JP2005240602A - Exhaust apparatus of internal combustion engine - Google Patents

Exhaust apparatus of internal combustion engine Download PDF

Info

Publication number
JP2005240602A
JP2005240602A JP2004048885A JP2004048885A JP2005240602A JP 2005240602 A JP2005240602 A JP 2005240602A JP 2004048885 A JP2004048885 A JP 2004048885A JP 2004048885 A JP2004048885 A JP 2004048885A JP 2005240602 A JP2005240602 A JP 2005240602A
Authority
JP
Japan
Prior art keywords
expansion chamber
exhaust
internal combustion
combustion engine
branch pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004048885A
Other languages
Japanese (ja)
Inventor
Hideaki Takahashi
秀明 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2004048885A priority Critical patent/JP2005240602A/en
Publication of JP2005240602A publication Critical patent/JP2005240602A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust apparatus of an internal combustion engine capable of preventing the disturbance of exhaust flow in an expansion chamber. <P>SOLUTION: This exhaust apparatus of the internal combustion engine 1 comprises the expansion chamber 8 into which exhaust gases exhausted from cylinders are collected, a plurality of branch pipes 4 to 7 leading the exhaust gases from the exhaust ports of the cylinders into the expansion chamber 8, a catalyst 3 positioned on the exhaust gas downstream side of the expansion chamber 8 and purifying the exhaust gases led through the outlet part 11 of the expansion chamber. The branch pipes 4 to 7 are connected to the expansion chamber 8 so that the exhaust flows flowing from one side opening parts 4a to 7a of the branch pipes 4 to 7 into the expansion chamber 8 are directed in roughly a same direction and are not directed to the outlet part 11 of the expansion chamber. The expansion chamber 8 is formed at a position where the opening center P of the outlet part 11 of the expansion chamber is orthogonal to the direction of a cylinder row and comes out of a plane including a cylinder row center Q. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、内燃機関の排気装置に関する。   The present invention relates to an exhaust device for an internal combustion engine.

特許文献1には、気筒間の排気流れが互いに干渉するように、各気筒からの排気を拡張室に導入するようにした構成が開示されている。   Patent Document 1 discloses a configuration in which exhaust from each cylinder is introduced into an expansion chamber so that exhaust flows between the cylinders interfere with each other.

この特許文献1においては、冷機始動時は点火時期を遅角することで排気を昇温させ、未燃炭化水素を酸化させ、触媒の早期活性化を図っている。
特開2002−122017号公報
In this Patent Document 1, at the time of cold start, the ignition timing is retarded to raise the temperature of the exhaust, oxidize unburned hydrocarbons, and promote early activation of the catalyst.
JP 2002-122017 A

しかしながら、上記特許文献1においては、冷機始動時に排気温度を昇温させるために点火時期を遅角するため、排気ガスボリュームは増大することとなる。また、排気マニホールド壁面は始動直後で冷えている状態である。   However, in Patent Document 1, since the ignition timing is retarded in order to raise the exhaust gas temperature at the time of cold start, the exhaust gas volume increases. The exhaust manifold wall surface is in a cold state immediately after starting.

そのため、各気筒からの排気の流れば拡張室内で互いにぶつかりあい干渉しあうと、拡張室内での排気流れの乱れが大きくなり、それによる拡張室内壁への熱伝達率が大きくなることでの放熱が発生し、排気ガス温度が低下して排気マニホールド内での排気ガスの昇温効果が低下する虞があるがある。また、拡張室内での気筒干渉が発生することで出力の低下する虞がある。   Therefore, if exhaust flows from each cylinder collide with each other in the expansion chamber and interfere with each other, the turbulence of the exhaust flow in the expansion chamber increases, resulting in heat dissipation due to a larger heat transfer coefficient to the expansion chamber wall. May occur, and the exhaust gas temperature may fall, and the temperature rise effect of the exhaust gas in the exhaust manifold may be reduced. Moreover, there is a possibility that the output may be reduced due to cylinder interference in the expansion chamber.

そこで、本発明は、各気筒から排出された排気が集合する拡張室と、各気筒の排気ポートからの排気を拡張室内に導入する複数の分岐管と、拡張室の排気下流側に位置し、拡張室出口部を経て導入された排気を浄化する触媒と、を有する内燃機関の排気装置において、各分岐管は、各分岐管の一端側開口部から拡張室内に流れ込む各排気流れが、互いに略同一方向を指向し、かつ拡張室出口部を指向しないよう拡張室にそれぞれ接続されている共に、拡張室は、拡張室出口部の開口中心が、気筒列方向に直交し気筒列中心を含む平面上から外れた位置に形成されていることを特徴としている。   Therefore, the present invention is located in the expansion chamber where the exhaust discharged from each cylinder gathers, a plurality of branch pipes for introducing the exhaust from the exhaust port of each cylinder into the expansion chamber, and the exhaust downstream side of the expansion chamber, And an exhaust device for an internal combustion engine having a catalyst for purifying exhaust gas introduced through the expansion chamber outlet, and the branch pipes have substantially the same exhaust flows flowing into the expansion chamber from the one end side opening of each branch pipe. The expansion chamber is connected to the expansion chamber so as to be directed in the same direction and not toward the expansion chamber outlet, and the expansion chamber has a plane in which the opening center of the expansion chamber outlet is perpendicular to the cylinder row direction and includes the cylinder row center. It is characterized by being formed at a position off the top.

