JP2003323971A - Ultra high temperature and ultra high speed uniformly heating device - Google Patents

Ultra high temperature and ultra high speed uniformly heating device

Info

Publication number
JP2003323971A
JP2003323971A JP2002131187A JP2002131187A JP2003323971A JP 2003323971 A JP2003323971 A JP 2003323971A JP 2002131187 A JP2002131187 A JP 2002131187A JP 2002131187 A JP2002131187 A JP 2002131187A JP 2003323971 A JP2003323971 A JP 2003323971A
Authority
JP
Japan
Prior art keywords
temperature
heating
infrared
ultra
vacuum chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002131187A
Other languages
Japanese (ja)
Inventor
Tomoyoshi Endo
智義 遠藤
Teruyuki Yashima
照行 八島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON THERMONICS CO Ltd
THERMO RIKO KK
Original Assignee
NIPPON THERMONICS CO Ltd
THERMO RIKO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON THERMONICS CO Ltd, THERMO RIKO KK filed Critical NIPPON THERMONICS CO Ltd
Priority to JP2002131187A priority Critical patent/JP2003323971A/en
Publication of JP2003323971A publication Critical patent/JP2003323971A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of High-Frequency Heating Circuits (AREA)
  • Furnace Details (AREA)
  • Control Of Resistance Heating (AREA)
  • General Induction Heating (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a ultra high temperature and ultra high speed uniformly heating device for giving high speed temperature rise to a whole heated object up to a ultra high temperature region in a short time and holding the heated object at a uniform temperature. <P>SOLUTION: The heated object 8 provided in a vacuum chamber 7 is irradiated with an infrared ray by using two infrared radiation heaters A, B provided in the opposite direction for giving temperature rise to the heated object 8 up to a higher temperature than room temperature. A high frequency induction heating coil 18 is provided on the outer periphery of the heated object 8 for supplying a high frequency to the heated object 8 which attains a high temperature at a ultra high speed with the infrared radiation heat. Thus, ultra high speed temperature rise up to a ultra high temperature region and uniform temperature distribution are achieved. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、シリコン(Si)
炭化珪素(Sic)等の材料を真空中,各ガス雰囲気中
で超高温度まで超高速昇温、クリーン加熱,しかも均一
加熱を目的とした加熱装置である。加熱源は、赤外線輻
射加熱方式と高周波誘導加熱方式の特長を生かしつつ、
昇温させる複合的加熱装置である。
TECHNICAL FIELD The present invention relates to silicon (Si).
This is a heating device for ultra-high-speed heating of materials such as silicon carbide (Sic) in a gas atmosphere in vacuum to ultra-high temperatures, clean heating, and uniform heating. The heating source makes use of the features of the infrared radiation heating method and the high frequency induction heating method,
It is a complex heating device for raising the temperature.

【0002】[0002]

【従来の技術】従来の加熱方法のひとつは、抵抗加熱ヒ
ーターを真空チャンバー内にセットし、加熱物を昇温す
るものであった。次に高周波誘導加熱方法は、コイル状
高周波発生源を真空チャンバー内にセットし、高周波誘
導加熱により加熱物を昇温させるものであった。又、上
記抵抗加熱ヒーターと高周波誘導加熱方式の組合せによ
る加熱方式もあった。又、本発明の出願人が先に出願し
た特開平10−82589号の面加熱型赤外線放射加熱
装置は、真空チャンバー内に加熱物をセットし、赤外線
を大気側から輻射し昇温させるものであった。更に本発
明の出願人が先に出願した特開2001−15248
は、 赤外線輻射加熱装置は、真空チャンバー内に加熱
物をセットし、赤外線を大気側の上下両面から赤外線を
導入し、昇温させるものであった。
2. Description of the Related Art One of the conventional heating methods is to set a resistance heater in a vacuum chamber to raise the temperature of a heated object. Next, in the high-frequency induction heating method, a coil-shaped high-frequency generation source was set in a vacuum chamber, and the heating object was heated by high-frequency induction heating. Also, there is a heating system which is a combination of the resistance heater and the high frequency induction heating system. Further, the surface heating type infrared radiation heating apparatus of Japanese Patent Application Laid-Open No. 10-82589 filed by the applicant of the present invention is one for setting a heating object in a vacuum chamber and radiating infrared rays from the atmosphere side to raise the temperature. there were. Furthermore, the applicant of the present invention previously filed Japanese Patent Application Laid-Open No. 2001-15248.
In the infrared radiant heating device, a heating object is set in a vacuum chamber, and infrared rays are introduced from both the upper and lower sides of the atmosphere side to raise the temperature.

【0003】[0003]

【発明が解決しようとする課題】従来の技術の抵抗加熱
ヒーターは、発熱体からのガスの発生により加熱物の汚
染や真空度の低下をもたらし、高真空中のクリーン加熱
昇温・又急速昇温は困難であった。次に、従来の技術の
高周波誘導加熱方法は、加熱物は電気的良導体に限定さ
れ、シリコンや炭化珪素のように室温から低温領域では
大きな電気抵抗を有する材料の急速加熱昇温は困難であ
った。又、抵抗加熱ヒーターと高周波誘導加熱方式の組
合せによる方法は上に述べたように発熱体からの発生ガ
スによる汚染があり、高速昇温、クリーン加熱は困難で
あった。又、従来の技術の面加熱型赤外線輻射加熱装置
は均熱加熱機構部分での赤外線の減衰が多く、加熱効率
が低下する等の弱点があり、加熱物を超高温領域までの
昇温が困難であった。従来の技術の赤外線輻射加熱装置
は加熱物を超高温・超高速加熱昇温は可能であったが、
均一加熱が出来る加熱物の大きさは小さく、より大きな
面積の均一な加熱昇温は困難であった。
The resistance heater of the prior art causes the generation of gas from the heating element to contaminate the heating object and lower the degree of vacuum, so that clean heating in a high vacuum and rapid rising. Warm was difficult. Next, in the conventional high-frequency induction heating method, the heating object is limited to an electrically good conductor, and it is difficult to rapidly heat and heat a material such as silicon or silicon carbide having a large electric resistance in a low temperature range from room temperature. It was Further, in the method using the combination of the resistance heating heater and the high frequency induction heating method, as described above, there is contamination by the gas generated from the heating element, so that high-speed temperature rising and clean heating are difficult. Further, the conventional surface heating type infrared radiant heating device has many weak points such as a large amount of infrared ray attenuation in the soaking and heating mechanism part, which lowers the heating efficiency, making it difficult to raise the temperature of the heated object to the ultra-high temperature region. Met. The infrared radiant heating device of the conventional technology is capable of heating and heating a heated object at an extremely high temperature and a very high speed.
The size of the heated material that can be uniformly heated was small, and it was difficult to uniformly heat and heat the larger area.

【0004】[0004]

【課題を解決する為の手段】上記課題を解決する為に本
発明は、真空チャンバー内に設けてある加熱物に、その
相反する方向に具備している2台の赤外線輻射加熱器に
より赤外線を照射し、加熱物を室温より高温度に昇温さ
せ、更に、加熱物の外周部には高周波誘導加熱用コイル
を具備し、上記赤外線輻射加熱により超高速で高温度に
到達している加熱物に高周波を供給し、超高温領域まで
超高速昇温が出来、均一な温度分布も得られるようにし
た。即ち、赤外線輻射加熱方式と高周波誘導加熱方式の
特性を生かし、複合的加熱方法を採用する。赤外線輻射
加熱方式の主な役割は、加熱物を室温より高温領域まで
昇温させる。高周波誘導加熱方式の役割は、高温領域よ
り超高温領域まで昇温させ、同時に加熱物の温度均一性
を保つことを特徴とする。又、両加熱方式共、クリーン
な加熱昇温が可能である。
SUMMARY OF THE INVENTION In order to solve the above problems, the present invention provides a heating object provided in a vacuum chamber with infrared rays by two infrared radiation heaters provided in opposite directions. Irradiated to heat the heated material to a temperature higher than room temperature, and further equipped with a high-frequency induction heating coil on the outer peripheral portion of the heated object, which reaches a high temperature at an ultra-high speed by the infrared radiation heating. A high frequency was supplied to the device to raise the temperature at an extremely high temperature up to an ultra-high temperature range and to obtain a uniform temperature distribution. That is, a composite heating method is adopted by taking advantage of the characteristics of the infrared radiation heating method and the high frequency induction heating method. The main role of the infrared radiant heating method is to raise the temperature of the heated object to a high temperature region from room temperature. The role of the high frequency induction heating method is to raise the temperature from a high temperature region to an ultra-high temperature region, and at the same time maintain the temperature uniformity of the heated object. In addition, both heating methods enable clean heating and heating.

