JP2005265608A - Stain removing method - Google Patents

Stain removing method Download PDF

Info

Publication number
JP2005265608A
JP2005265608A JP2004078595A JP2004078595A JP2005265608A JP 2005265608 A JP2005265608 A JP 2005265608A JP 2004078595 A JP2004078595 A JP 2004078595A JP 2004078595 A JP2004078595 A JP 2004078595A JP 2005265608 A JP2005265608 A JP 2005265608A
Authority
JP
Japan
Prior art keywords
gas
light
dirt
water
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004078595A
Other languages
Japanese (ja)
Other versions
JP4458244B2 (en
Inventor
Makoto Nomura
誠 埜村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2004078595A priority Critical patent/JP4458244B2/en
Publication of JP2005265608A publication Critical patent/JP2005265608A/en
Application granted granted Critical
Publication of JP4458244B2 publication Critical patent/JP4458244B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Measuring Cells (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Cleaning By Liquid Or Steam (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a stain removing method which enables the effective removal of the stain bonded to a sensor immersed in water to be measured to always keep a high measuring precision. <P>SOLUTION: In washing off the stain of a concentration sensor for receiving at least one of a transmitted light transmitted through water to be measured of light applied into water to be measured from a floodlight part, scattered light scattered by a suspension contained in the water to be measured and reflected light reflected by the suspension, a gas-liquid mixed stream, wherein washing water and air are mixed, is introduced into the space between the floodlight part and a light detecting part to remove the stain bonded to the concentration sensor. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、懸濁液中に設置された各センサの汚れ除去方法に係り、特に光学式懸濁物濃度計に用いられる濃度センサの洗浄に好適な汚れ除去方法に関する。   The present invention relates to a soil removal method for each sensor installed in a suspension, and more particularly to a soil removal method suitable for cleaning a concentration sensor used in an optical suspension concentration meter.

従来から、懸濁液中に設置される各種のセンサは、汚れが付着しやすく、計測値に誤差が生じるため、汚れを除去する必要があった。被計測水の物性を計測するセンサとしては、例えば温度計、圧力計、粘度計、流量計、流速計、pH計、ORP(酸化還元電位)計などがある。また、被計測水中の不純物量を計測するセンサとしては、例えば懸濁物濃度計、導電率計、各種イオンメータ、DO(溶存酸素)計、紫外線吸光度計、TOC計、COD計、BOD計、TOD計などに用いられるセンサがある。   Conventionally, various sensors installed in a suspension are likely to be contaminated and an error occurs in a measured value, so that it is necessary to remove the dirt. Examples of sensors that measure physical properties of water to be measured include a thermometer, a pressure gauge, a viscometer, a flow meter, a flow meter, a pH meter, and an ORP (oxidation reduction potential) meter. Moreover, as a sensor which measures the amount of impurities in water to be measured, for example, a suspension concentration meter, a conductivity meter, various ion meters, a DO (dissolved oxygen) meter, an ultraviolet absorbance meter, a TOC meter, a COD meter, a BOD meter, There are sensors used for TOD meters and the like.

以下、センサを代表して懸濁物濃度計に用いられる濃度センサを例に背景技術について述べる。
懸濁物濃度計に用いられる濃度センサとしては、粒子状態検出用プローブを用いて被計測水に含まれる懸濁物の濃度を計測するものが知られている(例えば、特許文献1を参照)。この種の濃度センサは、図5に示すように被計測水Mにレーザ光を照射する投光部1と、この投光部の近傍に設けられて被計測水を透過した透過光を受光する透過光受光部2T、被計測水に含まれる懸濁物により散乱または反射した光をそれぞれ受光する散乱光受光部2Sおよび反射光受光部2Rの少なくとも一つが設けられて、これらの受光部2(2T,2S,2R)が受光した光のレベルから、被計測水に含まれる懸濁物の濃度を測定する濃度測定部3を備えた光学式懸濁物濃度計に適用される。
The background art will be described below by taking a concentration sensor used for a suspension concentration meter as an example of the sensor.
As a concentration sensor used in a suspension concentration meter, one that measures the concentration of a suspension contained in water to be measured using a particle state detection probe is known (see, for example, Patent Document 1). . As shown in FIG. 5, this type of concentration sensor receives a light projecting unit 1 that irradiates laser light to the water to be measured M, and transmitted light that is provided in the vicinity of the light projecting unit and passes through the water to be measured. At least one of a transmitted light receiving unit 2 T , a scattered light receiving unit 2 S that receives light scattered or reflected by the suspended matter contained in the water to be measured and a reflected light receiving unit 2 R is provided. 2 (2 T , 2 S , 2 R ) is applied to an optical suspension concentration meter equipped with a concentration measuring unit 3 for measuring the concentration of the suspension contained in the water to be measured from the level of light received. The

