JP2007138811A - Exhaust pipe for internal combustion engine - Google Patents

Exhaust pipe for internal combustion engine Download PDF

Info

Publication number
JP2007138811A
JP2007138811A JP2005332963A JP2005332963A JP2007138811A JP 2007138811 A JP2007138811 A JP 2007138811A JP 2005332963 A JP2005332963 A JP 2005332963A JP 2005332963 A JP2005332963 A JP 2005332963A JP 2007138811 A JP2007138811 A JP 2007138811A
Authority
JP
Japan
Prior art keywords
exhaust
exhaust pipe
flow
downstream
purification catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005332963A
Other languages
Japanese (ja)
Inventor
Kenji Sakurai
健治 櫻井
Takanori Fukuda
高則 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005332963A priority Critical patent/JP2007138811A/en
Publication of JP2007138811A publication Critical patent/JP2007138811A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust pipe capable of keeping conversion performance of exhaust emission control catalyst high by optimizing flow-in style of an exhaust gas to the exhaust emission control catalyst. <P>SOLUTION: This exhaust pipe 20 for the internal combustion engine establishes communication between an exhaust port 9 of an engine main body and the exhaust emission control catalyst 13 and includes a flow change section in which direction of flow of whole exhaust gas flowing in the exhaust pipe changes. The exhaust pipe 20 includes a restriction part 24 in a right downstream of the flow change section and flow path cross section area of the restriction part is smaller than flow path cross section area of the exhaust pipe in a right upstream of the restriction part. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、内燃機関の排気管に関する。   The present invention relates to an exhaust pipe of an internal combustion engine.

一般に、機関本体から排出された排気ガスは炭化水素(HC)、一酸化炭素(CO)及び窒素酸化物(NOX)等の有害成分を含有している。このため、多くの内燃機関では機関本体から排出された排気ガスを排気浄化触媒(酸化触媒、三元触媒、NOX吸蔵触媒等)に流入させ、排気浄化触媒においてこれら有害成分を浄化した上で排気ガスを大気中に放出するようにしている。 In general, the exhaust gas discharged from the engine body is contained harmful components such as hydrocarbon (HC), carbon monoxide (CO) and nitrogen oxides (NO X). For this reason, in many internal combustion engines, exhaust gas discharged from the engine body is allowed to flow into an exhaust purification catalyst (oxidation catalyst, three-way catalyst, NO x storage catalyst, etc.) and these harmful components are purified in the exhaust purification catalyst. Exhaust gas is released into the atmosphere.

排気浄化触媒におけるこれら有害成分の浄化性能は、様々な要因によって変化する。これら要因としては、例えば、排気浄化触媒の構成、排気浄化触媒の劣化度合い、流入排気ガスの空燃比、排気浄化触媒の温度等が挙げられる。例えば、排気浄化触媒における貴金属の担持量が少ない場合には排気浄化触媒上で酸化・還元反応が促進されにくく、よって排気浄化触媒の浄化性能が低下する。また、排気浄化触媒が鉛(Pb)、リン(P)又は硫黄(S)等の成分により被毒されて劣化すると排気浄化触媒の酸素吸蔵能力やNOX吸蔵能力が低下し、また排気浄化触媒が熱により劣化すると貴金属の酸化・還元能力が低下し、よって排気浄化触媒の浄化性能が低下する。 The purification performance of these harmful components in the exhaust purification catalyst varies depending on various factors. These factors include, for example, the configuration of the exhaust purification catalyst, the degree of deterioration of the exhaust purification catalyst, the air-fuel ratio of the inflowing exhaust gas, the temperature of the exhaust purification catalyst, and the like. For example, when the amount of noble metal supported on the exhaust purification catalyst is small, the oxidation / reduction reaction is hardly promoted on the exhaust purification catalyst, and thus the purification performance of the exhaust purification catalyst is lowered. Further, when the exhaust purification catalyst is poisoned and deteriorated by components such as lead (Pb), phosphorus (P) or sulfur (S), the oxygen storage capacity and NO X storage capacity of the exhaust purification catalyst are lowered, and the exhaust purification catalyst. When the gas deteriorates due to heat, the oxidation / reduction ability of the noble metal decreases, and the purification performance of the exhaust purification catalyst decreases.

また、例えば特許文献1に記載の装置では、排気浄化触媒の浄化性能を向上させるために、NOX吸蔵触媒の排気上流側に設けられた還元剤添加装置と排気浄化触媒との間の吸気管に絞り部が設けられている。還元剤添加装置はNOX吸蔵触媒に吸蔵されているNOXを離脱させるためにNOX吸蔵触媒に流入する排気ガス中に還元剤を添加するために用いられるが、上記装置では還元剤添加装置から還元剤が添加されると還元剤を含んだ排気ガスが絞り部を通過する際に還元剤の気化が促進せしめられる。このため、NOX吸蔵触媒に流入する排気ガス中に含まれた還元剤は十分に気化しており、NOX吸蔵触媒からNOXを効率的に離脱・還元させることができるようになると共に還元剤がNOX吸蔵触媒において利用されずにNOX吸蔵触媒を通過してしまうことが抑制される。 Further, for example, in the device described in Patent Document 1, in order to improve the purification performance of the exhaust purification catalyst, the intake pipe between the reducing agent addition device provided on the exhaust upstream side of the NO x storage catalyst and the exhaust purification catalyst. Is provided with an aperture. Although the reducing agent adding device is used for adding a reducing agent to exhaust gas flowing into the NO X storage catalyst in order to disengage the NO X which is stored in the NO X storage catalyst, the reducing agent addition device in the apparatus When the reducing agent is added from the above, vaporization of the reducing agent is promoted when the exhaust gas containing the reducing agent passes through the throttle portion. For this reason, the reducing agent contained in the exhaust gas flowing into the NO x storage catalyst is sufficiently vaporized, so that NO x can be efficiently desorbed from the NO x storage catalyst and reduced. agent is prevented from get through the the NO X storing catalyst without being used in the NO X storing catalyst.

特開2002−213233号公報JP 2002-213233 A 特開平10−141053号公報Japanese Patent Laid-Open No. 10-141053

排気浄化触媒におけるこれら有害成分の浄化性能は、排気浄化触媒に流入する排気ガスの流れによっても変化する。例えば、排気浄化触媒に流入する排気ガスの流れが偏ると、すなわち排気浄化触媒の特定の領域のみを多くの排気ガスが流通するようになると、その特定の領域において排気浄化触媒が大きく劣化してしまう。そして、その後も排気浄化触媒の特定の領域のみを多くの排気ガスが流通すると、排気浄化触媒全体としては劣化度合いが小さいにも関わらず排気ガス中の有害成分を十分に浄化することができなくなってしまう。   The purification performance of these harmful components in the exhaust purification catalyst also varies depending on the flow of exhaust gas flowing into the exhaust purification catalyst. For example, if the flow of exhaust gas flowing into the exhaust purification catalyst is biased, that is, if a large amount of exhaust gas flows through only a specific region of the exhaust purification catalyst, the exhaust purification catalyst will greatly deteriorate in that specific region. End up. After that, if a lot of exhaust gas circulates only in a specific region of the exhaust purification catalyst, the exhaust purification catalyst as a whole cannot sufficiently purify harmful components in the exhaust gas even though the degree of deterioration is small. End up.

また、排気浄化触媒に流入する排気ガスの流速は排気浄化触媒の領域に応じて異なるが、このうち最大の流速(以下、「最大流速」と称す)が速すぎるとこの最大流速の排気ガスが排気浄化触媒を通過する間にこの排気ガス中の有害成分の一部が浄化されなくなってしまうことがあり、よって排気ガス中の有害成分を十分に浄化することができなくなってしまう。   The flow rate of the exhaust gas flowing into the exhaust purification catalyst differs depending on the region of the exhaust purification catalyst. If the maximum flow rate (hereinafter referred to as “maximum flow rate”) is too fast, While passing through the exhaust purification catalyst, some of the harmful components in the exhaust gas may not be purified, and therefore the harmful components in the exhaust gas cannot be sufficiently purified.

このように排気浄化触媒に流入する排気ガスの流れに偏りがあったり最大流速が速すぎたりすると、排気浄化触媒における有害成分の浄化性能を低下させることになる。このため、排気浄化触媒の浄化性能を維持するためには、排気ガスを排気浄化触媒に偏りなく均一に流入させると共に排気ガスの最大流速を低く抑えることが必要とされる。   In this way, if the flow of exhaust gas flowing into the exhaust purification catalyst is uneven or the maximum flow velocity is too fast, the purification performance of harmful components in the exhaust purification catalyst is lowered. For this reason, in order to maintain the purification performance of the exhaust purification catalyst, it is necessary to uniformly flow the exhaust gas into the exhaust purification catalyst without being biased and to keep the maximum flow rate of the exhaust gas low.