【0005】赤外線輻射加熱器は、赤外線ランプと複合
型反射ミラーを有する赤外線発生部と、赤外線透過用透
明石英円板を有する真空チャンバーを具備し、上記赤外
線ランプで発生する赤外線が真空又は各種ガス雰囲気下
にある真空チャンバー内に設けてある加熱物を照射し、
上記真空チャンバー内に設けてある加熱物の一方面側を
加熱する一方の赤外線輻射加熱器と、この一方の赤外線
輻射加熱器と反対側に、上記加熱物の他方面側を加熱す
る他方の赤外線輻射加熱器とからなるものである。00
9.高周波誘導加熱方式の高周波発生用誘導コイルは、
上記赤外線透過用石英円板を有する真空チャンバー内に
設けてある加熱物近傍の外周部に設置され、その励起電
源は真空フランジにより、上記赤外線透過用石英円板を
有する真空チャンバー内に導かれることを特徴とする。
The infrared radiant heater is equipped with an infrared ray generating part having an infrared ray lamp and a composite type reflection mirror, and a vacuum chamber having a transparent quartz disk for transmitting infrared rays. The infrared ray generated by the infrared ray lamp is vacuum or various gases. Irradiate the heating object provided in the vacuum chamber under the atmosphere,
One infrared radiation heater for heating one surface side of the heating object provided in the vacuum chamber, and the other infrared ray for heating the other surface side of the heating object on the side opposite to the one infrared radiation heater. It consists of a radiant heater. 00
9. The induction coil for high frequency induction heating
It is installed in the outer peripheral part near the heated object provided in the vacuum chamber having the infrared transmitting quartz disk, and its excitation power source is guided by the vacuum flange into the vacuum chamber having the infrared transmitting quartz disk. Is characterized by.

【0006】加熱物設置部は、上記赤外線透過用石英円
板及び高周波導入用真空フランジを、有する真空チャン
バー内に金属製ルツボ及びその支持用石英支持台を設
け、その中に加熱物を載置し、その外周部には断熱円筒
を設けている。更にその外周部に高周波発生用誘導コイ
ルを設置し、構成していることを特徴とする。
The heating object setting section is provided with a crucible made of metal and a quartz support table for supporting the crucible in a vacuum chamber having the quartz disk for transmitting infrared rays and a vacuum flange for introducing high frequency, and the heating object is placed therein. However, a heat insulating cylinder is provided on the outer peripheral portion thereof. Further, an induction coil for high frequency generation is installed and configured on the outer peripheral portion thereof.

【0007】加熱物の昇温は、加熱物の温度測定を超高
温用熱電対を用いて測定しながら、上下対面状態に設置
された赤外線輻射加熱器により、赤外線を加熱物に輻射
しながら行われる。又、高周波誘導加熱による昇温は、
金属製ルツボ側面の温度を測定しながら高周波を加熱物
に供給する。いずれの場合も温度測定は高周波誘導によ
り熱電対自身の昇温が生じない極細の超高温用熱電対を
使用して、温度測定を行うことを特徴とする。
The temperature of the heated object is raised by radiating infrared rays to the heated object by means of infrared radiant heaters installed facing each other while measuring the temperature of the heated object using an ultrahigh temperature thermocouple. Be seen. Also, the temperature rise by high frequency induction heating is
High frequency is supplied to the heating object while measuring the temperature of the side surface of the metal crucible. In either case, the temperature measurement is characterized in that the temperature is measured using an ultrafine ultrahigh temperature thermocouple in which the temperature rise of the thermocouple itself does not occur due to high frequency induction.

【0008】上記赤外線輻射加熱器の複合反射ミラー
は、円錐型反射ミラーと、円筒型反射ミラーで構成さ
れ、その反射ミラー面は赤外線が最も良く反射する金メ
ッキが施されており、赤外線ランプから輻射した赤外線
は複合反射ミラーにより、ほぼ平行に輻射移動し、真空
チャンバーの上部の透明石英円板を透過し、真空チャン
バー内加熱物に照射され、複合ミラー面は、赤外線ラン
プからの赤外線照射による昇温を防ぐ為、その外周は水
槽構造を形成し、赤外線ランプ点灯時には常に冷却水が
水槽の下部より上部に流出していることを特徴とする。
The composite reflection mirror of the above infrared radiation heater comprises a conical reflection mirror and a cylindrical reflection mirror. The reflection mirror surface is gold-plated so that infrared rays are most reflected, and the infrared radiation is emitted from the infrared lamp. The infrared rays radiated and moved almost in parallel by the compound reflection mirror, transmitted through the transparent quartz disk on the upper part of the vacuum chamber, and irradiated on the heating object in the vacuum chamber, and the compound mirror surface was raised by the infrared irradiation from the infrared lamp. In order to prevent temperature, its outer periphery forms a water tank structure, and when the infrared lamp is turned on, cooling water always flows out from the lower part to the upper part of the water tank.

【0009】上記真空チャンバーは、金属材料で製作さ
れ、赤外線透過用石英円板が2個,高周波誘導電力入力
用真空フランジが1個の他に、真空排気口用フランジ各
種ガス流出口用,真空計用等の複数個の真空フランジが
付属している。更に真空チャンバー自体の温度上昇を防
ぐ為、その外周部に水冷用溝を有し、加熱物の昇温中は
常に冷却水がその下部より上部へ流出している点を特徴
とする。
The vacuum chamber is made of a metal material and has two quartz disks for transmitting infrared rays, one vacuum flange for inputting high frequency induction power, a vacuum exhaust flange for various gas outlets, and a vacuum. Includes multiple vacuum flanges for metering. Furthermore, in order to prevent the temperature of the vacuum chamber itself from rising, it is characterized in that it has a water cooling groove in its outer peripheral portion, and that the cooling water always flows out from the lower part to the upper part during the temperature rise of the heating object.

【0010】[0010]

【発明の実施の形態】発明の実施の形態を実施例に基づ
き図1,図2を参照して説明する。本発明の超高温・超
高速・均一加熱装置の赤外線輻射加熱器は、それぞれが
反対側に位置する一対の赤外線輻射加熱器A,赤外線輻
射加熱器Bによって構成され、対をなす赤外線輻射加熱
器A,Bが、垂直方向の上下に位置付けられるのが一般
的であるから、この上下に位置付けられた好ましい実施
例に基づいて説明するが、対をなす赤外線輻射加熱器
A,Bが、水平方向に位置付けられてもよい。図1は本
発明の超高温・超高速・均一加熱装置の赤外線輻射加熱
器Aの好ましい一実施例を示した正面図であり、図2は
上側の赤外線輻射加熱器A、下側の赤外線輻射加熱器
B,高周波誘導コイル及び加熱物載置部,真空チャンバ
ーを含む、超高温・超高速・均一加熱装置を示した断面
正面図である。図3は、加熱物載置部及び加熱作用の説
明図である。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described based on examples with reference to FIGS. The infrared radiant heater of the ultra-high temperature / ultra-high speed / uniform heating device of the present invention is composed of a pair of infrared radiant heaters A and B, which are respectively located on opposite sides, forming a pair. Since A and B are generally positioned above and below in the vertical direction, a description will be given based on the preferred embodiment positioned above and below, but the pair of infrared radiant heaters A and B are May be located at. FIG. 1 is a front view showing a preferred embodiment of an infrared radiant heater A of an ultra-high temperature / ultra-high speed / uniform heating device of the present invention, and FIG. 2 is an upper infrared radiant heater A and a lower infrared radiant heater. FIG. 3 is a sectional front view showing an ultra-high temperature / ultra-high speed / uniform heating device including a heater B, a high-frequency induction coil, a heating material mounting portion, and a vacuum chamber. FIG. 3 is an explanatory diagram of the heating material placing portion and the heating action.

