JP2005233640A - Distance measurement method by ultrasonic wave air sensor - Google Patents

Distance measurement method by ultrasonic wave air sensor Download PDF

Info

Publication number
JP2005233640A
JP2005233640A JP2004039488A JP2004039488A JP2005233640A JP 2005233640 A JP2005233640 A JP 2005233640A JP 2004039488 A JP2004039488 A JP 2004039488A JP 2004039488 A JP2004039488 A JP 2004039488A JP 2005233640 A JP2005233640 A JP 2005233640A
Authority
JP
Japan
Prior art keywords
ultrasonic sensor
ultrasonic
distance
sensor
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004039488A
Other languages
Japanese (ja)
Inventor
Makoto Nomura
誠 埜村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2004039488A priority Critical patent/JP2005233640A/en
Publication of JP2005233640A publication Critical patent/JP2005233640A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a distance measurement method by ultrasonic wave air sensor installed in the air capable of measuring the distance to the measurement object always precisely. <P>SOLUTION: The distance measurement method by ultrasonic wave air sensor for measuring the distance L from the ultrasonic wave sensor 4 installed in the air to the free surface of the drainage water 2 (object to be measured) based on the time from the ultrasonic wave transmitted from the ultrasonic sensor 4 and returns to the same after reflected by the free surface of the drainage water 2. The ultrasonic sensor 4 is air washed and its transmission/reception surface is dried, and after that the standard target 7 is inserted on the course of the ultrasonic waves in a known distance, then the standard distance LS from the ultrasonic sensor 4 to the target is measured. By measuring the intensity of the reflected ultrasonic waves, the contamination and the precision of the ultrasonic sensor 4 is confirmed, then, the distance L is measured. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、空中に設置された超音波センサを用いて記被計測物までの距離を測定する測距方法に関するものである。   The present invention relates to a distance measuring method for measuring a distance to an object to be measured using an ultrasonic sensor installed in the air.

例えば、液体の流量を計測する手段として三角堰が知られているが、この三角堰は、上流の液体面と堰の上縁(堰縁)との高さ(堰のヘッド)を測定し、これによって液体の流量を計測するものである。   For example, a triangular weir is known as a means for measuring the flow rate of liquid. This triangular weir measures the height of the upstream liquid surface and the upper edge (weir edge) of the weir (weir head), Thereby, the flow rate of the liquid is measured.

ところで、このような三角堰による流量測定においては、堰のヘッドを超音波センサによって測定することが行われる。この場合、超音波センサは、三角堰の上方の空中に設置され、該超音波センサから発信された超音波が液面で反射して帰ってくるまでの時間を計測し、その時間に基づいて水面までの高さを検出するものである。尚、このように空中に設置された超音波センサによって液面までの高さを計測する技術は、種々の分野で利用されている(例えば、特許文献1参照)。   By the way, in the flow rate measurement by such a triangular weir, the head of the weir is measured by an ultrasonic sensor. In this case, the ultrasonic sensor is installed in the air above the triangular weir, measures the time until the ultrasonic wave transmitted from the ultrasonic sensor is reflected on the liquid surface and returns, and based on that time It detects the height to the water surface. In addition, the technique which measures the height to a liquid level with the ultrasonic sensor installed in the air in this way is utilized in various fields (for example, refer patent document 1).

特開平5−322721号公報Japanese Patent Laid-Open No. 5-322721

ところが、空中に設置された超音波センサによって液面までの距離を測定する方法においては、超音波センサの送受信面に水滴や異物が付着すると、超音波が水滴によって屈折し、液面までの距離を正確に測定することができないという問題があった。例えば、三角堰において堰のヘッドを超音波センサによって測定する場合、超音波センサの送受信面に水滴や異物が付着すると、堰のヘッドが正確に測定されず、この堰のヘッドに基づいて算出される液体の流量に誤差が生ずるという問題があった。   However, in the method of measuring the distance to the liquid level with an ultrasonic sensor installed in the air, if a water drop or a foreign object adheres to the transmission / reception surface of the ultrasonic sensor, the ultrasonic wave is refracted by the water drop and the distance to the liquid level. There was a problem that it was impossible to measure accurately. For example, when measuring the head of a weir with an ultrasonic sensor in a triangular weir, if water droplets or foreign matter adhere to the transmission / reception surface of the ultrasonic sensor, the head of the weir is not accurately measured and is calculated based on the head of this weir. There was a problem that an error occurred in the flow rate of the liquid.

