling unit main body 13 via the flange 15, and is relative to the workpiece substrate 30 together with the cooling nozzle 14 in a state where the guide member 16 is slidably contacted with the workpiece substrate 30. To move to. Further, as shown in FIG. 2A, the guide member 16 has a wall portion 16 a having a V-shaped cross section along the substrate to be processed 30 and a symmetrical shape with respect to the planned cutting line 31. The coolant C sprayed by the cooling nozzle 14 flows symmetrically with respect to the cutting line 31 on the substrate 30 (particularly, the coolant C is cooled on the substrate 30). The flow at the foremost part of the cooling region in contact with the agent C) is regulated. In FIG. 2, reference numeral 34 denotes an injection spot of the coolant C, and reference numeral 35 denotes an inner region of the wall portion 16a of the guide member 16 that regulates the flow of the coolant C. As the material of the guide member 16, it is preferable to use a material that is soft enough not to damage the workpiece substrate 30 made of a brittle material such as glass and has a strength that does not cause the shape of the guide member 16 to collapse. For example, a resin such as Teflon (registered trademark) can be used.

次に、このような構成からなる本実施の形態の作用について説明する。   Next, the operation of the present embodiment having such a configuration will be described.

まず、割断加工の対象となる被加工基板30を加工ステージ20上に位置決めする。   First, the substrate 30 to be cut is positioned on the processing stage 20.

次に、加工ステージ20により被加工基板30を移動させ、被加工基板30の割断予定線31の上方にレーザ発振器11及び冷却ユニット12を位置付ける。なお、レーザ発振器11及び冷却ユニット12は、被加工基板30の割断予定線31の上方に位置付けられたときに割断予定線31に沿って適切な間隔で配置されるように予めアライメント調整が行われている。   Next, the processing substrate 30 is moved by the processing stage 20, and the laser oscillator 11 and the cooling unit 12 are positioned above the planned cutting line 31 of the processing substrate 30. The laser oscillator 11 and the cooling unit 12 are aligned in advance so that they are arranged at appropriate intervals along the planned cutting line 31 when positioned above the planned cutting line 31 of the substrate 30 to be processed. ing.

この状態で、加工ステージ20によりレーザ発振器11及び冷却ユニット12に対して被加工基板30を相対的に移動させると、レーザ発振器11から出射されたレーザビームLBにより被加工基板30上で局部的に加熱が行われる領域(レーザビームLBの照射スポット33に対応する領域)及び冷却ユニット12から噴射された冷却剤Cにより被加工基板30上で局部的に冷却が行われる領域(冷却剤Cの噴射スポット34を中心とした、被加工基板30上で冷却剤Cが接触する冷却領域)が割断予定線31に沿ってこの順番で相対的に移動する。   In this state, when the processing substrate 30 is moved relative to the laser oscillator 11 and the cooling unit 12 by the processing stage 20, the laser beam LB emitted from the laser oscillator 11 causes local movement on the processing substrate 30. A region where heating is performed (a region corresponding to the irradiation spot 33 of the laser beam LB) and a region where cooling is locally performed on the substrate 30 by the coolant C sprayed from the cooling unit 12 (jetting of the coolant C) The cooling region in contact with the coolant C on the substrate to be processed 30 around the spot 34 is relatively moved in this order along the planned cutting line 31.

具体的には、まず、被加工基板30上で割断予定線31に沿ってレーザ発振器11が相対的に移動し、レーザ発振器11から出射されたレーザビームLBにより被加工基板30を局部的に加熱する。これにより、被加工基板30のうちレーザビームLBの照射スポット33に対応する領域に熱応力(引張応力)が順次加えられる。   Specifically, first, the laser oscillator 11 moves relatively along the planned cutting line 31 on the workpiece substrate 30, and the workpiece substrate 30 is locally heated by the laser beam LB emitted from the laser oscillator 11. To do. Thereby, thermal stress (tensile stress) is sequentially applied to the region corresponding to the irradiation spot 33 of the laser beam LB in the substrate 30 to be processed.