ところで上述した濃度センサにあっては、投光部1や受光部2の表面に浮遊物や汚泥が付着することが往々にしてあり、これらが付着するとセンサの検知精度が低下することが否めない。したがって、投光部1の投光面および受光部2の受光面を常時或いは定期的に洗浄する必要がある。この種のセンサの洗浄に関する類似の技術として廃水処理や下水道等に提供される沈殿槽における沈殿槽内の上澄水と汚泥との界面レベルを超音波センサを用いて計測する超音波センサの洗浄方法が知られている(例えば、特許文献2,3および4を参照)
特願2002−337778号 特開平9−318420号公報 特開2003−302279号公報 特願2004−028256号
By the way, in the above-described concentration sensor, floating substances and sludge often adhere to the surfaces of the light projecting unit 1 and the light receiving unit 2, and it cannot be denied that the detection accuracy of the sensor decreases when these adhere. . Therefore, it is necessary to clean the light projecting surface of the light projecting unit 1 and the light receiving surface of the light receiving unit 2 constantly or periodically. Ultrasonic sensor cleaning method that measures the interface level between supernatant water and sludge in a sedimentation tank in a sedimentation tank provided for wastewater treatment or sewerage as a similar technique for cleaning this type of sensor using an ultrasonic sensor Is known (see, for example, Patent Documents 2, 3, and 4)
Japanese Patent Application No. 2002-337778 JP-A-9-318420 JP 2003-302279 A Japanese Patent Application No. 2004-028256

しかしながら上述した汚れ除去方法にあっては、ノズルからセンサの送受信面に向かって水等の液体を噴射する方式であり、良好な洗浄が得られないという問題がある。つまり液体中で液体を噴射する方式は、センサ付近の液体を置換し、共存している固形物等を押し出す効果はあっても、洗浄のための液体の噴射速度が上澄水中で減殺されるため、センサに付着した汚れを剥離させることは難しい。また、液体の噴射速度を上げると、汚れの除去効果が上がる反面、噴射の拡散領域が狭くなり効果的な洗浄ができないという問題もある。   However, the above-described dirt removal method is a method in which a liquid such as water is ejected from the nozzle toward the transmission / reception surface of the sensor, and there is a problem that good cleaning cannot be obtained. In other words, the method of jetting liquid in liquid replaces the liquid in the vicinity of the sensor and pushes out coexisting solids, etc., but the jetting speed of the liquid for cleaning is reduced in the supernatant water. For this reason, it is difficult to remove the dirt adhering to the sensor. Further, when the liquid ejection speed is increased, the effect of removing dirt increases, but there is also a problem that the spray diffusion region becomes narrow and effective cleaning cannot be performed.

このようなことから、高圧の液体をセンサの送受信面に噴射する方式を採用するには、センサの全面に噴流が当たるように多数の噴射管を設け、且つ、互いの噴流が干渉しないように順番に噴射させる機構を設けたり、またはノズルの角度を任意の角度に変えられる可変ノズル機構とする等、複雑な機構をとる必要があった。このように液体をセンサの送受信面に噴射する方式にあっては、簡単な機構で十分な洗浄効果を得ることが難しいという問題がある。   For this reason, in order to employ a method of injecting a high-pressure liquid onto the transmission / reception surface of the sensor, a large number of injection pipes are provided so that the jet flows on the entire surface of the sensor, and the mutual jets do not interfere with each other. It has been necessary to adopt a complicated mechanism such as providing a mechanism that injects in order or a variable nozzle mechanism that can change the angle of the nozzle to an arbitrary angle. As described above, there is a problem that it is difficult to obtain a sufficient cleaning effect with a simple mechanism in the method of ejecting the liquid onto the transmission / reception surface of the sensor.

