JP2005243667A - Heat treatment equipment - Google Patents

Heat treatment equipment Download PDF

Info

Publication number
JP2005243667A
JP2005243667A JP2004047295A JP2004047295A JP2005243667A JP 2005243667 A JP2005243667 A JP 2005243667A JP 2004047295 A JP2004047295 A JP 2004047295A JP 2004047295 A JP2004047295 A JP 2004047295A JP 2005243667 A JP2005243667 A JP 2005243667A
Authority
JP
Japan
Prior art keywords
heat treatment
sample
infrared
temperature
quartz
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004047295A
Other languages
Japanese (ja)
Inventor
Kenji Fukuda
憲司 福田
Sumihisa Senzaki
純寿 先崎
Shinichi Nishizawa
伸一 西澤
Tomoyoshi Endo
智義 遠藤
Teruyuki Yashima
照行 八島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON THERMONICS CO Ltd
THERMO RIKO KK
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
NIPPON THERMONICS CO Ltd
THERMO RIKO KK
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON THERMONICS CO Ltd, THERMO RIKO KK, National Institute of Advanced Industrial Science and Technology AIST filed Critical NIPPON THERMONICS CO Ltd
Priority to JP2004047295A priority Critical patent/JP2005243667A/en
Priority to DE102004028714A priority patent/DE102004028714A1/en
Priority to US10/876,939 priority patent/US20050183820A1/en
Publication of JP2005243667A publication Critical patent/JP2005243667A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B17/00Furnaces of a kind not covered by any preceding group
    • F27B17/0016Chamber type furnaces
    • F27B17/0025Especially adapted for treating semiconductor wafers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B5/00Muffle furnaces; Retort furnaces; Other furnaces in which the charge is held completely isolated
    • F27B5/04Muffle furnaces; Retort furnaces; Other furnaces in which the charge is held completely isolated adapted for treating the charge in vacuum or special atmosphere
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67115Apparatus for thermal treatment mainly by radiation

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Toxicology (AREA)
  • Furnace Details (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide heat treatment equipment which heats the outer part of a testpiece by high-frequency induction heating while heating an inner part thereof by an infrared lamp, and can rapidly heat up an SiC substrate having a diameter of some inches or above to a high temperature as high as 1,200°C or above, while keeping the temperature evenly distributed in a plane by covering a testpiece and a testpiece stand with a shielding plate. <P>SOLUTION: The testpiece 12 is placed on the conductive testpiece stand 10 installed in a vacuum chamber 4 which can apply heat treatment in a vacuum or in various gas atmospheres. A high-frequency coil 7 is installed around the testpiece stand 10, and an infrared generator composed of an infrared lamp 1 and a rotary elliptical reflection mirror 2 is installed at one end side of an infrared introduction quartz pillar 3. On the upper side and/or lower side of the test piece 12, one or a plurality of such infrared introduction quartz pillars 3 are arranged. Inside the high-frequency coil 7, double quartz tubes 6 are installed, and cooling water can be caused to flow between the double quartz tubes 6. By allowing the cooling water to flow outside the infrared lamp 1 or by cooling the infrared lamp 1 by air cooling, heating by the infrared lamp 1 can be prevented. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、炭化珪素SiCに不純物をイオン注入した後の活性化熱処理工程のように高温で短時間の熱処理を行なうことが必要な製造工程に用いられる熱処理装置に関する。   The present invention relates to a heat treatment apparatus used in a manufacturing process that requires heat treatment at a high temperature for a short time, such as an activation heat treatment process after ion implantation of impurities into silicon carbide SiC.

炭化珪素基板に燐、窒素等の不純物をイオン注入した後に、不純物を活性化したキャリアを発生するために、1500℃以上の高温で熱処理する必要がある。これまでに、抵抗加熱炉を用いた熱処理方法が報告されている。しかし、1500℃以上に温度を上げる時の昇温時間が長すぎる。また、熱処理に30分程度かかるためにSiC表面からSiが蒸発して表面が凹凸になる。また、Siと一緒に不純物が蒸発してしまい、不純物をイオン注入した領域の抵抗値が高くなり、正常なSiC素子が作製できないという問題点があった。また、高周波加熱を用いた熱処理もあるが、この方法では、外周部から加熱されるので、温度分布ができやすい問題点があった。さらに、赤外線ランプを用いた高速熱処理装置とその加熱方法が開示されている(例えば非特許文献1)。この方法では、1700℃まで1分で昇温でき、SiC表面からSiが蒸発することを抑制できる。しかし、この方法では、赤外線を収束させることにより加熱しているので、高温まで短時間で昇温できるものの、1cm 程度の面積のSiC基板しか加熱することができない。したがって、SiC素子の量産に使える装置ではなかった。そこで、直径が2インチ以上の大面積SiC基板でも高温まで短時間で昇温でき、温度分布も小さくできる熱処理装置が必要である。
SiC素子の基礎と応用、荒井和男、吉田貞史共編 オーム社P110
In order to generate carriers in which impurities are activated after ion implantation of impurities such as phosphorus and nitrogen into a silicon carbide substrate, it is necessary to perform heat treatment at a high temperature of 1500 ° C. or higher. So far, a heat treatment method using a resistance heating furnace has been reported. However, the temperature rise time when raising the temperature to 1500 ° C. or higher is too long. Further, since the heat treatment takes about 30 minutes, Si evaporates from the SiC surface and the surface becomes uneven. Further, the impurities are evaporated together with Si, and the resistance value of the region into which the impurities are ion-implanted becomes high, and there is a problem that a normal SiC element cannot be manufactured. There is also a heat treatment using high-frequency heating, but this method has a problem in that temperature distribution is likely to occur because it is heated from the outer periphery. Furthermore, a rapid heat treatment apparatus using an infrared lamp and a heating method thereof are disclosed (for example, Non-Patent Document 1). In this method, the temperature can be raised to 1700 ° C. in 1 minute, and the evaporation of Si from the SiC surface can be suppressed. However, in this method, since heating is performed by converging infrared rays, the temperature can be increased to a high temperature in a short time, but only an SiC substrate having an area of about 1 cm 2 can be heated. Therefore, it was not a device that could be used for mass production of SiC elements. Accordingly, there is a need for a heat treatment apparatus that can raise the temperature to a high temperature in a short time and reduce the temperature distribution even with a large area SiC substrate having a diameter of 2 inches or more.
Basics and applications of SiC devices, Kazuo Arai and Sadayoshi Yoshida, edited by Ohm P110