次に、レーザ発振器11に続いて被加工基板30上で割断予定線31に沿って冷却ユニット12が相対的に移動し、レーザ発振器11により被加工基板30上で局部的に加熱が行われた領域へ向けて冷却剤Cを噴射して当該領域を局部的に冷却する。これにより、被加工基板30のうち冷却剤Cが接触する冷却領域に熱応力(引張応力)が加えられ、レーザ発振器11による加熱により発生した引張応力と重ね合わされる。このとき、冷却ユニット12においては、冷却ノズル14から噴射された冷却剤Cが被加工基板30の噴射スポット34上に吹き付けられ、このような冷却剤Cが加工ステージ20の移動に伴ってガイド部材16の壁部16aで掻き集められる。これにより、被加工基板30上での冷却剤Cの流れがガイド部材16の壁部16aの内部領域35に合わせて規制され、被加工基板30上で冷却剤Cが接触する冷却領域の最先端部の形状が、割断予定線31に関して対称的なものとなる。   Next, the cooling unit 12 moved relatively along the planned cutting line 31 on the substrate 30 to be processed following the laser oscillator 11, and the laser oscillator 11 locally heated the substrate 30 to be processed. The coolant C is sprayed toward the area to locally cool the area. As a result, thermal stress (tensile stress) is applied to the cooling region of the substrate 30 to be contacted by the coolant C, and is superposed on the tensile stress generated by heating by the laser oscillator 11. At this time, in the cooling unit 12, the coolant C sprayed from the cooling nozzle 14 is sprayed onto the spray spot 34 of the substrate 30 to be processed, and such coolant C is guided by the movement of the processing stage 20. It is scraped by 16 wall portions 16a. Thereby, the flow of the coolant C on the substrate to be processed 30 is regulated according to the inner region 35 of the wall portion 16a of the guide member 16, and the leading edge of the cooling region where the coolant C contacts on the substrate to be processed 30. The shape of the part is symmetrical with respect to the planned cutting line 31.

以上のようにして、被加工基板30上で割断予定線31に沿ってレーザ発振器11による加熱及び冷却ユニット12による冷却が順次行われると、被加工基板30に対する加熱により発生した熱応力(引張応力)と被加工基板30に対する冷却により発生した熱応力(引張応力)とによって亀裂32が形成され、かつ、レーザ発振器11及び冷却ユニット12が被加工基板30上で割断予定線31に沿って相対的に移動することに伴って割断予定線31に沿って亀裂32が進展する。   As described above, when heating by the laser oscillator 11 and cooling by the cooling unit 12 are sequentially performed on the substrate to be processed 30 along the planned cutting line 31, thermal stress (tensile stress) generated by heating the substrate to be processed 30 is performed. ) And thermal stress (tensile stress) generated by cooling the workpiece substrate 30, and the laser oscillator 11 and the cooling unit 12 are relative to each other along the planned cutting line 31 on the workpiece substrate 30. The crack 32 progresses along the planned cutting line 31 as it moves to.

このように本実施の形態によれば、冷却ユニット12の冷却ノズル14により噴射された冷却剤Cが被加工基板30上で割断予定線31に関して対称的に流れるようガイド部材16により被加工基板30上での冷却剤Cの流れを規制するようにしているので、被加工基板30上で冷却剤Cが接触する冷却領域の最先端部の形状を、割断予定線31に関して対称的なものとし、これによって冷却領域の最先端部で生じる熱応力(引張応力)も割断予定線31に関して対称的なものとすることができる。このため、冷却領域の最先端部で生じる亀裂32の直進性を向上させて、割断加工の品位を向上させることができる。   As described above, according to the present embodiment, the coolant C sprayed by the cooling nozzle 14 of the cooling unit 12 flows symmetrically with respect to the planned cutting line 31 on the substrate 30 to be processed by the guide member 16. Since the flow of the coolant C above is regulated, the shape of the most distal portion of the cooling region in contact with the coolant C on the substrate 30 to be processed is symmetrical with respect to the planned cutting line 31. As a result, the thermal stress (tensile stress) generated at the foremost portion of the cooling region can be made symmetrical with respect to the planned cutting line 31. For this reason, it is possible to improve the straightness of the crack 32 generated at the most distal portion of the cooling region, and to improve the quality of the cleaving process.

また、本実施の形態によれば、ガイド部材16により被加工基板30上での冷却剤Cの流れ(特に被加工基板30上で冷却剤Cが接触する冷却領域の最先端部での流れ)を規制するようにしているので、冷却ノズル14による冷却剤Cの噴出位置や噴出角度などを割断予定線31に対して厳密に位置決めしなくとも十分に対称的な冷却分布及び応力分布を得ることができ、このため、冷却領域の最先端部で生じる亀裂32の直進性を容易に向上させることができる。   Further, according to the present embodiment, the flow of the coolant C on the substrate 30 to be processed by the guide member 16 (particularly, the flow at the most distal portion of the cooling region where the coolant C contacts on the substrate 30 to be processed). Therefore, it is possible to obtain a sufficiently symmetric cooling distribution and stress distribution without strictly positioning the ejection position and the ejection angle of the coolant C by the cooling nozzle 14 with respect to the planned cutting line 31. For this reason, it is possible to easily improve the straightness of the crack 32 generated at the most distal portion of the cooling region.

