JP2005246283A - Operation method for membrane separation apparatus, and membrane separation apparatus - Google Patents

Operation method for membrane separation apparatus, and membrane separation apparatus Download PDF

Info

Publication number
JP2005246283A
JP2005246283A JP2004061831A JP2004061831A JP2005246283A JP 2005246283 A JP2005246283 A JP 2005246283A JP 2004061831 A JP2004061831 A JP 2004061831A JP 2004061831 A JP2004061831 A JP 2004061831A JP 2005246283 A JP2005246283 A JP 2005246283A
Authority
JP
Japan
Prior art keywords
filtration
membrane
treated water
target
permeation flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004061831A
Other languages
Japanese (ja)
Inventor
Akira Ishiyama
明 石山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Pantec Co Ltd
Original Assignee
Kobelco Eco Solutions Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobelco Eco Solutions Co Ltd filed Critical Kobelco Eco Solutions Co Ltd
Priority to JP2004061831A priority Critical patent/JP2005246283A/en
Publication of JP2005246283A publication Critical patent/JP2005246283A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

<P>PROBLEM TO BE SOLVED: To provide an operation method for a membrane separation apparatus and a membrane separation apparatus capable of suppressing increase in membrane pressure difference over a long period compared to the past, and consequently prologing the service life of the membrane. <P>SOLUTION: The membrane separation apparatus is provided with membrane modules dipped in a bioreactor for filtering active sludge mixed liquid in the bioreactor. In the operation method of the separation apparatus, filtering is started with a target penetration flow flux set to 50% or less of a target penetration flow flux, when alternately repeating filtering by the membrane module and washing of the membrane module, and the flow flux is stepwise or continuously increased to a target flow flux within a prescribed time from the start of the filtration, then, filtration is continued under maintaining the target flow flux until the next washing. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、生物反応槽に浸漬して槽内の活性汚泥混合液をろ過する膜モジュールを備えた膜分離装置の運転方法及び膜分離装置に関するものである。   The present invention relates to a method for operating a membrane separation apparatus and a membrane separation apparatus provided with a membrane module that is immersed in a biological reaction tank and filters an activated sludge mixed liquid in the tank.

膜分離活性汚泥法は、都市下水,産業排水などの汚水の処理方法であって、曝気槽に膜モジュールを浸漬し、吸引ポンプによりろ過膜の内側を吸引して減圧し、膜ろ過により活性汚泥混合液(汚水と活性汚泥との混合液)の固液分離を行って膜モジュールの二次側より清澄な処理水(透過水)を得るようにしたものである。   The membrane separation activated sludge method is a method for treating sewage such as municipal sewage and industrial wastewater. The membrane module is immersed in an aeration tank, the inside of the filtration membrane is sucked down with a suction pump, and the pressure is reduced. The liquid mixture (mixed liquid of sewage and activated sludge) is subjected to solid-liquid separation to obtain clear treated water (permeated water) from the secondary side of the membrane module.

この膜分離活性汚泥法では、膜ろ過により処理水を得るため、膜モジュールを備えた膜分離装置の運転にともなう膜の目詰まり(ファウリング)が避けられないのが現状である。活性汚泥混合液のろ過に際し、膜モジュールの下方に配置した散気装置からの曝気による上昇流で絶えず膜面を洗浄するようにしているものの、目詰まりの進行を十分に抑えることは難しい。そのため、膜の膜差圧が上昇した場合、あるいは一定期間ろ過を行った段階で膜の性能回復のために膜面の洗浄を行うようにしている。   In this membrane separation activated sludge method, since the treated water is obtained by membrane filtration, clogging (fouling) of the membrane accompanying the operation of the membrane separation apparatus provided with the membrane module is unavoidable. In the filtration of the activated sludge mixed liquid, the membrane surface is constantly washed by the upward flow caused by aeration from the air diffuser disposed below the membrane module, but it is difficult to sufficiently suppress the progress of clogging. Therefore, the membrane surface is washed to recover the membrane performance when the membrane differential pressure rises or when filtration is performed for a certain period of time.

膜分離装置の運転方法として、一定圧力でろ過を行う定圧法と、一定の透過流束でろ過を行う定流量法とがある。定圧法は、膜面の汚れ付着によるろ過抵抗の増大ΔRのもとで膜差圧ΔPを一定に保持するために、ΔRの増加に応じて透過流束Fを減少して行き、一定期間ろ過を行うと(透過流束Fが下限値に達すると)運転を一時停止し、膜を薬液洗浄して透過流束Fを回復させ、次いで運転を再開するようにした運転方法である。定流量法は、膜面の汚れ付着によるろ過抵抗の増大ΔRのもとで透過流束Fを一定に保持するために、ΔRの増加に応じて膜差圧ΔPを増加して行き、一定期間ろ過を行うと(ΔPが上限値に達すると)運転を一時停止し、膜を薬液洗浄して透過流束Fを回復させ、次いで運転を再開するようにした運転方法である。最近では、処理水の回収率向上を図る点から、膜分離装置の運転では、一定の透過流束でろ過を行う定流量法が多く採用されている。
特開平11−276864号公報(段落[0037])
As a method for operating the membrane separator, there are a constant pressure method in which filtration is performed at a constant pressure and a constant flow method in which filtration is performed at a constant permeation flux. In the constant pressure method, the permeation flux F is decreased in accordance with the increase of ΔR in order to keep the membrane differential pressure ΔP constant under the increase in filtration resistance ΔR due to the adhesion of dirt on the membrane surface. Is performed (when the permeation flux F reaches the lower limit), the operation is temporarily stopped, the membrane is washed with a chemical solution to recover the permeation flux F, and then the operation is resumed. In the constant flow method, in order to keep the permeation flux F constant under an increase in filtration resistance ΔR due to adhesion of dirt on the membrane surface, the membrane differential pressure ΔP is increased as ΔR increases, When the filtration is performed (when ΔP reaches the upper limit value), the operation is temporarily stopped, the membrane is washed with a chemical solution to recover the permeation flux F, and then the operation is restarted. Recently, in order to improve the recovery rate of treated water, a constant flow method in which filtration is performed with a constant permeation flux is often employed in the operation of a membrane separator.
JP 11-276864 A (paragraph [0037])