また、上述した従来技術において、気体を被計測水中に噴射したときに形成される気液混合状態を利用してセンサを洗浄する方法もあるが、その発明は、該センサが比較的きれいな上澄水に浸漬された状態を想定してなされたものであり、被計測水に不純物が多く、特に懸濁物が多く含まれている場合は、センサ付近の液体を置換し、共存している固形物等を押し出す効果はあるものの、センサに付着した汚れを剥離させる効果が低くなり、したがってセンサに対して良好な洗浄が得られないという問題があった。   Further, in the above-described prior art, there is a method of cleaning the sensor by using a gas-liquid mixed state formed when gas is injected into the water to be measured. In the case where the water to be measured contains a lot of impurities, especially if it contains a lot of suspended solids, the liquid near the sensor is replaced and coexisting solid matter Although there is an effect of extruding the sensor etc., there is a problem that the effect of peeling off the dirt adhering to the sensor is lowered, and therefore, the sensor cannot be satisfactorily cleaned.

本発明はこのような従来の事情に対処してなされたものであり、その目的とするところは、被計測水中に浸漬されたセンサ、特に光学式濁質濃度計の投光部および受光部に付着した汚れを効果的に除去して常に高い測定精度を保つことができる汚れ除去方法を提供することにある。   The present invention has been made in response to such a conventional situation, and an object of the present invention is to provide a sensor immersed in measurement water, particularly a light projecting unit and a light receiving unit of an optical turbidity concentration meter. An object of the present invention is to provide a dirt removing method capable of effectively removing attached dirt and always maintaining high measurement accuracy.

上述した目的を達成するため、本発明に係る汚れ除去方法は、請求項1に記載するように懸濁液からなる被計測水中に設置され、前記被計測水の物性や不純物量を計測するセンサの汚れを除去するに際し、前記センサの汚れ付着部に洗浄水と気体とを混合した気液混合流を導入して、前記センサに付着した汚れを除去することを特徴としている。
上述の汚れ除去方法によれば、汚れ付着部に洗浄水と気体とを混合した気液混合流を噴射するので、複雑な乱れを伴った撹拌力を生起し、付着した汚れを剥離し、押し出す効果を奏する。
In order to achieve the above-described object, a dirt removing method according to the present invention is installed in measured water made of a suspension as described in claim 1, and measures a physical property and an impurity amount of the measured water. When removing the dirt, a gas-liquid mixed flow in which cleaning water and gas are mixed is introduced into the dirt adhering portion of the sensor to remove the dirt adhering to the sensor.
According to the above-mentioned dirt removal method, since a gas-liquid mixed flow in which cleaning water and gas are mixed is sprayed onto the dirt adhesion portion, a stirring force with complicated disturbance is generated, and the adhered dirt is peeled off and extruded. There is an effect.

また本発明に係る汚れ除去方法は、請求項2に記載するように投光部から被計測水中に照射した光の上記被計測水を透過した透過光、前記被計測水に含まれる懸濁物により散乱された散乱光、および上記懸濁物により反射された反射光の少なくとも1つを受光する受光部を備えた濃度センサの汚れを洗浄するに際し、前記投光部と前記受光部との間に被計測水よりも不純物含有量の少ない洗浄水と気体とを混合した気液混合流を導入して、前記濃度センサに付着した汚れを除去することを特徴としている。   Moreover, the dirt removal method according to the present invention includes the light transmitted from the light projecting unit to the measured water, the transmitted light transmitted through the measured water, and the suspended matter contained in the measured water. When cleaning dirt of a concentration sensor provided with a light receiving unit that receives at least one of the scattered light scattered by the reflected light and the reflected light reflected by the suspension, a gap between the light projecting unit and the light receiving unit is obtained. A gas-liquid mixed flow obtained by mixing cleaning water having a smaller impurity content than the water to be measured and gas is introduced to remove dirt adhering to the concentration sensor.