本発明によれば、拡張室内へ流入した排気が拡張室出口部へ直接抜けず拡張室内に滞留する排気の滞留時間が相対的に増大することになり、拡張室内における排気中の未燃炭化水素の酸化を効率よく行うことができ、排気性能の向上を図ることができる。また、拡張室内で、各分岐管からの排気流れが互いにぶつかりあうことはなく、拡張室内での排気流れの乱れによって大きくなる拡張室内の排気から拡張室内壁への熱伝達率の増加を抑制することができ、総じて排気温度の低下を防止することができる。また、拡張室内での気筒干渉も防止することができるので、気筒干渉によるエンジン出力の低下代を小さくすることができる。   According to the present invention, the residence time of the exhaust gas that has flowed into the expansion chamber and does not directly escape to the outlet portion of the expansion chamber and stays in the expansion chamber is relatively increased. Can be efficiently oxidized, and exhaust performance can be improved. In addition, the exhaust flows from the branch pipes do not collide with each other in the expansion chamber, and the increase in the heat transfer coefficient from the exhaust in the expansion chamber to the expansion chamber wall, which increases due to the disturbance of the exhaust flow in the expansion chamber, is suppressed. In general, the exhaust temperature can be prevented from lowering. Further, cylinder interference in the expansion chamber can also be prevented, so that a reduction in engine output due to cylinder interference can be reduced.

以下、本発明の一実施形態を図面に基づいて詳細に説明する。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.

図1は、本発明の第1実施形態に係る内燃機関の排気装置の概略構成を示す正面図であり、図2は図1の右側面図である。尚、本実施形態は、直列4気筒エンジンに適用した例を示すものである。   FIG. 1 is a front view showing a schematic configuration of an exhaust device for an internal combustion engine according to a first embodiment of the present invention, and FIG. 2 is a right side view of FIG. In addition, this embodiment shows the example applied to the inline 4-cylinder engine.

排気装置1は、エンジン本体(図示せず)の排気ポート(図示せず)に接続される排気マニホールド2と、排気マニホールド2に接続された触媒3と、から大略構成され、エンジン本体の側方に排気マニホールド2が位置し、排気マニホールド2の下方(図1及び図2おける下方)に触媒3が配置されるレイアウトとなっている。   The exhaust device 1 is generally composed of an exhaust manifold 2 connected to an exhaust port (not shown) of an engine body (not shown), and a catalyst 3 connected to the exhaust manifold 2, and the exhaust device 1 is arranged laterally. In this layout, the exhaust manifold 2 is located at the bottom, and the catalyst 3 is disposed below the exhaust manifold 2 (downward in FIGS. 1 and 2).

排気マニホールド2は、各気筒の排気ポートに連通する分岐管4,5,6,7と、各分岐管4,5,6,7の一端側が接続され、各気筒から排出された排気を合流させる拡張室8と、を有している。   The exhaust manifold 2 is connected to the branch pipes 4, 5, 6, 7 communicating with the exhaust ports of the respective cylinders and one end sides of the branch pipes 4, 5, 6, 7, and joins the exhaust discharged from the cylinders. And an expansion chamber 8.

各分岐管4,5,6,7の一端は、拡張室8の外周壁に接続されている。各分岐管4,5,6,7の他端は、細長い矩形板状のフランジ9によって互いに連結されており、このフランジ9をエンジン本体に固定することにより、排気マニホールド2の排気上流側端部10となる各分岐管4,5.6,7の他端側がそれぞれ対応する排気ポートに接続される。尚、各分岐管4,5,6,7の通路断面積は互いに等しいものである。   One end of each branch pipe 4, 5, 6, 7 is connected to the outer peripheral wall of the expansion chamber 8. The other ends of the branch pipes 4, 5, 6, and 7 are connected to each other by an elongated rectangular plate-like flange 9. By fixing the flange 9 to the engine body, the exhaust upstream side end portion of the exhaust manifold 2 is connected. The other end sides of the branch pipes 4, 5.6, and 7 that are 10 are connected to the corresponding exhaust ports. The passage cross-sectional areas of the branch pipes 4, 5, 6, and 7 are equal to each other.

拡張室8は、その排気下流側(図1及び図2おける下方)に、拡張室出口部11を有している。そして、拡張室出口部11よりも排気下流側に位置する排気マニホールド2の排気下流側端部12に触媒3が接続されている。   The expansion chamber 8 has an expansion chamber outlet 11 on the exhaust downstream side (downward in FIGS. 1 and 2). The catalyst 3 is connected to the exhaust downstream end 12 of the exhaust manifold 2 located on the exhaust downstream side of the expansion chamber outlet 11.