本発明は上記問題に鑑みてなされたもので、その目的とする処は、空中に設置された超音波センサによって被測定物までの距離を常に高精度に測定することができる超音波式空中センサによる測距方法を提供することにある。   The present invention has been made in view of the above problems, and an object thereof is an ultrasonic aerial sensor that can always measure the distance to an object to be measured with an ultrasonic sensor installed in the air with high accuracy. The object is to provide a distance measuring method.

上記目的を達成するため、請求項1記載の発明は、空中に設置された超音波センサから発信された超音波が被計測物で反射して帰ってくるまでの時間を計測し、その時間に基づいて超音波センサから前記被計測物までの距離を測定する超音波式空中センサによる測距方法において、前記超音波センサを空気洗浄してその送受信面を乾燥させた後、超音波の進路上に標準の的を既知の距離の位置に挿入してこれと超音波センサとの距離を測定し、又、超音波の反射強度を測定することによりエラー検出を行って超音波センサの汚れと計測精度を確認してから計測を行うことを特徴とする。   In order to achieve the above object, the invention according to claim 1 measures the time until the ultrasonic wave transmitted from the ultrasonic sensor installed in the air is reflected by the object to be measured and returns. In the distance measurement method using an ultrasonic aerial sensor that measures the distance from the ultrasonic sensor to the object to be measured based on the ultrasonic wave path after the ultrasonic sensor is washed with air and the transmitting / receiving surface is dried The standard target is inserted into a position at a known distance, the distance between this and the ultrasonic sensor is measured, and the error is detected by measuring the reflection intensity of the ultrasonic wave to measure the contamination of the ultrasonic sensor. It is characterized by measuring after confirming the accuracy.

請求項2記載の発明は、請求項1記載の発明において、前記エラー検出によってエラーが検出されると、前記超音波センサを液体洗浄した後に空気洗浄してその送受信面を乾燥させた後、再度エラー検出を行い、超音波センサの汚れと計測精度を確認してから計測を行うことを特徴とする。   According to a second aspect of the present invention, in the first aspect of the present invention, when an error is detected by the error detection, the ultrasonic sensor is liquid-washed and then air-washed to dry its transmitting / receiving surface, and then again. It is characterized in that measurement is performed after error detection is performed and contamination of the ultrasonic sensor and measurement accuracy are confirmed.

請求項1記載の発明によれば、超音波センサによる本来の計測(被計測物までの距離の測定)を行う前に、標準の的を用いたエラー検出によって超音波センサの計測精度と汚れを確認(超音波センサの精度が高く、且つ、超音波センサの送受信面への汚れの付着が無いことの確認)するようにしたため、超音波センサによる被計測物までの距離の測定を常に高精度に行うことができる。   According to the first aspect of the invention, before the original measurement (measurement of the distance to the object to be measured) by the ultrasonic sensor is performed, the measurement accuracy and dirt of the ultrasonic sensor are reduced by error detection using a standard target. Since the confirmation (confirmation that the accuracy of the ultrasonic sensor is high and there is no contamination on the transmission / reception surface of the ultrasonic sensor), the distance to the object to be measured by the ultrasonic sensor is always highly accurate. Can be done.

請求項2記載の発明によれば、エラー検出においてエラーが検出された場合には、そのエラーの原因となっている超音波センサの送受信面に付着した汚れを液体洗浄によって取り除き、この液体洗浄によって超音波センサの送受信面に付着した水滴を空気洗浄によって蒸発させて乾燥させるようにしたため、エラー状態を速やかに解消して超音波センサによる高精度な距離の測定を実現することができる。   According to the second aspect of the present invention, when an error is detected in the error detection, the dirt adhering to the transmission / reception surface of the ultrasonic sensor causing the error is removed by liquid cleaning, and the liquid cleaning is performed. Since the water droplets adhering to the transmission / reception surface of the ultrasonic sensor are evaporated and dried by air cleaning, the error state can be quickly eliminated and a highly accurate distance measurement by the ultrasonic sensor can be realized.

以下に本発明の実施の形態を添付図面に基づいて説明する。尚、以下は本発明の実施形態の一例を示すものであって、本発明の範囲はこれによって制限されるものではない。   Embodiments of the present invention will be described below with reference to the accompanying drawings. In addition, the following shows an example of the embodiment of the present invention, and the scope of the present invention is not limited thereby.