なお、上述した実施の形態においては、冷却ユニット12の冷却ノズル14により噴射された冷却剤Cの流れを規制するガイド部材として、断面がV字状である壁部16aを有するガイド部材16を用いているが、割断予定線31に関して対称的な形状をなす壁部であれば任意の形状のものを用いることが可能であり、例えば図2(b)に示すように、断面がU字状である壁部16a′を有するガイド部材16′を用いるようにしてもよい。なお、図2(b)に示すガイド部材16′の場合には、壁部16a′の内壁面が円弧状となっているので、図2(a)に示すガイド部材16の場合に比べて、壁部16a′の中心部と割断予定線31との間に生じた位置ずれが冷却領域の最先端部の形状に与える影響が少ないという利点がある。   In the above-described embodiment, the guide member 16 having the wall portion 16a having a V-shaped cross section is used as the guide member for regulating the flow of the coolant C injected by the cooling nozzle 14 of the cooling unit 12. However, it is possible to use an arbitrary shape as long as the wall portion is symmetrical with respect to the planned cutting line 31. For example, as shown in FIG. You may make it use the guide member 16 'which has a certain wall part 16a'. In the case of the guide member 16 ′ shown in FIG. 2 (b), the inner wall surface of the wall portion 16a ′ has an arc shape. Therefore, compared with the case of the guide member 16 shown in FIG. 2 (a), There is an advantage that the positional shift generated between the center portion of the wall portion 16a ′ and the planned cutting line 31 has little influence on the shape of the most distal portion of the cooling region.

また、上述した実施の形態においては、レーザ発振器11及び冷却ユニット12のみにより被加工基板30の割断加工を行う場合を例に挙げて説明したが、この場合には、被加工基板30の表面のみが割断され、被加工基板30の表面から裏面まで割断面が到達しないこともあり得る。このため、本発明の他の実施の形態として、図3に示すような構成を備えた割断加エシステム1を用いるようにしてもよい。すなわち、冷却ユニット12のガイド部材16に支持部材17を介して回動可能にローラ部材18を取り付け、被加工基板30の表面のうち割断予定線31の近傍を押圧するようにする。また、加工ステージ20上には、被加工基板30を支持する載置ブロック21,22と、被加工基板30のうちローラ部材18により押圧される側と反対側の表面に位置する割断予定線31に対応する部分を支持する断面が三角形状の切り離し支え23とを設ける。これにより、ローラ部材18と切り離し支え23との協働により被加工基板30の割断予定線31に対応する部分に
対して機械的な応力が加えられ、被加工基板30が表面から裏面まで割断されるように促される。
In the above-described embodiment, the case where the processing substrate 30 is cleaved only by the laser oscillator 11 and the cooling unit 12 has been described as an example. However, in this case, only the surface of the processing substrate 30 is described. May be cleaved, and the cut section may not reach from the front surface to the back surface of the substrate 30 to be processed. For this reason, as another embodiment of the present invention, a cleaving process system 1 having a configuration as shown in FIG. 3 may be used. That is, the roller member 18 is rotatably attached to the guide member 16 of the cooling unit 12 via the support member 17 so as to press the vicinity of the planned cutting line 31 on the surface of the substrate 30 to be processed. Further, on the processing stage 20, mounting blocks 21 and 22 that support the substrate to be processed 30, and a planned cutting line 31 that is positioned on the surface of the substrate to be processed 30 opposite to the side pressed by the roller member 18. And a separation support 23 having a triangular cross section for supporting a portion corresponding to the above. As a result, mechanical stress is applied to the portion corresponding to the planned cutting line 31 of the substrate to be processed 30 by the cooperation of the roller member 18 and the separation support 23, and the substrate to be processed 30 is cleaved from the front surface to the back surface. You are prompted to do so.