各分岐管4,5,6,7は、図3に示すように、各分岐管4,5,6,7の一端側開口部4a,5a,6a,7aから拡張室8内に流れ込む各排気流れが、互いに略同一方向を指向するよう拡張室8にそれぞれ接続されている。換言すれば、各分岐管4,5,6,7から拡張室8内に流入する各排気流れが互いに干渉しあうことがないよう各分岐管4,5,6,7の一端側開口部4a,5a,6a,7aの開口方向が略同一方向を指向して拡張室8内に排気流れの渦f5が形成されるように、各分岐管4,5,6,7は拡張室8に接続されている。つまり、各分岐管4,5,6,7は、各分岐管4,5,6,7から拡張室8へ流入する各排気流れf1〜f4の流れのベクトルが略一致するよう、一端側開口部4a,5a,6a,7aの開口方向が略同一方向を指向している。   As shown in FIG. 3, each branch pipe 4, 5, 6, 7 has each exhaust gas flowing into the expansion chamber 8 from one end side opening 4 a, 5 a, 6 a, 7 a of each branch pipe 4, 5, 6, 7. The flows are respectively connected to the expansion chambers 8 so as to be directed in substantially the same direction. In other words, one end side opening 4a of each branch pipe 4, 5, 6, 7 so that the exhaust flows flowing into the expansion chamber 8 from each branch pipe 4, 5, 6, 7 do not interfere with each other. , 5a, 6a, 7a are connected to the expansion chamber 8 so that the vortex f5 of the exhaust flow is formed in the expansion chamber 8 so that the opening directions thereof are substantially in the same direction. Has been. That is, each branch pipe 4, 5, 6, 7 is opened at one end so that the flow vectors of the exhaust flows f1 to f4 flowing into the expansion chamber 8 from the branch pipes 4, 5, 6, 7 substantially coincide with each other. The opening directions of the portions 4a, 5a, 6a, and 7a are directed in substantially the same direction.

さらにまた、各分岐管4,5,6,7は、その一端側開口部4a,5a,6a,7aが拡張室出口部11を指向しないよう拡張室8にそれぞれ接続されている。そして、拡張室8は、拡張室出口部11の開口中心Pが、気筒列方向に直交し気筒列中心を含む平面上に位置しないように形成されている。換言すれば、拡張室出口部11の開口中心Pは、気筒列中心Qに対してオフセットしている。ここで、気筒列中心Qは、気筒列方向(図3における左右方向)における分岐管4の他端側開口部4bと分岐管7の他端側開口部7bとの中間位置と略一致するものである。   Furthermore, each branch pipe 4, 5, 6, 7 is connected to the expansion chamber 8 so that the one end side openings 4 a, 5 a, 6 a, 7 a do not face the expansion chamber outlet 11. The expansion chamber 8 is formed such that the opening center P of the expansion chamber outlet 11 is not positioned on a plane that is orthogonal to the cylinder row direction and includes the cylinder row center. In other words, the opening center P of the expansion chamber outlet 11 is offset with respect to the cylinder row center Q. Here, the cylinder row center Q substantially coincides with an intermediate position between the other end side opening 4b of the branch pipe 4 and the other end side opening 7b of the branch pipe 7 in the cylinder row direction (left and right direction in FIG. 3). It is.

そして、各分岐管4,5,6,7は、各分岐管4,5,6,7の一端側開口部4a,5a,6a,7aにおいて、分岐管4,5,6,7から拡張室8内に流れ込む排気の流入方向側(図3における左側)の分岐管内壁面が、拡張室8の内壁面と滑らかに連続するようそれぞれ形成されている。   The branch pipes 4, 5, 6, and 7 extend from the branch pipes 4, 5, 6, and 7 at the one end side openings 4a, 5a, 6a, and 7a of the branch pipes 4, 5, 6, and 7, respectively. The inner wall surface of the branch pipe on the inflow direction side (the left side in FIG. 3) of the exhaust gas flowing into the inner space 8 is formed so as to be smoothly continuous with the inner wall surface of the expansion chamber 8.

また、拡張室出口部11における排気通路断面積A2は、拡張室出口部11よりも排気上流側における拡張室8内の排気通路断面積よりも小さくなるよう形成されている。より詳しくは、拡張室出口部11における通路断面積A2が、各分岐管4,5,6,7の通路断面積A1の2倍以下の大きさとなるよう設定されている。   Further, the exhaust passage cross-sectional area A <b> 2 at the expansion chamber outlet portion 11 is formed to be smaller than the exhaust passage cross-sectional area in the expansion chamber 8 on the exhaust upstream side of the expansion chamber outlet portion 11. More specifically, the passage cross-sectional area A2 at the expansion chamber outlet 11 is set to be not more than twice the passage cross-sectional area A1 of each branch pipe 4, 5, 6, 7.

拡張室8は、拡張室出口部11近傍において、排気下流側の拡張室出口部11に向かって漸次その通路断面積が小さくなるよう略漏斗状に形成されている。そして、排気マニホールド2は、拡張室出口部11から排気マニホールド2の排気下流側端部12に向かって、漸次その通路断面積が大きくなるよう略漏斗状に形成されている。つまり、排気マニホールド2は、拡張室出口部11の前後で通路断面積に絞りが加えられた形状となっている。   The expansion chamber 8 is formed in a substantially funnel shape in the vicinity of the expansion chamber outlet 11 so that the cross-sectional area of the passage gradually decreases toward the expansion chamber outlet 11 on the exhaust downstream side. The exhaust manifold 2 is formed in a substantially funnel shape so that its passage cross-sectional area gradually increases from the expansion chamber outlet portion 11 toward the exhaust downstream side end portion 12 of the exhaust manifold 2. That is, the exhaust manifold 2 has a shape in which the passage cross-sectional area is restricted before and after the expansion chamber outlet portion 11.