図1は三角堰による流量測定法を示す水路の断面図、図2は三角堰の正面図、図3は本発明に係る測距方法において水面までの距離を測定している状態を示す側面図、図4は本発明に係る測距方法におけるエラー検出時の状態を示す側面図、図5(a)〜(c)は超音波センサの下面(送受信面)の状態を示す側面図である。   1 is a cross-sectional view of a water channel showing a flow rate measurement method using a triangular weir, FIG. 2 is a front view of the triangular weir, and FIG. 3 is a side view showing a state in which the distance to the water surface is measured in the distance measuring method according to the present invention. 4 is a side view showing a state when an error is detected in the distance measuring method according to the present invention, and FIGS. 5A to 5C are side views showing the state of the lower surface (transmission / reception surface) of the ultrasonic sensor.

図1及び図2において、1は上面が開放された断面矩形の水路(開渠)であって、この水路1には、図や固形物を含むスラリー等の液体、例えば汚泥を含む排水2が流れている。そして、水路1の端部には三角堰3が設けられており、排水2は三角堰3を通過して水路1外へと排出される。   1 and 2, reference numeral 1 denotes a water channel (opening) having a rectangular cross-section with an open upper surface. In this water channel 1, a liquid such as a slurry containing a figure or solid matter, for example, a waste water 2 containing sludge is contained. Flowing. A triangular weir 3 is provided at the end of the water channel 1, and the drainage 2 passes through the triangular weir 3 and is discharged out of the water channel 1.

ここで、上記三角堰3は、図2に示すように、頂角α(本実施の形態では、α=90°)の倒立三角形の切欠きを堰とし、角を挟む2辺2aを薄刃として構成され、水路1を流れる排水2は、図1に示すように、三角堰3を通過する際に絞られて噴流となって水路1外へと排出される。   Here, as shown in FIG. 2, the triangular weir 3 has an inverted triangular notch with an apex angle α (α = 90 ° in the present embodiment) as a weir, and two sides 2a sandwiching the corner as a thin blade. As shown in FIG. 1, the drainage 2 that is configured and flows through the water channel 1 is squeezed when passing through the triangular weir 3 to be jetted and discharged out of the water channel 1.

而して、三角堰3を越える排水2の流量Qは、三角堰3の堰縁3bから排水2の自由表面(上流の水位)までの垂直距離である堰のヘッドhを測定することによって次式によって求められる。   Thus, the flow rate Q of the drainage 2 over the triangular weir 3 is determined by measuring the weir head h which is the vertical distance from the weir edge 3b of the triangular weir 3 to the free surface of the drainage 2 (upstream water level). It is calculated by the formula.

Q=Kh5 / 2 … (1)
(K:流量係数)
ところで、本実施の形態においては、堰のヘッドhは、三角堰3よりも上流の排水2の上方に設置された超音波式空中センサ(以下、単に超音波センサと称する)4によって、該超音波センサ4から排水2の自由表面までの距離Lを測定することによって求められるが、その状態を図3に示す。
Q = Kh 5/2 ... ( 1)
(K: Flow coefficient)
By the way, in the present embodiment, the head h of the weir is formed by an ultrasonic air sensor (hereinafter simply referred to as an ultrasonic sensor) 4 installed above the drainage 2 upstream of the triangular weir 3. This is obtained by measuring the distance L from the acoustic wave sensor 4 to the free surface of the drainage 2, and the state is shown in FIG.

即ち、超音波センサ4から一定の時間間隔で超音波が発信されると、その超音波は排水2の自由表面で反射して超音波センサ4によって受信されるが、それまでの時間(超音波の伝播時間)tは不図示の計測手段によって計測され、この計測された時間tに基づいて超音波センサ4から排水2の自由表面までの距離Lが不図示の演算手段によって次式にて算出される。   That is, when ultrasonic waves are transmitted from the ultrasonic sensor 4 at regular time intervals, the ultrasonic waves are reflected by the free surface of the drainage 2 and received by the ultrasonic sensor 4. Propagation time) t is measured by a measuring means (not shown), and the distance L from the ultrasonic sensor 4 to the free surface of the drainage 2 is calculated by the following formula by a calculating means (not shown) based on the measured time t. Is done.