【0011】赤外線輻射加熱器Aは、赤外線ランプ2、
赤外線を反射する円錐反射ミラー3及び円筒反射ミラー
4、冷却水槽5で構成する。赤外線ランプ2には商用電
源を電源供給部より適量供給することにより、赤外線を
発生する。その赤外線は三次元方向に発生するが、直進
光Iは、そのまま大気中を直進し、透明石英円板6を
透過した後、真空チャンバー7内に入射し、真空中を直
進し加熱物8の中心部に照射される。赤外線ランプ2の
円周方向に発生した赤外線は、円錐反射ミラー3で反射
した後、大気中を加熱物8の方向に直進する。その赤外
線Iは、透明石英円板6を透過し、真空チャンバー7
内に入射し、真空中を直進し加熱物8の外周部に照射さ
れる。加熱物8は、赤外線I,Iの照射を受けそれ
を吸収し、温度上昇する。
The infrared radiant heater A comprises an infrared lamp 2,
It is composed of a conical reflection mirror 3 which reflects infrared rays, a cylindrical reflection mirror 4 and a cooling water tank 5. The infrared lamp 2 generates infrared rays by supplying an appropriate amount of commercial power from the power supply section. The infrared rays are generated in a three-dimensional direction, but the straight traveling light I 1 travels straight in the atmosphere, passes through the transparent quartz disk 6, and then enters the vacuum chamber 7, travels straight in the vacuum, and heats the object 8. Is irradiated to the center of the. The infrared rays generated in the circumferential direction of the infrared lamp 2 are reflected by the conical reflection mirror 3 and then go straight in the atmosphere toward the heating object 8. The infrared ray I 2 is transmitted through the transparent quartz disk 6 and the vacuum chamber 7
The light is incident on the inside, goes straight through the vacuum, and is irradiated to the outer peripheral portion of the heating object 8. The heating object 8 receives the infrared rays I 1 and I 2 and absorbs the infrared rays I 1 and I 2 , and the temperature thereof rises.

【0012】円錐反射ミラー3及び円筒状反射ミラー4
の素材はステンレス材であり、これらの反射ミラー面は
赤外線の反射効率の高い金メッキを施している。冷却水
槽5には、冷却水入口23から冷却水出口24に常時冷
却水を流し、それぞれの反射ミラー面の温度上昇を押
え、焼損を防ぐ役割を持っている。空冷機構9は赤外線
ランプ2の外周部の昇温を防ぐこと、及び円錐反射ミラ
ー3と円筒反射ミラー4の内側に滞留する、赤外線ラン
プの熱により昇温した空気を外部に換気する役割を持っ
ている。又、赤外線輻射器部Aは金属製ボルト10によ
り、真空チャンバーに固定出来る。さらに、真空チャン
バー7の外周部に水冷用溝25を設け、過熱物の昇温中
は常に冷却水が下部より上部へと流れ、真空チャンバー
自体の温度上昇を防いでいる。
Conical reflection mirror 3 and cylindrical reflection mirror 4
The material of is a stainless steel material, and these reflection mirror surfaces are plated with gold, which has a high infrared reflection efficiency. In the cooling water tank 5, cooling water is constantly made to flow from the cooling water inlet 23 to the cooling water outlet 24 to suppress the temperature rise of each reflection mirror surface and prevent burning. The air-cooling mechanism 9 has a role of preventing the temperature of the outer peripheral portion of the infrared lamp 2 from rising, and a function of ventilating the air that has accumulated inside the conical reflecting mirror 3 and the cylindrical reflecting mirror 4 and is heated by the heat of the infrared lamp to the outside. ing. Further, the infrared radiator A can be fixed to the vacuum chamber by the metal bolt 10. Further, a water cooling groove 25 is provided on the outer peripheral portion of the vacuum chamber 7 so that the cooling water always flows from the lower part to the upper part during the temperature rise of the superheated material to prevent the temperature rise of the vacuum chamber itself.

【0013】下部赤外線輻射加熱器Bの形状は、上部赤
外線輻射加熱器Aとほぼ同じであるが、真空チャンバー
7への取り付け位置が反対になり、冷却水の流出方向も
逆の位置になっている。又、上部赤外線輻射加熱器A
は、透明石英円板6と共に真空チャンバー上部蓋14に
取り付けられており、Oリング13により真空シールさ
れ、真空チャンバー7の上部開口部に取り付けられてい
る。上記赤外線輻射加熱器Aの上部蓋14を上部に持ち
上げ、その開口部より加熱物8を真空チャンバー7内に
挿入、取り出しが可能な機能を具備している、しかし下
部赤外線輻射加熱装置部Bには、それらの機能は具備し
ていない。
The shape of the lower infrared radiant heater B is almost the same as that of the upper infrared radiant heater A, but the mounting position on the vacuum chamber 7 is opposite, and the outflow direction of the cooling water is also opposite. There is. Also, the upper infrared radiation heater A
Is attached to the vacuum chamber upper lid 14 together with the transparent quartz disk 6, vacuum-sealed by the O-ring 13, and attached to the upper opening of the vacuum chamber 7. The infrared radiation heater A has a function of allowing the upper lid 14 of the infrared radiation heater A to be lifted up and inserting the heating object 8 into and out of the vacuum chamber 7 through its opening, but the lower infrared radiation heating device section B has Does not have those functions.

【0014】透明石英円板6はOリング12により真空
シールされ、真空チャンバー7の上部に取り付けられて
いるので、大気側にある赤外線輻射加熱器Aより発生し
た赤外線は、透明石英円板6を透過し真空状態にある真
空チャンー7内に設置された加熱物8に照射出来る機能
を有している。尚、この加熱物8に照射されている赤外
線ランプ2の輻射波長帯は700nmから3000nm
である。そして赤外線ランプ2の輻射波長帯の、可視光
線に近い波長、約900nmである時、最大輻射強度を
有する。又、この波長帯の赤外線は光とほぼ同じように
輻射、透過、反射、屈折する物理的性質を有している。
そして透明な物体に照射された時、その物体を透過し、
それ以外の物体に照射された時、その物体に吸収され、
その物体温度を上昇させる性質を有する。
Since the transparent quartz disk 6 is vacuum-sealed by the O-ring 12 and attached to the upper part of the vacuum chamber 7, infrared rays generated by the infrared radiation heater A on the atmosphere side are transmitted through the transparent quartz disk 6. It has a function of irradiating the heating object 8 installed in the vacuum chamber 7 which is transparent and in a vacuum state. The radiation wavelength band of the infrared lamp 2 with which the heated article 8 is irradiated is 700 nm to 3000 nm.
Is. When the wavelength of the infrared lamp 2 is near 900 nm in the radiant wavelength band, the maximum radiant intensity is obtained. Further, infrared rays in this wavelength band have the physical properties of radiating, transmitting, reflecting and refracting in the same manner as light.
When it illuminates a transparent object, it penetrates the object,
When irradiated to other objects, it is absorbed by that object,
It has the property of raising the temperature of the object.

【0015】加熱物8は金属製(モリブデン)ルツボ1
5の中に載置し、その金属製ルツボ15は円筒状石英支
持台16により真空チャンバー7のほぼ中央部に保持し
ている。そして、それらの外周部には遮熱円筒17が共
に石英支持台16によって支持され、更に、その外周に
は円筒状高周波誘導コイル18が真空フランジ20によ
り保持されている。この真空フランジはOリング21に
より真空シールされている。
The heating object 8 is a metal (molybdenum) crucible 1.
The metal crucible 15 is held in the vacuum chamber 7 at a substantially central portion thereof by a cylindrical quartz support 16. A heat shield cylinder 17 is also supported by the quartz support 16 on the outer peripheral portions thereof, and a cylindrical high frequency induction coil 18 is held on the outer periphery by a vacuum flange 20. This vacuum flange is vacuum-sealed by an O-ring 21.

【0016】加熱物8の真空チャンバー内への挿入は先
ず、赤外線輻射加熱器A及び真空チャンバー上部蓋14
と共に上部に引き上げ真空チャンバー7の上部開口部よ
り真空チャンバー7内のほぼ中央部に保持されている金
属製ルツボ15の上部に載置される。真空チャンバー7
内は真空排気口に真空排気装置を接続することにより真
空排気が出来る。
To insert the heating object 8 into the vacuum chamber, first, the infrared radiation heater A and the vacuum chamber upper lid 14 are inserted.
At the same time, it is pulled up to the upper part and placed on the upper part of the metal crucible 15 which is held in the substantially central part of the vacuum chamber 7 through the upper opening part of the vacuum chamber 7. Vacuum chamber 7
The inside can be evacuated by connecting a vacuum exhaust device to the vacuum exhaust port.