しかし前述した定流量法を用いた膜分離装置の運転方法では、薬液洗浄の直後から次の薬液洗浄の直前までにわたって、一定値に設定された目標透過流束にてろ過を行うようにしたものであるから、いきなりの目標透過流束によるろ過運転の開始にともなって、膜面に懸濁物質粒子などの膜で分離される汚泥粒子(ファウリング物質粒子)が急激に付着する。このため、ろ過運転開始直後に膜差圧が急激に上昇してしまい、これに起因してそれ以後のろ過運転による膜差圧の上昇も大きくなり、その結果、膜の性能回復のための膜の薬液洗浄の頻度が高くなっていた。   However, in the operation method of the membrane separation apparatus using the constant flow method described above, the filtration is performed with the target permeation flux set to a constant value from immediately after the chemical cleaning to immediately before the next chemical cleaning. Therefore, with the start of the filtration operation by sudden target permeation flux, sludge particles (fouling material particles) separated by a membrane such as suspended material particles adhere to the membrane surface rapidly. For this reason, immediately after the start of the filtration operation, the membrane differential pressure suddenly increases, and as a result, the increase in the membrane differential pressure due to the subsequent filtration operation also increases. The frequency of chemical cleaning was high.

そこで、本発明の課題は、従来に比べて長期間にわたって膜差圧の上昇を抑制することができ、これにより長期間にわたって安定して十分な処理水量を得ることができるとともに、膜の洗浄頻度を少なくできて洗浄用の薬品使用量を極力少なくすることができ、ひいては膜寿命の延命化を図ることができる膜分離装置の運転方法及び膜分離装置を提供することにある。   Therefore, the problem of the present invention is that it is possible to suppress an increase in the membrane differential pressure over a long period of time compared to the prior art, and thereby it is possible to obtain a sufficient amount of treated water stably over a long period of time, and the frequency of membrane cleaning. It is an object of the present invention to provide a method for operating a membrane separation apparatus and a membrane separation apparatus that can reduce the amount of chemicals used for cleaning as much as possible, and that can extend the life of the membrane.

前記の課題を解決するために、本願発明は次の技術的手段を講じている。   In order to solve the above problems, the present invention takes the following technical means.

請求項1の発明は、曝気槽に浸漬して槽内の活性汚泥混合液をろ過する膜モジュールを備えた膜分離装置の運転方法であって、膜モジュールによるろ過と該膜モジュールの洗浄とを交互に繰り返し行うに際し、目標透過流束の50%以下の値に設定された透過流束でろ過を開始し、ろ過開始から所定時間内に透過流束を前記目標透過流束まで段階的に又は連続的に増加させ、しかる後、次の洗浄まで前記目標透過流束を保持してろ過を行うことを特徴とする浸漬型膜分離装置の運転方法である。   The invention of claim 1 is a method for operating a membrane separation apparatus comprising a membrane module that is immersed in an aeration tank and filters the activated sludge mixed liquid in the tank, and includes filtration by the membrane module and washing of the membrane module. When iteratively repeats, filtration is started with a permeation flux set to a value of 50% or less of the target permeation flux, and the permeation flux is gradually increased to the target permeation flux within a predetermined time from the start of filtration. The operation method of the submerged membrane separation apparatus is characterized in that it is continuously increased and then filtered while holding the target permeation flux until the next cleaning.

請求項2の発明は、請求項1記載の浸漬型膜分離装置の運転方法において、前記ろ過開始時の透過流束は、前記目標透過流束の40%以下の値であることを特徴とするものである。   The invention according to claim 2 is the operation method of the submerged membrane separation apparatus according to claim 1, wherein the permeation flux at the start of filtration is a value of 40% or less of the target permeation flux. Is.

請求項3の発明は、請求項1又は2記載の浸漬型膜分離装置の運転方法において、前記ろ過開始から24時間以内に透過流束を目標透過流束まで少なくとも3段階で増加させることを特徴とするものである。   The invention of claim 3 is the operation method of the submerged membrane separator according to claim 1 or 2, wherein the permeation flux is increased to the target permeation flux in at least three stages within 24 hours from the start of filtration. It is what.

請求項4の発明は、生物反応槽に浸漬された膜モジュールと、前記膜モジュールの二次側に連通する処理水導出管の途中に介装された吸引ポンプと、前記処理水導出管における前記吸引ポンプの下流側に設けられた処理水流量検知器と、設定処理水量として、前記膜モジュールによるろ過開始時には目標処理水量の50%以下の値とし、ろ過開始から所定時間内に前記目標処理水量まで段階的又は連続的に増加させた値とし、しかる後、次の洗浄まで前記目標処理水量を保持し、前記処理水流量検知器で測定した前記吸引ポンプから吐出される処理水量が前記設定処理水量になるように前記吸引ポンプを制御する制御装置とを備えたことを特徴とする膜分離装置である。   Invention of Claim 4 is the membrane module immersed in the biological reaction tank, the suction pump interposed in the middle of the treated water outlet pipe connected to the secondary side of the said membrane module, and the said in the said treated water outlet pipe The treated water flow rate detector provided downstream of the suction pump and the set treated water amount are set to 50% or less of the target treated water amount at the start of filtration by the membrane module, and the target treated water amount within a predetermined time from the start of filtration. The target treated water amount is held until the next cleaning, and the treated water amount discharged from the suction pump measured by the treated water flow rate detector is the setting process. And a control device that controls the suction pump so that the amount of water becomes equal.