また、排気マニホールド2の拡張室出口部11の位置には、排気中の空燃比を検出する空燃比センサ13が配置されている。   An air-fuel ratio sensor 13 for detecting the air-fuel ratio in the exhaust is disposed at the position of the expansion chamber outlet 11 of the exhaust manifold 2.

このような第1実施形態においては、各分岐管4,5,6,7の一端側開口部4a,5a,6a,7aから拡張室8内に流れ込む各排気流れが互いに略同一方向を指向すると共に、各分岐管4,5,6,7の一端側開口部4a,5a,6a,7aが拡張室出口部11を直接指向せず、かつ拡張室出口部11の開口中心Pが気筒列方向に直交し気筒列中心Qを含む平面上に位置しないよう構成されているので、拡張室8内へ流入した排気が拡張室出口部11へ直接抜けず拡張室8内に滞留する排気の滞留時間が相対的に増大することになり、拡張室8内における排気中の未燃炭化水素の酸化を効率よく行うことができ、排気性能の向上を図ることができる。また、各分岐管4,5,6,7から拡張室8に流れ込む排気の流れは、互いに略同一方向を指向しているため、拡張室8内で互いにぶつかりあわず、拡張室8内に渦をまく流れf5を形成することになり、拡張室8内で、各分岐管4,5,6,7からの排気流れf1,f2,f3,f4が互いにぶつかりあうことはなく、拡張室8内での排気流れの乱れによって大きくなる拡張室8内の排気から拡張室8内壁への熱伝達率の増加を抑制することができ、総じて排気温度の低下を防止することができる。また、拡張室8内での気筒干渉も防止することができるので、気筒干渉によるエンジン出力の低下代を小さくすることができる。   In such a first embodiment, the exhaust flows flowing into the expansion chamber 8 from the one end side openings 4a, 5a, 6a, 7a of the branch pipes 4, 5, 6, 7 are directed in substantially the same direction. At the same time, the one end side openings 4a, 5a, 6a, and 7a of the branch pipes 4, 5, 6, and 7 are not directly directed to the expansion chamber outlet portion 11, and the opening center P of the expansion chamber outlet portion 11 is in the cylinder row direction. Since the exhaust gas flowing into the expansion chamber 8 does not directly escape to the expansion chamber outlet 11 and stays in the expansion chamber 8 is configured so as not to be positioned on a plane that is orthogonal to the cylinder row center Q. As a result, the unburned hydrocarbons in the exhaust in the expansion chamber 8 can be efficiently oxidized, and the exhaust performance can be improved. Further, the exhaust flows flowing into the expansion chamber 8 from the branch pipes 4, 5, 6, 7 are directed in substantially the same direction, so that they do not collide with each other in the expansion chamber 8, and the vortex flows into the expansion chamber 8. In the expansion chamber 8, the exhaust flows f1, f2, f3, and f4 from the branch pipes 4, 5, 6, and 7 do not collide with each other in the expansion chamber 8. The increase in the heat transfer coefficient from the exhaust in the expansion chamber 8 to the inner wall of the expansion chamber 8 that increases due to the turbulence of the exhaust flow can be suppressed, and the exhaust temperature can be generally prevented from decreasing. Further, cylinder interference in the expansion chamber 8 can also be prevented, so that a reduction margin of engine output due to cylinder interference can be reduced.

さらに、各分岐管4,5,6,7は、各分岐管4,5,6,7の一端側開口部4a,5a,6a,7aにおいて、分岐管4,5,6,7から拡張室8内に流れ込む排気の流入方向側(図3における左側)の分岐管内壁面が、拡張室8の内壁面と滑らかに連続するようそれぞれ形成されているので、各分岐管4,5,6,7から排気が拡張室8に流れ込む際に、排気が拡張室8の内壁面に衝突することなく、拡張室8の内壁面に沿って拡張室8内に流入することになるため、排気から拡張室内壁面への熱伝達率の低下を図る上で有利であり、かつ拡張室8内に渦をまくような排気流れ(図1〜図3における流れf5)を形成するのにも有利である。   Further, the branch pipes 4, 5, 6, and 7 extend from the branch pipes 4, 5, 6, and 7 at the one end side openings 4a, 5a, 6a, and 7a of the branch pipes 4, 5, 6, and 7, respectively. Since the inner wall surface of the branch pipe on the inflow direction side (the left side in FIG. 3) of the exhaust gas flowing into the inner wall 8 is formed to be smoothly continuous with the inner wall surface of the expansion chamber 8, each branch pipe 4, 5, 6, 7 is formed. When the exhaust gas flows into the expansion chamber 8 from the exhaust gas, the exhaust gas flows into the expansion chamber 8 along the inner wall surface of the expansion chamber 8 without colliding with the inner wall surface of the expansion chamber 8. It is advantageous for reducing the heat transfer coefficient to the wall surface, and is also advantageous for forming an exhaust flow (flow f5 in FIGS. 1 to 3) that vortexes in the expansion chamber 8.