L=a×t/2 … (2)
(a:音速)
ここで、図1に示す超音波センサ4から三角堰3の堰縁3bまでの距離Lは既知であるため、堰のヘッドhは次式によって求められる。
L = a × t / 2 (2)
(A: speed of sound)
Here, since the distance L 0 from the ultrasonic sensor 4 shown in FIG. 1 to the weir edge 3b of the triangular weir 3 is known, the head h of the weir is obtained by the following equation.

h=L0−L … (3)
尚、本実施の形態では、超音波センサ4として本多電子(株)社製のHD500の市販品を使用しており、その送受信面である下面の外径はφ32mmである。
h = L 0− L (3)
In the present embodiment, a commercially available product of HD500 manufactured by Honda Electronics Co., Ltd. is used as the ultrasonic sensor 4, and the outer diameter of the lower surface, which is the transmission / reception surface, is 32 mm.

ところで、図5(a)に示すように、超音波センサ4の送受信面である下面に水滴5が付着すると、超音波が水滴5によって屈折し、排水2の自由表面までの距離Lを正確に測定することができない。   By the way, as shown in FIG. 5A, when the water droplet 5 adheres to the lower surface, which is the transmitting / receiving surface of the ultrasonic sensor 4, the ultrasonic wave is refracted by the water droplet 5, and the distance L to the free surface of the drainage 2 is accurately set. It cannot be measured.

そこで、本実施の形態では、図3及び図4に示すように、超音波センサ4の近傍に噴射ノズル6を設けるとともに、計測エラーを検出するための標準の的7をその軸7a回りに回動可能に設けた。   Therefore, in this embodiment, as shown in FIGS. 3 and 4, an injection nozzle 6 is provided in the vicinity of the ultrasonic sensor 4, and a standard target 7 for detecting a measurement error is rotated around its axis 7a. It was provided to be movable.

ここで、前記噴射ノズル6は、その先端部が超音波センサ4の被洗浄面である下面に向かうように鋭角に屈曲されており、これには圧縮空気を供給するための不図示のコンプレッサ又は清浄な洗浄水を供給するための不図示のポンプが切替手段によって選択的に接続される。   Here, the jet nozzle 6 is bent at an acute angle so that the tip thereof is directed to the lower surface, which is the surface to be cleaned of the ultrasonic sensor 4, and a compressor (not shown) for supplying compressed air or the like A pump (not shown) for supplying clean washing water is selectively connected by the switching means.

又、前記標準の的7は、その軸7aの下端部に水平に取り付けられた遮蔽部7bを有しており、超音波センサ4によって排水2の自由表面までの距離Lを測定する図3に示す状態では、標準の的7の遮蔽部7bは図示のように超音波センサ4から発信される超音波を遮らない位置に退避している。ここで、超音波センサ4から標準の的7の遮蔽部7bまでの距離LSは所定の値(例えば、1m)に予め設定されており、この値がエラー検出の際に超音波センサ4の精度を判定するための基準値となる。 Further, the standard target 7 has a shielding portion 7b attached horizontally to the lower end portion of the shaft 7a, and the ultrasonic sensor 4 measures the distance L to the free surface of the drainage 2 in FIG. In the state shown, the standard 7 shielding portion 7b is retracted to a position where the ultrasonic wave transmitted from the ultrasonic sensor 4 is not blocked as shown in the figure. Here, the distance L S from the ultrasonic sensor 4 to the standard target 7 shielding portion 7b is set in advance to a predetermined value (for example, 1 m), and this value is the value of the ultrasonic sensor 4 when an error is detected. This is a reference value for determining accuracy.

次に、本発明に係る測距方法を図6に示すフロチャートに従って説明する。   Next, a distance measuring method according to the present invention will be described with reference to a flowchart shown in FIG.

距離Lの測定を開始する前に、先ず、不図示のコンプレッサから圧縮空気を噴射ノズル6に供給し、この圧縮空気を噴射ノズル6から噴射して超音波センサ4の下面に付着していた水滴5(図5(a)参照)を蒸発させて超音波センサ4の下面を空気洗浄して乾燥させる(ステップS1)。その後、図4に示すように、標準の的7をその軸7a回りに180°回動させて遮蔽部7bを超音波センサ4の下方(超音波センサ4から発信される超音波を遮る位置)に位置せしめ、エラー検出を開始する(ステップS2)。   Before starting the measurement of the distance L, first, compressed air is supplied from an unillustrated compressor to the injection nozzle 6, and the compressed air is injected from the injection nozzle 6 to adhere to the lower surface of the ultrasonic sensor 4. 5 (see FIG. 5A) is evaporated, and the lower surface of the ultrasonic sensor 4 is washed with air and dried (step S1). Thereafter, as shown in FIG. 4, the standard target 7 is rotated 180 ° around its axis 7 a, and the shielding part 7 b is located below the ultrasonic sensor 4 (position where the ultrasonic wave transmitted from the ultrasonic sensor 4 is blocked). Then, error detection is started (step S2).