【0017】赤外線は前述のように透明な物体では透過
するが、それ以外の物体では赤外線照射を受けるとそれ
を吸収し、その物体は急速に温度上昇する性質を有して
いる。加熱物8の昇温方法は先ず、真空チャンバー7の
上下両面の大気中に取り付けられている。赤外線輻射加
熱器A,Bに電源供給部より電力を供給し、赤外線ラン
プ2を点灯させる。赤外線ランプ2より発生した赤外線
,Iは透明石英円板6を透過し、真空チャンバー
7内に入射し、加熱物8に上下両面より照射される。加
熱物8は、その赤外線を吸収し、急速に高温度まで上昇
する。この時の加熱物8の温度はそれに接触している熱
電対22により測定出来る。又、加熱物8の到達温度
は、例えば上下の赤外線輻射加熱器A,Bの赤外線ラン
プをそれぞれ出力2KW合計4KW使用した時加熱物8
の赤外線吸収率によっても変わるが、1000℃から1
200℃に到達出来る。
As described above, infrared rays are transmitted through a transparent object, but other objects absorb infrared rays when they are irradiated with the infrared rays, and the object has a property of rapidly increasing in temperature. As a method of raising the temperature of the heated object 8, first, the vacuum chamber 7 is attached to the upper and lower surfaces in the atmosphere. Electric power is supplied to the infrared radiant heaters A and B from the power supply unit to turn on the infrared lamp 2. The infrared rays I 1 and I 2 generated by the infrared lamp 2 pass through the transparent quartz disk 6, enter the vacuum chamber 7, and are irradiated onto the heating object 8 from both upper and lower surfaces. The heating object 8 absorbs the infrared rays and rapidly rises to a high temperature. At this time, the temperature of the heating object 8 can be measured by the thermocouple 22 in contact with it. Further, the reached temperature of the heated material 8 is, for example, when the infrared lamps of the upper and lower infrared radiation heaters A and B each output 2 kW and 4 kW in total are used.
It depends on the infrared absorption rate of the
Can reach 200 ℃.

【0018】高周波誘導加熱方式では加熱物が金属のよ
うに電気抵抗が小さい良導体材料では、加熱効率は良く
加熱物温度を高速で超高温領域に昇温出来るが、絶縁物
では温度上昇することは殆どない。シリコンや炭化珪素
は室温から約800℃付近まで高い電気抵抗を有してお
り高周波誘導加熱による昇温は困難であるが、それ以上
の高い温度では電気抵抗が少なくなり、高周波誘導加熱
方式による加熱物の昇温が可能となる。ここでは赤外線
加熱方式により加熱物8の温度が1000℃付近に到達
した後、その外周部に置かれた高周波コイルに高周波を
供給する。高周波誘導コイル18は銅製パイプで製作さ
れ、その中は冷却水を流せる構造を有し遮熱円筒外周部
に位置し、真空フランジ20により支持されている。高
周波出力及び冷却水は真空フランジ20を経由し、大気
側の高周波発振器及び水道水よりそれぞれ供給されてい
る。加熱物8及び金属ルツボ15は、高周波誘導加熱に
より超高温領域まで超高速昇温が可能となる。例えは上
述の赤外線加熱方式により1000℃付近に昇温してい
る炭化珪素円板φ50×0.3tに高周波出力20KH
Zを5KW供給した時加熱物8の温度は、1800℃ま
で、ほぼ1分以内で昇温が可能である。
In the high frequency induction heating method, a good conductive material such as a metal having a small electric resistance has a high heating efficiency and can quickly raise the temperature of the heated object to an ultra-high temperature region, but the insulator does not raise the temperature. Almost never. Silicon and silicon carbide have a high electric resistance from room temperature to around 800 ° C, and it is difficult to raise the temperature by high frequency induction heating, but at higher temperatures, the electric resistance decreases and heating by the high frequency induction heating method is performed. It is possible to raise the temperature of the object. Here, after the temperature of the heating object 8 reaches around 1000 ° C. by the infrared heating method, a high frequency is supplied to the high frequency coil placed on the outer peripheral portion thereof. The high frequency induction coil 18 is made of a copper pipe, has a structure in which cooling water can flow, is located on the outer peripheral portion of the heat shield cylinder, and is supported by a vacuum flange 20. The high frequency output and the cooling water are supplied from the high frequency oscillator and tap water on the atmosphere side through the vacuum flange 20. The heating object 8 and the metal crucible 15 can be heated at an ultrahigh speed to an ultrahigh temperature region by high frequency induction heating. For example, a high-frequency output of 20KH is applied to a silicon carbide disk φ50x0.3t that is heated to around 1000 ° C by the infrared heating method described above.
When Z is supplied at 5 kW, the temperature of the heated product 8 can be raised to 1800 ° C. within about 1 minute.

【0019】高周波コイル18と金属製ルツボ15の中
に設置してある遮熱円筒17は、加熱物8及び金属製ル
ツボ15が超高温度に到達した時、そこから発生する輻
射エネルギーが外周部に輻射する成分を遮断し、加熱物
8の加熱効率を高める役割を持っている。ここで使用し
ている材料は、超高温度まで耐熱性があり、又は誘導に
より昇温せず又ガス発生の少ないボロンナイトライト
(BN)である。
The heat shield cylinder 17 installed in the high frequency coil 18 and the metal crucible 15 has a radiant energy generated from the heat shield 8 and the metal crucible 15 when they reach an extremely high temperature. It has a role of blocking the components radiating to the inside and increasing the heating efficiency of the heating object 8. The material used here is boron nitrite (BN) that has heat resistance up to an ultrahigh temperature, does not heat up due to induction, and generates little gas.

【0020】円板状加熱物8に赤外線を上部及び下部両
面より照射する時、円板状加熱物8全体を均一な温度に
保ちながら昇温することは大変困難である。赤外線ラン
プ2より輻射される赤外線Iは直進し、透明石英円板
6を透過し、真空チャンバー7内の加熱物8のほぼ中心
付近に照射され、その部分の昇温に寄与する。又赤外線
ランプ2より水平方向に輻射し、円錐反射ミラーで反射
された赤外線Iは、直進成分の赤外線Iと同様に透
明石英円板6を透過し、真空チャンバー7内の加熱物8
の外周付近に照射されその部分の昇温に寄与する。しか
し赤外線ランプ2より水平方向に輻射された赤外線I
は、円錐形反射ミラーで反射される時、若干減衰する。
又真空チャンバー内7の加熱物8に到達するまでの飛行
距離が赤外線Iより長く、赤外線輻射強度もIより
低くなる。従って同じ赤外線ランプ2より発生した赤外
線でも、加熱物8の昇温に寄与する赤外線強度は加熱物
8の中心部が大きく外周部は小さくなる。
When irradiating the disk-shaped heating object 8 with infrared rays from both the upper and lower surfaces, it is very difficult to raise the temperature of the disk-shaped heating object 8 while maintaining the uniform temperature. The infrared ray I 1 radiated from the infrared lamp 2 goes straight, passes through the transparent quartz disk 6 and is irradiated near the center of the heating object 8 in the vacuum chamber 7, and contributes to the temperature rise of that part. Further, the infrared ray I 2 radiated in the horizontal direction from the infrared lamp 2 and reflected by the conical reflection mirror passes through the transparent quartz disk 6 like the infrared ray I 1 of the straight traveling component, and the heating object 8 in the vacuum chamber 7
It is irradiated near the outer circumference of and contributes to the temperature rise of that part. However, the infrared ray I 2 radiated horizontally from the infrared lamp 2
Is slightly attenuated when reflected by the conical reflecting mirror.
Further, the flight distance to reach the heated article 8 in the vacuum chamber 7 is longer than the infrared ray I 1 , and the infrared radiation intensity is also lower than I 1 . Therefore, even with the infrared rays generated from the same infrared lamp 2, the infrared intensity that contributes to the temperature rise of the heating object 8 is large in the central part of the heating object 8 and small in the outer peripheral part.

【0021】更に加熱物8が高温度に到達した時、その
加熱物8から外側に輻射する輻射熱は加熱物8の中心付
近は少なく外周部が多く、その温度も加熱物8中心部の
温度が高く外周部の温度はそれよりも低くなる。従っ
て、赤外線輻射加熱のみで加熱物8を均一な温度保持は
困難である。
Further, when the heated object 8 reaches a high temperature, the radiant heat radiated from the heated object 8 to the outside is small in the vicinity of the center of the heated object 8 and is large in the outer peripheral portion. It is high and the temperature of the outer peripheral portion is lower than that. Therefore, it is difficult to maintain the temperature of the heating object 8 at a uniform temperature only by infrared radiation heating.