そこで、本発明の目的は、排気浄化触媒への排気ガスの流入形態を最適にすることで排気浄化触媒の浄化性能を高く維持することができる内燃機関の排気管を提供することにある。   Therefore, an object of the present invention is to provide an exhaust pipe of an internal combustion engine that can maintain the purification performance of the exhaust purification catalyst high by optimizing the flow form of the exhaust gas into the exhaust purification catalyst.

上記課題を解決するために、第1の発明では、機関本体の排気ポートと排気浄化触媒とを連通する内燃機関の排気管であって、当該排気管内を流通する排気ガス全体の流れ方向が変化する流れ変化部分を有する内燃機関の排気管において、上記流れ変化部分の直ぐ下流に絞り部を有し、該絞り部における流路断面積は該絞り部の直ぐ上流における排気管の流路断面積よりも小さい。
第1の発明によれば、排気管の流れ変化部分の直ぐ下流に絞り部が設けられるため、絞り部では旋回流が発生する。この結果、絞り部よりも下流側では排気ガスの流れの偏りがなくなり、排気浄化触媒に排気ガスが比較的均一に流入するようになる。また、絞り部の下流側の排気管の流路断面積が絞り部の上流側の排気管の流路断面積よりも小さくなっていなければ、絞り部の存在により排気浄化触媒へ流入する排気ガスの最大流速を比較的遅いものとすることができる。
In order to solve the above-described problem, in the first invention, an exhaust pipe of an internal combustion engine that communicates an exhaust port of an engine body with an exhaust purification catalyst, the flow direction of the entire exhaust gas flowing through the exhaust pipe changes. An exhaust pipe of an internal combustion engine having a flow changing portion having a throttle portion immediately downstream of the flow changing portion, wherein a flow passage cross-sectional area of the throttle portion is a flow passage cross-sectional area of the exhaust pipe immediately upstream of the throttle portion. Smaller than.
According to the first aspect, since the throttle portion is provided immediately downstream of the flow change portion of the exhaust pipe, a swirling flow is generated in the throttle portion. As a result, there is no uneven flow of the exhaust gas downstream of the throttle portion, and the exhaust gas flows relatively uniformly into the exhaust purification catalyst. Further, if the flow passage cross-sectional area of the exhaust pipe downstream of the throttle portion is not smaller than the flow passage cross-sectional area of the exhaust pipe upstream of the throttle portion, the exhaust gas flowing into the exhaust purification catalyst due to the presence of the throttle portion The maximum flow rate can be relatively slow.

第2の発明では、第1の発明において、上記排気管は各気筒の排気ポートに連通する複数の排気枝管と、連通部においてこれら排気枝管全てに連通する一つの集合排気管とを有し、上記絞り部は上記連通部の下流側において集合排気管に設けられる。   According to a second invention, in the first invention, the exhaust pipe has a plurality of exhaust branch pipes communicating with the exhaust ports of the respective cylinders, and one collective exhaust pipe communicating with all of the exhaust branch pipes at the communicating portion. The throttle portion is provided in the collecting exhaust pipe on the downstream side of the communication portion.

第3の発明では、第1又は第2の発明において、上記絞り部の形状は、該絞り部の下流側に配置される上記排気浄化触媒に流入する排気ガスの最大流速が所定流速以下となるような形状とされる。   In the third invention, in the first or second invention, the shape of the throttle portion is such that the maximum flow rate of the exhaust gas flowing into the exhaust purification catalyst disposed downstream of the throttle portion is equal to or lower than a predetermined flow rate. The shape is as follows.

第4の発明では、第1〜第3のいずれか一つの発明において、上記絞り部は、流路断面積が該絞り部の軸線方向下流に向かって徐々に小さくなっていく上流側テーパ部と、該上流側テーパ部の下流側に設けられると共に流路断面積が該絞り部の軸線方向下流に向かって徐々に大きくなっていく下流側テーパ部とを有する。   According to a fourth invention, in any one of the first to third inventions, the throttle portion includes an upstream taper portion whose flow path cross-sectional area gradually decreases toward the downstream in the axial direction of the throttle portion. And a downstream taper portion that is provided on the downstream side of the upstream taper portion and whose flow passage cross-sectional area gradually increases toward the downstream in the axial direction of the throttle portion.

第5の発明では、第4の発明において、上記上流側テーパ部によって画成される排気流路の容積と、上記下流側テーパ部によって画成される排気流路の容積との比率がほぼ2:5である。   According to a fifth aspect, in the fourth aspect, the ratio of the volume of the exhaust passage defined by the upstream taper portion and the volume of the exhaust passage defined by the downstream taper portion is approximately 2. : 5.

上記課題を解決するために、第6の発明では、機関本体の排気ポートと排気浄化触媒とを連通する内燃機関の排気管において、流路断面積が下流に向かって徐々に小さくなる絞り部を有し、該絞り部の直ぐ下流に上記排気浄化触媒が位置するように上記絞り部が配置される。
第6の発明によれば、流路断面積が下流に向かって徐々に小さくなる絞り部の直ぐ下流に排気浄化触媒が配置される。偏りのある排気ガスの流れも上記絞り部を通過することにより比較的均一な流れになるため、排気浄化触媒には排気ガスが比較的均一に流入するようになる。
In order to solve the above-described problem, in the sixth aspect of the invention, in the exhaust pipe of the internal combustion engine that communicates the exhaust port of the engine body and the exhaust purification catalyst, a throttle portion whose flow passage cross-sectional area gradually decreases toward the downstream is provided. And the throttle part is arranged so that the exhaust purification catalyst is located immediately downstream of the throttle part.
According to the sixth aspect of the invention, the exhaust purification catalyst is disposed immediately downstream of the throttle portion where the flow path cross-sectional area gradually decreases toward the downstream. Since the flow of the exhaust gas having a bias also passes through the throttle portion, it becomes a relatively uniform flow, so that the exhaust gas flows into the exhaust purification catalyst relatively uniformly.

第1〜第5の発明によれば、排気浄化触媒に排気ガスが比較的均一に流入するようになると共に排気浄化触媒へ流入する排気ガスの最大流速を比較的遅いものとすることができ、これにより排気浄化触媒の浄化性能を高く維持することができるようになる。   According to the first to fifth inventions, the exhaust gas can flow relatively uniformly into the exhaust purification catalyst, and the maximum flow rate of the exhaust gas flowing into the exhaust purification catalyst can be made relatively slow. As a result, the purification performance of the exhaust purification catalyst can be maintained high.

第6の発明によれば、排気浄化触媒には排気ガスが比較的均一に流入するようになるため、排気浄化触媒の浄化性能を高く維持することができるようになる。   According to the sixth aspect of the invention, the exhaust gas flows into the exhaust purification catalyst relatively uniformly, so that the purification performance of the exhaust purification catalyst can be maintained high.

以下、図面を参照して本発明の実施形態について詳細に説明する。図1は本発明の排気管を備えた内燃機関全体を示す図である。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a view showing an entire internal combustion engine provided with an exhaust pipe of the present invention.

図1を参照すると1は機関本体、2はシリンダブロック、3はシリンダブロック2内で往復動するピストン、4はシリンダブロック2上に固定されたシリンダヘッド、5はピストン3とシリンダヘッド4との間に形成された燃焼室、6は吸気弁、7は吸気ポート、8は排気弁、9は排気ポートをそれぞれ示す。図1に示したようにシリンダヘッド4の内壁面の中央部には点火栓10が配置され、シリンダヘッド4内壁面周辺部には燃料噴射弁11が配置される。またピストン3の頂面上には燃料噴射弁11の下方から点火栓10の下方まで延びるキャビティ12が形成されている。   Referring to FIG. 1, 1 is an engine body, 2 is a cylinder block, 3 is a piston that reciprocates in the cylinder block 2, 4 is a cylinder head fixed on the cylinder block 2, and 5 is a piston 3 and a cylinder head 4. A combustion chamber formed therebetween, 6 is an intake valve, 7 is an intake port, 8 is an exhaust valve, and 9 is an exhaust port. As shown in FIG. 1, a spark plug 10 is arranged at the center of the inner wall surface of the cylinder head 4, and a fuel injection valve 11 is arranged around the inner wall surface of the cylinder head 4. A cavity 12 extending from the lower side of the fuel injection valve 11 to the lower side of the spark plug 10 is formed on the top surface of the piston 3.