上記エラー検出においては、図4に示すように、超音波センサ4によってこれと標準の的7の遮蔽部7bまでの距離が計測される。即ち、超音波センサ4から発信された超音波は遮蔽部7bで反射して超音波センサ4によって受信されるが、それまでの時間(超音波の伝播時間)tは不図示の計測手段によって計測され、この計測された時間tに基づいて超音波センサ4から遮蔽部までの距離が前記(2)式によって算出される。ここで、超音波センサ4によって実測された距離をLS’とする。 In the error detection, as shown in FIG. 4, the distance from the ultrasonic sensor 4 to the standard target 7 shielding portion 7 b is measured by the ultrasonic sensor 4. That is, the ultrasonic wave transmitted from the ultrasonic sensor 4 is reflected by the shielding part 7b and received by the ultrasonic sensor 4, but the time (ultrasonic propagation time) t until that time is measured by a measuring means (not shown). Then, based on the measured time t, the distance from the ultrasonic sensor 4 to the shielding part is calculated by the equation (2). Here, the distance actually measured by the ultrasonic sensor 4 is defined as L S ′.

そして、求められた距離(実測された距離)LS’が予め設定された基準値LSと比較され、その誤差ΔLS(=|LS’−LS|)が許容値未満であるか否か、又、超音波センサ4の送受信面である下面に汚れが付着しているか否かが目視で判定される(ステップS3)。 Then, the obtained distance (actually measured distance) L S ′ is compared with a preset reference value L S, and whether the error ΔL S (= | L S ′ −L S |) is less than the allowable value. Whether or not dirt is attached to the lower surface, which is the transmitting / receiving surface of the ultrasonic sensor 4, is visually determined (step S3).

誤差ΔLSが許容値未満であり、且つ、超音波センサ4の下面に汚れが付着していない場合(ステップS3での判定結果がYESである場合)には、超音波の反射強度を規準値と比較し、超音波センサ4に劣化がないか判断する(ステップS4)。即ち、反射強度の誤差が許容範囲内であれば正常、許容範囲外であれば超音波センサ4に劣化が生じているものと判断し、アラームを出力する。 When the error ΔL S is less than the allowable value and no dirt is attached to the lower surface of the ultrasonic sensor 4 (when the determination result in step S3 is YES), the ultrasonic reflection intensity is the reference value. In comparison with the above, it is determined whether the ultrasonic sensor 4 is deteriorated (step S4). That is, if the reflection intensity error is within the allowable range, it is determined that the error is normal, and if it is outside the allowable range, it is determined that the ultrasonic sensor 4 has deteriorated, and an alarm is output.

ステップS4で正常と判断された場合(ステップS4での判断結果がYESである場合)には、標準の的7を図4に示す状態からその軸7a回りに180°回動させ、図3に示すように遮蔽部7bを超音波センサ4の下方から退避させた後、前記方法によって超音波センサ4から排水2の自由表面までの距離Lを計測する(ステップS5)。   If it is determined to be normal in step S4 (if the determination result in step S4 is YES), the standard target 7 is rotated 180 ° around its axis 7a from the state shown in FIG. As shown, after the shield 7b is retracted from below the ultrasonic sensor 4, the distance L from the ultrasonic sensor 4 to the free surface of the drainage 2 is measured by the above method (step S5).

他方、誤差ΔLSが許容値を超えた場合(ステップS3での判定結果がNOである場合)には、図5(a)に示す空気洗浄の結果、水滴5に含まれて汚泥等の固形分が図5(b)に示すように超音波センサ4の下面に汚れ8として残っているものと判断し、噴射ノズル6の接続をポンプに切り替えて該ポンプから清浄水を噴射ノズル6に供給し、図5(b)に示すように、噴射ノズル6から清浄水を噴射して超音波センサ4の下面に付着している汚泥等の汚れ8を水洗浄によって除去する(ステップS6)。 On the other hand, when the error ΔL S exceeds the allowable value (when the determination result in step S3 is NO), the result of air cleaning shown in FIG. As shown in FIG. 5 (b), it is determined that dirt 8 remains on the lower surface of the ultrasonic sensor 4 and the connection of the injection nozzle 6 is switched to the pump, and clean water is supplied from the pump to the injection nozzle 6. Then, as shown in FIG. 5B, clean water is jetted from the jet nozzle 6 to remove dirt 8 such as sludge adhering to the lower surface of the ultrasonic sensor 4 by water washing (step S6).