そして、排気マニホールド2は、拡張室出口部11の前後で通路断面積に絞りが加えられた形状となっているので、拡張室8内における排気の滞留時間が相対的に長くなり、拡張室8内における未燃炭化水素の酸化を一層促進することができると共に、触媒3に対して均一な流れの排気を送り込むことができ、触媒3での転化効率を向上させることができる。   Since the exhaust manifold 2 has a shape in which the passage cross-sectional area is throttled before and after the expansion chamber outlet portion 11, the residence time of the exhaust gas in the expansion chamber 8 becomes relatively long, and the expansion chamber 8 It is possible to further promote the oxidation of unburned hydrocarbons in the interior, and to send a uniform flow of exhaust to the catalyst 3, thereby improving the conversion efficiency in the catalyst 3.

また、排気マニホールド2の絞りが加えられた位置、すなわち拡張室出口部11に空燃比センサ13が配設されているので、気筒間のセンシングのバラツキを回避することができる。   In addition, since the air-fuel ratio sensor 13 is disposed at the position where the exhaust manifold 2 is throttled, that is, at the expansion chamber outlet 11, the variation in sensing between cylinders can be avoided.

次に、本発明の第2実施形態について説明する。尚、上述した第1実施形態と同一の要素には同一に符号を付し、重複する説明は省略する。   Next, a second embodiment of the present invention will be described. In addition, the same code | symbol is attached | subjected to the element same as 1st Embodiment mentioned above, and the overlapping description is abbreviate | omitted.

この第2実施形態における排気装置2は、上述した第1実施形態と同様に、排気マニホールド2と排気マニホールド21の排気下流側に位置する触媒3とによって大略構成されているが、エンジン本体の側方に位置する排気マニホールド2と触媒3との位置関係が第1実施形態とは異なっている。   The exhaust device 2 in the second embodiment is roughly constituted by the exhaust manifold 2 and the catalyst 3 positioned on the exhaust downstream side of the exhaust manifold 21 as in the first embodiment described above. The positional relationship between the exhaust manifold 2 and the catalyst 3 located in the direction is different from that of the first embodiment.

すなわち、図4〜図6に示すように、エンジン本体(図示せず)の側方に位置する排気マニホールド2に対して、触媒3が排気マニホールド2の下方に位置するのはなく、触媒3が排気マニホールド2の側方(図4、図5における右側)に位置している。   That is, as shown in FIGS. 4 to 6, the catalyst 3 is not positioned below the exhaust manifold 2 with respect to the exhaust manifold 2 positioned on the side of the engine main body (not shown). It is located on the side of the exhaust manifold 2 (the right side in FIGS. 4 and 5).

このような第2実施形態においても、上述した第1実施形態と同様に、各分岐管4,5,6,7は、各分岐管4,5,6,7の一端側開口部4a,5a,6a,7aから拡張室8内に流れ込む各排気流れf1,f2,f3,f4が、互いに略同一方向を指向するよう拡張室8にそれぞれ接続され、各分岐管4,5,6,7から拡張室8へ流入する各排気流れf1〜f4の流れのベクトルが一致するよう、一端側開口部4a,5a,6a,7aが略同一方向を指向している。さらにまた、各分岐管4,5,6,7は、その一端側開口部4a,5a,6a,7aが拡張室出口部11を指向しないよう拡張室8にそれぞれ接続され、拡張室8は、拡張室出口部11の開口中心Pが、気筒列方向に直交し気筒列中心Qを含む平面上に位置しないように形成されている。そして、各分岐管4,5,6,7は、各分岐管4,5,6,7の一端側開口部4a,5a,6a,7aにおいて、分岐管4,5,6,7から拡張室8内に流れ込む排気の流入方向側(図6における左側)の分岐管内壁面が、拡張室8の内壁面と滑らかに連続するようそれぞれ形成されている。また、拡張室出口部11における排気通路断面積A2は、拡張室出口部11よりも排気上流側における拡張室8内の排気通路断面積よりも小さくなるよう形成されている。より詳しくは、拡張室出口部11における通路断面積A2が、各分岐管4,5,6,7の通路断面積A1の2倍以下となるよう設定されている。そして、排気マニホールド2は、拡張室出口部22の前後で通路断面積に絞りが加えられた形状となっており、排気中の空燃比を検出する空燃比センサ13が、排気マニホールド2の拡張室出口部11の位置に配置されている。   Also in the second embodiment, as in the first embodiment described above, the branch pipes 4, 5, 6, 7 are provided on the one end side openings 4 a, 5 a of the branch pipes 4, 5, 6, 7. , 6a, 7a, the exhaust flows f1, f2, f3, f4 flowing into the expansion chamber 8 are respectively connected to the expansion chamber 8 so as to be directed in substantially the same direction. The one end side openings 4a, 5a, 6a, and 7a are directed in substantially the same direction so that the flow vectors of the exhaust flows f1 to f4 flowing into the expansion chamber 8 coincide with each other. Furthermore, each branch pipe 4, 5, 6, 7 is connected to the expansion chamber 8 so that its one end side openings 4a, 5a, 6a, 7a are not directed to the expansion chamber outlet portion 11, respectively. The opening center P of the expansion chamber outlet 11 is formed so as not to lie on a plane perpendicular to the cylinder row direction and including the cylinder row center Q. The branch pipes 4, 5, 6, and 7 extend from the branch pipes 4, 5, 6, and 7 at the one end side openings 4a, 5a, 6a, and 7a of the branch pipes 4, 5, 6, and 7, respectively. The inner wall surface of the branch pipe on the inflow direction side (the left side in FIG. 6) of the exhaust gas flowing into 8 is formed so as to be smoothly continuous with the inner wall surface of the expansion chamber 8. Further, the exhaust passage cross-sectional area A <b> 2 at the expansion chamber outlet portion 11 is formed to be smaller than the exhaust passage cross-sectional area in the expansion chamber 8 on the exhaust upstream side of the expansion chamber outlet portion 11. More specifically, the passage cross-sectional area A2 at the expansion chamber outlet 11 is set to be not more than twice the passage cross-sectional area A1 of each branch pipe 4, 5, 6, 7. The exhaust manifold 2 has a shape in which the passage cross-sectional area is narrowed before and after the expansion chamber outlet portion 22, and the air-fuel ratio sensor 13 that detects the air-fuel ratio in the exhaust includes an expansion chamber of the exhaust manifold 2. It is arranged at the position of the outlet 11.