各気筒の排気ポート9は、上流側排気浄化触媒13を内蔵した排気マニホルド(排気管)20に連結され、この排気マニホルド20は下流側排気管14を介して下流側排気浄化触媒15を内蔵したケーシング16に連結される。上流側排気浄化触媒13としては、貴金属等を担持した三元触媒や、貴金属等に加えてNOX吸蔵剤(上流側排気浄化触媒13への流入排気ガスの空燃比がリーンのときには流入排気ガス中のNOXを吸蔵し、流入排気ガスの空燃比がほぼ理論空燃比又はリッチのときには吸蔵しているNOXを排気ガス中へと離脱させる成分)を担持したNOX吸蔵触媒等が用いられる。 The exhaust port 9 of each cylinder is connected to an exhaust manifold (exhaust pipe) 20 containing an upstream side exhaust purification catalyst 13, and this exhaust manifold 20 contains a downstream side exhaust purification catalyst 15 via a downstream side exhaust pipe 14. Connected to the casing 16. The upstream side exhaust purification catalyst 13 includes a three-way catalyst supporting noble metal or the like, a NO x storage agent in addition to the noble metal etc. occluding NO X in, NO X storage catalyst such as the air-fuel ratio is carrying approximately components to disengage and the NO X that occluded into the exhaust gas to the stoichiometric air-fuel ratio or rich) of the inflowing exhaust gas is used .

図2は、排気マニホルド20の概略斜視図であり、図3は図2のラインIII−IIIに沿った排気マニホルド20の断面図である。図2に示したように、排気マニホルド20は機関本体1の各排気ポート9に連結される排気枝管21と、全ての排気枝管21に連結される集合排気管22とを有する。従って、各排気枝管21には対応する排気ポート9から排出される排気ガスが流れるが、集合排気管22には全ての排気ポート9から排出される排気ガスが流れることになる。   2 is a schematic perspective view of the exhaust manifold 20, and FIG. 3 is a cross-sectional view of the exhaust manifold 20 taken along line III-III in FIG. As shown in FIG. 2, the exhaust manifold 20 has an exhaust branch pipe 21 connected to each exhaust port 9 of the engine body 1 and a collective exhaust pipe 22 connected to all the exhaust branch pipes 21. Accordingly, exhaust gas discharged from the corresponding exhaust port 9 flows through each exhaust branch pipe 21, but exhaust gas discharged from all the exhaust ports 9 flows through the collective exhaust pipe 22.

集合排気管22は、図3に示したように、排気枝管21が連結されている連結部23と、絞り部24と、上流側排気浄化触媒13が内蔵されている触媒内蔵部25とを有する。これら連結部23、絞り部24及び触媒内蔵部25は、それぞれ軸線を有すると共に、これら軸線が整列するように配置される(以下、整列したこれら軸線をまとめて「軸線A」と称す)。連結部23は軸線A回りにほぼ円筒状に形成される。また、連結部23には連結部23の軸線Aに対してほぼ垂直に複数の排気枝管21が連結され、これら複数の排気枝管21は周方向に所定間隔毎に離間されて連結部23に連結される。   As shown in FIG. 3, the collective exhaust pipe 22 includes a connecting portion 23 to which the exhaust branch pipe 21 is connected, a throttle portion 24, and a catalyst built-in portion 25 in which the upstream side exhaust purification catalyst 13 is built. Have. The connecting portion 23, the throttle portion 24, and the catalyst built-in portion 25 each have an axis and are arranged so that these axes are aligned (hereinafter, these aligned axes are collectively referred to as “axis A”). The connecting portion 23 is formed in a substantially cylindrical shape around the axis A. Further, a plurality of exhaust branch pipes 21 are connected to the connection part 23 substantially perpendicularly to the axis A of the connection part 23, and the plurality of exhaust branch pipes 21 are spaced apart at predetermined intervals in the circumferential direction. Connected to

絞り部24は、排気ガスが流通可能であって軸線Aに対して垂直な断面の断面積(以下、単に「流路断面積」と称す)が下流側に向かって徐々に小さくなるようにテーパが付けられた上流側テーパ部24aと、この上流側テーパ部24aの排気下流側(以下、単に「下流側」と称す)に設けられると共に流路断面積が下流側に向かって徐々に大きくなるようにテーパが付けられた下流側テーパ部24bとを有する。本実施形態では、上流側テーパ部24aは下流側に向かって徐々に直径が小さくなる中空の切頭円錐状となっており、下流側テーパ部24bは下流側に向かって徐々に直径が大きくなる中空の切頭円錐状となっている。このため、上流側テーパ部24aと下流側テーパ部24bとの間の連結部分24cにおいて絞り部24の流路断面積が最も小さくなる(以下、この連結部を「最小断面積部分24c」と称す)。   The throttle portion 24 is tapered so that the cross-sectional area (hereinafter simply referred to as “flow-path cross-sectional area”) perpendicular to the axis A through which the exhaust gas can flow is gradually reduced toward the downstream side. Are provided on the upstream side of the exhaust taper 24a (hereinafter simply referred to as “downstream side”) and the cross-sectional area of the flow path gradually increases toward the downstream side. And a downstream taper portion 24b that is tapered in this manner. In the present embodiment, the upstream taper portion 24a has a hollow truncated cone shape whose diameter gradually decreases toward the downstream side, and the downstream taper portion 24b gradually increases in diameter toward the downstream side. It has a hollow truncated cone shape. For this reason, the flow passage cross-sectional area of the throttle portion 24 is the smallest in the connecting portion 24c between the upstream taper portion 24a and the downstream taper portion 24b (hereinafter, this connecting portion is referred to as the “minimum cross-sectional area portion 24c”). ).

本実施形態では、最小断面積部分24cの直径D1は、上流側テーパ部24aの最も排気上流側(以下、単に「上流側」と称す)の部分の直径(すなわち、絞り部24の上流側に位置する連結部23の直径)又は下流側テーパ部24bの最も下流側の部分の直径(すなわち、絞り部24の下流側に位置する触媒内蔵部25の直径)D2のほぼ半分とされる。従って、最小断面積部分24cの流路断面積は、上流側テーパ部24aの最も上流側の部分の流路断面積又は下流側テーパ部24bの最も下流側の部分の流路断面積のほぼ1/4とされる。 In the present embodiment, the diameter D 1 of the minimum cross-sectional area portion 24c is the diameter of the most upstream portion of the upstream taper portion 24a (hereinafter simply referred to as “upstream side”) (that is, the upstream side of the throttle portion 24). the diameter of the most downstream portion of the diameter) or downstream taper portion 24b of the connecting portion 23 located on (i.e., are approximately half of the catalyst internal portion diameter of 25) D 2 positioned on the downstream side of the throttle portion 24 . Accordingly, the flow passage cross-sectional area of the minimum cross-sectional area portion 24c is approximately 1 of the flow cross-sectional area of the most upstream portion of the upstream taper portion 24a or the flow cross-sectional area of the most downstream portion of the downstream taper portion 24b. / 4.

さらに、上流側テーパ部24aの軸線方向の長さL1と下流側テーパ部24bの軸線方向の長さL2との比率は、ほぼ2:5とされる(L1:L2=2:5)。また、本実施形態では、上流側テーパ部24aの最も上流側の部分の流路断面積と下流側テーパ部24bの最も下流側の部分の流路断面積とがほぼ同一とされる。このため、上流側テーパ部24aによって画成される排気流路の容積と下流側テーパ部24bによって画成される排気流路の容積とは上記と同様にほぼ2:5とされる。 Further, the ratio between the length L 1 in the axial direction of the upstream taper portion 24a and the length L 2 in the axial direction of the downstream taper portion 24b is approximately 2: 5 (L 1 : L 2 = 2: 5). In the present embodiment, the flow passage cross-sectional area of the most upstream portion of the upstream taper portion 24a and the flow passage cross-sectional area of the most downstream portion of the downstream taper portion 24b are substantially the same. For this reason, the volume of the exhaust passage defined by the upstream taper portion 24a and the volume of the exhaust passage defined by the downstream taper portion 24b are approximately 2: 5 as described above.