上記のように、従前の赤外線ランプを用いた熱処理装置は、直径が数インチ以上のSiC基板を用いたSiC素子の量産に使うことはできない。また、高周波加熱炉を用いた熱処理方法も提案されているが、高周波加熱の場合に、SiC基板の外周部から加熱されるために、外周部の温度は高く、中心部が低くなる。したがって、温度分布が大きくなり、SiC基板内で不純物が活性化した部分と活性化していない部分ができ、最終的に、SiC素子の電気特性の面内不均一性が大きくなり量産に用いることはできず、SiC素子の産業化を妨げている。
この発明は、上記に鑑み提案されたもので、外側を高周波誘導により加熱し、内側を赤外線ランプで加熱すると同時に、試料及び試料台を遮蔽板で覆うことにより、直径数インチ以上のSiC基板において、1200℃以上の高温への高速昇温と温度の面内均一性に優れた熱処理装置を提供することを目的としている。また、石英柱を用いた赤外線ランプ加熱においては、高温で加熱していると、試料台から発生した不純物が石英柱に付着して赤外線が透過しなくなる問題もあった。
この発明においては、この問題点も解決するために、試料あるいは試料台と石英柱の間に石英板を置くことにより試料台から発生する不純物が石英柱に付着することを防止することにより、常に赤外線が透過する熱処理装置を提供することを目的としている。また、赤外線ランプ加熱は、図1(A)に示すように、中心部の温度が高く、外周部が低くなる。一方、高周波加熱では、図1(B)に示すように、主に試料の外周部を暖めるために、外周部の温度が高く、中心が低くなる問題点があったが、両方の加熱法を同時に用いることにより、図1(C)に示すように、温度分布を均一にすることが可能となる。
As described above, a heat treatment apparatus using a conventional infrared lamp cannot be used for mass production of SiC elements using a SiC substrate having a diameter of several inches or more. A heat treatment method using a high-frequency heating furnace has also been proposed, but in the case of high-frequency heating, since the outer periphery of the SiC substrate is heated, the temperature of the outer periphery is high and the center is low. Therefore, the temperature distribution becomes large, and there are portions where the impurities are activated and portions which are not activated in the SiC substrate. Finally, the in-plane non-uniformity of the electrical characteristics of the SiC element becomes large, which can be used for mass production. This is not possible, thus hindering the industrialization of SiC elements.
The present invention has been proposed in view of the above. In an SiC substrate having a diameter of several inches or more, the outside is heated by high frequency induction and the inside is heated by an infrared lamp, and at the same time, the sample and the sample stage are covered with a shielding plate. An object of the present invention is to provide a heat treatment apparatus excellent in high-speed temperature rise to a high temperature of 1200 ° C. or higher and in-plane uniformity of temperature. In addition, in the infrared lamp heating using the quartz column, when heated at a high temperature, there is a problem that impurities generated from the sample stage adhere to the quartz column and the infrared ray does not transmit.
In the present invention, in order to solve this problem, a quartz plate is placed between the sample or the sample stage and the quartz column to prevent impurities generated from the sample stage from adhering to the quartz column. It aims at providing the heat processing apparatus which infrared rays permeate | transmit. In addition, in the infrared lamp heating, as shown in FIG. 1A, the temperature at the center is high and the outer periphery is low. On the other hand, as shown in FIG. 1B, in the high frequency heating, there is a problem that the temperature of the outer peripheral portion is high and the center is low in order to mainly warm the outer peripheral portion of the sample. By using them simultaneously, the temperature distribution can be made uniform as shown in FIG.

上記問題点を解決するために、請求項1記載の本発明加熱処理装置は、真空あるいは各種ガス雰囲気で熱処理可能な真空用チャンバー内に設けられた導電性の試料台に試料が置かれており、その試料台の周囲に高周波コイルがあり、赤外線導入石英柱の一方の先端に赤外線ランプと回転楕円反射鏡を有する赤外線発生部と、赤外線導入石英柱が試料の上側か下側の少なくとも一方に一本あるいは複数本配置されており、高周波コイルの内側に2重の石英管が置かれており、この2重の石英管の間を冷却水が流せるような構造になっており、さらに、赤外線ランプの外側に冷却水が流せる構造になっているか、あるいは空冷が可能な構造にすることにより、赤外線ランプによる加熱を防止できることを特徴とするものである。   In order to solve the above problems, the heat treatment apparatus according to the first aspect of the present invention has a sample placed on a conductive sample stage provided in a vacuum chamber that can be heat-treated in vacuum or in various gas atmospheres. , A high-frequency coil around the sample stage, an infrared generator having an infrared lamp and a spheroid reflector at one end of the infrared-introduced quartz column, and the infrared-introduced quartz column on at least one of the upper side and the lower side of the sample One or a plurality of quartz tubes are arranged, and a double quartz tube is placed inside the high-frequency coil, and the cooling water can flow between the double quartz tubes. Heating by an infrared lamp can be prevented by adopting a structure in which cooling water can flow outside the lamp or a structure capable of air cooling.

請求項2に記載の装置は、請求項1に記載の装置において、試料と赤外線導入石英柱の間に石英板が置かれていることを特徴とする。
請求項3に記載の装置は、請求項1又は請求項2に記載の装置において、試料及び試料台の周囲を遮蔽板で覆ったことを特徴とする。
請求項4に記載の装置は、請求項1から請求項3の何れかに記載の装置において、試料台の周囲を1mmから30mmの隙間のあいた導電性の遮蔽板で覆ったことを特徴とする。
請求項5に記載の装置は、請求項1から請求項4の何れかに記載の装置において、試料台あるいは遮蔽板のいずれか一方あるいは、両方が、タングステン、モリブデン、タンタルの何れかであることを特徴とする。
The apparatus according to claim 2 is characterized in that, in the apparatus according to claim 1, a quartz plate is placed between the sample and the infrared-introduced quartz column.
The apparatus according to claim 3 is the apparatus according to claim 1 or 2, wherein the periphery of the sample and the sample stage is covered with a shielding plate.
The apparatus according to claim 4 is the apparatus according to any one of claims 1 to 3, wherein the periphery of the sample stage is covered with a conductive shielding plate having a gap of 1 mm to 30 mm. .
The apparatus according to claim 5 is the apparatus according to any one of claims 1 to 4, wherein either one or both of the sample stage and the shielding plate are tungsten, molybdenum, or tantalum. It is characterized by.

請求項6に記載の装置は、請求項1から請求項4の何れかに記載の装置において、試料台あるいは遮蔽板の何れか一方あるいは両方の材料が炭素、あるいは、表面が炭化珪素で覆われた炭素であることを特徴とする。
請求項7に記載の装置は、請求項1から請求項6の何れかに記載の装置において、高周波の周波数が50kHz以下であることを特徴とする。
請求項8に記載の装置は、請求項1から請求項7の何れかに記載の装置において、石英柱の端面と試料の間の距離を0.5mm〜20mmの間で変えることができる構造を具備していることを特徴とする。
請求項9に記載の装置は、請求項1から請求項8の何れかに記載の装置において、パイロメーターあるいは、熱電対で試料台あるいは、試料の温度を測定しながら、赤外線ランプあるいは、高周波コイルに印加される電圧あるいは電流値を制御することにより試料の温度を制御する装置を具備していることを特徴とする。
The apparatus according to claim 6 is the apparatus according to any one of claims 1 to 4, wherein one or both of the sample stage and the shielding plate is made of carbon, or the surface is covered with silicon carbide. It is characterized by being carbon.
The device according to claim 7 is the device according to any one of claims 1 to 6, wherein the frequency of the high frequency is 50 kHz or less.
The apparatus according to claim 8 is the apparatus according to any one of claims 1 to 7, wherein the distance between the end face of the quartz column and the sample can be changed between 0.5 mm and 20 mm. It is characterized by having.
The apparatus according to claim 9 is the apparatus according to any one of claims 1 to 8, wherein an infrared lamp or a high-frequency coil is used while measuring the temperature of the sample stage or sample with a pyrometer or thermocouple. And a device for controlling the temperature of the sample by controlling the voltage or current applied to the substrate.