さらに、上述した実施の形態においては、加工ステージ20によりレーザ発振器11及び冷却ユニット12に対して被加工基板30側を移動させることによりレーザ発振器11及び冷却ユニット12と被加工基板30との間の相対的な移動を実現するようにしているが、これに限らず、レーザ発振器11及び冷却ユニット12側を移動させることによりレーザ発振器11及び冷却ユニット12と被加工基板30との間の相対的な移動を実現するようにしてもよい。   Furthermore, in the above-described embodiment, the processing stage 20 moves the processing substrate 30 side with respect to the laser oscillator 11 and the cooling unit 12, so that the laser oscillator 11, the cooling unit 12, and the processing substrate 30 are moved. Although the relative movement is realized, the present invention is not limited to this, and by moving the laser oscillator 11 and the cooling unit 12 side, the relative movement between the laser oscillator 11 and the cooling unit 12 and the substrate to be processed 30 is achieved. You may make it implement | achieve a movement.

さらに、上述した実施の形態においては、冷却ユニット12のガイド部材16が被加工基板30に対して滑動可能に接触した状態で被加工基板30に対して相対的に移動するようにしているが、これに限らず、ガイド部材16が被加工基板30に対してわずかに隙間をあけた状態で被加工基板30に対して相対的に移動するようにしてもよい。   Furthermore, in the above-described embodiment, the guide member 16 of the cooling unit 12 is moved relative to the substrate to be processed 30 while being slidably contacted with the substrate to be processed 30. However, the guide member 16 may move relative to the substrate to be processed 30 with a slight gap with respect to the substrate to be processed 30.

さらに、上述した実施の形態においては、レーザ発振器11により被加工基板30にレーザビームLBを照射して被加工基板30を局部的に加熱するようにしているが、被加工基板30を加熱するものであれば、これに限らず、温風加熱手段などの任意の加熱手段を用いることができる。   Further, in the above-described embodiment, the substrate 30 is irradiated with the laser beam LB by the laser oscillator 11 to locally heat the substrate 30, but the substrate 30 is heated. If it is, it will not be restricted to this, Arbitrary heating means, such as a warm air heating means, can be used.

さらにまた、上述した実施の形態においては、冷却ユニット12の冷却ノズル14から噴射された冷却剤Cを被加工基板30上に直接吹き付けるようにしているが、これに限らず、冷却ノズル14から噴射された冷却剤Cをガイド部材16の壁部16a上に吹き付け、壁部16aに沿わせた上で被加工基板30上に流すようにしてもよい。   Furthermore, in the above-described embodiment, the coolant C sprayed from the cooling nozzle 14 of the cooling unit 12 is directly sprayed onto the substrate 30 to be processed. The coolant C thus applied may be sprayed onto the wall portion 16a of the guide member 16 so as to flow along the wall portion 16a onto the substrate 30 to be processed.

本発明の一実施の形態に係る割断加工システムの全体構成を示す斜視図。The perspective view which shows the whole structure of the cleaving processing system which concerns on one embodiment of this invention. 図1に示す割断加工システムで用いられるガイド部材を説明するための図。The figure for demonstrating the guide member used with the cleaving processing system shown in FIG. 本発明の他の実施の形態に係る割断加工システムの全体構成を示す斜視図。The perspective view which shows the whole structure of the cleaving processing system which concerns on other embodiment of this invention. 従来の方法による被加工基板の加熱時及び冷却時の熱応力(引張応力)の様子を示す図。The figure which shows the mode of the thermal stress (tensile stress) at the time of the heating of the to-be-processed substrate by the conventional method, and cooling.

符号の説明Explanation of symbols

1 割断加工システム
11 レーザ発振器(加熱装置)
12 冷却ユニット(冷却装置)
13 冷却ユニット本体
14 冷却ノズル
15 フランジ
16,16′ ガイド部材
17 支持部材
18 ローラ部材
20 加工ステージ(移動装置)
21,22 載置ブロック
23 切り離し支え
30 被加工基板
31 割断予定線
32 亀裂
33 レーザビームの照射スポット
34 冷却剤の噴射スポット
35,35′ 壁部の内部領域
36 レーザビームの照射により生じる熱応力(引張応力)の分布
37 冷却剤の噴射により生じる熱応力(引張応力)の分布
LB レーザビーム
C 冷却剤
1 Cleaving processing system 11 Laser oscillator (heating device)
12 Cooling unit (cooling device)
13 Cooling unit body 14 Cooling nozzle 15 Flange 16, 16 'Guide member 17 Support member 18 Roller member 20 Processing stage (moving device)
21 and 22 Mounting block 23 Separation support 30 Substrate 31 Cutting line 32 Crack 33 Laser beam irradiation spot 34 Coolant spray spot 35, 35 'Wall region 36 Thermal stress generated by laser beam irradiation ( Tensile stress) distribution 37 Thermal stress (tensile stress) distribution caused by jetting of coolant LB Laser beam C Coolant