触媒内蔵部25も連結部23と同様に軸線A回りにほぼ円筒状に形成される。触媒内蔵部25内には上流側排気浄化触媒13が内蔵される。上流側排気浄化触媒13は、その軸線が触媒内蔵部25の軸線Aとほぼ同軸となるように且つ触媒内蔵部25の内面と上流側排気浄化触媒13の外面との間に隙間ができないように触媒内蔵部25内に収容せしめられる。触媒内蔵部25の下流側端部には、下流側排気管14に連結される排気管部分25aが設けられる。   The catalyst built-in portion 25 is also formed in a substantially cylindrical shape around the axis A, like the connecting portion 23. An upstream side exhaust purification catalyst 13 is built in the catalyst built-in portion 25. The upstream side exhaust purification catalyst 13 has an axis that is substantially coaxial with the axis A of the catalyst built-in portion 25, and a gap is not formed between the inner surface of the catalyst built-in portion 25 and the outer surface of the upstream side exhaust purification catalyst 13. It is accommodated in the catalyst built-in part 25. An exhaust pipe portion 25 a connected to the downstream exhaust pipe 14 is provided at the downstream end of the catalyst built-in part 25.

図3に示したように、上流側排気浄化触媒13はハニカム構造をなしており、上流端と下流端との間で互いに平行に延びる複数の排気流通路13aを有している。排気ガスはこれら排気流通路13a間の隔壁13bをほとんど通過することなくこれら排気流通路13aに沿って流れる。すなわち、排気ガスが上流側排気浄化触媒13内を通過する際には上流側排気浄化触媒13の軸線Aの方向に向かって流れる。   As shown in FIG. 3, the upstream side exhaust purification catalyst 13 has a honeycomb structure, and has a plurality of exhaust flow passages 13a extending in parallel with each other between the upstream end and the downstream end. The exhaust gas flows along these exhaust flow passages 13a with hardly passing through the partition wall 13b between the exhaust flow passages 13a. That is, when the exhaust gas passes through the upstream side exhaust purification catalyst 13, it flows in the direction of the axis A of the upstream side exhaust purification catalyst 13.

次に、図4〜図6を参照して、上述したように構成された排気マニホルド20内の排気ガスの流れについて説明する。以下の説明では、図4に示したような直線型の排気マニホルド120と比較して排気ガスの流れについて説明する。図4は、直線型の排気マニホルド120の概略斜視図であり、図2と同様な図である。なお、直線型の排気マニホルド120は上記実施形態の排気マニホルド20とほぼ同一の構成であるが、直線型の排気マニホルド120は絞り部を有しておらず、集合排気管122の流路断面積は一定のままであるという点で上記実施形態の排気マニホルド20と異なる構成となっている。   Next, the flow of exhaust gas in the exhaust manifold 20 configured as described above will be described with reference to FIGS. In the following description, the flow of exhaust gas will be described in comparison with the linear exhaust manifold 120 as shown in FIG. FIG. 4 is a schematic perspective view of the straight exhaust manifold 120, which is similar to FIG. The linear exhaust manifold 120 has substantially the same configuration as the exhaust manifold 20 of the above embodiment, but the linear exhaust manifold 120 does not have a throttle portion, and the flow passage cross-sectional area of the collective exhaust pipe 122. Is different from the exhaust manifold 20 of the above embodiment in that it remains constant.

各気筒の燃焼室5から排出された排気ガスはその気筒に対応する排気ポート9を介してその気筒に対応する排気枝管21に流入する。その後、排気ガスは排気枝管21を通って集合排気管22の連結部23へと流れる。連結部23は全ての排気枝管21と連通しているため、全ての気筒の燃焼室5から排出された排気ガスは排気枝管21を介して連結部23に流入することになる。連結部23に流入した排気ガスは絞り部24を介して触媒内蔵部25へと流れ、そして触媒内蔵部25内に収容された排気浄化触媒13の排気流通路13aを通過する。その後、排気ガスは触媒内蔵部25の下流側端部に設けられた排気管部分25aを介して下流側排気管14へと流出せしめられる。   Exhaust gas discharged from the combustion chamber 5 of each cylinder flows into an exhaust branch pipe 21 corresponding to that cylinder via an exhaust port 9 corresponding to that cylinder. Thereafter, the exhaust gas flows through the exhaust branch pipe 21 to the connecting portion 23 of the collective exhaust pipe 22. Since the connecting portion 23 communicates with all the exhaust branch pipes 21, the exhaust gas discharged from the combustion chambers 5 of all the cylinders flows into the connecting portion 23 through the exhaust branch pipe 21. The exhaust gas flowing into the connecting portion 23 flows to the catalyst built-in portion 25 through the throttle portion 24 and passes through the exhaust flow passage 13a of the exhaust purification catalyst 13 accommodated in the catalyst built-in portion 25. Thereafter, the exhaust gas flows out to the downstream exhaust pipe 14 via the exhaust pipe portion 25a provided at the downstream end of the catalyst built-in portion 25.

このような排気ポート9から下流側排気管14までの排気ガスの概略的な流れは、本実施形態の排気マニホルド20と、図4に示した直線型の排気マニホルド120とで変わらないが、集合排気管22、122内での流れはこれら排気マニホルド20、120間で異なる。図5は、直線型の排気マニホルド120及び本実施形態の排気マニホルド20内を通過する排気ガスの流れを模式的に示した図である。   The schematic flow of the exhaust gas from the exhaust port 9 to the downstream exhaust pipe 14 is the same between the exhaust manifold 20 of the present embodiment and the linear exhaust manifold 120 shown in FIG. The flow in the exhaust pipes 22, 122 is different between the exhaust manifolds 20, 120. FIG. 5 is a diagram schematically showing the flow of exhaust gas passing through the linear exhaust manifold 120 and the exhaust manifold 20 of the present embodiment.

直線型の排気マニホルド120では、図5(a)に矢印で示したように、各排気枝管121から集合排気管122に流入した排気ガスはその流れ方向を排気枝管121に平行な方向から集合排気管122に平行な方向へと急激に変えて流れる。場合によっては、このような急激な流れ方向の変更に伴って、集合排気管122内でタンブル流(上記軸線Aと垂直な軸線回りの排気ガスの流れ)が形成される。排気ガスが集合排気管122内をこのように流れると、各気筒から集合排気管122内に流入した排気ガスの流れは、排気浄化触媒13の上流側端面(排気浄化触媒13の隔壁13bの上流側端面が位置する平面)を通過する際に偏りを生じており、この上流側端面全面に亘って均一な流れとなっていない。すなわち、排気浄化触媒13の上流側端面の或る領域を通過して排気浄化触媒13に流入する排気ガスについてはその単位面積当たりの流量が多く且つその流速が速く、他の領域を通過して排気浄化触媒13に流入する排気ガスについてはその単位面積当たりの流量が少なく且つその流速が遅くなっている。   In the straight type exhaust manifold 120, as indicated by arrows in FIG. 5A, the exhaust gas flowing from each exhaust branch pipe 121 into the collective exhaust pipe 122 changes its flow direction from a direction parallel to the exhaust branch pipe 121. The flow rapidly changes in a direction parallel to the collective exhaust pipe 122. In some cases, a tumble flow (exhaust gas flow around an axis perpendicular to the axis A) is formed in the collective exhaust pipe 122 with such a sudden change in the flow direction. When the exhaust gas flows in the collective exhaust pipe 122 in this way, the flow of the exhaust gas that has flowed into the collective exhaust pipe 122 from each cylinder is the upstream end face of the exhaust purification catalyst 13 (upstream of the partition wall 13b of the exhaust purification catalyst 13). (The flat surface on which the side end face is located) is biased, and the flow is not uniform over the entire upstream end face. That is, the exhaust gas flowing into the exhaust purification catalyst 13 through a certain region on the upstream end face of the exhaust purification catalyst 13 has a high flow rate per unit area and a high flow velocity, and passes through other regions. The exhaust gas flowing into the exhaust purification catalyst 13 has a small flow rate per unit area and a slow flow rate.

図6(a)は、図4に示した直線型の排気マニホルド120を用いた場合における、クランク角度と排気浄化触媒13に流入する排気ガスの流速との関係を示した図である。図中の実線は排気浄化触媒13の上流側端面を通過する排気ガスのうち最も流速が速い排気ガスの流速(以下、「最大流速」と称す)を、破線は排気浄化触媒13の上流側端面を通過する排気ガスのうち最も流速が遅い排気ガスの流速(以下、「最小流速」と称す)を、一点鎖線は排気浄化触媒13の上流側端面を通過する排気ガス全体の平均的な流速(以下、「平均流速」と称す)をそれぞれ示している。   6A is a diagram showing the relationship between the crank angle and the flow rate of the exhaust gas flowing into the exhaust purification catalyst 13 when the linear exhaust manifold 120 shown in FIG. 4 is used. The solid line in the figure indicates the exhaust gas flow rate (hereinafter referred to as “maximum flow rate”) having the fastest flow rate among the exhaust gases passing through the upstream end surface of the exhaust purification catalyst 13, and the broken line indicates the upstream end surface of the exhaust purification catalyst 13. The exhaust gas flow rate of the exhaust gas having the slowest flow rate (hereinafter referred to as “minimum flow rate”) of the exhaust gas passing through the exhaust gas is shown by a one-dot chain line as the average flow rate of the entire exhaust gas passing through the upstream end face of the exhaust purification catalyst 13 ( Hereinafter, these are respectively referred to as “average flow velocity”.