請求項10に記載の装置は、請求項1から請求項9の何れかに記載の装置において、石英柱を傾けて配置してあることを特徴とする。
請求項11に記載の装置は、請求項1から請求項10の何れかに記載の装置において、SiC基板を10秒から5分の間に室温から1200℃以上に昇温して、10秒から10分間加熱した後に、10秒から30分の間に1200℃以下にまで下がるようにプログラムされたことを特徴とする。
請求項12に記載の装置は、請求項11に記載の装置において、SiC基板を、あらかじめ1200℃以下で加熱した後に、10秒から5分の間に室温から1200℃以上に昇温して、10秒から10分間加熱した後に、10秒から30分の間に1200℃以下にまで下がるようにプログラムされたことを特徴とする。
The device according to claim 10 is the device according to any one of claims 1 to 9, characterized in that the quartz pillars are inclined.
An apparatus according to claim 11 is the apparatus according to any one of claims 1 to 10, wherein the temperature of the SiC substrate is raised from room temperature to 1200 ° C. or more in 10 seconds to 5 minutes and from 10 seconds. It is programmed to heat up to 1200 ° C. or lower in 10 seconds to 30 minutes after heating for 10 minutes.
The apparatus according to claim 12 is the apparatus according to claim 11, wherein the SiC substrate is heated in advance at 1200 ° C. or lower in advance, and then heated from room temperature to 1200 ° C. or higher in 10 seconds to 5 minutes, It is programmed to be heated to 10O <0> C or lower in 10 seconds to 30 minutes after heating for 10 seconds to 10 minutes.

この発明は、上記した構成からなるので、以下に説明するような効果を奏する。
請求項1に記載の本発明加熱処理装置においては、真空あるいは各種ガス雰囲気で熱処理可能な真空用チャンバー内に設けられた導電性の試料台に試料が置かれており、その試料台の周囲に高周波コイルがあり、赤外線導入石英柱の一方の先端に赤外線ランプと回転楕円反射鏡を有する赤外線発生部と、赤外線導入石英柱が試料の上側か下側の少なくとも一方に一本あるいは複数本配置されており、高周波コイルの内側に2重の石英管が置かれており、この2重の石英管の間を冷却水が流せるような構造になっており、さらに、赤外線ランプの外側に冷却水が流せる構造になっているか、あるいは空冷が可能な構造にすることにより、赤外線ランプによる加熱を防止し、装置の破壊を防いで、室温から1800℃まで1分で昇温でき、±50℃の温度分布を達成できた効果がある。
Since this invention consists of an above-described structure, there exists an effect which is demonstrated below.
In the heat treatment apparatus according to the first aspect of the present invention, a sample is placed on a conductive sample stage provided in a vacuum chamber that can be heat-treated in vacuum or in various gas atmospheres, and around the sample stage. There is a high-frequency coil, and an infrared ray generator and a spheroidal mirror are provided at one end of the infrared-introduced quartz column, and one or more infrared-introduced quartz columns are arranged on at least one of the upper or lower side of the sample. In addition, a double quartz tube is placed inside the high frequency coil so that the cooling water can flow between the double quartz tubes. Further, the cooling water is placed outside the infrared lamp. By adopting a structure that can be flowed or capable of air cooling, heating by an infrared lamp is prevented, and destruction of the apparatus is prevented, and the temperature can be raised from room temperature to 1800 ° C. in 1 minute, ± 50 There is an effect that was able to achieve the temperature distribution of.

請求項2に記載の発明では、請求項1に記載の装置において、試料と赤外線導入石英柱の間に石英板が置かれていることにより、赤外線導入石英柱の端面に不純物が付着することが防止され、石英板を交換することにより、赤外線導入石英柱を交換することなく、長時間の赤外線照射が可能になった効果がある。
請求項3に記載の発明では、請求項1又は請求項2に記載の装置において、試料及び試料台の周囲を遮蔽板で覆うことにより、1200℃以上の高温に短時間で昇温することができた効果がある。
請求項4に記載の発明では、請求項1から請求項3の何れかに記載の装置において、試料台の周囲を1mmから30mmの隙間のあいた導電性の遮蔽板で覆うことにより、高周波による誘導加熱を防止して、導電性の遮蔽板の温度が上昇することによる2重の石英管の温度の上昇を抑制できる効果がある。
請求項5に記載の発明では、請求項1から請求項4の何れかに記載の装置において、試料台あるいは遮蔽板のいずれか一方あるいは、両方が、タングステン、モリブデン、タンタルのいずれかであることにより、遮蔽板が高温でも溶けることなく、形状を維持することができた効果がある。
In the invention according to claim 2, in the apparatus according to claim 1, since the quartz plate is placed between the sample and the infrared introducing quartz column, impurities may adhere to the end face of the infrared introducing quartz column. By replacing the quartz plate, there is an effect that infrared irradiation can be performed for a long time without replacing the infrared-introducing quartz column.
According to a third aspect of the present invention, in the apparatus according to the first or second aspect, the sample and the sample stage are covered with a shielding plate so that the temperature can be raised to a high temperature of 1200 ° C. or higher in a short time. There is an effect.
According to a fourth aspect of the present invention, in the apparatus according to any one of the first to third aspects, the periphery of the sample stage is covered with a conductive shielding plate with a gap of 1 mm to 30 mm, so that induction by high frequency is performed. There is an effect that heating is prevented and an increase in the temperature of the double quartz tube due to an increase in the temperature of the conductive shielding plate can be suppressed.
In the invention according to claim 5, in the apparatus according to any one of claims 1 to 4, either one or both of the sample table and the shielding plate are any one of tungsten, molybdenum, and tantalum. Therefore, there is an effect that the shape can be maintained without melting the shielding plate even at a high temperature.