次に、噴射ノズル6の接続を再度コンプレッサに切り替えて該コンプレッサから圧縮空気を噴射ノズル6に供給し、図5(c)に示すように、噴射ノズル6から圧縮空気を噴射して超音波センサ6の下面に付着している水滴(洗浄水の水滴)9を蒸発させて超音波センサ4の下面を空気洗浄して乾燥させる(ステップS1)。尚、本実施の形態では、切り替えによって1つの噴射ノズル6から空気と水を噴射するよう構成したが、空気噴射用と水噴射用の噴射ノズルを各々独立に設けるようにしても良い。又、本実施の形態では、エラーが検出された場合に噴射ノズル6から水を噴射するようにしたが、水以外の他の液体、例えばアルコールや炭酸ガス飽和水等を噴射するようにしても良い。   Next, the connection of the injection nozzle 6 is switched again to the compressor, compressed air is supplied from the compressor to the injection nozzle 6, and as shown in FIG. The water droplet (water droplet of washing water) 9 adhering to the lower surface of 6 is evaporated, and the lower surface of the ultrasonic sensor 4 is washed with air and dried (step S1). In the present embodiment, the air and water are jetted from one jet nozzle 6 by switching. However, the jet nozzles for air jet and water jet may be provided independently. In the present embodiment, water is jetted from the jet nozzle 6 when an error is detected. However, other liquids such as alcohol or carbon dioxide saturated water may be jetted. good.

その後、前述と同様にエラー検出を行い(ステップS2)、誤差ΔLSが許容値未満で、且つ、超音波センサ4の下面に汚れが認められない状態となるまで水洗浄と空気洗浄及びエラー検出が繰り返され(ステップS3→ステップS6→ステップS1→ステップS2)、誤差ΔLSが許容値未満で、且つ、超音波センサ4の下面に汚れが認められない状態となると、図3に示すように、ステップS4での超音波センサ4の劣化判断工程を経て前記方法によって超音波センサ4から排水2の自由表面までの距離Lを計測する(ステップS5)。 Thereafter, error detection is performed in the same manner as described above (step S2), and water cleaning, air cleaning, and error detection are performed until the error ΔL S is less than an allowable value and no contamination is observed on the lower surface of the ultrasonic sensor 4. Is repeated (step S3 → step S6 → step S1 → step S2), and when the error ΔL S is less than the allowable value and no contamination is observed on the lower surface of the ultrasonic sensor 4, as shown in FIG. The distance L from the ultrasonic sensor 4 to the free surface of the drainage 2 is measured by the above method through the deterioration determination process of the ultrasonic sensor 4 in step S4 (step S5).

以上の操作が計測終了まで繰り返される(ステップS7)が、本実施の形態では、超音波センサ4による本来の計測(排水2の自由表面までの距離Lの測定)を行う前に、標準の的7を用いたエラー検出によって超音波センサ4の計測精度と汚れを確認(超音波センサ4の精度が高く、且つ、超音波センサ4の下面への汚れの付着が無いことを確認)するようにしたため、超音波センサ4による排水2の自由表面までの距離Lの測定を常に高精度に行うことができ、測定された距離Lに基づいて(3)式によって堰のヘッドhを正確に算出し、この堰のヘッドhに基づいて(1)式によって排水2の流量Qを正確に求めることができる。   The above operation is repeated until the measurement is completed (step S7). In this embodiment, the standard measurement is performed before the original measurement (measurement of the distance L to the free surface of the drainage water 2) by the ultrasonic sensor 4. The measurement accuracy and dirt of the ultrasonic sensor 4 are confirmed by error detection using 7 (confirm that the precision of the ultrasonic sensor 4 is high and no dirt adheres to the lower surface of the ultrasonic sensor 4). Therefore, the distance L to the free surface of the drainage 2 by the ultrasonic sensor 4 can always be measured with high accuracy, and the head h of the weir is accurately calculated by the equation (3) based on the measured distance L. Based on the head h of this weir, the flow rate Q of the drainage 2 can be accurately obtained by the equation (1).