図6(a)から分かるように、最大流速、最小流速及び平均流速共にクランク角が進むにつれて上下する。これは、各気筒の排気弁の開閉に伴うものであり、図6に示した例では4気筒の内燃機関を用いた場合について示しているため1サイクル(クランク角720°)当たり4回上下している。ここで、図6(a)に示した例ではクランク角180°付近で最大流速が極めて大きくなっている。これは、排気浄化触媒13の上流側端面のうち一部の領域を通過する排気ガスの流速が極めて速くなっていることを意味する。このように、排気浄化触媒13の上流側端面の一部領域を通過する排気ガス、すなわちこの一部領域に対応する排気流通路13aを通過する排気ガスの流速が極めて速いと、斯かる排気ガス中が排気流通路13aを通過する間に排気ガス中の有害成分が十分に浄化されない場合が生じてしまう。   As can be seen from FIG. 6 (a), the maximum flow velocity, the minimum flow velocity, and the average flow velocity increase and decrease as the crank angle advances. This is due to the opening and closing of the exhaust valve of each cylinder. In the example shown in FIG. 6, the case where a four-cylinder internal combustion engine is used is shown, so that it is raised and lowered four times per cycle (crank angle 720 °). ing. Here, in the example shown in FIG. 6A, the maximum flow velocity is extremely large around a crank angle of 180 °. This means that the flow rate of the exhaust gas passing through a part of the upstream end face of the exhaust purification catalyst 13 is extremely high. Thus, if the exhaust gas passing through a partial region of the upstream end face of the exhaust purification catalyst 13, that is, the exhaust gas passing through the exhaust flow passage 13a corresponding to this partial region, has a very high flow rate, such exhaust gas There are cases where harmful components in the exhaust gas are not sufficiently purified while the inside passes through the exhaust flow passage 13a.

また、上述したように、直線型の排気マニホルド120を用いた場合には、排気浄化触媒13に流入する排気ガスの単位面積当たりの流量が排気浄化触媒13の上流側端面の領域によって大きく異なる。このため、或る排気流通路13aを通過する排気ガスの流量が他の排気流通路13aを通過する排気ガスの流量よりも多くなってしまう。   As described above, when the straight exhaust manifold 120 is used, the flow rate per unit area of the exhaust gas flowing into the exhaust purification catalyst 13 varies greatly depending on the region of the upstream end face of the exhaust purification catalyst 13. For this reason, the flow rate of the exhaust gas passing through a certain exhaust flow passage 13a becomes larger than the flow rate of the exhaust gas passing through another exhaust flow passage 13a.

ここで、排気浄化触媒の劣化は、排気ガス中に含まれる鉛(Pb)、リン(P)及び硫黄(S)等の成分が排気浄化触媒の担体に吸蔵、吸着することによる被毒によって、又は排気浄化触媒の担体が熱によりシンタリングすることによって劣化せしめられる。従って、通過する排気ガスの流量が多い排気流通路13aには鉛、リン及び硫黄等の成分が多量に流入し易く、よって斯かる排気流通路13a周りの担体では被毒による劣化を生じ易い。また、斯かる排気流通路13aでは高温の排気ガスが多量に流入したり、担持している貴金属上で生じる発熱反応が多かったりすることにより、この排気流通路13aの熱による劣化も生じ易い。このように、斯かる排気流通路13a周りの担体では劣化が生じ易いと共に劣化した後にも多量の排気ガスが流入することになり、排気ガスの浄化効率が低下してしまう。すなわち、排気ガスの単位面積当たりの流量が排気浄化触媒13の上流側端面の領域によって大きく異なると、排気ガスの浄化効率の低下を招く結果となる。   Here, the deterioration of the exhaust purification catalyst is caused by poisoning due to occlusion and adsorption of components such as lead (Pb), phosphorus (P) and sulfur (S) contained in the exhaust gas on the support of the exhaust purification catalyst. Alternatively, the exhaust purification catalyst carrier is deteriorated by sintering with heat. Therefore, a large amount of components such as lead, phosphorus and sulfur easily flows into the exhaust flow passage 13a where the flow rate of exhaust gas passing therethrough is large, and thus the carrier around the exhaust flow passage 13a is likely to be deteriorated due to poisoning. Further, in such an exhaust flow passage 13a, a large amount of high-temperature exhaust gas flows in, or there are many exothermic reactions that occur on the noble metal that is carried, so that the exhaust flow passage 13a is easily deteriorated by heat. As described above, the carrier around the exhaust flow passage 13a is easily deteriorated, and a large amount of exhaust gas flows after the deterioration, resulting in a reduction in exhaust gas purification efficiency. That is, if the flow rate per unit area of the exhaust gas varies greatly depending on the region of the upstream end face of the exhaust purification catalyst 13, the exhaust gas purification efficiency is lowered.

これに対して、図2に示した本実施形態の排気マニホルド20では、図5(b)に矢印で示したように、各排気枝管21から集合排気管22に流入した排気ガスはその流れ方向が排気枝管21に平行な方向から集合排気管22に平行な方向へと急激に変わると共に、絞り部24の上流側テーパ部24aを通過する際に旋回流(スワール。上記軸線A回りの排気ガスの流れ)を形成する。そして、排気ガスは旋回流を伴ったまま絞り部24の下流側テーパ部24bを通過する。   On the other hand, in the exhaust manifold 20 of the present embodiment shown in FIG. 2, the exhaust gas flowing from the exhaust branch pipes 21 into the collective exhaust pipes 22 flows as shown by arrows in FIG. The direction suddenly changes from a direction parallel to the exhaust branch pipe 21 to a direction parallel to the collective exhaust pipe 22, and swirl flow (swirl; around the axis A) when passing through the upstream taper part 24a of the throttle part 24. Exhaust gas flow). And exhaust gas passes the downstream taper part 24b of the throttle part 24 with a swirl flow.

より詳細に説明すると、各排気枝管21から集合排気管22に流入した排気ガスは連結部23の壁面に当たるのに伴ってその流れ方向が排気枝管21に平行な方向から集合排気管22に平行な方向へと急激に変化する。すなわち、連結部23は中を流れる排気ガス全体の流れ方向(排気ガスの流れを巨視的に見た場合の流れ方向)が急激に変化する流れ変化部分を構成する。この排気ガスの流れ方向の変化は連結部23内で完了するわけではなく、連結部23の直ぐ下流側に位置する絞り部24の上流側テーパ部24aにおいても起こる。特に、絞り部24の上流側テーパ部24aにおいては、その壁面が軸線Aに向かって傾いているため排気ガスはその壁面に沿って軸線Aに向かうように流れると共に、これにより上流側テーパ部24a内では排気ガスに旋回流が生じる。その後、排気ガスは、旋回流を伴ったまま、最小断面積部分24cを通過して下流側テーパ部24b内を流れる。   More specifically, as the exhaust gas flowing into the collective exhaust pipe 22 from each exhaust branch pipe 21 hits the wall surface of the connecting portion 23, the flow direction changes from the direction parallel to the exhaust branch pipe 21 to the collective exhaust pipe 22. It changes rapidly in the parallel direction. That is, the connecting portion 23 constitutes a flow changing portion in which the flow direction of the entire exhaust gas flowing therethrough (the flow direction when the exhaust gas flow is viewed macroscopically) changes rapidly. This change in the flow direction of the exhaust gas is not completed in the connecting portion 23 but also occurs in the upstream taper portion 24a of the throttle portion 24 located immediately downstream of the connecting portion 23. In particular, in the upstream taper portion 24a of the throttle portion 24, since the wall surface is inclined toward the axis A, the exhaust gas flows along the wall surface toward the axis A, and thereby the upstream taper portion 24a. Inside, a swirl flow is generated in the exhaust gas. Thereafter, the exhaust gas passes through the minimum cross-sectional area portion 24c and flows in the downstream taper portion 24b with a swirl flow.