請求項6に記載の発明では、請求項1から請求項4の何れかに記載の装置において、試料台あるいは遮蔽板のいずれか一方あるいは両方の材料が炭素、あるいは、表面が炭化珪素で覆われた炭素であることにより、高温でも安定して熱処理することができた効果がある。
請求項7に記載の発明では、請求項1から請求項6の何れかに記載の装置において、高周波の周波数が50kHz以下であることにより、高周波が試料の内部まで入り、試料の中心に近い部分の温度を上げることができ、温度分布を小さくすることができた効果がある。
請求項8に記載の発明では、請求項1から請求項7の何れかに記載の装置において、石英柱の端面と試料の間の距離を0.5mm〜20mmの間で変えることができる構造を具備していることにより、赤外線の加熱効果を上げることができた効果がある。
請求項9に記載の発明では、請求項1から請求項8の何れかに記載の装置において、パイロメーターあるいは、熱電対で試料台あるいは、試料の温度を測定しながら、赤外線ランプあるいは、高周波コイルに印加される電圧あるいは電流値を制御することにより試料の温度を制御する装置を具備していることにより、赤外線ランプと高周波の出力を制御することにより、温度制御ができる効果がある。
According to a sixth aspect of the present invention, in the apparatus according to any one of the first to fourth aspects, the material of either or both of the sample stage and the shielding plate is covered with carbon, or the surface is covered with silicon carbide. By using carbon, there is an effect that the heat treatment can be stably performed even at a high temperature.
According to a seventh aspect of the present invention, in the apparatus according to any one of the first to sixth aspects, when the high frequency is 50 kHz or less, the high frequency enters the inside of the sample and is close to the center of the sample. The temperature can be raised and the temperature distribution can be reduced.
According to an eighth aspect of the present invention, in the apparatus according to any one of the first to seventh aspects, a structure capable of changing the distance between the end face of the quartz column and the sample between 0.5 mm and 20 mm. By providing, there exists an effect which could raise the heating effect of infrared rays.
According to a ninth aspect of the present invention, in the apparatus according to any one of the first to eighth aspects, an infrared lamp or a high-frequency coil is used while measuring the temperature of a sample stage or sample with a pyrometer or a thermocouple. By providing a device for controlling the temperature of the sample by controlling the voltage or current applied to the substrate, there is an effect that the temperature can be controlled by controlling the output of the infrared lamp and the high frequency.

請求項10に記載の発明では、請求項1から請求項9の何れかに記載の装置において、石英柱を傾けて配置してあることにより、より多くの石英柱を配置できるようになり、赤外線の照射面積を大きくすることができた効果がある。
請求項11に記載の発明では、請求項1から請求項10の何れかに記載の装置において、SiC基板を10秒から5分の間に室温から1200℃以上に昇温して、10秒から10分間加熱した後に、10秒から30分の間に1200℃以下にまで下がるようにプログラムされたことを特徴とすることにより、燐、窒素、アルミニウム、ボロン等の不純物をイオン注入した、SiC基板の抵抗値を十分に下げると同時に、SiC基板からSiが蒸発して凹凸になることを防止し、優れたSiC素子を作製することができた効果がある。
請求項12に記載の発明では、請求項11に記載の装置において、SiC基板を、あらかじめ1200℃以下で加熱した後に、10秒から5分の間に室温から1200℃以上に昇温して、10秒から10分間加熱した後に、10秒から30分の間に1200℃以下にまで下がるようにプログラムされたことを特徴とすることにより、燐、窒素、アルミニウム、ボロン等の不純物をイオン注入した、SiC基板の抵抗値を十分に下げると同時に、SiC基板からSiが蒸発して凹凸になることを防止し、優れたSiC素子を作製することができた効果がある。
In the invention according to claim 10, in the apparatus according to any one of claims 1 to 9, it is possible to arrange more quartz pillars by arranging the quartz pillars to be inclined, and infrared rays can be arranged. There is an effect that the irradiation area of can be increased.
According to an eleventh aspect of the present invention, in the apparatus according to any one of the first to tenth aspects, the SiC substrate is heated from room temperature to 1200 ° C. or more in 10 seconds to 5 minutes, and from 10 seconds. SiC substrate in which impurities such as phosphorus, nitrogen, aluminum, and boron are ion-implanted by being programmed to be heated to 1200 ° C. or lower in 10 seconds to 30 minutes after being heated for 10 minutes In addition, the resistance value of the SiC substrate can be sufficiently reduced, and at the same time, Si can be prevented from evaporating from the SiC substrate to become uneven, and an excellent SiC element can be produced.
In the invention according to claim 12, in the apparatus according to claim 11, after the SiC substrate is heated in advance at 1200 ° C. or less, the temperature is raised from room temperature to 1200 ° C. or more in 10 seconds to 5 minutes, After being heated for 10 seconds to 10 minutes, it is programmed to drop to 1200 ° C. or less in 10 seconds to 30 minutes, thereby implanting impurities such as phosphorus, nitrogen, aluminum, boron, etc. In addition, the resistance value of the SiC substrate can be sufficiently lowered, and at the same time, Si can be prevented from evaporating from the SiC substrate to become uneven, thereby producing an excellent SiC element.

以下にこの発明の実施の形態を、図面に示した実施例により説明する。
図1は赤外線、高周波加熱による温度分布の説明図で、Aは赤外線過熱のみの温度分布を、Bは高周波加熱のみの温度分布を、Cは赤外線加熱と高周波加熱の両方を使用した場合の温度分布を示す。図2は本発明熱処理装置の断面模式図である。図3は遮蔽板の構造の一例を示す図であり、素材は、タンタルを用いたが、タングステン、モリブデン、炭素、SiCを被覆した炭素であってもよい。図4は、赤外線ランプの種々の配置図を示してあり、少なくとも、試料台の上か下の少なくとも一方に一つあるいは、複数の赤外線ランプがある構造を具備している。図5は、直径2インチ基板において、高周波加熱のみを用いた昇温結果を示すグラフであり、実線が中心部で点線が外周部の温度を示す。図6は、直径2インチ基板において、赤外加熱と高周波加熱の両方を用いた昇温結果を示すグラフであり、約50秒までは、赤外線加熱のみの結果で、それ以後は、両方の加熱法を用いている。実線が中心部で点線が外周部の温度を示す。
Embodiments of the present invention will be described below with reference to examples shown in the drawings.
FIG. 1 is an explanatory diagram of temperature distribution by infrared and high-frequency heating, A is a temperature distribution of only infrared overheating, B is a temperature distribution of only high-frequency heating, and C is a temperature when both infrared heating and high-frequency heating are used. Show the distribution. FIG. 2 is a schematic sectional view of the heat treatment apparatus of the present invention. FIG. 3 is a diagram showing an example of the structure of the shielding plate. The material used is tantalum, but it may be tungsten, molybdenum, carbon, or carbon covered with SiC. FIG. 4 shows various arrangements of infrared lamps, and at least one infrared lamp is provided on at least one of the top and bottom of the sample stage. FIG. 5 is a graph showing a temperature rise result using only high-frequency heating in a 2-inch diameter substrate, where the solid line indicates the temperature at the center and the dotted line indicates the temperature at the outer periphery. FIG. 6 is a graph showing the temperature rise results using both infrared heating and high frequency heating on a 2 inch diameter substrate. Up to about 50 seconds, only infrared heating results are obtained, and thereafter both heating times are obtained. The law is used. The solid line indicates the temperature at the center and the dotted line indicates the temperature at the outer periphery.