又、本実施の形態では、エラー検出においてエラーが検出された場合には、そのエラーの原因となっている超音波センサ4の下面に付着した汚れ8(図5(b)参照)を水洗浄によって取り除き、この水洗浄によって超音波センサ4の下面に付着した水滴9(図5(c)参照)を空気洗浄によって蒸発させて乾燥させるようにしたため、エラー状態を速やかに解消して超音波センサ4による高精度な距離Lの測定を実現することができる。   In this embodiment, when an error is detected in the error detection, the dirt 8 (see FIG. 5B) adhering to the lower surface of the ultrasonic sensor 4 causing the error is washed with water. The water droplets 9 (see FIG. 5C) adhering to the lower surface of the ultrasonic sensor 4 by this water cleaning are evaporated and dried by air cleaning, so that the error state is quickly eliminated and the ultrasonic sensor 4 can realize the measurement of the distance L with high accuracy.

本発明は、三角堰による流量測定のみならず、空中に設置された超音波センサを用いて任意の被計測物までの距離を測定する方法、例えば貯水槽やプールの水位、各種タンクの水位等を測定する方法に対して広く利用され得るものである。   The present invention is not only for measuring the flow rate with a triangular weir, but also for measuring the distance to any object to be measured using an ultrasonic sensor installed in the air, such as the water level of a water tank or pool, the water level of various tanks, etc. It can be widely used for the method of measuring.

三角堰による流量測定法を示す水路の断面図である。It is sectional drawing of the water channel which shows the flow measurement method by a triangular weir. 三角堰の正面図である。It is a front view of a triangular weir. 本発明に係る測距方法において水面までの距離を測定している状態を示す側面図である。It is a side view which shows the state which is measuring the distance to the water surface in the ranging method which concerns on this invention. 本発明に係る測距方法におけるエラー検出時の状態を示す側面図である。It is a side view which shows the state at the time of the error detection in the distance measuring method which concerns on this invention. (a)〜(c)は超音波センサの下面(送受信面)の状態を示す側面図である。(A)-(c) is a side view which shows the state of the lower surface (transmission-and-reception surface) of an ultrasonic sensor. 本発明方法の手順を示すフローチャートである。It is a flowchart which shows the procedure of this invention method.

符号の説明Explanation of symbols

1 水路
2 排水
3 三角堰
4 超音波センサ
5 水滴
6 噴射ノズル
7 標準の的
7a 軸
7b 遮蔽部
8 汚れ
9 水滴
DESCRIPTION OF SYMBOLS 1 Waterway 2 Drainage 3 Triangular weir 4 Ultrasonic sensor 5 Water drop 6 Injection nozzle 7 Standard target 7a Shaft 7b Shielding part 8 Dirt 9 Water drop

Claims (2)

空中に設置された超音波センサから発信された超音波が被計測物で反射して帰ってくるまでの時間を計測し、その時間に基づいて超音波センサから前記被計測物までの距離を測定する超音波式空中センサによる測距方法において、
前記超音波センサを空気洗浄してその送受信面を乾燥させた後、超音波の進路上に標準の的を既知の距離の位置に挿入してこれと超音波センサとの距離を測定し、又、超音波の反射強度を測定することによりエラー検出を行って超音波センサの汚れと計測精度を確認してから計測を行うことを特徴とする超音波式空中センサによる測距方法。
Measures the time until the ultrasonic wave transmitted from the ultrasonic sensor installed in the air is reflected by the measured object and returns, and measures the distance from the ultrasonic sensor to the measured object based on that time In the distance measurement method using an ultrasonic air sensor,
After the ultrasonic sensor is cleaned with air and its transmitting / receiving surface is dried, a standard target is inserted at a known distance on the path of the ultrasonic wave to measure the distance between the ultrasonic sensor and the ultrasonic sensor. A distance measuring method using an ultrasonic aerial sensor, wherein an error is detected by measuring the reflection intensity of ultrasonic waves, and measurement is performed after confirming contamination and measurement accuracy of the ultrasonic sensor.
前記エラー検出によってエラーが検出されると、前記超音波センサを液体洗浄した後に空気洗浄してその送受信面を乾燥させた後、再度エラー検出を行い、超音波センサの汚れと計測精度を確認してから計測を行うことを特徴とする請求項1記載の超音波式空中センサによる測距方法。   If an error is detected by the error detection, the ultrasonic sensor is washed with liquid and then air-washed to dry its transmitting / receiving surface, and then error detection is performed again to check the contamination and measurement accuracy of the ultrasonic sensor. 2. The distance measuring method using an ultrasonic air sensor according to claim 1, wherein the measurement is performed after the measurement.
JP2004039488A 2004-02-17 2004-02-17 Distance measurement method by ultrasonic wave air sensor Pending JP2005233640A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004039488A JP2005233640A (en) 2004-02-17 2004-02-17 Distance measurement method by ultrasonic wave air sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004039488A JP2005233640A (en) 2004-02-17 2004-02-17 Distance measurement method by ultrasonic wave air sensor