請求項5の発明は、請求項4記載の膜分離装置において、前記設定処理水量として、前記膜モジュールによるろ過開始時には目標処理水量の50%以下の値とし、ろ過開始から24時間以内に前記目標処理水量まで少なくとも3段階で増加させる値とし、しかる後、次の洗浄まで前記目標処理水量を保持することを特徴とするものである。   According to a fifth aspect of the present invention, in the membrane separation apparatus of the fourth aspect, the set treated water amount is a value equal to or less than 50% of a target treated water amount at the start of filtration by the membrane module, and the target water within 24 hours from the start of filtration. It is a value that is increased in at least three stages until the amount of treated water, and then the target treated water amount is maintained until the next cleaning.

本発明の膜分離装置の運転方法又は膜分離装置は、洗浄後、目標透過流束の50%以下の値に設定された透過流束でろ過を開始し、ろ過開始から透過流束を前記目標透過流束まで段階的に又は連続的に増加させるようにしている。これにより、いきなりの目標透過流束によるろ過開始に比較して徐々に膜面に付着する汚泥粒子が増加することに加えて、ろ過開始時において、種々の大きさの汚泥粒子について、膜への接近→接触→吸引付着する際の汚泥粒子の速度をほぼ同一にすることができる。よって、ろ過開始時において、できるだけ膜面を大きな汚泥粒子でケーク状(凝集体状)に覆うことができるので、膜の目詰まりを促進させる原因となる小さな汚泥粒子が先に膜孔に付着することを大幅に抑制することができる。したがって、従来とは違って、運転開始時における膜差圧の上昇を抑制することができるので、それ以後の目標透過流束でのろ過運転による膜差圧の上昇も抑制することができ、従来に比べて長期間にわたって膜差圧の上昇を抑制することができることで、長期間にわたって安定して十分な処理水量を得ることができるとともに、膜の洗浄頻度を少なくできて洗浄用の薬品使用量を極力少なくすることができ、ひいては膜寿命の延命化を図ることができる。   The operation method of the membrane separation apparatus or the membrane separation apparatus of the present invention starts filtration with a permeation flux set to a value of 50% or less of the target permeation flux after washing, and the permeation flux from the start of filtration to the target The permeation flux is increased stepwise or continuously. As a result, the sludge particles adhering to the membrane surface gradually increase compared to the start of filtration by sudden target permeation flux, and at the start of filtration, sludge particles of various sizes are applied to the membrane. The speed of sludge particles when approaching, contacting, and sucking and adhering can be made substantially the same. Therefore, at the start of filtration, the membrane surface can be covered in a cake shape (aggregate shape) with as much sludge particles as possible, so that the small sludge particles that cause the clogging of the membrane to adhere to the membrane pores first. This can be greatly suppressed. Therefore, unlike the conventional case, it is possible to suppress an increase in the membrane differential pressure at the start of operation, and hence it is possible to suppress an increase in the membrane differential pressure due to the subsequent filtration operation with the target permeation flux. Compared to, the increase in membrane differential pressure can be suppressed over a long period of time, so that a sufficient amount of treated water can be obtained stably over a long period of time, and the frequency of cleaning the membrane can be reduced and the amount of chemical used for cleaning can be reduced. As a result, the lifetime of the film can be extended.

本発明の方法又は装置は、目標透過流束の50%以下の値に設定された透過流束でろ過を開始することにより、種々の大きさの汚泥粒子について、膜への接近→接触→吸引付着する際の汚泥粒子の速度をほぼ同一にすることができるので、小さな汚泥粒子が集中的に膜孔に付着し、膜孔を閉塞することを大幅に抑制して膜差圧の急激な上昇を抑制することができる。目標透過流束の50%を超える値に設定された透過流束でろ過を開始すると、活性汚泥混合液から受ける抵抗が小さい小さな汚泥粒子が集中的に膜孔に接近、付着し膜孔を閉塞させるので、前記膜差圧の上昇抑制効果が安定して得られにくい。なお、ろ過開始時の透過流束は、ポンプ吸引流量の安定性を考慮して10%の幅を持たせて、目標透過流束の40%以下とすることが望ましい。また、ろ過を開始するときの透過流束の下限値は、処理水の回収率の低下と、透過流束(処理水量)を制御する制御装置の複雑化を回避する点から、目標透過流束の10%以上が望ましい。   The method or apparatus of the present invention starts the filtration with a permeation flux set to a value of 50% or less of the target permeation flux, thereby allowing the sludge particles of various sizes to approach the membrane → contact → suction. The speed of sludge particles when adhering can be made almost the same, so that small sludge particles concentrate on the membrane pores and block the membrane pores greatly, greatly increasing the membrane differential pressure. Can be suppressed. When filtration starts with a permeation flux set to a value that exceeds 50% of the target permeation flux, small sludge particles with low resistance received from the activated sludge mixed solution approach and adhere to the membrane pores, blocking the membrane pores. Therefore, it is difficult to stably obtain the effect of suppressing the increase in the film differential pressure. Note that the permeation flux at the start of filtration is preferably set to 40% or less of the target permeation flux with a width of 10% in consideration of the stability of the pump suction flow rate. In addition, the lower limit value of the permeation flux when starting filtration is the target permeation flux from the viewpoint of reducing the recovery rate of treated water and avoiding the complexity of the control device for controlling the permeation flux (treatment water amount). 10% or more is desirable.

本発明の方法又は装置では、ろ過開始から24時間以内に透過流束を目標透過流束まで少なくとも3段階で増加させることが望ましい。ろ過開始時期において透過流束を目標透過流束まで2段階で増加させると、前記膜差圧上昇抑制効果が安定して十分に得られにくいためである。なお、透過流束を制御する制御装置の複雑化を回避する点から、目標透過流束までの設定段階の上限は5段階程度が適切である。   In the method or apparatus of the present invention, it is desirable to increase the permeation flux to the target permeation flux in at least three stages within 24 hours from the start of filtration. This is because if the permeation flux is increased to the target permeation flux in two stages at the filtration start time, the effect of suppressing the increase in the membrane differential pressure is not obtained stably and sufficiently. In order to avoid complication of the control device for controlling the permeation flux, the upper limit of the setting stage up to the target permeation flux is appropriately about five.