赤外線ランプ1で発生した赤外線は、回転楕円反射鏡2で集光されて、赤外線導入石英柱3を伝わって、石英柱3の端面から、試料12及び、試料台10へ照射される。回転楕円反射鏡2は、その外側を中空体によって構成してあり、冷却水の流入口18及び流出口19を有し、水冷可能としてある。この水冷は空冷可能な構造であってもよい。試料台10は、導電性の材料で形成される必要がある。この発明では、高温での使用に耐えるようにタングステン、モリブデン、タンタル等の高融点金属を用いた。あるいは、SiC基板に対してチタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅等の金属不純物やN型、P型の不純物になり得る、窒素、ボロン、アルミニウム、燐を可能な限り除去した高純度の炭素あるいは、炭素の表面にSiCを皮膜したものが用いられる。   Infrared rays generated by the infrared lamp 1 are collected by the spheroid reflecting mirror 2, transmitted through the infrared-introduced quartz column 3, and irradiated from the end surface of the quartz column 3 to the sample 12 and the sample stage 10. The outer surface of the spheroid reflecting mirror 2 is constituted by a hollow body, and has an inlet 18 and an outlet 19 for cooling water, and can be cooled with water. This water cooling may be a structure capable of air cooling. The sample stage 10 needs to be formed of a conductive material. In the present invention, a refractory metal such as tungsten, molybdenum, or tantalum is used so as to withstand use at high temperatures. Or remove nitrogen, boron, aluminum, and phosphorus as much as possible from metal substrates such as titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, and N-type and P-type impurities. High purity carbon or carbon coated with SiC is used.

SiC基板等の試料12は、赤外線により暖められた試料台10からの熱伝導により昇温する。また、高周波発振機から高周波コイル7に印加された高周波による誘導加熱により試料台10が暖められ、熱伝導により試料12が昇温する。試料12が導電性の場合には、試料12自身も高周波による誘導加熱により暖められる。また、放熱を抑制するために、遮蔽板11が設けられている。この遮蔽板11は、導電性材料からなる場合には、試料台10と同様に自分自身で発熱してしまい、冷却水用の石英管6などの試料台10の周囲を加熱し、最終的には溶解、亀裂などの破壊に至る。したがって、試料台10と同様に、タングステン、モリブデン、タンタル等の高融点金属や高純度の炭素あるいは、炭素の表面にSiCを皮膜したものを用いた場合には、図3に示すように、隙間20を設けることにより誘導電流が流れないようにする必要がある。本発明では、4mmの隙間を設けた。隙間を大きくすれば、当然、誘導電流が流れにくくなるが、遮蔽効果が弱くなるので、隙間は1mm以上で、遮蔽効果がなくならない程度に設定されるべきである。遮蔽板11には赤外線導入石英柱3用の孔21が開口された蓋22が付いてもよい。   The sample 12 such as the SiC substrate is heated by heat conduction from the sample table 10 heated by infrared rays. Further, the sample stage 10 is warmed by induction heating by high frequency applied to the high frequency coil 7 from the high frequency oscillator, and the sample 12 is heated by heat conduction. When the sample 12 is conductive, the sample 12 itself is also warmed by induction heating with high frequency. Further, a shielding plate 11 is provided to suppress heat dissipation. When the shielding plate 11 is made of a conductive material, it generates heat by itself, like the sample table 10, and heats the periphery of the sample table 10 such as the quartz tube 6 for cooling water, and finally Leads to dissolution, cracking and other destruction. Therefore, in the same manner as the sample stage 10, when a high melting point metal such as tungsten, molybdenum, tantalum or the like, high-purity carbon, or carbon coated with SiC is used, a gap is formed as shown in FIG. It is necessary to prevent induced current from flowing by providing 20. In the present invention, a gap of 4 mm is provided. Naturally, if the gap is increased, the induced current is less likely to flow, but the shielding effect is weakened. Therefore, the gap should be set to 1 mm or more so that the shielding effect is not lost. The shielding plate 11 may be provided with a lid 22 in which a hole 21 for the infrared introducing quartz column 3 is opened.

赤外線照射の効果が最大になるように、赤外線導入石英柱上下機構9で、石英柱3を上下して、できるだけ昇温速度が速く、温度分布が小さくなるようにする。また、赤外線導入石英柱3の端面が汚れると赤外線が透過しなくなり温度が上昇しなくなるので、石英板13を試料台10の上に置くことにより、試料台10からの不純物が赤外線導入石英柱3の端面に付着して汚れるのを防止している。熱処理は、真空中やアルゴン、窒素、ヘリウム、水素等の様々な雰囲気で行なうために、装置の熱処理部分は、真空チャンバー4内に設けられている。真空ポンプへつなぐための真空排気口8及び、ガス導入口16を設けてある。   In order to maximize the effect of infrared irradiation, the quartz column 3 is moved up and down by the infrared-introduced quartz column up-and-down mechanism 9 so that the temperature rise rate is as fast as possible and the temperature distribution becomes small. In addition, if the end face of the infrared-introduced quartz column 3 is soiled, infrared rays are not transmitted and the temperature does not increase. This prevents it from adhering to the end face of the product and getting dirty. Since the heat treatment is performed in a vacuum or in various atmospheres such as argon, nitrogen, helium, and hydrogen, the heat treatment portion of the apparatus is provided in the vacuum chamber 4. A vacuum exhaust port 8 and a gas introduction port 16 for connection to a vacuum pump are provided.

試料台10付近の温度が高くなり過ぎて、装置が破壊されることを防止するために遮蔽板11の外側に、冷却水を流すために2重の石英管6と冷却水管5が設けられている。試料の温度は、熱電対と赤外線温度センサーで測定し、温度制御も可能である。熱電対のリード線を通すための温度センサー取出口14と赤外線温度センサーのための温度センサー用口15が設けられている。本実施例では、赤外線発生部は上下に各一個設けられているが、図4の(1)、(2)に示すように下からのみ2個ないし3個、上からのみの場合(3)や上下各2個(4)、下が2個で上が1個(5)、上下各3個(6)など様々な構造が考えられる。これにより、SiC基板が大きくなっていった場合に、赤外線導入石英柱3の数を増やすことにより赤外線の照射面積を増やすことが可能となる。また、例えば、試料12の取出しをし易くするなど実際の使用方法にあわせて、上だけに配置したり、下だけに配置したりしてもよい。   In order to prevent the temperature in the vicinity of the sample stage 10 from becoming too high and destroying the apparatus, a double quartz tube 6 and a cooling water tube 5 are provided outside the shielding plate 11 for flowing cooling water. Yes. The temperature of the sample is measured with a thermocouple and an infrared temperature sensor, and the temperature can be controlled. A temperature sensor outlet 14 for passing a lead wire of the thermocouple and a temperature sensor port 15 for an infrared temperature sensor are provided. In this embodiment, one infrared ray generator is provided at the top and bottom, but as shown in FIGS. 4 (1) and (2), two to three only from the bottom, and only from the top (3) Also, various structures such as two pieces each on the top and bottom (4), two pieces on the bottom, one piece on the top (5), and three pieces on the top and bottom (6) are possible. As a result, when the SiC substrate becomes larger, it is possible to increase the infrared irradiation area by increasing the number of infrared-introducing quartz pillars 3. Further, for example, the sample 12 may be arranged only on the top or only on the bottom in accordance with an actual use method such as making it easy to take out the sample 12.