【0022】高周波誘導加熱のもう一つの役割は、上記
のように赤外線輻射加熱物方式単独の加熱では不均一な
温度分布になっている加熱物8及び金属製ルツボ15に
その外周部より高周波コイル18により高周波エネルギ
ーを与え加熱物8を超高温領域で均一な温度に保持する
機能を与えるものである。高周波誘導加熱による発熱作
用は、加熱物の形状,誘導コイルの形状設置状態により
決められる。例えば(図3のa)のように、円板状加熱
物8が金属製ルツボ(円板の外周に円筒が付いている)
15の上部に載置され、その外周部に高周波コイルが設
置してある状態の時は、次ぎのような発熱作用が生じ
る。先ず、赤外線による発熱作用は、その赤外線の照射
を受け急速に昇温するが、前述の理由により加熱物8及
び金属ルツボ15温度は中心の温度が高くその外周部は
低くなる傾向がある(図3のb)。高周波誘導加熱によ
る発熱作用は、高周波誘導により加熱物8及び金属ルツ
ボは急速昇温するが、その詳細な発熱作用は加熱物8及
び金属ルツボ15の外周近辺に高周波による渦電流が多
く発生し、中心部は少なくなる性質を有している。従っ
てその温度部分布も外周部温度が高く、中心部が低くな
る性質があり、赤外線加熱による温度分布と反対の分布
状態になる(図3のc)。赤外線加熱と高周波誘導加熱
の両方式による発熱作用を受け、加熱物8及び金属製ル
ツボ15の温度は(図3のd)のようにほぼ平坦な温度
分布を得ることが出来る。
Another role of the high frequency induction heating is that the heating object 8 and the metal crucible 15 which have a non-uniform temperature distribution by the heating of the infrared radiation heating method alone as described above, have a high frequency coil from the outer peripheral portion thereof. The high frequency energy 18 is applied by 18 to provide a function of keeping the heating object 8 at a uniform temperature in the ultrahigh temperature region. The heat generation effect of high frequency induction heating is determined by the shape of the heating object and the shape and installation state of the induction coil. For example, as shown in (a of FIG. 3), the disk-shaped heating object 8 is a metal crucible (a cylinder is attached to the outer circumference of the disk).
When it is placed on the upper part of 15 and the high frequency coil is installed on the outer peripheral part thereof, the following heat generating action occurs. First, the heat generation effect of infrared rays rapidly rises upon irradiation of the infrared rays, but for the reasons described above, the temperature of the heating object 8 and the metal crucible 15 tends to be high in the center and low in the outer peripheral portion (Fig. 3b). The heating effect by the high frequency induction heating causes the heating object 8 and the metal crucible to rapidly rise in temperature due to the high frequency induction. The central part has the property of becoming less. Therefore, the temperature part distribution also has the property that the outer peripheral part temperature is high and the central part is low, which is a distribution state opposite to the temperature distribution due to infrared heating (c in FIG. 3). The temperature of the heating object 8 and the metal crucible 15 is able to obtain a substantially flat temperature distribution as shown in (d of FIG. 3) due to the heat generation effect of both the infrared heating and the high frequency induction heating.

【0023】従って、加熱物8がシリコンや炭化珪素の
ように低温領域では高抵抗を有する材料であっても、赤
外線加熱により800℃以上の高温領域に達すると高周
波誘導加熱が有効に働き、又加熱物8を載置し、高周波
誘導加熱によりすでに高温度に達している金属ルツボ1
5からも熱の供給を受け、良好な温度分布を保ちながら
超高温度到達が可能である。例えば、赤外線輻射加熱方
式単独では1000℃付近でその温度分布は±70〜8
0℃とになるが、赤外線輻射加熱方式と誘導加熱方式と
の複合加熱方式では1800℃で ±10℃程度に保つ
ことが可能である。尚、前述で赤外線輻射加熱の役割が
主に低温領域、高周波加熱の役割が主に超高温領域と記
述しているが、実際には必ずしも明確に区別されている
ものではなく、高周波加熱方式は低温領域でも若干の発
熱の役割を果たしている。加熱物載置用金属ルツボ18
は、低温領域でも高周波誘導加熱による発熱作用を受け
昇温し、加熱物8の下部より加熱物8の底部に熱伝導に
より熱を供給し、昇温に寄与している。又、赤外線も超
高温領域では加熱物8の中心部分の温度分布上昇にも寄
与している。
Therefore, even if the heating object 8 is a material having a high resistance in a low temperature region such as silicon or silicon carbide, when it reaches a high temperature region of 800 ° C. or higher by infrared heating, high frequency induction heating works effectively, and A metal crucible 1 on which a heating object 8 is placed and which has already reached a high temperature by high frequency induction heating.
It is possible to reach the ultra-high temperature while maintaining good temperature distribution by receiving heat from No. 5. For example, the infrared radiation heating system alone has a temperature distribution of about ± 70 to 8 at around 1000 ° C.
Although it becomes 0 ° C., in the combined heating method of the infrared radiation heating method and the induction heating method, it is possible to keep at about 1800 ° C. ± 10 ° C. In the above description, the role of infrared radiant heating is mainly described in the low temperature region, and the role of high frequency heating is mainly in the super high temperature region. However, it is not always clearly distinguished and the high frequency heating method is Even in the low temperature region, it plays a role of generating a little heat. Metal crucible 18 for placing heated material
In the low temperature region, the temperature rises due to the heat generation effect of the high frequency induction heating, and the heat is supplied from the lower portion of the heating material 8 to the bottom portion of the heating material 8 by heat conduction, thereby contributing to the temperature increase. In addition, infrared rays also contribute to an increase in the temperature distribution in the central portion of the heating object 8 in the ultrahigh temperature region.

【0024】加熱物8及び金属製ルツボ15側面の温度
は金属製熱電対、それぞれ22,19を用いて行う。一
般に金属のような良導体では、高周波誘導によりそれ自
体の発熱作用により温度上昇する。しかしながら、金属
材料でもその内面では誘導体を受け発熱を伴うが、その
表面に近い限られた深さ部分は誘導加熱の影響を受けず
に発熱を伴うことはない。特に極細の金属線では誘導加
熱により昇温することはない。本発明でその性質を利用
し、極細の熱電対を使用し温度を測定することが出来
る。
The temperatures of the side surface of the heating object 8 and the metal crucible 15 are controlled by using metal thermocouples 22 and 19, respectively. Generally, in a good conductor such as metal, the temperature rises due to its own heat generation effect due to high frequency induction. However, even a metallic material receives a derivative on its inner surface and generates heat, but a limited depth portion near the surface is not affected by induction heating and does not generate heat. In particular, an extremely fine metal wire does not heat up due to induction heating. By utilizing the property of the present invention, the temperature can be measured by using an extremely fine thermocouple.

【0025】温度センサー22は主に加熱物8の温度を
測定しながら赤外線輻射加熱器A,Bより赤外線を適量
供給する。尚、電源供給部は、自動温度制御機能も具備
しており、加熱物8の温度センサー22で測定しながら
フィードバック方式で加熱物8の温度の自動的制御も可
能である。
The temperature sensor 22 mainly supplies the appropriate amount of infrared rays from the infrared radiation heaters A and B while measuring the temperature of the heating object 8. The power supply unit also has an automatic temperature control function, and the temperature of the heating object 8 can be automatically controlled by a feedback method while measuring with the temperature sensor 22 of the heating object 8.

【0026】温度センサー19は主に金属製ルツボ外周
部の温度を測定しながら高周波誘導出力を供給する。
尚、高周波発振器部は金属製ルツボ15の温度を温度セ
ンサー19で測定しながら自動的出力を変化させ、温度
を制御する機能も有している。
The temperature sensor 19 mainly supplies the high frequency induction output while measuring the temperature of the outer peripheral portion of the metal crucible.
The high-frequency oscillator section also has a function of controlling the temperature by automatically changing the output while measuring the temperature of the metal crucible 15 with the temperature sensor 19.

【0027】図4に高周波発生用誘導コイル18を真空
チャンバー7の外側に設けてある実施例を示してある。
この実施例では上下稼動機構26を設け、上側の赤外線
輻射加熱器Aと真空チャンバーの上部蓋14とを上下作
動するようにしてある。尚この実施例では、真空チャン
バーは高周波による発熱作用が生じない材料(透明石
英)で製作され、真空シールは上部蓋にOリングを介在
して、又下部フランジにはOリングを介在して行われ
る。
FIG. 4 shows an embodiment in which the induction coil 18 for high frequency generation is provided outside the vacuum chamber 7.
In this embodiment, a vertically moving mechanism 26 is provided to vertically move the infrared radiation heater A on the upper side and the upper lid 14 of the vacuum chamber. In this embodiment, the vacuum chamber is made of a material (transparent quartz) that does not generate heat due to high frequency, and the vacuum seal is made by interposing an O ring on the upper lid and an O ring on the lower flange. Be seen.