このように絞り部24で旋回流が生じることにより、上流側排気浄化触媒13に流入する排気ガスは上流側排気浄化触媒13の上流側端面全面に亘って比較的均一に流れるようになり、よって排気浄化触媒13の上流側端面の領域毎に通過する排気ガスの単位面積当たりの流量や流速が大きく異なってしまうことが抑制される。このように、本実施形態の排気マニホルド20では絞り部24を設けることにより旋回流が発生し易くなり、これに伴って排気流通路13a間で通過する排気ガスの流速や流量が大きく異なってしまうことが抑制される。   As a result of the swirling flow generated in the throttle portion 24 in this way, the exhaust gas flowing into the upstream side exhaust purification catalyst 13 flows relatively uniformly over the entire upstream end face of the upstream side exhaust purification catalyst 13, and thus It is suppressed that the flow rate and flow velocity per unit area of the exhaust gas passing through each region of the upstream end face of the exhaust purification catalyst 13 are greatly different. Thus, in the exhaust manifold 20 of the present embodiment, a swirl flow is easily generated by providing the throttle portion 24, and accordingly, the flow velocity and flow rate of the exhaust gas passing between the exhaust flow passages 13a are greatly different. It is suppressed.

図6(b)は、本実施形態の排気マニホルド20を用いた場合における、クランク角度と上流側排気浄化触媒13に流入する排気ガスの流速との関係を示した図である。図中の実線は最大流速を、破線は最小流速を、一点鎖線は平均流速をそれぞれ示している。図6(b)から分かるように、上流側排気浄化触媒13に流入する排気ガスの最大流速が極めて大きくなってしまうクランク角が存在しない。すなわち、特定の排気流通路13aを通過する排気ガスの流速が極めて速くなってしまうことが抑制される。このため、全ての排気流通路13aにおいて排気ガス中の有害成分は基本的に排気流通路13aを通過する間に十分に浄化されるようになる。   FIG. 6B is a diagram showing the relationship between the crank angle and the flow rate of the exhaust gas flowing into the upstream side exhaust purification catalyst 13 when the exhaust manifold 20 of the present embodiment is used. In the figure, the solid line indicates the maximum flow velocity, the broken line indicates the minimum flow velocity, and the alternate long and short dash line indicates the average flow velocity. As can be seen from FIG. 6B, there is no crank angle at which the maximum flow velocity of the exhaust gas flowing into the upstream side exhaust purification catalyst 13 becomes extremely large. That is, the flow rate of the exhaust gas passing through the specific exhaust flow passage 13a is suppressed from becoming extremely fast. For this reason, in all exhaust flow passages 13a, harmful components in the exhaust gas are basically sufficiently purified while passing through the exhaust flow passages 13a.

また、上述したように、本実施形態の排気マニホルド20を用いた場合には、上流側排気浄化触媒13に流入する排気ガスの単位面積当たりの流量が排気浄化触媒13の上流側端面の領域によって大きく異なることが抑制される。このため、排気流通路13aを通過する排気ガスの流量は全ての排気流通路13aについて比較的等しいものとなる。従って、特定の排気流通路13aのみが大きく劣化してしまうことがなく、全ての排気流通路13aが比較的均一に劣化するようになるため、上流側排気浄化触媒13の劣化に伴う排気ガスの浄化率の低下を最小限に抑えることができるようになる。   As described above, when the exhaust manifold 20 of the present embodiment is used, the flow rate per unit area of the exhaust gas flowing into the upstream side exhaust purification catalyst 13 depends on the region of the upstream end face of the exhaust purification catalyst 13. Large differences are suppressed. For this reason, the flow rate of the exhaust gas passing through the exhaust flow passage 13a is relatively equal for all the exhaust flow passages 13a. Therefore, only the specific exhaust flow passage 13a is not greatly deteriorated, and all the exhaust flow passages 13a are relatively uniformly deteriorated. Therefore, the exhaust gas accompanying the deterioration of the upstream side exhaust purification catalyst 13 is not affected. A reduction in the purification rate can be minimized.

なお、上記実施形態では、最小断面積部分24cの流路断面積と連結部23の流路断面積又は触媒内蔵部25の流路断面積との比率はほぼ1:4とされているが、この比率は1:4に限られず、最小断面積部分24cの流路断面積が連結部23又は触媒内蔵部25の流路断面積よりも小さく且つ最小断面積部分24cが絞りとして機能すれば如何なる比率であってもよい。   In the above embodiment, the ratio between the flow path cross-sectional area of the minimum cross-sectional area portion 24c and the flow path cross-sectional area of the connecting portion 23 or the flow path cross-sectional area of the catalyst built-in portion 25 is approximately 1: 4. This ratio is not limited to 1: 4, and any flow path cross-sectional area of the minimum cross-sectional area portion 24c is smaller than the flow path cross-sectional area of the connecting portion 23 or the catalyst built-in portion 25, and the minimum cross-sectional area portion 24c functions as a restriction. It may be a ratio.

また、上記実施形態では、上流側テーパ部24aによって画成される排気流路の容積と下流側テーパ部24bによって画成される排気流路の容積との比率はほぼ2:5とされているが、この比率は2:5に限られず、最小断面積部分24cさえ設ければ任意の比率とすることができる。しかしながら、例えば、この比率を2:1とした場合には、上流側排気浄化触媒13に流入する排気ガスの単位面積当たりの流量が排気浄化触媒13の上流側端面の領域によって大きく異なってしまうことが抑制され、排気ガスは排気浄化触媒13の上流側端面全面に亘って比較的均一に流入するようになるが、排気浄化触媒13に流入する排気ガスの最大流速は緩和されず、比較的速いものとなる。一方、上記比率を1:4〜1:1程度とすると排気ガスが比較的均一に排気浄化触媒13に流入するようになると共に最大流速が緩和されるようになるため、上記比率は1:4〜1:1程度とするのが好ましい。   In the above embodiment, the ratio of the volume of the exhaust flow path defined by the upstream taper portion 24a and the volume of the exhaust flow path defined by the downstream taper portion 24b is approximately 2: 5. However, this ratio is not limited to 2: 5, and any ratio can be used as long as the minimum cross-sectional area portion 24c is provided. However, for example, when this ratio is 2: 1, the flow rate per unit area of the exhaust gas flowing into the upstream side exhaust purification catalyst 13 greatly varies depending on the region of the upstream end face of the exhaust purification catalyst 13. And the exhaust gas flows relatively uniformly over the entire upstream end face of the exhaust purification catalyst 13, but the maximum flow velocity of the exhaust gas flowing into the exhaust purification catalyst 13 is not relaxed and is relatively fast. It becomes a thing. On the other hand, when the ratio is about 1: 4 to 1: 1, the exhaust gas flows into the exhaust purification catalyst 13 relatively uniformly and the maximum flow rate is relaxed. Therefore, the ratio is 1: 4. It is preferable to be about ˜1: 1.

特に、上記容積の比率及び流路断面積の比率を最大流速が所定の限界流速以下となるように定めるのが好ましい。ここで、所定の限界流速とはそれ以上最大流速が速くなると排気ガスが上流側排気浄化触媒13を通過する間に排気ガス中の有害成分が部分的に浄化されなくなってしまう虞のある流速である。容積及び流路断面積の比率をこのように定めることにより上流側排気浄化触媒13による排気ガスの浄化率を高く維持することができる。   In particular, it is preferable to determine the ratio of the volume and the ratio of the cross-sectional area of the flow path so that the maximum flow velocity is equal to or less than a predetermined limit flow velocity. Here, the predetermined limit flow rate is a flow rate at which the harmful component in the exhaust gas may not be partially purified while the exhaust gas passes through the upstream side exhaust purification catalyst 13 when the maximum flow rate is further increased. is there. By determining the ratio of the volume and the flow path cross-sectional area in this way, the exhaust gas purification rate by the upstream side exhaust purification catalyst 13 can be kept high.

さらに、上記実施形態では、連結部23、すなわち排気枝管21が集合する部分の直ぐ下流に絞り部24が設けられているが、絞り部24を配置する位置は斯かる位置に限られない。しかしながら、絞り部24は、排気管のうち排気ガス全体の流れ方向が変化する流れ方向変化部分の直ぐ下流側に配置される必要がある。このような位置に絞り部24を配置することにより、絞り部24の上流側テーパ部24a内においても流れ方向の変化が継続し、この結果、絞り部24内で旋回流が発生するようになるためである。   Further, in the above-described embodiment, the throttle portion 24 is provided immediately downstream of the connecting portion 23, that is, the portion where the exhaust branch pipes 21 gather. However, the position where the throttle portion 24 is disposed is not limited to such a position. However, the throttle portion 24 needs to be arranged immediately downstream of the flow direction changing portion in the exhaust pipe where the flow direction of the entire exhaust gas changes. By arranging the throttle portion 24 at such a position, the change in the flow direction continues in the upstream taper portion 24 a of the throttle portion 24, and as a result, a swirling flow is generated in the throttle portion 24. Because.