そのため、この第2実施形態における排気装置21においても、上述した第1実施形態の排気装置1と同様の作用効果を得ることができる。   Therefore, also in the exhaust apparatus 21 in this 2nd Embodiment, the effect similar to the exhaust apparatus 1 of 1st Embodiment mentioned above can be acquired.

上記実施形態から把握し得る本発明の技術的思想について、その効果とともに列記する。
(1) 内燃機関の排気装置は、各気筒から排出された排気が集合する拡張室と、各気筒の排気ポートからの排気を拡張室内に導入する複数の分岐管と、拡張室の排気下流側に位置し、拡張室出口部を経て導入された排気を浄化する触媒と、を有するものであって、各分岐管は、各分岐管の一端側開口部から拡張室内に流れ込む各排気流れが、互いに略同一方向を指向し、かつ拡張室出口部を指向しないよう拡張室にそれぞれ接続されている共に、拡張室は、拡張室出口部の開口中心が、気筒列方向に直交し気筒列中心を含む平面上から外れた位置に形成されている。これによって、拡張室内へ流入した排気が拡張室出口部へ直接抜けず拡張室内に滞留する排気の滞留時間が相対的に増大することになり、拡張室内における排気中の未燃炭化水素の酸化を効率よく行うことができ、排気性能の向上を図ることができる。また、拡張室内で、各分岐管からの排気流れが互いにぶつかりあうことはなく、拡張室内での排気流れの乱れによって大きくなる拡張室内の排気から拡張室内壁への熱伝達率の増加を抑制することができ、総じて排気温度の低下を防止することができる。また、拡張室内での気筒干渉も防止することができるので、気筒干渉によるエンジン出力の低下代を小さくすることができる。
The technical idea of the present invention that can be grasped from the above embodiment will be listed together with the effects thereof.
(1) An exhaust system for an internal combustion engine includes an expansion chamber in which exhaust discharged from each cylinder gathers, a plurality of branch pipes for introducing exhaust from the exhaust ports of each cylinder into the expansion chamber, and an exhaust downstream side of the expansion chamber And a catalyst for purifying exhaust gas introduced through the expansion chamber outlet, and each branch pipe has an exhaust flow flowing into the expansion chamber from one end side opening of each branch pipe, The expansion chambers are connected to the expansion chambers so that they are oriented in substantially the same direction and not to the expansion chamber outlet, and the expansion chamber has an opening center of the expansion chamber outlet perpendicular to the cylinder row direction and the cylinder row center. It is formed at a position deviating from the plane that contains it. As a result, the residence time of the exhaust gas that has flowed into the expansion chamber and does not directly escape to the expansion chamber outlet and stays in the expansion chamber is relatively increased, and oxidation of unburned hydrocarbons in the exhaust in the expansion chamber is reduced. This can be performed efficiently, and exhaust performance can be improved. In addition, the exhaust flows from the branch pipes do not collide with each other in the expansion chamber, and the increase in the heat transfer coefficient from the expansion chamber exhaust to the expansion chamber wall, which increases due to the disturbance of the exhaust flow in the expansion chamber, is suppressed. In general, the exhaust temperature can be prevented from lowering. In addition, cylinder interference in the expansion chamber can be prevented, so that a reduction margin of engine output due to cylinder interference can be reduced.