【0028】[0028]

【発明の効果】赤外線輻射加熱方式では加熱物の超高速
昇温,クリーン加熱が出来るが、大きな加熱物では温度
の均一性の保持が困難である。高周波誘導加熱方式は超
高速昇温が容易であるが、加熱物が金属のように電気的
に良導体であることが求められる。本発明の超高温・超
高速・均一加熱装置は、加熱物の昇温作用を室温より高
温領域までは主として赤外線輻射加熱方式が行い、高温
から超高温領域までは高周波誘導加熱方式が行う。この
複合加熱方式を採用することにより金属等の電気的良導
体はもとより、常温でも高抵抗を有するシリコン、炭化
珪素等の半導体材料でも超高温まで超高速昇温、クリー
ン加熱,均一加熱の効果がある。
EFFECT OF THE INVENTION In the infrared radiant heating method, the heating material can be heated at a very high speed and can be cleaned cleanly, but it is difficult to maintain the temperature uniformity in a large heating material. The high-frequency induction heating method can easily raise the temperature at an extremely high speed, but it is required that the heated object be an electrically good conductor such as metal. In the ultra-high temperature / ultra high speed / uniform heating apparatus of the present invention, the heating effect of the heating object is mainly carried out by the infrared radiation heating method from room temperature to the high temperature area, and by the high frequency induction heating method from the high temperature to the ultra high temperature area. By adopting this composite heating system, not only good electrical conductors such as metals, but also semiconductor materials such as silicon and silicon carbide, which have high resistance even at room temperature, have effects of ultra-high temperature heating up to ultra-high temperature, clean heating, and uniform heating. .

【0029】本発明の超高温・超高速・均一加熱装置
は、赤外線ランプと円錐反射ミラー及び円筒反射ミラー
を有する赤外線発生部、真空チャンバー、高周波誘導コ
イルを具備し、上記赤外線ランプで発生する赤外線が真
空又はガス雰囲気下にある上記真空チャンバー内に設け
てある加熱物を照射する赤外線輻射加熱器であって、上
記真空チャンバー内に設けてある加熱物の一方面側を加
熱する一方の赤外線輻射加熱器と、この一方の赤外線輻
射加熱器と反対側に上記加熱物の他方面を加熱する他方
の赤外線輻射加熱器を具備することから、加熱物の上下
両面温度を等しく加熱出来る効果がある。又、加熱物は
金属製ルツボ内に載置し、その外周部には高周波誘導加
熱用の誘導コイルを具備している。加熱物及び金属ルツ
ボは高周波誘導を受け、その円周側より発熱し、加熱物
を超高温領域まで超高速昇温が出来、しかも上述の赤外
線輻射加熱器による加熱物の上下両面からの加熱(赤外
線の輻射加熱)との相乗効果により加熱物全体を均一な
温度に保つ効果がある。
The ultra-high temperature / ultra-high speed / uniform heating apparatus of the present invention comprises an infrared ray generating section having an infrared ray lamp, a conical reflecting mirror and a cylindrical reflecting mirror, a vacuum chamber and a high frequency induction coil, and the infrared ray generated by the infrared ray lamp. Is an infrared radiation heater for irradiating a heating object provided in the vacuum chamber under a vacuum or gas atmosphere, and one infrared radiation heating one surface side of the heating object provided in the vacuum chamber Since the heater and the other infrared radiation heater for heating the other surface of the heating object are provided on the side opposite to the one infrared radiation heater, there is an effect that the upper and lower surface temperatures of the heating object can be heated equally. The heating object is placed in a metal crucible, and an induction coil for high frequency induction heating is provided on the outer peripheral portion of the heating object. The object to be heated and the metal crucible are subjected to high-frequency induction and generate heat from the circumferential side, and the object can be heated at an extremely high temperature to an ultra-high temperature range. Moreover, the heating of the object to be heated from above and below by the infrared radiation heater ( It has an effect of keeping the entire heated object at a uniform temperature by a synergistic effect with infrared radiation heating).

【0030】上記真空チャンバー内に設けてある加熱物
の温度上昇には大気側にある2台の赤外線発生部より発
生した赤外線を透明石英円板を透過させ、非接触により
真空又はガス雰囲気中にある加熱物に赤外線を照射する
ので加熱物を汚染することなく、クリーンな加熱効果が
ある。赤外線ランプに電源を供給すると数秒後には赤外
線を発生し、真空中にある加熱物に照射され、加熱物は
それを吸収し急速に加熱物の昇温が出来る。そしてシリ
コンや炭化珪素のように常温から低温度領域で導電性を
もたない物体でも、赤外線による急速加熱により短時間
に導電性をもつ温度領域まで昇温出来、そこで高周波出
力による誘導加熱作用により超高速昇温効果がある。1
800℃の温度まで1分以内に到達出来る。
In order to raise the temperature of the heating object provided in the vacuum chamber, infrared rays generated by the two infrared ray generating portions on the atmosphere side are transmitted through the transparent quartz disk, and are contactlessly placed in a vacuum or gas atmosphere. Irradiation of infrared rays to a certain heated object does not contaminate the heated object, resulting in a clean heating effect. When power is supplied to the infrared lamp, infrared rays are generated within a few seconds, and the infrared rays are irradiated to the heating object in vacuum, and the heating object absorbs the infrared rays and the temperature of the heating object can be rapidly raised. And even objects such as silicon and silicon carbide that do not have electrical conductivity in the low temperature range from room temperature can be heated to a temperature range that has electrical conductivity in a short time by rapid heating with infrared rays, and by induction heating action by high frequency output there. It has an ultra-high-speed heating effect. 1
The temperature of 800 ° C can be reached within 1 minute.

【0031】加熱物の主な発熱作用(効果)は赤外線に
よる上下両面からの加熱作用と高周波誘導による加熱物
円周からの発熱作用によるが、加熱物は通常金属製ルツ
ボ内に載置している。この金属ルツボも赤外線と高周波
誘導による発熱作用により昇温し、加熱物に熱が供給さ
れるので、加熱物全体の温度均一性の保持に良好な影響
を与える。更にその外周部に設置してある断熱円筒は、
超高温状態にある加熱物や金属ルツボからの外周方向に
輻射放熱作用を遮断し、加熱物の昇温効果の増加均一な
温度分布の保持に良好な効果を与える。尚、ここで示し
ている金属製ルツボは、加熱物の形状、大きさ、材質等
により各種のものが考えられるが、ここではφ50×1
t程度の加熱物を載置する代表的な例である。
The main exothermic action (effect) of the heated object is due to the heating action from the upper and lower sides by infrared rays and the exothermic action from the circumference of the heated item by high frequency induction, but the heated item is usually placed in a metal crucible. There is. This metal crucible also heats up due to the heat generation effect of infrared rays and high frequency induction, and heat is supplied to the heating object, so that the temperature uniformity of the entire heating object is favorably affected. Furthermore, the heat insulating cylinder installed on the outer periphery of the
Radiation and heat radiation from the heating object or metal crucible in an ultrahigh temperature state is blocked in the outer peripheral direction, increasing the heating effect of the heating object and maintaining a uniform temperature distribution. The metal crucible shown here may be of various types depending on the shape, size, material, etc. of the heating object, but here it is φ50 × 1.
This is a typical example of placing a heated product of about t.

【0032】真空中又はガス雰囲気中にある加熱物を上
下両面からの赤外加熱とその円周方向からの高周波誘導
加熱の二重の加熱方法を採用することにより、従来は困
難であった比較的大きな面積を有する加熱物でも超高温
領域まで超高速昇温が可能となった。従来まで加熱物の
大きさは10mmφ程度であったがこの発明では、50
mmφの大きさの円板状加熱物の温度を1800℃以上
の超高温領域まで急速昇温が可能になり、温度均一性も
±10℃と極めて良好な温度分布が得られる効果があ
る。
By adopting a dual heating method for heating a heated object in a vacuum or in a gas atmosphere from both the upper and lower sides and high frequency induction heating from the circumferential direction of the object, a comparison which was difficult in the past was made. Ultra-high speed heating is possible up to the ultra-high temperature range even for heated objects with extremely large areas. Until now, the size of the heated material was about 10 mmφ, but in the present invention,
It is possible to rapidly raise the temperature of a disk-shaped heated product having a size of mmφ to an ultrahigh temperature region of 1800 ° C. or more, and it is possible to obtain an extremely good temperature distribution of ± 10 ° C. in terms of temperature uniformity.