次に、図7を参照して、本発明の排気管の第二実施形態について説明する。図7は、図3と同様な排気マニホルド50の断面図である。図7に示したように、排気マニホルド50は機関本体1の各排気ポート9に連結される排気枝管51と、全ての排気枝管51に連通する集合排気管52とを有する。図3に示した実施形態と同様に、集合排気管52は、排気枝管51が連結されている連結部53と、絞り部54と、上流側排気浄化触媒13が内蔵されている触媒内蔵部55とを有する。これら連結部53、絞り部54及び触媒内蔵部55は、これらの軸線が整列するように配置される。   Next, a second embodiment of the exhaust pipe of the present invention will be described with reference to FIG. FIG. 7 is a cross-sectional view of an exhaust manifold 50 similar to FIG. As shown in FIG. 7, the exhaust manifold 50 includes an exhaust branch pipe 51 connected to each exhaust port 9 of the engine body 1 and a collective exhaust pipe 52 communicating with all the exhaust branch pipes 51. Similar to the embodiment shown in FIG. 3, the collective exhaust pipe 52 includes a connecting part 53 to which the exhaust branch pipe 51 is connected, a throttle part 54, and a catalyst built-in part in which the upstream side exhaust purification catalyst 13 is built. 55. The connecting portion 53, the throttle portion 54, and the catalyst built-in portion 55 are arranged so that their axes are aligned.

連結部53及び触媒内蔵部55は上記第一実施形態の連結部23及び触媒内蔵部25と同様に構成される。しかしながら、本実施形態では、絞り部54の構成が上記第一実施形態の絞り部24の構成と異なる。   The connection part 53 and the catalyst built-in part 55 are configured in the same manner as the connection part 23 and the catalyst built-in part 25 of the first embodiment. However, in the present embodiment, the configuration of the aperture section 54 is different from the configuration of the aperture section 24 of the first embodiment.

絞り部54は、流路断面積が徐々に小さくなるようにテーパが付けられたテーパ部を有し、本実施形態ではテーパ部は下流側に向かって徐々に直径が小さくなる中空の切頭円錐状となっている。しかしながら、絞り部54は上記第一実施形態における下流側テーパ部24bに対応する部分を有さない。したがって、絞り部54の上流側と下流側とでは流路断面積が異なっており、絞り部54の上流側に配置された連結部53の流路断面積は絞り部54の下流側に配置された触媒内蔵部25の流路断面積よりも小さい。   The throttle portion 54 has a tapered portion that is tapered so that the cross-sectional area of the flow path gradually decreases. In this embodiment, the tapered portion is a hollow truncated cone whose diameter gradually decreases toward the downstream side. It has become a shape. However, the throttle portion 54 does not have a portion corresponding to the downstream taper portion 24b in the first embodiment. Therefore, the flow path cross-sectional area is different between the upstream side and the downstream side of the throttle part 54, and the flow path cross-sectional area of the connecting part 53 arranged on the upstream side of the throttle part 54 is arranged on the downstream side of the throttle part 54. It is smaller than the cross-sectional area of the flow path of the catalyst built-in portion 25.

このように、触媒内蔵部25の直ぐ上流に流路断面積が徐々に小さくなるようなテーパ部のみを有する絞り部54を設けることにより、上流側排気浄化触媒13全体に排気ガスが流入するようになる。   As described above, by providing the throttle portion 54 having only the tapered portion so that the flow path cross-sectional area gradually decreases immediately upstream of the catalyst built-in portion 25, the exhaust gas flows into the entire upstream side exhaust purification catalyst 13. become.

すなわち、連結部53のように流路断面積が大きい場合には、その中を流れる排気ガスの流量は流路断面全体に亘って均一にはなっておらず、流路断面の一部で局所的に流量が多くなっており流路断面の他の一部で局所的に流量が少なくなっている傾向にある。従って、例えば図4に示したように絞り部54を設けずに連結部から触媒内蔵部まで流路断面積を等しいものとした場合、触媒内蔵部に内蔵された上流側排気浄化触媒に流入する排気ガスの流れに偏りが生じ、上流側排気浄化触媒の上流側端面の一部領域において、通過する排気ガスの流量が多いものとなると共に、他の一部領域において排気ガスの流量が少ないものとなり、このため上流側排気浄化触媒の一部が局所的に劣化してしまう。   That is, when the cross-sectional area of the flow path is large as in the connecting portion 53, the flow rate of the exhaust gas flowing therein is not uniform over the entire cross-section of the flow path, Therefore, the flow rate tends to increase, and the flow rate tends to decrease locally in the other part of the cross section of the flow path. Therefore, for example, as shown in FIG. 4, when the flow passage cross-sectional area is equal from the connecting portion to the catalyst built-in portion without providing the throttle portion 54, it flows into the upstream side exhaust purification catalyst built in the catalyst built-in portion. The exhaust gas flow is biased, and the exhaust gas flow rate in a part of the upstream end face of the upstream side exhaust purification catalyst is high and the exhaust gas flow rate is low in the other part of the region. Therefore, a part of the upstream side exhaust purification catalyst is locally degraded.

一方、本実施形態のように、連結部53の排気下流側に絞り部54が設けられると、流路断面積が徐々に小さくなるのに伴って、その断面において排気ガスの流量が均一になっていく。このため、排気ガスが絞り部54の最も下流側に位置する最小断面積部分を通過する際には排気ガスの流量は最小断面積部分の断面全面に亘って比較的均一となっている。絞り部54の直ぐ下流側には上流側排気浄化触媒13が設けられており、よって排気ガスは上流側排気浄化触媒13に比較的均一に流入するようになる。   On the other hand, when the throttle portion 54 is provided on the exhaust downstream side of the connecting portion 53 as in the present embodiment, the flow rate of the exhaust gas becomes uniform in the cross section as the flow path cross-sectional area gradually decreases. To go. For this reason, when the exhaust gas passes through the minimum cross-sectional area portion located on the most downstream side of the throttle portion 54, the flow rate of the exhaust gas is relatively uniform over the entire cross-section of the minimum cross-sectional area portion. The upstream side exhaust purification catalyst 13 is provided immediately downstream of the throttle portion 54, so that the exhaust gas flows into the upstream side exhaust purification catalyst 13 relatively uniformly.

なお、上記実施形態では、絞り部54は連結部53の直ぐ下流側、すなわち排気ガスの流れ方向変化部分の直ぐ下流側に配置されているが、絞り部54は連結部53の直ぐ下流側に配置される必要はなく、直線的に延びた排気管の下流側に配置されてもよい。ただし、この場合でも、絞り部54の直ぐ下流側に触媒内蔵部55、すなわち排気浄化触媒を配置する必要がある。これは、絞り部54の直ぐ下流側において最も排気ガスが均一に流れていると考えられると共に、絞り部54から或る程度離間された位置に上流側排気浄化触媒を配置すると絞り分54から上流側排気浄化触媒まで排気ガスが流れる間に再び排気ガスの流れが不均一になってしまう虞があるためである。   In the above embodiment, the throttle portion 54 is disposed immediately downstream of the connecting portion 53, that is, immediately downstream of the flow direction changing portion of the exhaust gas, but the throttle portion 54 is immediately downstream of the connecting portion 53. It does not need to be arranged, and may be arranged on the downstream side of the linearly extending exhaust pipe. However, even in this case, it is necessary to dispose the catalyst built-in portion 55, that is, the exhaust purification catalyst, immediately downstream of the throttle portion 54. This is considered that the exhaust gas flows most evenly immediately downstream of the throttle portion 54, and when the upstream side exhaust purification catalyst is arranged at a position somewhat away from the throttle portion 54, it is upstream from the throttle portion 54. This is because the exhaust gas flow may become non-uniform again while the exhaust gas flows to the side exhaust purification catalyst.