また、ろ過開始から透過流束を目標透過流束まで段階的に増加させるときの時間Hsは、24時間以内が望ましい。24時間を超えると1日当たりの必要処理量を得られなくなる可能性が生じてくるためである。また、一般的に排水を処理する場合、流量調整槽などで24時間程度まで余裕を見込むので、24時間以内とした。なお、前記膜差圧上昇抑制効果を得る点から、この時間Hsの下限値は2時間程度が適切である。   Further, the time Hs when the permeation flux is increased stepwise from the start of filtration to the target permeation flux is preferably within 24 hours. This is because if the time exceeds 24 hours, the necessary processing amount per day may not be obtained. In general, when wastewater is treated, a margin is expected for about 24 hours in a flow rate adjusting tank or the like, and therefore it is set within 24 hours. In addition, from the viewpoint of obtaining the effect of suppressing the increase in the membrane pressure difference, the lower limit value of this time Hs is appropriately about 2 hours.

図1は本発明の方法を実施する膜分離装置を備えた下水処理設備のフロー図である。   FIG. 1 is a flow diagram of a sewage treatment facility equipped with a membrane separation apparatus for carrying out the method of the present invention.

図1において、31は流量調整槽、32は前処理スクリーン31aを備えた前処理槽、33は脱窒槽である。また、34は生物反応槽としての硝化槽、2は硝化槽34内の活性汚泥混合液中に浸漬されている複数の中空糸膜モジュールである。中空糸膜モジュール2は、活性汚泥混合液中に、上下方向に延びる多数の中空糸膜を有して起立姿勢で浸漬される外圧型のものである。9は中空糸膜モジュール2の下方に配設された散気装置、10は散気装置9に曝気用空気を供給するブロアである。本実施形態では、図における左右方向に間隔を隔てて並べられた複数の中空糸膜モジュール2によって1つの膜ユニットが構成されており、硝化槽34内に複数の膜ユニットが浸漬配置されるようになっている。3は各膜ユニットごとに1つずつ設けられた集水ヘッダーであり、膜ユニットを構成する複数の中空糸膜モジュール2の二次側(処理水取出し口)が集水ヘッダー3に連通している。集水ヘッダー3は、途中に開閉弁4、吸引ポンプ6及び処理水流量検知器7が介装された処理水導出管5に接続されている。   In FIG. 1, 31 is a flow rate adjusting tank, 32 is a pretreatment tank provided with a pretreatment screen 31a, and 33 is a denitrification tank. Reference numeral 34 denotes a nitrification tank as a biological reaction tank, and 2 denotes a plurality of hollow fiber membrane modules immersed in the activated sludge mixed solution in the nitrification tank 34. The hollow fiber membrane module 2 is an external pressure type module that has a large number of hollow fiber membranes extending in the vertical direction in the activated sludge mixed solution and is immersed in a standing posture. 9 is an air diffuser disposed below the hollow fiber membrane module 2, and 10 is a blower for supplying aeration air to the air diffuser 9. In the present embodiment, one membrane unit is configured by the plurality of hollow fiber membrane modules 2 arranged at intervals in the left-right direction in the drawing, and the plurality of membrane units are immersed in the nitrification tank 34. It has become. 3 is a water collection header provided for each membrane unit, and the secondary side (treated water outlet) of the plurality of hollow fiber membrane modules 2 constituting the membrane unit communicates with the water collection header 3. Yes. The water collection header 3 is connected to a treated water outlet pipe 5 in which an on-off valve 4, a suction pump 6 and a treated water flow rate detector 7 are interposed.

8は吸引ポンプ6の制御装置である。この制御装置8には、設定処理水量Qrとして、ろ過開始時には目標処理水量の50%以下の値が与えられ、ろ過開始から所定時間内に前記目標処理水量まで段階的に増加させた値が与えられ、しかる後、次の洗浄までは前記目標処理水量とする値が与えられるようになっている。そして本実施形態では、制御装置8は、インバータ回路を有し、処理水流量検知器7で測定した吸引ポンプ6から吐出される処理水量Qが設定処理水量Qrになるように吸引ポンプ6の回転数を制御して、吸引ポンプ6から吐出される処理水量Qを設定処理水量Qrに維持するようにしている。すなわち、制御装置8により、中空糸膜モジュール2は、目標透過流束の50%以下の値に設定された透過流束でろ過を開始し、ろ過開始から所定時間内に透過流束を前記目標透過流束まで段階的又は連続的に増加させ、しかる後、次の洗浄まで前記目標透過流束を保持してろ過を行うようになっている。   Reference numeral 8 denotes a control device for the suction pump 6. The control device 8 is given a value of 50% or less of the target treated water amount at the start of filtration as the set treated water amount Qr, and a value that is increased stepwise to the target treated water amount within a predetermined time from the start of filtration. After that, a value as the target treated water amount is given until the next cleaning. In this embodiment, the control device 8 has an inverter circuit, and the suction pump 6 rotates so that the treated water amount Q discharged from the suction pump 6 measured by the treated water flow rate detector 7 becomes the set treated water amount Qr. By controlling the number, the treated water amount Q discharged from the suction pump 6 is maintained at the set treated water amount Qr. That is, the hollow fiber membrane module 2 starts filtration with the permeation flux set to a value of 50% or less of the target permeation flux by the control device 8, and the permeation flux is set within the predetermined time from the start of filtration. The permeation flux is increased stepwise or continuously, and then the target permeation flux is maintained until the next washing for filtration.