図5と図6に、直径2インチSiC基板の加熱実験結果を示す。赤外線ランプの出力は、100V,30A(3KW)であり、高周波出力は、14688Wで、周波数は、25.5KHzで加熱実験が行なわれた。熱処理の雰囲気は、まず、ターボ分子ポンプで、真空チャンバー内を0.1パスカル程度に引いた後にアルゴンガスを1L/分程度流した。温度は、試料台12に取り付けられた、赤外温度センサー15で測定する。まず、高周波のみで加熱した場合(図5)は、外周部の温度が高く、中心部が低く、最高温度は約1750℃である。SiCに対してアルミニウムやボロンなどのP型になる不純物の活性化熱処理温度は、1800℃程度必要であり、1750℃では不十分である。また、外周部と中心部の温度差は、約300℃あり温度分布が非常に大きく、SiC素子の電気特性が大きくばらついてしまい、実際の量産には使用できない。   5 and 6 show the results of heating experiments on a 2 inch diameter SiC substrate. The output of the infrared lamp was 100 V, 30 A (3 KW), the high frequency output was 14688 W, and the frequency was 25.5 KHz. As for the atmosphere of the heat treatment, first, a turbo molecular pump was used to draw the inside of the vacuum chamber to about 0.1 Pascal, and then argon gas was flowed at about 1 L / min. The temperature is measured by an infrared temperature sensor 15 attached to the sample stage 12. First, when heated only by high frequency (FIG. 5), the temperature of the outer peripheral portion is high, the central portion is low, and the maximum temperature is about 1750 ° C. The activation heat treatment temperature of impurities that become P-type such as aluminum or boron with respect to SiC needs to be about 1800 ° C., and 1750 ° C. is insufficient. Further, the temperature difference between the outer peripheral portion and the central portion is about 300 ° C., the temperature distribution is very large, and the electrical characteristics of the SiC element vary greatly, so that it cannot be used for actual mass production.

一方、図6の30秒以下に赤外線ランプ加熱だけの場合を示している。最高温度は、1000℃程度でSiC基板へイオン注入された不純物の活性化熱処理には不十分である。また、高周波加熱の場合と異なり、中心部が高く、外周部が低い。中心部と外周部の温度差は約600℃あり、SiC素子の電気特性が大きく変わるので、量産時には使用できない。1000℃以下で30秒保持した後に、高周波加熱を開始すると、温度は急激に上昇し、40秒で、1800℃以上に到達する。SiC基板への不純物の活性化熱処理温度としては十分に高い温度まで到達できた。熱処理終了後は、約10秒間で1200℃以下になっており、SiC表面からのSiの蒸発がほとんどなく、SiC表面が凹凸になることが抑制される。原子間力顕微鏡で測定されたSiC基板の表面の凹凸は、熱処理前とほぼ同じであり、十分に平坦であることが確認された。凹凸が大きいと、そこが欠陥となり、SiC素子の耐圧等の電気特性を劣化させるが、本発明品では、そのような劣化は観測されなかった。また、1800℃で熱処理時の外周部と中心部の温度差は、44℃であり、非常に小さく外周部と中心部で熱処理されたSiC素子の電気特性の面内均一性に影響しないので、量産時においても十分使用が可能である。
なお、試料の例として、SiC基板で説明したが、SiC基板に限定されるものではない。
On the other hand, the case of only infrared lamp heating is shown in 30 seconds or less in FIG. The maximum temperature is about 1000 ° C., which is insufficient for the activation heat treatment of the impurities ion-implanted into the SiC substrate. Moreover, unlike the case of high frequency heating, the center part is high and the outer peripheral part is low. The temperature difference between the central part and the outer peripheral part is about 600 ° C., and the electrical characteristics of the SiC element change greatly, so that it cannot be used during mass production. When high-frequency heating is started after holding at 1000 ° C. or lower for 30 seconds, the temperature rises rapidly and reaches 1800 ° C. or higher in 40 seconds. The activation heat treatment temperature of impurities on the SiC substrate could reach a sufficiently high temperature. After the heat treatment is completed, the temperature is 1200 ° C. or less in about 10 seconds, and there is almost no evaporation of Si from the SiC surface, and the SiC surface is suppressed from becoming uneven. The unevenness of the surface of the SiC substrate measured with an atomic force microscope was almost the same as that before the heat treatment, and it was confirmed that the surface was sufficiently flat. If the unevenness is large, it becomes a defect and deteriorates the electrical characteristics such as the breakdown voltage of the SiC element, but such deterioration was not observed in the product of the present invention. Further, the temperature difference between the outer peripheral portion and the central portion at the time of heat treatment at 1800 ° C. is 44 ° C., which is very small and does not affect the in-plane uniformity of the electrical characteristics of the SiC element heat-treated at the outer peripheral portion and the central portion. Sufficient use is possible even during mass production.
In addition, although the SiC substrate was demonstrated as an example of a sample, it is not limited to a SiC substrate.

温度分布の説明図である。It is explanatory drawing of temperature distribution. 本発明熱処理装置の断面模式図である。It is a cross-sectional schematic diagram of this invention heat processing apparatus. 遮蔽板の構造の一例を示す図である。It is a figure which shows an example of the structure of a shielding board. 赤外線ランプの配置図を示す。The layout of an infrared lamp is shown. 直径2インチ基板において、高周波加熱のみを用いた昇温測定結果を示すグラフである。It is a graph which shows the temperature rising measurement result using only high frequency heating in a 2 inch diameter substrate. 直径2インチ基板において、赤外線加熱と高周波加熱の両方を用いた昇温測定結果を示すグラフである。It is a graph which shows the temperature rising measurement result using both infrared heating and high frequency heating in a 2 inch diameter board | substrate.