【0033】温度測定には、極細の熱電対を使用するこ
とにより、高周波誘導による発熱の影響を受けずに正確
な温度測定が出来、又高精度の制御機能をもつ電源供給
部(温 度制御器)を有しており、加熱物温度を希
望の速度で昇温又は保持の効果がある。
An extremely fine thermocouple is used for temperature measurement, so that accurate temperature measurement can be performed without being affected by heat generation due to high frequency induction, and a power supply unit (temperature control It has the effect of raising or holding the temperature of the heated material at a desired rate.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明装置の好ましい実施例を示す正面図であ
る。
FIG. 1 is a front view showing a preferred embodiment of the device of the present invention.

【図2】同じく断面正面図である。FIG. 2 is a sectional front view of the same.

【図3】加熱物載置部及び加熱作用の説明図である。FIG. 3 is an explanatory view of a heating material placing portion and a heating action.

【図4】高周波誘導コイルを真空チャンバーの外側に設
けた実施例の正面図である。
FIG. 4 is a front view of an embodiment in which a high frequency induction coil is provided outside a vacuum chamber.

【符号の説明】[Explanation of symbols]

2 赤外線ランプ 3 円錐反射ミラー 4 円筒反射ミラー 5 冷却水槽 6 透明石英円板 7 真空チャンバー 8 加熱物 9 空冷機構 10 金属製ボルト 12 Oリング 13 Oリング 14 真空チャンバー上部蓋 15 金属製ルツボ 16 円筒状石英支持台 17 遮熱円筒 18 円筒状高周波誘導コイル 19 熱電対 20 真空フランジ 21 Oリング 22 熱電対 23 冷却水入口 24 冷却水出口 25 水冷用溝 26 上下稼動機構 2 infrared lamp 3 conical reflection mirror 4 Cylindrical reflection mirror 5 cooling water tank 6 Transparent quartz disk 7 vacuum chamber 8 heated items 9 Air cooling mechanism 10 metal bolts 12 O-ring 13 O-ring 14 Vacuum chamber top lid 15 Metal crucible 16 Cylindrical quartz support 17 Heat shield cylinder 18 Cylindrical high frequency induction coil 19 thermocouple 20 vacuum flange 21 O-ring 22 thermocouple 23 Cooling water inlet 24 Cooling water outlet 25 Water cooling groove 26 Vertical movement mechanism

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 21/26 H05B 3/00 345 H05B 3/00 345 11/00 Z 11/00 H01L 21/26 G J (72)発明者 八島 照行 神奈川県相模原市田名10213−26 日本サ ーモニクス株式会社内 Fターム(参考) 3K058 AA02 BA19 CA12 CA28 CA69 EA11 EA23 3K059 AB09 AB15 AD02 3K086 AA10 BA01 BB02 CA02 CB04 4K063 AA06 AA12 AA16 AA19 BA04 CA01 CA06 DA19 FA13 FA36 FA43 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) H01L 21/26 H05B 3/00 345 H05B 3/00 345 11/00 Z 11/00 H01L 21/26 G J (72) Inventor Teruyuki Yashima 10213−26 Tana, Sagamihara-shi, Kanagawa Japan F-Term inside Thermonics Co., Ltd. (Reference) 3K058 AA02 BA19 CA12 CA28 CA69 EA11 EA23 3K059 AB09 AB15 AD02 3K086 AA10 BA01 BB02 CA02 CB04 4K063 AA06 AA12 AA12 A12 AA19 BA04 CA01 CA06 DA19 FA13 FA36 FA43

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 真空チャンバー内に設けてある加熱物
に、その相反する方向に具備している2台の赤外線輻射
加熱器により赤外線を照射し、加熱物を室温より高温度
に昇温させ、更に、加熱物の外周部には高周波誘導加熱
用コイルを具備し、上記赤外線輻射加熱により超高速で
高温度に到達している加熱物に高周波を供給し、超高温
領域まで超高速昇温が出来、均一な温度分布も得られる
ようにした超高温・超高速・均一加熱装置。
1. A heating object provided in a vacuum chamber is irradiated with infrared rays by two infrared radiation heaters provided in opposite directions to heat the heating object to a temperature higher than room temperature, Further, a coil for high frequency induction heating is provided on the outer peripheral part of the heated object, and high frequency is supplied to the heated object which has reached a high temperature at an ultra high speed by the above infrared radiation heating, and an ultra high temperature rise to an ultra high temperature region is possible. A super high temperature, super high speed, uniform heating device that is capable of achieving uniform temperature distribution.
【請求項2】 上記2台の赤外線輻射加熱器は、赤外線
ランプと複合型反射ミラーを有する赤外線発生部と、赤
外線透過用透明石英円板を有する真空チャンバーを具備
し、上記赤外線ランプで発生する赤外線が真空又は各種
ガス雰囲気下にある真空チャンバー内に設けてある加熱
物を照射し、真空チャンバー内に設けてある加熱物の一
方面側を加熱する一方の赤外線輻射加熱器と、この一方
の赤外線輻射加熱器と反対側に、上記加熱物の他方面側
を加熱する他方の赤外線輻射加熱器とからなる上記請求
項1に記載の超高温・超高速・均一加熱装置。
2. The two infrared radiant heaters are equipped with an infrared ray generating part having an infrared ray lamp and a composite reflection mirror, and a vacuum chamber having a transparent quartz disk for transmitting infrared rays. Infrared rays irradiate a heating object provided in a vacuum chamber under vacuum or various gas atmospheres, and one infrared radiation heater for heating one side of the heating object provided in the vacuum chamber, and one of these The ultra-high temperature / ultra-high speed / uniform heating device according to claim 1, comprising another infrared radiation heater for heating the other surface side of the heating object on the side opposite to the infrared radiation heater.
【請求項3】 高周波誘導加熱方式の高周波発生用誘導
コイルは、上記赤外線透過用石英円板を有する真空チャ
ンバー内に設けてある加熱物近傍の外周部に設置され、
その励起電源は真空フランジにより、上記赤外線透過用
石英円板を有する真空チャンバー内に導かれることを特
徴とする上記請求項1又は2に記載の超高温・超高速・
均一加熱装置。
3. A high frequency induction heating type induction coil of a high frequency induction heating system is installed in an outer peripheral portion in the vicinity of a heated object provided in a vacuum chamber having the infrared transmitting quartz disk,
The excitation power source is guided by a vacuum flange into a vacuum chamber having the infrared transmitting quartz disk.
Uniform heating device.
【請求項4】 高周波誘導加熱方式の高周波発生用誘導
コイルは、上記真空チャンバーの外に設けてあることを
特徴とする上記請求項1に記載の超高温・超高速・均一
加熱装置。
4. The ultra-high temperature / ultra-high speed / uniform heating apparatus according to claim 1, wherein the induction coil for high frequency induction heating type high frequency generation is provided outside the vacuum chamber.
【請求項5】 加熱物設置部は、上記赤外線透過用石英
円板及び高周波導入用真空フランジを、有する真空チャ
ンバー内に金属製ルツボ及びその支持用石英支持台を設
け、その中に加熱物を載置し、その外周部には断熱円筒
を設け、その外周部に高周波発生用誘導コイルを設置し
ていることを特徴とする上記請求項1〜3の何れかに記
載の超高温・超高速・均一加熱装置。
5. The heating object installation section is provided with a metal crucible and a quartz support table for supporting the same in a vacuum chamber having the infrared transmitting quartz disk and the high frequency introducing vacuum flange, and the heating object is placed in the crucible. The ultrahigh temperature / high speed according to any one of claims 1 to 3, characterized in that a heat insulating cylinder is provided on an outer peripheral portion of the device, and an induction coil for high frequency generation is installed on the outer peripheral portion thereof.・ Uniform heating device.
【請求項6】 加熱物の昇温は、加熱物の温度測定を超
高温用熱電対を用いて測定しながら、上下対面状態に設
置された赤外線輻射加熱器により、赤外線を加熱物に輻
射しながら行い、高周波誘導加熱による昇温は、金属製
ルツボ側面の温度を測定しながら高周波を加熱物に供給
し、いずれの場合も温度測定は高周波誘導により熱電対
自身の昇温が生じない極細の超高温用熱電対を使用し
て、温度測定を行うことを特徴とする上記請求項1〜5
の何れかに記載の超高温・超高速・均一加熱装置。
6. The heating of the heated object is performed by irradiating infrared rays to the heated object with an infrared radiation heater installed in a face-to-face state while measuring the temperature of the heated object using a thermocouple for ultra-high temperature. The temperature is raised by high frequency induction heating while supplying the high frequency to the heating object while measuring the temperature of the side surface of the metal crucible, and in any case, the temperature measurement is extremely fine because the temperature of the thermocouple itself does not rise due to the high frequency induction. The temperature measurement is performed by using a thermocouple for ultrahigh temperature.
Ultra-high temperature, ultra-high speed, uniform heating device according to any one of 1.
【請求項7】 上記赤外線輻射加熱器の複合反射ミラー
は、円錐型反射ミラーと、円筒型反射ミラーで構成さ
れ、その反射ミラー面は赤外線が最も良く反射する金メ
ッキが施されており、赤外線ランプから輻射した赤外線
は複合反射ミラーにより、ほぼ平行に輻射移動し、真空
チャンバーの上部の透明石英円板を透過し、真空チャン
バー内加熱物に照射され、複合ミラー面は、赤外線ラン
プからの赤外線照射による昇温を防ぐ為、その外周は水
槽構造を形成し、赤外線ランプ点灯時には常に冷却水が
水槽の下部より上部に流出していることを特徴とする上
記請求項1〜6の何れかに記載の超高温・超高速・均一
加熱装置。
7. A composite reflection mirror of the infrared radiant heater comprises a conical reflection mirror and a cylindrical reflection mirror, the reflection mirror surface of which is plated with gold to best reflect infrared rays. The infrared rays radiated from the infrared rays are radiated and moved almost in parallel by the compound reflection mirror, transmitted through the transparent quartz disk in the upper part of the vacuum chamber, and radiated to the heating object in the vacuum chamber, and the compound mirror surface irradiates infrared rays from the infrared lamp. In order to prevent a temperature rise due to, the outer circumference forms a water tank structure, and when the infrared lamp is turned on, the cooling water always flows out from the lower part to the upper part of the water tank. Ultra high temperature, ultra high speed, uniform heating device.
【請求項8】 上記真空チャンバーは、金属材料で製作
され、赤外線透過用石英円板が2個,高周波誘導電力入
力用真空フランジが1個の他に、真空排気口用フランジ
各種ガス流出口用,真空計用等の複数個の真空フランジ
が付属しており、更に真空チャンバー自体の温度上昇を
防ぐ為、その外周部に水冷用溝を有し、加熱物の昇温中
は常に冷却水がその下部より上部へ流出していることを
特徴とする上記請求項1〜7の何れかに記載の超高温・
超高速・均一加熱装置。
8. The vacuum chamber is made of a metal material and has two quartz disks for transmitting infrared rays, one vacuum flange for inputting high frequency induction power, and a vacuum exhaust flange for various gas outlets. , With multiple vacuum flanges for vacuum gauges, etc. Furthermore, to prevent the temperature of the vacuum chamber itself from rising, it has a water cooling groove on its outer periphery, and cooling water is constantly maintained during heating of the heated object. The ultra-high temperature according to any one of claims 1 to 7, characterized in that it flows from the lower part to the upper part.
Ultra high speed and uniform heating device.
JP2002131187A 2002-05-07 2002-05-07 Ultra high temperature and ultra high speed uniformly heating device Pending JP2003323971A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002131187A JP2003323971A (en) 2002-05-07 2002-05-07 Ultra high temperature and ultra high speed uniformly heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002131187A JP2003323971A (en) 2002-05-07 2002-05-07 Ultra high temperature and ultra high speed uniformly heating device