Claims (6)

脆性材料からなる被加工基板を局部的に加熱及び冷却し、その際に生じる熱応力によって当該被加工基板に亀裂を生じさせて割断加工を行う割断加工システムにおいて、
被加工基板を局部的に加熱する加熱装置と、
前記加熱装置により前記被加工基板上で局部的に加熱が行われた領域を局部的に冷却する冷却装置と、
前記加熱装置及び前記冷却装置に対して前記被加工基板を相対的に移動させ、前記被加工基板上で局部的に加熱及び冷却が行われる領域を割断予定線に沿って移動させる移動装置とを備え、
前記冷却装置は、前記被加工基板上で局部的に加熱が行われた領域へ向けて流動性のある冷却剤を噴射する冷却ノズルと、前記冷却ノズルにより噴射された冷却剤が前記被加工基板上で前記割断予定線に関して対称的に流れるよう前記被加工基板上での前記冷却剤の流れを規制するガイド部材とを有することを特徴とする割断加工システム。
In the cleaving processing system that heats and cools a substrate to be processed made of a brittle material, and generates a crack in the substrate to be processed by thermal stress generated at that time.
A heating device for locally heating the substrate to be processed;
A cooling device for locally cooling a region heated locally on the substrate to be processed by the heating device;
A moving device that moves the substrate to be processed relative to the heating device and the cooling device, and moves a region that is locally heated and cooled on the substrate to be processed along a planned cutting line. Prepared,
The cooling device includes: a cooling nozzle that injects a fluid coolant toward a region that is locally heated on the substrate to be processed; and the coolant that is injected by the cooling nozzle is the substrate to be processed. A cleaving system comprising: a guide member that regulates the flow of the coolant on the substrate to be processed so as to flow symmetrically with respect to the planned cutting line.
前記ガイド部材は、前記被加工基板に対して滑動可能に接触した状態で前記冷却ノズルとともに前記被加工基板に対して相対的に移動する壁部を有し、この壁部は前記割断予定線に関して対称的な形状をなすことを特徴とする、請求項1に記載の割断加工システム。   The guide member has a wall portion that moves relative to the substrate to be processed together with the cooling nozzle in a state in which the guide member is slidably contacted with the substrate to be processed. The cleaving system according to claim 1, wherein the cleaving system has a symmetrical shape. 前記ガイド部材の前記壁部は前記被加工基板に沿った断面がV字状であることを特徴とする、請求項2に記載の割断加工システム。   The cleaving system according to claim 2, wherein the wall portion of the guide member has a V-shaped cross section along the substrate to be processed. 前記ガイド部材の前記壁部は前記被加工基板に沿った断面がU字状であることを特徴とする、請求項2に記載の割断加工システム。   The cleaving system according to claim 2, wherein the wall portion of the guide member has a U-shaped cross section along the substrate to be processed. 前記冷却装置の前記ガイド部材に回動可能に取り付けられたローラ部材であって、前記被加工基板の表面のうち前記割断予定線の近傍を押圧するローラ部材と、
前記被加工基板のうち前記ローラ部材により押圧される側と反対側の表面に位置する前記割断予定線に対応する部分を支持する切り離し支えであって、前記ローラ部材との協働により前記被加工基板の割断線に対応する部分に対して機械的な応力を加える切り離し支えとをさらに備えたことを特徴とする、請求項1乃至4のいずれか一項に記載の割断加工システム。
A roller member rotatably attached to the guide member of the cooling device, the roller member pressing the vicinity of the planned cutting line of the surface of the substrate to be processed;
A separation support for supporting a portion of the substrate to be processed corresponding to the planned cutting line located on the surface opposite to the surface pressed by the roller member, and in cooperation with the roller member, the workpiece to be processed The cleaving system according to any one of claims 1 to 4, further comprising a separation support that applies mechanical stress to a portion corresponding to a cleaving line of the substrate.
脆性材料からなる被加工基板を局部的に加熱及び冷却し、その際に生じる熱応力によって当該被加工基板に亀裂を生じさせて割断加工を行う割断加工方法において、
割断加工の対象となる被加工基板を準備する工程と、
前記被加工基板を局部的に加熱及び冷却しつつ、当該被加工基板上で局部的に加熱及び冷却が行われる領域を割断予定線に沿って移動させる工程とを含み、
前記被加工基板を局部的に冷却する際に、前記被加工基板上で局部的に加熱が行われた領域へ向けて流動性のある冷却剤を噴射するとともに、前記冷却剤が前記被加工基板上で前記割断予定線に関して対称的に流れるよう前記被加工基板上での前記冷却剤の流れを規制することを特徴とする割断加工方法。
In a cleaving method for locally heating and cooling a substrate made of a brittle material, and performing a cleaving process by generating a crack in the substrate to be processed by thermal stress generated at that time,
Preparing a substrate to be processed for cleaving,
Moving the region to be heated and cooled locally on the substrate to be processed along the planned cutting line while locally heating and cooling the substrate to be processed,
When the substrate to be processed is locally cooled, a coolant having fluidity is sprayed toward a region that is locally heated on the substrate to be processed, and the coolant is the substrate to be processed. A cleaving method characterized by restricting the flow of the coolant on the substrate to be processed so as to flow symmetrically with respect to the planned cutting line.
JP2004056679A 2004-03-01 2004-03-01 System and method of cutting brittle material Withdrawn JP2005247600A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004056679A JP2005247600A (en) 2004-03-01 2004-03-01 System and method of cutting brittle material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004056679A JP2005247600A (en) 2004-03-01 2004-03-01 System and method of cutting brittle material