(2) 上記(1)に記載の内燃機関の排気装置において、拡張室出口部における排気通路断面積は、拡張室出口部よりも排気上流側における拡張室内の排気通路断面積よりも小さくなるよう形成されている。これによって、拡張室内における排気の滞留時間が相対的に長くなり、拡張室内における未燃炭化水素の酸化を一層促進することができると共に、触媒に対して均一な流れの排気を送り込むことができ、触媒での転化効率を向上させることができる。   (2) In the exhaust system for an internal combustion engine according to (1), the exhaust passage cross-sectional area at the outlet of the expansion chamber is smaller than the cross-sectional area of the exhaust passage in the expansion chamber upstream of the outlet of the expansion chamber. Is formed. As a result, the residence time of the exhaust in the expansion chamber becomes relatively long, the oxidation of unburned hydrocarbons in the expansion chamber can be further promoted, and a uniform flow of exhaust can be sent to the catalyst. The conversion efficiency with a catalyst can be improved.

(3) 上記(2)に記載の内燃機関の排気装置いおいて、拡張室出口部近傍に空燃比センサが配設されている。これによって、気筒間のセンシングのバラツキを回避することができる。   (3) In the exhaust system for an internal combustion engine according to (2), an air-fuel ratio sensor is disposed in the vicinity of the expansion chamber outlet. As a result, variations in sensing between cylinders can be avoided.

(4) 上記(1)〜(3)のいずれかに記載の内燃機関の排気装置において、各分岐管の一端側開口部において、分岐管から拡張室内に流れ込む排気の流入方向側の分岐管内壁面は、拡張室の内壁面と滑らかに連続するようそれぞれ形成されている。これによって、各分岐管から排気が拡張室に流れ込む際に、排気が拡張室の内壁面に衝突することなく、拡張室の内壁面に沿って拡張室内に流入することになるため、排気から拡張室内壁面への熱伝達率の低下を図る上で有利であり、かつ拡張室内に渦をまくような排気流れを形成するのにも有利となる。   (4) In the exhaust device for an internal combustion engine according to any one of the above (1) to (3), the inner wall surface of the branch pipe on the inflow direction side of the exhaust gas flowing from the branch pipe into the expansion chamber at the one end side opening of each branch pipe Are formed so as to be smoothly continuous with the inner wall surface of the expansion chamber. As a result, when exhaust flows into the expansion chamber from each branch pipe, the exhaust flows into the expansion chamber along the inner wall surface of the expansion chamber without colliding with the inner wall surface of the expansion chamber. This is advantageous in reducing the heat transfer coefficient to the indoor wall surface, and is also advantageous in forming an exhaust flow that vortexes in the expansion chamber.

本発明の第1実施形態における内燃機関の排気装置の正面図。The front view of the exhaust apparatus of the internal combustion engine in 1st Embodiment of this invention. 図1の右側面図。The right view of FIG. 本発明の第1実施形態における内燃機関の排気装置の平面図。The top view of the exhaust apparatus of the internal combustion engine in 1st Embodiment of this invention. 本発明の第2実施形態における内燃機関の排気装置の正面図。The front view of the exhaust apparatus of the internal combustion engine in 2nd Embodiment of this invention. 図4の右側面図。The right view of FIG. 本発明の第2実施形態における内燃機関の排気装置の平面図。The top view of the exhaust apparatus of the internal combustion engine in 2nd Embodiment of this invention.

符号の説明Explanation of symbols

1…排気装置
2…排気マニホールド
3…触媒
4…分岐管
5…分岐管
6…分岐管
7…分岐管
8…拡張室
11…拡張室出口部
DESCRIPTION OF SYMBOLS 1 ... Exhaust device 2 ... Exhaust manifold 3 ... Catalyst 4 ... Branch pipe 5 ... Branch pipe 6 ... Branch pipe 7 ... Branch pipe 8 ... Expansion chamber 11 ... Expansion chamber exit part

Claims (4)

各気筒から排出された排気が集合する拡張室と、各気筒の排気ポートからの排気を拡張室内に導入する複数の分岐管と、拡張室の排気下流側に位置し、拡張室出口部を経て導入された排気を浄化する触媒と、を有する内燃機関の排気装置において、
各分岐管は、各分岐管の一端側開口部から拡張室内に流れ込む各排気流れが、互いに略同一方向を指向し、かつ拡張室出口部を指向しないよう拡張室にそれぞれ接続されている共に、
拡張室は、拡張室出口部の開口中心が、気筒列方向に直交し気筒列中心を含む平面上から外れた位置に形成されていることを特徴とする内燃機関の排気装置。
Located in the expansion chamber where the exhaust discharged from each cylinder gathers, a plurality of branch pipes for introducing the exhaust from the exhaust ports of each cylinder into the expansion chamber, and on the downstream side of the expansion chamber through the expansion chamber outlet In an exhaust system of an internal combustion engine having a catalyst for purifying the introduced exhaust,
Each branch pipe is connected to the extension chamber so that the exhaust flows flowing into the extension chamber from the one end side opening of each branch pipe are oriented in substantially the same direction and not in the extension chamber outlet,
The exhaust chamber of the internal combustion engine, wherein the expansion chamber is formed such that the center of the opening of the expansion chamber outlet is perpendicular to the cylinder row direction and deviates from a plane including the cylinder row center.
拡張室出口部における排気通路断面積は、拡張室出口部よりも排気上流側における拡張室内の排気通路断面積よりも小さくなるよう形成されていることを特徴とする請求項1に記載の内燃機関の排気装置。   2. The internal combustion engine according to claim 1, wherein the cross-sectional area of the exhaust passage at the outlet portion of the expansion chamber is formed to be smaller than the cross-sectional area of the exhaust passage in the expansion chamber upstream of the outlet portion of the expansion chamber. Exhaust system. 拡張室出口部近傍に空燃比センサが配設されていることを特徴とする請求項2に記載の内燃機関の排気装置。   The exhaust system for an internal combustion engine according to claim 2, wherein an air-fuel ratio sensor is disposed in the vicinity of the outlet of the expansion chamber. 各分岐管の一端側開口部において、分岐管から拡張室内に流れ込む排気の流入方向側の分岐管内壁面は、拡張室の内壁面と滑らかに連続するようそれぞれ形成されていることを特徴とする請求項1〜3のいずれかに記載の内燃機関の排気装置。   The inner wall surface of the branch pipe on the inflow direction side of the exhaust gas flowing from the branch pipe into the expansion chamber is formed so as to be smoothly continuous with the inner wall surface of the expansion chamber at the one end side opening of each branch pipe. Item 4. An exhaust system for an internal combustion engine according to any one of Items 1 to 3.
JP2004048885A 2004-02-25 2004-02-25 Exhaust apparatus of internal combustion engine Pending JP2005240602A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004048885A JP2005240602A (en) 2004-02-25 2004-02-25 Exhaust apparatus of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004048885A JP2005240602A (en) 2004-02-25 2004-02-25 Exhaust apparatus of internal combustion engine