Publications (1)

Publication Number Publication Date
JP2003323971A true JP2003323971A (en) 2003-11-14

Family

ID=29543918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002131187A Pending JP2003323971A (en) 2002-05-07 2002-05-07 Ultra high temperature and ultra high speed uniformly heating device

Country Status (1)

Country Link
JP (1) JP2003323971A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005243667A (en) * 2004-02-24 2005-09-08 National Institute Of Advanced Industrial & Technology Heat treatment equipment
JP2012050937A (en) * 2010-09-01 2012-03-15 Ricoh Co Ltd Waste liquid treatment apparatus
WO2014204579A1 (en) * 2013-06-21 2014-12-24 Applied Materials, Inc. Absorbing reflector for semiconductor processing chamber
CN105605922A (en) * 2016-01-29 2016-05-25 华中科技大学 Ultrahigh speed material heating system
CN113395796A (en) * 2021-05-13 2021-09-14 散裂中子源科学中心 Closed-cavity magnetic induction heating device for neutron scattering measurement and application thereof
CN113466282A (en) * 2021-07-02 2021-10-01 兰州空间技术物理研究所 Device, system and method for measuring thermal deformation displacement of grid assembly in atmospheric environment
WO2023219032A1 (en) * 2022-05-12 2023-11-16 国立研究開発法人理化学研究所 Atom beam generation device, physics package, physics package for optical lattice clock, physics package for atomic clock, physics package for atomic interfererometer, physics package for quantum information processing device, and physics package system

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005243667A (en) * 2004-02-24 2005-09-08 National Institute Of Advanced Industrial & Technology Heat treatment equipment
JP2012050937A (en) * 2010-09-01 2012-03-15 Ricoh Co Ltd Waste liquid treatment apparatus
WO2014204579A1 (en) * 2013-06-21 2014-12-24 Applied Materials, Inc. Absorbing reflector for semiconductor processing chamber
US9832816B2 (en) 2013-06-21 2017-11-28 Applied Materials, Inc. Absorbing reflector for semiconductor processing chamber
US10306708B2 (en) 2013-06-21 2019-05-28 Applied Materials, Inc. Absorbing reflector for semiconductor processing chamber
CN105605922A (en) * 2016-01-29 2016-05-25 华中科技大学 Ultrahigh speed material heating system
CN113395796A (en) * 2021-05-13 2021-09-14 散裂中子源科学中心 Closed-cavity magnetic induction heating device for neutron scattering measurement and application thereof
CN113395796B (en) * 2021-05-13 2023-09-05 散裂中子源科学中心 Closed cavity magnetic induction heating device for neutron scattering measurement and application thereof
CN113466282A (en) * 2021-07-02 2021-10-01 兰州空间技术物理研究所 Device, system and method for measuring thermal deformation displacement of grid assembly in atmospheric environment
WO2023219032A1 (en) * 2022-05-12 2023-11-16 国立研究開発法人理化学研究所 Atom beam generation device, physics package, physics package for optical lattice clock, physics package for atomic clock, physics package for atomic interfererometer, physics package for quantum information processing device, and physics package system

Similar Documents

Publication Publication Date Title
Roozeboom et al. Rapid thermal processing systems: A review with emphasis on temperature control
US7860379B2 (en) Temperature measurement and control of wafer support in thermal processing chamber
KR100977886B1 (en) Heat treatment apparatus and storage medium
US7269343B2 (en) Heating configuration for use in thermal processing chambers
JPH01319934A (en) Method of quick heat treatment of semiconductor wafer using electromagnetic radiation application
TW303498B (en)
JP5597251B2 (en) Substrate processing with fiber laser
JP2003500844A (en) Apparatus and method for heat treating a substrate
JP5530431B2 (en) Apparatus and method for measuring radiant energy during heat treatment
JPS60258928A (en) Device and method for heating semiconductor wafer
WO2000041223A1 (en) Heating device for heating semiconductor wafers in thermal processing chambers
JP4641372B2 (en) Apparatus and method for processing ceramics
JPH11176759A (en) Heating apparatus for chemical vapor deposition
US3665139A (en) Device for epitactic precipitation of semiconductor material
WO2013181263A1 (en) Apparatus and methods for rapid thermal processing
JP2003323971A (en) Ultra high temperature and ultra high speed uniformly heating device
JP2011099567A (en) Infrared heating device, infrared irradiating device, and infrared irradiating direction adjusting device
KR101289013B1 (en) The vacuum heat treatment apparatus which is possible to control a rapid temperature and the atmosphere
JP2009085796A (en) Measuring device of reflectivity or transmittance of electromagnetic wave at high temperature
US20050221017A1 (en) Method of heat treating coatings by using microwave
JPH07114188B2 (en) Heat treatment method for semiconductor substrate and heat treatment apparatus used therefor
TWI810772B (en) A fast annealing equipment
JP2001015248A (en) Infrared radiation heating device
JPH1082589A (en) Plane heating type infrared radiation heater
JP2003100651A (en) Substrate heat treatment apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070403

RD04 Notification of resignation of power of attorney

Effective date: 20070404

Free format text: JAPANESE INTERMEDIATE CODE: A7424

A131 Notification of reasons for refusal

Effective date: 20070710

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071113