Publications (1)

Publication Number Publication Date
JP2005247600A true JP2005247600A (en) 2005-09-15

Family

ID=35028462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004056679A Withdrawn JP2005247600A (en) 2004-03-01 2004-03-01 System and method of cutting brittle material

Country Status (1)

Country Link
JP (1) JP2005247600A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013002165A1 (en) * 2011-06-28 2013-01-03 株式会社Ihi Device and method for cutting brittle member, and cut brittle member
CN110695852A (en) * 2019-08-27 2020-01-17 洛阳维路智能设备有限公司 Operation method of special-shaped glass water jet cutting production line

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013002165A1 (en) * 2011-06-28 2013-01-03 株式会社Ihi Device and method for cutting brittle member, and cut brittle member
CN103619528A (en) * 2011-06-28 2014-03-05 株式会社Ihi Device and method for cutting brittle member, and cut brittle member
KR101519867B1 (en) * 2011-06-28 2015-05-13 가부시키가이샤 아이에이치아이 Device and method for cutting brittle member
TWI496644B (en) * 2011-06-28 2015-08-21 Ihi Corp Means for cutting off the fragile members, the method, and the fragile components to be cut off
CN110695852A (en) * 2019-08-27 2020-01-17 洛阳维路智能设备有限公司 Operation method of special-shaped glass water jet cutting production line

Similar Documents

Publication Publication Date Title
JP6255595B2 (en) Cleaving device
TWI380963B (en) Method for processing brittle material substrates
JP2007090860A (en) System and method for cutting and working fragile material
JP4815444B2 (en) Brittle material cleaving system and method
KR101467157B1 (en) Scribe method for brittle material substrate
KR101404250B1 (en) Splitting apparatus and cleavage method for brittle material
JP2011230940A (en) Cutting method for brittle material substrate
KR101200789B1 (en) Method for dividing brittle material substrate
JP2005212364A (en) Fracturing system of brittle material and method thereof
KR100649894B1 (en) Method and device for scribing fragile material substrate
JP4619024B2 (en) Brittle material cleaving system and method
CN105461203A (en) Cutting method and cutting device
JP2008183599A (en) Method for working workpiece made of highly brittle and non-metallic material, and device therefor
JP4886620B2 (en) Laser cleaving apparatus and substrate manufacturing method
JP2005263578A (en) System and method of cleaving brittle material
JP5590642B2 (en) Scribing apparatus and scribing method
KR20040007251A (en) A scribing apparatus
JP5373856B2 (en) Glass substrate scribing method
JP2006175847A (en) System for cutting brittle material and its method
TW201313636A (en) Scribe method for glass substrate
JP2009067618A (en) Apparatus and method for breaking substrate made of brittle material
JP2005247600A (en) System and method of cutting brittle material
JP2008049498A (en) Division device and division method
JP4149746B2 (en) Method and apparatus for scribing hard brittle plate
JP5292420B2 (en) Glass substrate scribing method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070501