膜分離装置1は、硝化槽34内に浸漬された複数の中空糸膜モジュール2と、これらの中空糸膜モジュール2の下方に配置され、槽外のブロア10から曝気用空気が供給される散気装置9と、集水ヘッダー3を介してこれら中空糸膜モジュール2の二次側に連通する処理水導出管5と、処理水導出管5の途中に介装された吸引ポンプ6と、処理水導出管5の途中であって吸引ポンプ6の上流側に介装された開閉弁4と、処理水導出管5の途中であって吸引ポンプ6の下流側に設けられた処理水流量検知器7と、吸引ポンプ6の回転数を制御する制御装置8とにより構成されている。   The membrane separation device 1 is a plurality of hollow fiber membrane modules 2 immersed in a nitrification tank 34, and is disposed below these hollow fiber membrane modules 2, and is supplied with aeration air from a blower 10 outside the tank. An air device 9, a treated water outlet pipe 5 communicating with the secondary side of the hollow fiber membrane module 2 via the water collection header 3, a suction pump 6 interposed in the middle of the treated water outlet pipe 5, and a treatment The on-off valve 4 provided in the middle of the water outlet pipe 5 and upstream of the suction pump 6, and the treated water flow rate detector provided in the middle of the treated water outlet pipe 5 and downstream of the suction pump 6 7 and a control device 8 for controlling the number of rotations of the suction pump 6.

21は薬液タンクであり、薬液タンク21から導かれた薬液供給管23が集水ヘッダー3に接続されており、薬液供給管23には開閉弁22が介装されている。また、24は洗浄水タンクであり、洗浄水タンク24から導かれた洗浄水供給管26が、薬液供給管23の管路途中における開閉弁22の下流側に接続されている。洗浄水供給管26には開閉弁25が介装されている。   Reference numeral 21 denotes a chemical liquid tank. A chemical liquid supply pipe 23 led from the chemical liquid tank 21 is connected to the water collecting header 3, and an open / close valve 22 is interposed in the chemical liquid supply pipe 23. Reference numeral 24 denotes a wash water tank, and a wash water supply pipe 26 led from the wash water tank 24 is connected to the downstream side of the on-off valve 22 in the middle of the chemical liquid supply pipe 23. An opening / closing valve 25 is interposed in the cleaning water supply pipe 26.

このような下水処理設備において、汚水を流量調整槽31と前処理槽32に順次導入して流量調整及び夾雑物の除去を行う。次いで、微生物(脱窒菌)を存在させた脱窒槽33に前処理槽32からの汚水を流入させるとともに、微生物(硝化菌など)を存在させた硝化槽34からの硝酸性窒素を含む硝化液を循環させるという循環式硝化脱窒法により、脱窒槽33において硝酸性窒素を還元して窒素ガスとして大気に放出して、汚水中に含まれている窒素を除去するようにしている。   In such a sewage treatment facility, sewage is sequentially introduced into the flow rate adjustment tank 31 and the pretreatment tank 32 to adjust the flow rate and remove impurities. Next, sewage from the pretreatment tank 32 is caused to flow into the denitrification tank 33 in which microorganisms (denitrifying bacteria) are present, and a nitrification solution containing nitrate nitrogen from the nitrification tank 34 in which microorganisms (nitrifying bacteria and the like) are present. By the circulation type nitrification denitrification method of circulating, nitrate nitrogen is reduced in the denitrification tank 33 and released into the atmosphere as nitrogen gas to remove nitrogen contained in the sewage.

そして、このような窒素除去とともに、ろ過運転時には、吸引ポンプ6によって中空糸膜モジュール2の中空糸膜内部を吸引して膜の内外に圧力差を生じさせることにより、硝化槽34内の活性汚泥混合液を中空糸膜モジュール2によってろ過した処理水(透過水)を、集水ヘッダー3、開閉弁4が開かれた処理水導出管5を通じて槽外へ取り出している。   In addition to such nitrogen removal, during the filtration operation, the suction pump 6 sucks the inside of the hollow fiber membrane of the hollow fiber membrane module 2 to create a pressure difference between the inside and outside of the membrane, thereby enabling activated sludge in the nitrification tank 34. The treated water (permeated water) obtained by filtering the mixed solution through the hollow fiber membrane module 2 is taken out of the tank through the treated water outlet pipe 5 with the water collection header 3 and the on-off valve 4 opened.

このろ過運転時には、目標透過流束の50%以下の値に設定された透過流束でろ過を開始し、ろ過開始から24時間内に透過流束を前記目標透過流束まで段階的に増加させ、しかる後、次の洗浄まで前記目標透過流束を保持してろ過を行うようにしている。   During this filtration operation, filtration is started with a permeation flux set to a value of 50% or less of the target permeation flux, and the permeation flux is gradually increased to the target permeation flux within 24 hours from the start of filtration. After that, the target permeation flux is maintained until the next washing, and the filtration is performed.

そして、連続して一定期間ろ過を行った段階で膜の性能回復のために中空糸膜モジュール2の洗浄を、次のようにして行うようにしている。洗浄は、活性汚泥混合液中に中空糸膜モジュール2を浸漬した状態で行った。このとき、散気装置9による曝気を停止して洗浄を行った。また、処理水導出管5の開閉弁4は閉じてある。   Then, the hollow fiber membrane module 2 is washed as follows in order to recover the membrane performance at the stage of continuous filtration for a certain period of time. Washing was performed in a state where the hollow fiber membrane module 2 was immersed in the activated sludge mixed solution. At this time, aeration by the air diffuser 9 was stopped and cleaning was performed. Further, the on-off valve 4 of the treated water outlet pipe 5 is closed.