符号の説明Explanation of symbols

1 赤外線ランプ
2 回転楕円反射鏡
3 赤外線導入石英柱
4 真空チャンバー
5 冷却水管
6 石英管
7 高周波コイル
8 真空排気口
9 赤外線導入石英柱上下機構
10 試料台
11 遮蔽板
12 試料
13 石英板
14 温度センサー取出し口
15 赤外温度センサー用口
16 ガス導入口
17 ガス排気口
18 流入口
19 流出口
20 隙間
DESCRIPTION OF SYMBOLS 1 Infrared lamp 2 Rotating ellipsoidal reflector 3 Infrared introduction quartz pillar 4 Vacuum chamber 5 Cooling water pipe 6 Quartz tube 7 High frequency coil 8 Vacuum exhaust port 9 Infrared introduction quartz pillar up-and-down mechanism 10 Sample stand 11 Shielding plate 12 Sample 13 Quartz plate 14 Temperature sensor Extraction port 15 Infrared temperature sensor port 16 Gas introduction port 17 Gas exhaust port 18 Inlet port 19 Outlet port 20 Clearance

Claims (12)

真空あるいは各種ガス雰囲気で熱処理可能な真空用チャンバー内に設けられた導電性の試料台に試料が置かれており、その試料台の周囲に高周波コイルがあり、赤外線導入石英柱の一方の先端に赤外線ランプと回転楕円反射鏡を有する赤外線発生部と、赤外線導入石英柱が試料の上側か下側の少なくとも一方に一本あるいは複数本配置されており、高周波コイルの内側に2重の石英管が置かれており、この2重の石英管の間を冷却水が流せるような構造になっており、さらに、赤外線ランプの外側に冷却水が流せる構造になっているか、あるいは空冷が可能な構造にすることにより、赤外線ランプによる加熱を防止できることを特徴とする熱処理装置。   A sample is placed on a conductive sample stage provided in a vacuum chamber that can be heat-treated in vacuum or in various gas atmospheres, and there is a high-frequency coil around the sample stage. An infrared generator having an infrared lamp and a spheroid reflector, and one or more infrared introduction quartz columns are arranged on at least one of the upper side and the lower side of the sample, and a double quartz tube is provided inside the high frequency coil. It has a structure that allows cooling water to flow between the double quartz tubes, and has a structure that allows cooling water to flow outside the infrared lamp, or a structure that allows air cooling. A heat treatment apparatus characterized in that heating by an infrared lamp can be prevented. 請求項1に記載の装置において、試料と赤外線導入石英柱の間に石英板が置かれていることを特徴とする熱処理装置。   2. The heat treatment apparatus according to claim 1, wherein a quartz plate is placed between the sample and the infrared-introduced quartz column. 請求項1又は請求項2に記載の装置において、試料及び試料台の周囲を遮蔽板で覆ったことを特徴とする熱処理装置。   3. The heat treatment apparatus according to claim 1, wherein the periphery of the sample and the sample stage is covered with a shielding plate. 請求項1から請求項3の何れかに記載の装置において、試料台の周囲を1mmから30mmの隙間のあいた導電性の遮蔽板で覆ったことを特徴とする熱処理装置。   4. The heat treatment apparatus according to claim 1, wherein the periphery of the sample stage is covered with a conductive shielding plate having a gap of 1 mm to 30 mm. 請求項1から請求項4の何れかに記載の装置において、試料台あるいは遮蔽板のいずれか一方あるいは、両方が、タングステン、モリブデン、タンタルのいずれかであることを特徴とする熱処理装置。   5. The heat treatment apparatus according to claim 1, wherein one or both of the sample stage and the shielding plate are tungsten, molybdenum, or tantalum. 請求項1から請求項4の何れかに記載の装置において、試料台あるいは遮蔽板のいずれか一方あるいは両方の材料が炭素、あるいは、表面が炭化珪素で覆われた炭素であることを特徴とする熱処理装置。   5. The apparatus according to claim 1, wherein the material of either or both of the sample stage and the shielding plate is carbon, or carbon whose surface is covered with silicon carbide. Heat treatment equipment. 請求項1から請求項6の何れかに記載の装置において、高周波の周波数が50kHz以下であることを特徴とする熱処理装置。   The heat treatment apparatus according to any one of claims 1 to 6, wherein the high frequency is 50 kHz or less. 請求項1から請求項7の何れかに記載の装置において、石英柱の端面と試料の間の距離を0.5mm〜20mmの間で変えることができる構造を具備していることを特徴とする熱処理装置。   8. The apparatus according to claim 1, further comprising a structure capable of changing a distance between the end face of the quartz column and the sample between 0.5 mm and 20 mm. Heat treatment equipment. 請求項1から請求項8の何れかに記載の装置において、パイロメーターあるいは、熱電対で試料台あるいは、試料の温度を測定しながら、赤外線ランプあるいは、高周波コイルに印加される電圧あるいは電流値を制御することにより試料の温度を制御する装置を具備していることを特徴とする熱処理装置。   9. The apparatus according to claim 1, wherein a voltage or a current value applied to the infrared lamp or the high-frequency coil is measured while measuring the temperature of the sample stage or the sample with a pyrometer or a thermocouple. A heat treatment apparatus comprising a device for controlling the temperature of a sample by controlling. 請求項1から請求項9の何れかに記載の装置において、石英柱を傾けて配置してあることを特徴とする熱処理装置。   The heat treatment apparatus according to any one of claims 1 to 9, wherein the quartz column is disposed so as to be inclined. 請求項1から請求項10の何れかに記載の装置において、SiC基板を10秒から5分の間に室温から1200℃以上に昇温して、10秒から10分間加熱した後に、10秒から30分の間に1200℃以下にまで下がるようにプログラムされたことを特徴とする熱処理装置。   The apparatus according to any one of claims 1 to 10, wherein the SiC substrate is heated from room temperature to 1200 ° C or higher in 10 seconds to 5 minutes, heated from 10 seconds to 10 minutes, and then from 10 seconds. A heat treatment apparatus programmed to drop to 1200 ° C. or lower in 30 minutes. 請求項11に記載の装置において、SiC基板を、あらかじめ1200℃以下で加熱した後に、10秒から5分の間に室温から1200℃以上に昇温して、10秒から10分間加熱した後に、10秒から30分の間に1200℃以下にまで下がるようにプログラムされたことを特徴とする熱処理装置。

In the apparatus of Claim 11, after heating a SiC substrate previously at 1200 degrees C or less, after heating up from room temperature to 1200 degrees C or more in 10 seconds to 5 minutes, and heating from 10 seconds to 10 minutes, A heat treatment apparatus programmed to drop to 1200 ° C. or lower in 10 seconds to 30 minutes.