本発明の排気管を備えた内燃機関全体を示す図である。It is a figure which shows the whole internal combustion engine provided with the exhaust pipe of this invention. 排気マニホルドの概略斜視図である。It is a schematic perspective view of an exhaust manifold. 図2のラインIII−IIIに沿った排気マニホルドの断面図である。FIG. 3 is a cross-sectional view of the exhaust manifold taken along line III-III in FIG. 2. 直線型の排気マニホルド120の概略斜視図である。2 is a schematic perspective view of a straight exhaust manifold 120. FIG. 排気マニホルド内を通過する排気ガスの流れを模式的に示した図である。It is the figure which showed typically the flow of the exhaust gas which passes through the inside of an exhaust manifold. クランク角度と排気浄化触媒に流入する排気ガスの流速との関係を示した図である。It is the figure which showed the relationship between a crank angle and the flow velocity of the exhaust gas which flows into an exhaust purification catalyst. 本発明の第二実施形態の排気マニホルドの概略斜視図である。It is a schematic perspective view of the exhaust manifold of 2nd embodiment of this invention.

符号の説明Explanation of symbols

13 上流側排気浄化触媒
14 下流側排気管
15 下流側排気浄化触媒
16 ケーシング
20 排気マニホルド
21 排気枝管
22 集合排気管
23 連結部
24 絞り部
24a 上流側テーパ部
24b 下流側テーパ部
25 触媒内蔵部
DESCRIPTION OF SYMBOLS 13 Upstream side exhaust purification catalyst 14 Downstream side exhaust pipe 15 Downstream side exhaust purification catalyst 16 Casing 20 Exhaust manifold 21 Exhaust branch pipe 22 Collective exhaust pipe 23 Connection part 24 Restriction part 24a Upstream side taper part 24b Downstream side taper part 25 Catalyst built-in part

Claims (6)

機関本体の排気ポートと排気浄化触媒とを連通する内燃機関の排気管であって、当該排気管内を流通する排気ガス全体の流れ方向が変化する流れ変化部分を有する内燃機関の排気管において、
上記流れ変化部分の直ぐ下流に絞り部を有し、該絞り部における流路断面積は該絞り部の直ぐ上流における排気管の流路断面積よりも小さい、排気管。
In an exhaust pipe of an internal combustion engine that communicates an exhaust port of the engine body and an exhaust purification catalyst, the exhaust pipe of the internal combustion engine having a flow changing portion in which the flow direction of the entire exhaust gas flowing through the exhaust pipe changes.
An exhaust pipe having a throttle portion immediately downstream of the flow changing portion, wherein a flow passage cross-sectional area in the throttle portion is smaller than a flow passage cross-sectional area of the exhaust pipe immediately upstream of the throttle portion.
上記排気管は各気筒の排気ポートに連通する複数の排気枝管と、連通部においてこれら排気枝管全てに連通する一つの集合排気管とを有し、上記絞り部は上記連通部の下流側において集合排気管に設けられる、請求項1に記載の排気管。   The exhaust pipe has a plurality of exhaust branch pipes communicating with the exhaust ports of the respective cylinders, and a single collective exhaust pipe communicating with all of the exhaust branch pipes at the communication part, and the throttle part is downstream of the communication part. The exhaust pipe according to claim 1, wherein the exhaust pipe is provided in the collective exhaust pipe. 上記絞り部の形状は、該絞り部の下流側に配置される上記排気浄化触媒に流入する排気ガスの最大流速が所定流速以下となるような形状とされる、請求項1又は2に記載の排気管。   The shape of the throttle portion is a shape such that a maximum flow rate of exhaust gas flowing into the exhaust purification catalyst disposed on the downstream side of the throttle portion is a predetermined flow rate or less. Exhaust pipe. 上記絞り部は、流路断面積が該絞り部の軸線方向下流に向かって徐々に小さくなっていく上流側テーパ部と、該上流側テーパ部の下流側に設けられると共に流路断面積が該絞り部の軸線方向下流に向かって徐々に大きくなっていく下流側テーパ部とを有する、請求項1〜3のいずれか1項に記載の排気管。   The throttle part is provided on the upstream taper part in which the channel cross-sectional area gradually decreases toward the downstream in the axial direction of the throttle part, and on the downstream side of the upstream taper part, and the channel cross-sectional area is The exhaust pipe according to any one of claims 1 to 3, further comprising a downstream tapered portion that gradually increases toward the downstream in the axial direction of the throttle portion. 上記上流側テーパ部によって画成される排気流路の容積と、上記下流側テーパ部によって画成される排気流路の容積との比率がほぼ2:5である、請求項4に記載の排気管。   The exhaust gas according to claim 4, wherein a ratio of a volume of the exhaust flow path defined by the upstream taper portion and a volume of the exhaust flow channel defined by the downstream taper portion is approximately 2: 5. tube. 機関本体の排気ポートと排気浄化触媒とを連通する内燃機関の排気管において、流路断面積が排気管の軸線方向下流に向かって徐々に小さくなる絞り部を有し、該絞り部の直ぐ下流に上記排気浄化触媒が位置するように上記絞り部が配置される、排気管。   An exhaust pipe of an internal combustion engine communicating with an exhaust port of an engine body and an exhaust purification catalyst has a throttle portion whose flow passage cross-sectional area gradually decreases toward the downstream in the axial direction of the exhaust pipe, and immediately downstream of the throttle portion An exhaust pipe in which the throttle part is disposed so that the exhaust purification catalyst is located in the exhaust pipe.
JP2005332963A 2005-11-17 2005-11-17 Exhaust pipe for internal combustion engine Pending JP2007138811A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005332963A JP2007138811A (en) 2005-11-17 2005-11-17 Exhaust pipe for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005332963A JP2007138811A (en) 2005-11-17 2005-11-17 Exhaust pipe for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2007138811A true JP2007138811A (en) 2007-06-07

Family

ID=38202001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005332963A Pending JP2007138811A (en) 2005-11-17 2005-11-17 Exhaust pipe for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2007138811A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011117328A (en) * 2009-12-01 2011-06-16 Toyota Motor Corp Exhaust purification device
CN102663452A (en) * 2012-04-14 2012-09-12 中国人民解放军国防科学技术大学 Suspicious act detecting method based on video analysis
JP2018071353A (en) * 2016-10-24 2018-05-10 いすゞ自動車株式会社 Exhaust system structure for internal combustion engine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0797921A (en) * 1993-08-06 1995-04-11 Toyota Motor Corp Exhaust manifold
JP2005127271A (en) * 2003-10-27 2005-05-19 Babcock Hitachi Kk Urea water vaporizer
JP2005240602A (en) * 2004-02-25 2005-09-08 Nissan Motor Co Ltd Exhaust apparatus of internal combustion engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0797921A (en) * 1993-08-06 1995-04-11 Toyota Motor Corp Exhaust manifold
JP2005127271A (en) * 2003-10-27 2005-05-19 Babcock Hitachi Kk Urea water vaporizer
JP2005240602A (en) * 2004-02-25 2005-09-08 Nissan Motor Co Ltd Exhaust apparatus of internal combustion engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011117328A (en) * 2009-12-01 2011-06-16 Toyota Motor Corp Exhaust purification device
CN102663452A (en) * 2012-04-14 2012-09-12 中国人民解放军国防科学技术大学 Suspicious act detecting method based on video analysis
JP2018071353A (en) * 2016-10-24 2018-05-10 いすゞ自動車株式会社 Exhaust system structure for internal combustion engine

Similar Documents

Publication Publication Date Title
JP3573044B2 (en) Exhaust gas purification device for internal combustion engine
US8215101B2 (en) Exhaust purification device of an internal combustion engine
US7444803B2 (en) Exhaust gas control apparatus for engine and method for producing same
EP1170471B1 (en) Exhaust device of internal combustion engine
JP6299856B1 (en) Engine exhaust system
US10626781B2 (en) Exhaust device of engine
JP4062231B2 (en) Exhaust gas purification device for internal combustion engine
JP2007138811A (en) Exhaust pipe for internal combustion engine
JP2018131997A (en) Exhaust emission control device
US10662853B2 (en) Engine exhaust device
JP2009013862A (en) Exhaust emission control device of internal combustion engine
JP4169021B2 (en) Exhaust gas purification system for internal combustion engine
JP2004301019A (en) Catalytic converter system
JP6319412B1 (en) Engine exhaust system
JP2008303796A (en) Exhaust emission control device
WO2018110325A1 (en) Engine exhaust device
JP4477371B2 (en) Exhaust gas purification device for internal combustion engine
JP2006348767A (en) Exhaust emission control device for internal combustion engine
JP4525487B2 (en) Exhaust gas purification device for internal combustion engine
JP2017223162A (en) Exhaust emission control device
JP6677583B2 (en) Exhaust gas purification device
JP2006266142A (en) Exhaust emission control device for internal combustion engine
KR20210061667A (en) Lean-burn engine aftertreatment system
JP2006233827A (en) Exhaust emission control device
JP2005207277A (en) Exhaust cooling system for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101130