まず、開閉弁22を開き、薬液供給管23と集水ヘッダー3を通じて、薬液タンク21からの薬液を本実施形態では水頭差により圧送して、処理水を得るときとは逆方向に中空糸膜モジュール2の中空糸膜の内部から外部へ透過させる。薬液が注入された状態を所定時間保持する。次いで、開閉弁25を開き(このときに開閉弁22はすでに閉じられている)、洗浄水供給管26、薬液供給管23及び集水ヘッダー3を通じて、洗浄水タンク24からの洗浄水を本実施形態では水頭差により圧送して、処理水を得るときとは逆方向に中空糸膜モジュール2の中空糸膜の内部から外部へ透過させる。薬液洗浄に加えて、この洗浄水による洗浄を行う目的は、膜面付着汚泥(ファウリング物質)をより確実に除去することにある。   First, the open / close valve 22 is opened, and in this embodiment, the chemical liquid from the chemical liquid tank 21 is pumped by a hydraulic head difference through the chemical liquid supply pipe 23 and the water collection header 3 to obtain the treated water in the direction opposite to the hollow fiber membrane. The module 2 is permeated from the inside to the outside of the hollow fiber membrane. The state in which the chemical solution is injected is held for a predetermined time. Next, the on-off valve 25 is opened (at this time, the on-off valve 22 is already closed), and the cleaning water from the cleaning water tank 24 is actually supplied through the cleaning water supply pipe 26, the chemical solution supply pipe 23 and the water collection header 3. In a form, it pumps by a head difference and permeate | transmits from the inside of the hollow fiber membrane of the hollow fiber membrane module 2 to the exterior in the direction opposite to when obtaining treated water. The purpose of cleaning with the cleaning water in addition to the chemical cleaning is to more reliably remove the membrane surface-attached sludge (fouling substance).

なお、本発明は、前記実施形態では膜モジュールとして中空糸膜モジュールとしたが、これに限定されるものではなく、平膜モジュールであってもよく、膜モジュールの形式や形状は適宜選定可能である。また、生物反応槽としては、前記実施形態では窒素除去を目的とする硝化槽としたが、これに限定されるものではなく、有機物を分解するための通常の活性汚泥槽であってもよい。また、膜モジュールの洗浄については、前記実施形態で説明した洗浄方法に限られるものではないものの、ろ過運転停止時間の短縮や、洗浄操作の容易性の点から、生物反応槽に浸漬したままで膜モジュールの洗浄を行うことが好ましい。   In the above embodiment, the present invention is a hollow fiber membrane module as the membrane module. However, the present invention is not limited to this and may be a flat membrane module, and the type and shape of the membrane module can be selected as appropriate. is there. The biological reaction tank is a nitrification tank for the purpose of removing nitrogen in the above embodiment, but is not limited thereto, and may be a normal activated sludge tank for decomposing organic substances. Further, the cleaning of the membrane module is not limited to the cleaning method described in the above embodiment, but it is immersed in the biological reaction tank from the viewpoint of shortening the filtration operation stop time and the ease of the cleaning operation. It is preferable to clean the membrane module.

前記図1に示す下水処理設備に本発明の方法を適用して実験を行った。まず、硝化槽内の活性汚泥混合液(MLSS濃度(汚泥濃度):約10000mg/L)中に中空糸膜モジュールを浸漬した状態で、薬液洗浄を行った。薬液として濃度5000ppmの次亜塩素酸ナトリウム水溶液を、中空糸膜モジュールの中空糸膜の内部から外部へ透過させるように、各中空糸膜モジュールそれぞれに90リットル注入し、90分間保持した。しかる後、各中空糸膜モジュールそれぞれに洗浄水90リットルを注入して、洗浄水による洗浄を行った。   An experiment was conducted by applying the method of the present invention to the sewage treatment facility shown in FIG. First, chemical cleaning was performed with the hollow fiber membrane module immersed in an activated sludge mixed solution (MLSS concentration (sludge concentration): about 10,000 mg / L) in the nitrification tank. As a chemical solution, an aqueous solution of sodium hypochlorite having a concentration of 5000 ppm was injected into each hollow fiber membrane module so as to permeate from the inside of the hollow fiber membrane of the hollow fiber membrane module to the outside, and held for 90 minutes. Thereafter, 90 liters of washing water was poured into each hollow fiber membrane module, and washing with washing water was performed.

薬液洗浄後、中空糸膜モジュールによるろ過を行った。透過流束を0.2m3/m2/日に設定してろ過を開始し、この値を1時間保持した後、透過流束0.3m3/m2/日(1時間保持)→透過流束0.4m3/m2/日(1時間保持)→透過流束0.5m3/m2/日(1時間保持)→透過流束0.6m3/m2/日というように、透過流束をろ過開始から目標透過流束0.6m3/m2/日まで5段階で増加させた後、目標透過流束0.6m3/m2/日を保持して連続してろ過を行った。なお、ろ過開始から目標透過流束に達するまでの時間は、前記のように4時間である。また、比較例では、実施例と同様にして薬液洗浄を行った後、透過流束を目標透過流束である0.6m3/m2/日に設定してろ過を開始し、この値を保持して連続してろ過を行った。そして、ろ過開始から、1日経過後及び30日経過後における中空糸膜モジュールの膜差圧を測定した。その結果を表1に示す。 After washing with the chemical solution, filtration with a hollow fiber membrane module was performed. Filtration is started by setting the permeation flux to 0.2 m 3 / m 2 / day, and after maintaining this value for 1 hour, the permeation flux is 0.3 m 3 / m 2 / day (holding for 1 hour) → permeation Flux 0.4 m 3 / m 2 / day (1 hour hold) → Permeation flux 0.5 m 3 / m 2 / day (1 hour hold) → Permeation flux 0.6 m 3 / m 2 / day After increasing the permeation flux in five stages from the start of filtration to the target permeation flux 0.6 m 3 / m 2 / day, the target permeation flux 0.6 m 3 / m 2 / day is continuously maintained. Filtration was performed. The time from the start of filtration to the target permeation flux is 4 hours as described above. Further, in the comparative example, after performing chemical cleaning in the same manner as in the example, the permeation flux was set to the target permeation flux of 0.6 m 3 / m 2 / day, and filtration was started. It was kept and continuously filtered. And the membrane differential pressure | voltage of the hollow fiber membrane module after 1 day progress and 30 days progress after the filtration start was measured. The results are shown in Table 1.