Publications (1)

Publication Number Publication Date
JP2005233640A true JP2005233640A (en) 2005-09-02

Family

ID=35016776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004039488A Pending JP2005233640A (en) 2004-02-17 2004-02-17 Distance measurement method by ultrasonic wave air sensor

Country Status (1)

Country Link
JP (1) JP2005233640A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8274860B2 (en) 2007-04-28 2012-09-25 Pulsar Process Measurement Ltd. Distance measurement apparatus and related methods
JP2014178174A (en) * 2013-03-14 2014-09-25 Chugoku Electric Power Co Inc:The Water leakage measuring device
WO2015025527A1 (en) * 2013-08-23 2015-02-26 パナソニックIpマネジメント株式会社 Object detection device for vehicle
CN105043313A (en) * 2015-06-25 2015-11-11 杭州镭速清洗设备有限公司 Vehicle contour detection system used for vehicle washing equipment and detection method thereof
JP2018194406A (en) * 2017-05-16 2018-12-06 株式会社Soken Liquid level detector
CN114217610A (en) * 2021-11-29 2022-03-22 北京云迹科技股份有限公司 Method, device, equipment and medium for detecting degree of dirt

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8274860B2 (en) 2007-04-28 2012-09-25 Pulsar Process Measurement Ltd. Distance measurement apparatus and related methods
JP2014178174A (en) * 2013-03-14 2014-09-25 Chugoku Electric Power Co Inc:The Water leakage measuring device
WO2015025527A1 (en) * 2013-08-23 2015-02-26 パナソニックIpマネジメント株式会社 Object detection device for vehicle
CN105474038A (en) * 2013-08-23 2016-04-06 松下知识产权经营株式会社 Object detection device for vehicle
CN105043313A (en) * 2015-06-25 2015-11-11 杭州镭速清洗设备有限公司 Vehicle contour detection system used for vehicle washing equipment and detection method thereof
JP2018194406A (en) * 2017-05-16 2018-12-06 株式会社Soken Liquid level detector
CN114217610A (en) * 2021-11-29 2022-03-22 北京云迹科技股份有限公司 Method, device, equipment and medium for detecting degree of dirt

Similar Documents

Publication Publication Date Title
KR900001575B1 (en) Detectin system for impurity in water
KR101811469B1 (en) Solution processing apparatus, solution processing method, and recording medium
WO2012033001A1 (en) Ultrasonic flaw detection device for pipe end and method for setting initial position of probe holder
KR20170038676A (en) Laser processing apparatus, laser processing method and distance measurement method
JP6936538B2 (en) Falling rain gauge
JP2005233640A (en) Distance measurement method by ultrasonic wave air sensor
JP2008002956A (en) Washing apparatus and water quality meter
JP6767205B2 (en) Laser processing equipment, laser processing method and distance measurement method
WO2008152025A3 (en) Method for measuring flow rates in liquid melts
WO2009037501A1 (en) Measurement of flow in a channel
JP2010256339A (en) Ultrasound flaw detecting device for pipe ends, and initial-position setting method for probe holder
JP6591555B2 (en) Semiconductor device cleaning apparatus having fall prevention function, and chamber including the apparatus
JP2005265608A (en) Stain removing method
JP6804403B2 (en) Dirt judgment device and maintenance device for measuring instruments using it
JP2009222549A (en) Ultrasonic thickness measuring method
CN105443824A (en) Valve housing
JP4609626B2 (en) Ultrasonic sludge interface level meter
KR102561382B1 (en) Aggregation status monitoring sensor
JPH09264772A (en) Dispensing apparatus
CN217466807U (en) Water back-spraying mechanism
CN220188416U (en) Four-pole type conductivity measuring sensor
JP2006010342A (en) Ultrasonic flaw detecting method and ultrasonic flaw detector
JP2007038170A (en) Nozzle cleaning device
KR101730144B1 (en) Ultrasonic sensor with built-in cleaning device
JP4012390B2 (en) Ultrasonic distance measuring device