JP2004047295A 2004-02-24 2004-02-24 Heat treatment equipment Pending JP2005243667A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004047295A JP2005243667A (en) 2004-02-24 2004-02-24 Heat treatment equipment
DE102004028714A DE102004028714A1 (en) 2004-02-24 2004-06-14 Thermal treatment device
US10/876,939 US20050183820A1 (en) 2004-02-24 2004-06-24 Thermal treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004047295A JP2005243667A (en) 2004-02-24 2004-02-24 Heat treatment equipment

Publications (1)

Publication Number Publication Date
JP2005243667A true JP2005243667A (en) 2005-09-08

Family

ID=34836460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004047295A Pending JP2005243667A (en) 2004-02-24 2004-02-24 Heat treatment equipment

Country Status (3)

Country Link
US (1) US20050183820A1 (en)
JP (1) JP2005243667A (en)
DE (1) DE102004028714A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008050798A1 (en) * 2006-10-25 2008-05-02 Kabushiki Kaisha Shofu Infrared lamp heating type casting apparatus and method of casting
JP2012050937A (en) * 2010-09-01 2012-03-15 Ricoh Co Ltd Waste liquid treatment apparatus

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5153614B2 (en) * 2006-03-07 2013-02-27 株式会社日立国際電気 Substrate processing apparatus, semiconductor substrate processing method, control program, recording medium recorded with control program, and substrate processing method
JP4924395B2 (en) * 2007-12-07 2012-04-25 東京エレクトロン株式会社 Processing apparatus and processing method
JP2012043548A (en) * 2010-08-13 2012-03-01 Thermo Riko:Kk High-efficiency infrared introduction heating device
DE102013113600B4 (en) 2013-12-06 2021-09-23 Technische Universität Dresden Test device and high-focussing heating device for generating high heat flux densities
US11444053B2 (en) * 2020-02-25 2022-09-13 Yield Engineering Systems, Inc. Batch processing oven and method
US11688621B2 (en) 2020-12-10 2023-06-27 Yield Engineering Systems, Inc. Batch processing oven and operating methods
CN114791541A (en) * 2022-05-05 2022-07-26 吉林大学 Infrared heating wide temperature range, atmosphere controllable and visible electrical testing system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61211978A (en) * 1985-03-15 1986-09-20 株式会社サーモ理工 Radiation heater
JPH01184981A (en) * 1988-01-20 1989-07-24 Sanyo Electric Co Ltd Manufacture of semiconductor laser
JPH09245957A (en) * 1996-03-07 1997-09-19 Central Res Inst Of Electric Power Ind High frequency induction heating furnace
JPH11214323A (en) * 1997-11-14 1999-08-06 Toshiba Corp Method and apparatus for semiconductor device
JP2001015248A (en) * 1999-06-29 2001-01-19 Thermo Riko:Kk Infrared radiation heating device
JP2002151427A (en) * 2000-11-13 2002-05-24 Dainippon Screen Mfg Co Ltd Heat treatment apparatus
JP2003077857A (en) * 2001-09-03 2003-03-14 Dainippon Screen Mfg Co Ltd Heat treatment apparatus and method
JP2003077855A (en) * 2001-08-31 2003-03-14 Denso Corp Heat treatment apparatus and method
JP2003323971A (en) * 2002-05-07 2003-11-14 Thermo Riko:Kk Ultra high temperature and ultra high speed uniformly heating device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1439496A (en) * 1973-08-30 1976-06-16 Standard Telephones Cables Ltd Glass preparation
US5620523A (en) * 1994-04-11 1997-04-15 Canon Sales Co., Inc. Apparatus for forming film
TW473857B (en) * 1996-04-26 2002-01-21 Hitachi Ltd Method of manufacturing semiconductor device
US6035101A (en) * 1997-02-12 2000-03-07 Applied Materials, Inc. High temperature multi-layered alloy heater assembly and related methods
JP2000319080A (en) * 1999-05-07 2000-11-21 Tokai Carbon Co Ltd Graphite member coated with silicon carbide
US7015422B2 (en) * 2000-12-21 2006-03-21 Mattson Technology, Inc. System and process for heating semiconductor wafers by optimizing absorption of electromagnetic energy

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61211978A (en) * 1985-03-15 1986-09-20 株式会社サーモ理工 Radiation heater
JPH01184981A (en) * 1988-01-20 1989-07-24 Sanyo Electric Co Ltd Manufacture of semiconductor laser
JPH09245957A (en) * 1996-03-07 1997-09-19 Central Res Inst Of Electric Power Ind High frequency induction heating furnace
JPH11214323A (en) * 1997-11-14 1999-08-06 Toshiba Corp Method and apparatus for semiconductor device
JP2001015248A (en) * 1999-06-29 2001-01-19 Thermo Riko:Kk Infrared radiation heating device
JP2002151427A (en) * 2000-11-13 2002-05-24 Dainippon Screen Mfg Co Ltd Heat treatment apparatus
JP2003077855A (en) * 2001-08-31 2003-03-14 Denso Corp Heat treatment apparatus and method
JP2003077857A (en) * 2001-09-03 2003-03-14 Dainippon Screen Mfg Co Ltd Heat treatment apparatus and method
JP2003323971A (en) * 2002-05-07 2003-11-14 Thermo Riko:Kk Ultra high temperature and ultra high speed uniformly heating device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008050798A1 (en) * 2006-10-25 2008-05-02 Kabushiki Kaisha Shofu Infrared lamp heating type casting apparatus and method of casting
JP5091151B2 (en) * 2006-10-25 2012-12-05 株式会社松風 Infrared lamp heating casting apparatus and casting method
JP2012050937A (en) * 2010-09-01 2012-03-15 Ricoh Co Ltd Waste liquid treatment apparatus

Also Published As

Publication number Publication date
US20050183820A1 (en) 2005-08-25
DE102004028714A1 (en) 2005-09-08

Similar Documents

Publication Publication Date Title
US3627590A (en) Method for heat treatment of workpieces
US7471885B2 (en) Filament lamp
TW201212126A (en) Substrate support for use with multi-zonal heating sources
JP2007220595A (en) Planar heater
TWI625821B (en) Substrate support ring for more uniform layer thickness
JP5468784B2 (en) Substrate heating apparatus, heat treatment method, and method for manufacturing semiconductor device
JP5925319B2 (en) SiC single crystal manufacturing apparatus and SiC single crystal manufacturing method
JP2005243667A (en) Heat treatment equipment
JP2018158858A (en) Crystal growth method and apparatus
TW201009901A (en) Filament lamp and light irradiation heat treatment device
KR101574749B1 (en) Upper heater for manufacturing single crystal, single crystal manufacturing apparatus and single crystal manufacturing method
JP6687829B2 (en) Induction heating device
JPH10504513A (en) Equipment for uniform heating of substrates
JP5719957B1 (en) Single crystal manufacturing apparatus and manufacturing method
TW200921754A (en) Filament lamp and light irradiation type heat treatment device
JP4894111B2 (en) Heat treatment equipment
CN208362460U (en) Generate heat uniform MOCVD heater heating sheet
US9721826B1 (en) Wafer supporting structure, and device and method for manufacturing semiconductor
JP2008243950A (en) Thermal treatment equipment
TWI725666B (en) Plasma processing device and substrate support for processing device
JP2005019725A (en) Annealing device and annealing method
JP2004014892A (en) High-temperature heating apparatus
JP2002110581A (en) Heat treating apparatus and heat treating method
JP2008138986A (en) Heat treatment silicon plate and heat treatment furnace
JP2010244864A (en) Substrate heating structural body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061212

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100428

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101005