Figure 2005246283
Figure 2005246283

表1に示されるように、比較例では、いきなりの目標透過流束によるろ過開始を行うようにしたものであるから、ろ過開始時(運転開始時)において小さな汚泥粒子が膜孔に急激に付着して膜差圧が大きくなり、このろ過開始時における膜の目詰まりの進行に起因して、それ以後のろ過運転による膜差圧も大きくなっている。このため、定期的に薬液洗浄を行っても膜の性能回復が困難となり、膜モジュールの膜寿命が数ヶ月(処理すべき汚水の性状にもよるが、例えば8ヶ月)と短い。   As shown in Table 1, in the comparative example, since the filtration is started by sudden target permeation flux, small sludge particles suddenly adhere to the membrane pores at the start of filtration (at the start of operation). As a result, the membrane differential pressure increases, and due to the progress of clogging of the membrane at the start of filtration, the membrane differential pressure in the subsequent filtration operation also increases. For this reason, even if chemical cleaning is performed periodically, it becomes difficult to recover the performance of the membrane, and the membrane life of the membrane module is as short as several months (e.g., 8 months depending on the nature of the sewage to be treated).

これに対して、実施例によれば、ろ過開始時における膜差圧の上昇を抑制することができるので、それ以後の目標透過流束でのろ過運転による膜差圧の上昇も抑制することができ、比較例に比べて長期間にわたって膜差圧の上昇を抑制することができた。これにより、比較例と同じように薬液洗浄を行っても、膜モジュールの膜寿命を数年(例えば5年)と延ばすことが可能である。   On the other hand, according to the embodiment, since an increase in the membrane differential pressure at the start of filtration can be suppressed, an increase in the membrane differential pressure due to the filtration operation at the target permeation flux thereafter can also be suppressed. It was possible to suppress an increase in the membrane differential pressure over a long period of time compared to the comparative example. As a result, even when chemical cleaning is performed as in the comparative example, the membrane life of the membrane module can be extended to several years (for example, 5 years).

本発明の方法を実施する膜分離装置を備えた下水処理設備のフロー図である。It is a flowchart of the sewage treatment equipment provided with the membrane separation apparatus which enforces the method of this invention.

符号の説明Explanation of symbols

1…膜分離装置
2…中空糸膜モジュール
3…集水ヘッダー
4,22,25…開閉弁
5…処理水導出管
6…吸引ポンプ
7…処理水流量検知器
8…制御装置
9…散気装置
21…薬液タンク
23…薬液供給管
24…洗浄水タンク
26…洗浄水供給管
33…脱窒槽
34…硝化槽
DESCRIPTION OF SYMBOLS 1 ... Membrane separator 2 ... Hollow fiber membrane module 3 ... Water collection header 4,22,25 ... On-off valve 5 ... Process water outlet pipe 6 ... Suction pump 7 ... Process water flow rate detector 8 ... Control apparatus 9 ... Air diffuser DESCRIPTION OF SYMBOLS 21 ... Chemical solution tank 23 ... Chemical solution supply pipe 24 ... Wash water tank 26 ... Wash water supply pipe 33 ... Denitrification tank 34 ... Nitrification tank

Claims (5)

生物反応槽に浸漬して槽内の活性汚泥混合液をろ過する膜モジュールを備えた膜分離装置の運転方法であって、膜モジュールによるろ過と該膜モジュールの洗浄とを交互に繰り返し行うに際し、目標透過流束の50%以下の値に設定された透過流束でろ過を開始し、ろ過開始から所定時間内に透過流束を前記目標透過流束まで段階的又は連続的に増加させ、しかる後、次の洗浄まで前記目標透過流束を保持してろ過を行うことを特徴とする膜分離装置の運転方法。   A method for operating a membrane separation apparatus comprising a membrane module immersed in a biological reaction tank and filtering the activated sludge mixed liquid in the tank, when alternately performing filtration by the membrane module and washing of the membrane module, Filtration is started with a permeation flux set to a value of 50% or less of the target permeation flux, and the permeation flux is increased stepwise or continuously to the target permeation flux within a predetermined time from the start of filtration. Thereafter, filtration is performed while holding the target permeation flux until the next cleaning. 前記ろ過開始時の透過流束は、前記目標透過流束の40%以下の値であることを特徴とする請求項1記載の膜分離装置の運転方法。   The method of operating a membrane separation apparatus according to claim 1, wherein the permeation flux at the start of filtration is a value of 40% or less of the target permeation flux. 前記ろ過開始から24時間以内に透過流束を目標透過流束まで少なくとも3段階で増加させることを特徴とする請求項1又は2記載の膜分離装置の運転方法。   3. The method for operating a membrane separation apparatus according to claim 1, wherein the permeation flux is increased to the target permeation flux in at least three stages within 24 hours from the start of filtration. 生物反応槽に浸漬された膜モジュールと、前記膜モジュールの二次側に連通する処理水導出管の途中に介装された吸引ポンプと、前記処理水導出管における前記吸引ポンプの下流側に設けられた処理水流量検知器と、設定処理水量として、前記膜モジュールによるろ過開始時には目標処理水量の50%以下の値とし、ろ過開始から所定時間内に前記目標処理水量まで段階的又は連続的に増加させた値とし、しかる後、次の洗浄までは前記目標処理水量の値とし、前記処理水流量検知器で測定した前記吸引ポンプから吐出される処理水量が前記設定処理水量になるように前記吸引ポンプを制御する制御装置とを備えたことを特徴とする膜分離装置。   Provided on the downstream side of the suction pump in the treated water outlet pipe, the membrane module immersed in the biological reaction tank, the suction pump interposed in the middle of the treated water outlet pipe communicating with the secondary side of the membrane module The treated water flow rate detector and the set treated water amount are set to a value equal to or less than 50% of the target treated water amount at the start of filtration by the membrane module, and stepwise or continuously up to the target treated water amount within a predetermined time from the start of filtration. The increased value, and then the value of the target treated water amount until the next cleaning, and the treated water amount discharged from the suction pump measured by the treated water flow rate detector becomes the set treated water amount. And a control device for controlling the suction pump. 前記設定処理水量として、前記膜モジュールによるろ過開始時には目標処理水量の50%以下の値とし、ろ過開始から24時間以内に前記目標処理水量まで少なくとも3段階で増加させる値とし、しかる後、次の洗浄までは前記目標処理水量の値とすることを特徴とする請求項4記載の膜分離装置。
The set treated water amount is a value that is 50% or less of the target treated water amount at the start of filtration by the membrane module, and is a value that is increased in at least three stages up to the target treated water amount within 24 hours from the start of filtration. The membrane separation apparatus according to claim 4, wherein the target treated water amount is set to a value until washing.
JP2004061831A 2004-03-05 2004-03-05 Operation method for membrane separation apparatus, and membrane separation apparatus Pending JP2005246283A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004061831A JP2005246283A (en) 2004-03-05 2004-03-05 Operation method for membrane separation apparatus, and membrane separation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004061831A JP2005246283A (en) 2004-03-05 2004-03-05 Operation method for membrane separation apparatus, and membrane separation apparatus