Publications (1)

Publication Number Publication Date
JP2005240602A true JP2005240602A (en) 2005-09-08

Family

ID=35022610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004048885A Pending JP2005240602A (en) 2004-02-25 2004-02-25 Exhaust apparatus of internal combustion engine

Country Status (1)

Country Link
JP (1) JP2005240602A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007138811A (en) * 2005-11-17 2007-06-07 Toyota Motor Corp Exhaust pipe for internal combustion engine
WO2009025262A1 (en) * 2007-08-21 2009-02-26 Toyota Jidosha Kabushiki Kaisha Exhaust system for internal combustion engine
JP2011117328A (en) * 2009-12-01 2011-06-16 Toyota Motor Corp Exhaust purification device
JP2012207670A (en) * 2007-02-16 2012-10-25 Daimler Ag Internal combustion engine having a plurality of combustion chambers
JP2016160915A (en) * 2015-03-05 2016-09-05 本田技研工業株式会社 Exhaust system for engine
JP2018053905A (en) * 2018-01-12 2018-04-05 本田技研工業株式会社 Exhaust system for engine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007138811A (en) * 2005-11-17 2007-06-07 Toyota Motor Corp Exhaust pipe for internal combustion engine
JP2012207670A (en) * 2007-02-16 2012-10-25 Daimler Ag Internal combustion engine having a plurality of combustion chambers
WO2009025262A1 (en) * 2007-08-21 2009-02-26 Toyota Jidosha Kabushiki Kaisha Exhaust system for internal combustion engine
JP2009047091A (en) * 2007-08-21 2009-03-05 Toyota Motor Corp Exhaust system of internal combustion engine
JP2011117328A (en) * 2009-12-01 2011-06-16 Toyota Motor Corp Exhaust purification device
JP2016160915A (en) * 2015-03-05 2016-09-05 本田技研工業株式会社 Exhaust system for engine
JP2018053905A (en) * 2018-01-12 2018-04-05 本田技研工業株式会社 Exhaust system for engine

Similar Documents

Publication Publication Date Title
WO2011077703A9 (en) Exhaust purification device
JP4988922B2 (en) Exhaust gas pressure relief and backflow prevention device
BRPI0620525A8 (en) THREE-WAY EGR EXHAUST GAS HEAT EXCHANGER SYSTEM
RU2002106740A (en) Device for reducing the content of nitrogen oxides in the exhaust gases of an internal combustion engine
EA018557B1 (en) Engine exhaust heat recovery device and energy supply device using the same
US6745561B2 (en) Exhaust manifold for vehicle
JP2010255520A (en) Muffler
JP2005299419A (en) Exhaust muffler with exhaust emission control function for engine
JP5791331B2 (en) Structure of exhaust pipe for catalytic converter
JP2005240602A (en) Exhaust apparatus of internal combustion engine
KR100769700B1 (en) Apparatus for preventing flowing backward of exhaust gas
JP2013155690A (en) Cylinder head of internal combustion engine
JP4031393B2 (en) EGR cooler
JP5729984B2 (en) Exhaust structure of multi-cylinder engine
KR101405177B1 (en) Engine that exhaust manifold and cylinder head are integrally fomred
JP6447813B2 (en) Exhaust device for multi-cylinder internal combustion engine
JP2005232996A (en) Exhaust gas recirculating system
JP7128140B2 (en) EGR device
WO2016035155A1 (en) Exhaust device for internal combustion engine
JP2005273602A (en) Exhaust emission control device
JP2007332872A (en) Exhaust gas straightening device of internal combustion engine with supercharger
JP2018178777A (en) Exhaust system
JP2005105903A (en) Engine exhaust emission control device
JP2007224825A (en) Exhaust gas treatment device for internal combustion engine
JP3807373B2 (en) Gas sensor