Publications (1)

Publication Number Publication Date
JP2005246283A true JP2005246283A (en) 2005-09-15

Family

ID=35027278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004061831A Pending JP2005246283A (en) 2004-03-05 2004-03-05 Operation method for membrane separation apparatus, and membrane separation apparatus

Country Status (1)

Country Link
JP (1) JP2005246283A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013121586A (en) * 2011-11-08 2013-06-20 Toshiba Corp Method and device for membrane separation activated sludge treatment
WO2023276882A1 (en) * 2021-06-28 2023-01-05 東レ株式会社 Method for operating membrane-separation activated sludge treatment device, and membrane-separation activated sludge treatment device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0631141A (en) * 1992-07-22 1994-02-08 Kubota Corp Solid-liquid separation
JP2002102662A (en) * 2001-08-21 2002-04-09 Togami Electric Mfg Co Ltd Livestock wastewater treatment system and solid-liquid separation method in primary settling basin, aeration tank and anaerobic tank to be used for the same
JP2002253935A (en) * 2001-03-02 2002-09-10 Togami Electric Mfg Co Ltd Water treating device and method for preventing clogging of separation membrane used in water treating device
JP2003053364A (en) * 2001-08-10 2003-02-25 Togami Electric Mfg Co Ltd Method for controlling activated sludge concentration of liquid mixture in aerator and waste water treatment system
JP2003300089A (en) * 2002-04-10 2003-10-21 Mitsubishi Rayon Co Ltd Method for treating activated sludge

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0631141A (en) * 1992-07-22 1994-02-08 Kubota Corp Solid-liquid separation
JP2002253935A (en) * 2001-03-02 2002-09-10 Togami Electric Mfg Co Ltd Water treating device and method for preventing clogging of separation membrane used in water treating device
JP2003053364A (en) * 2001-08-10 2003-02-25 Togami Electric Mfg Co Ltd Method for controlling activated sludge concentration of liquid mixture in aerator and waste water treatment system
JP2002102662A (en) * 2001-08-21 2002-04-09 Togami Electric Mfg Co Ltd Livestock wastewater treatment system and solid-liquid separation method in primary settling basin, aeration tank and anaerobic tank to be used for the same
JP2003300089A (en) * 2002-04-10 2003-10-21 Mitsubishi Rayon Co Ltd Method for treating activated sludge

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013121586A (en) * 2011-11-08 2013-06-20 Toshiba Corp Method and device for membrane separation activated sludge treatment
WO2023276882A1 (en) * 2021-06-28 2023-01-05 東レ株式会社 Method for operating membrane-separation activated sludge treatment device, and membrane-separation activated sludge treatment device
JP7260067B1 (en) * 2021-06-28 2023-04-18 東レ株式会社 OPERATING METHOD OF MEMBRANE ACTIVATED SLUDGE TREATMENT APPARATUS AND MEMBRANE ACTIVATED SLUDGE TREATMENT APPARATUS

Similar Documents

Publication Publication Date Title
JP4920990B2 (en) Separation membrane cleaning method
JP5908186B2 (en) Water treatment method and water treatment apparatus using membrane
JP5467793B2 (en) Operation method of submerged membrane separator
WO2012077506A1 (en) Chemical cleaning method for immersed membrane element
JPWO2016031331A1 (en) Method and apparatus for cleaning filtration membrane of water to be treated, and water treatment system
JPH0665371B2 (en) Organic wastewater biological treatment equipment
JP4984460B2 (en) Separation membrane cleaning method and organic sewage treatment apparatus
JP2006021066A (en) Washing method for immersion type membrane module and washing apparatus
JP2009247936A (en) Method of inline-cleaning immersion type membrane-separation device
JP2009101349A (en) Cleaning method of immersion type membrane module
JP2009061349A (en) Sewage treatment method by membrane separation activated sludge process
JP5120106B2 (en) Method and apparatus for treating organic alkaline wastewater
JP2014172014A (en) Membrane separation device and membrane separation method
JP2005246283A (en) Operation method for membrane separation apparatus, and membrane separation apparatus
JP2009214062A (en) Operation method of immersion type membrane module
EP3725393A1 (en) Filtering membrane cleaning method
JPH04225805A (en) Method for solid-liquid separation and apparatus therefor
JP2003340247A (en) Device and method for treating water
JP2009274021A (en) Cleaning method of hollow fiber membrane module and hollow fiber membrane filter device
JP4335193B2 (en) Method and apparatus for treating organic wastewater
JP2003305313A (en) Solid-liquid separation method and apparatus therefor
JP2002035750A (en) Sewage filtering method
JP4124957B2 (en) Filter body washing method and apparatus
JPH11244673A (en) Washing of membrane
JP2004174303A (en) Method of operating immersion type membrane separator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090811

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090930

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100629