上述の汚れ除去方法によれば、清浄な洗浄水に、例えば空気、炭酸ガス、酸素ガス、窒素ガス或いはアルゴンガス等を混合した気液混合状態の洗浄液をセンサの投光部および受光部に噴出する。つまり上述した汚れ除去方法は、洗浄液を気液混合流にすることによって、複雑な乱れを伴った撹拌力を生起し、濃度センサに付着した懸濁物を剥離させる力を得る。また、気液混合流は、気泡が大きくなって行く過程において拡散力を生み出し、洗浄によって濃度センサから剥離した懸濁物を押し出す効果をもたらす。また、被計測水よりも清浄な洗浄水を導入することで、センサに付着した懸濁物を剥離する効果を高め、かつ剥離した懸濁物の再付着を抑制することができる。それ故、上述した汚れ除去方法は、気液混合流を形成する清浄な洗浄水に加えて、この気液混合流に含まれるガス(泡)によって、効果的にセンサに付着した汚れを除去する。   According to the above-described dirt removal method, a cleaning liquid in a gas-liquid mixed state in which, for example, air, carbon dioxide gas, oxygen gas, nitrogen gas or argon gas is mixed with clean cleaning water is ejected to the light projecting unit and the light receiving unit of the sensor. To do. That is, the above-described method for removing dirt generates a stirring force with complicated disturbance by making the cleaning liquid into a gas-liquid mixed flow, and obtains a force for peeling off the suspended matter attached to the concentration sensor. In addition, the gas-liquid mixed flow creates a diffusing force in the process of bubbles becoming larger, and has an effect of pushing out the suspended matter separated from the concentration sensor by washing. In addition, by introducing cleaning water that is cleaner than the water to be measured, it is possible to enhance the effect of peeling off the suspension adhering to the sensor and to suppress reattachment of the separated suspension. Therefore, the dirt removing method described above effectively removes dirt attached to the sensor by the gas (bubbles) contained in the gas-liquid mixed flow in addition to the clean washing water forming the gas-liquid mixed flow. .

また本発明に係る汚れ除去方法は、請求項3に記載するように前記濃度センサの投光部および受光部を洗浄するべく前記投光部と受光部との間への気液混合流を導入するものであって、この気液混合流を前記投光部と前記受光部との間で旋回する旋回流とすることを特徴としている。
上述の汚れ除去方法は、気液混合状態の洗浄水を旋回させながら濃度センサの投光部および受光部に導入する。このため、旋回流によって効果的にセンサの投光部および受光部に付着した汚れを除去することが可能となる。
Further, the dirt removing method according to the present invention introduces a gas-liquid mixed flow between the light projecting unit and the light receiving unit in order to clean the light projecting unit and the light receiving unit of the concentration sensor. The gas-liquid mixed flow is a swirl flow swirling between the light projecting unit and the light receiving unit.
In the above-described dirt removal method, the cleaning water in the gas-liquid mixed state is introduced into the light projecting unit and the light receiving unit of the concentration sensor while swirling. For this reason, it becomes possible to remove the dirt adhering to the light projecting part and the light receiving part of the sensor effectively by the swirl flow.

また本発明に係る汚れ除去方法は、請求項4に記載するように前記気液混合流が複数の噴射ノズルを介して前記投光部と受光部との間に導入されるものである。この複数の前記噴射ノズルは、互いに噴射方向をずらして配設され、各噴射ノズルから噴射される気液混合流によって、前記投光部と前記受光部との間を旋回する旋回流を発生させている。
また本発明に係る汚れ除去方法は、請求項5に記載するように複数の前記噴射ノズルは、各噴射口の位置を同一水平面内において径方向にずらして配置することが望ましい。
In the dirt removing method according to the present invention, the gas-liquid mixed flow is introduced between the light projecting unit and the light receiving unit via a plurality of jet nozzles. The plurality of injection nozzles are arranged with their injection directions shifted from each other, and generate a swirling flow that swirls between the light projecting unit and the light receiving unit by a gas-liquid mixed flow injected from each injection nozzle. ing.
Further, in the dirt removing method according to the present invention, it is desirable that the plurality of spray nozzles are arranged by shifting the positions of the spray ports in the radial direction within the same horizontal plane.

上述の汚れ除去方法は、複数のノズルからセンサに対して噴出される気液混合流が、よりいっそう効果的に旋回流を生じるように配置したものとしている。それ故、上述の汚れ除去方法は、センサ近傍において効果的に旋回させた旋回流を作ることができ、その旋回流によりセンサに付着した汚れを除去することができる。   In the above-described dirt removal method, the gas-liquid mixed flow ejected from the plurality of nozzles to the sensor is arranged to generate a swirl flow more effectively. Therefore, the dirt removing method described above can create a swirling flow that is effectively swirled in the vicinity of the sensor, and can remove dirt attached to the sensor by the swirling flow.

上述した本発明の汚れ除去方法においては、センサの汚れ付着部に洗浄水と気体とを混合した気液混合流を導入しているので、清浄な洗浄水による洗浄に加えて、気泡導入による複雑な乱れを伴った撹拌力を生起し、付着した懸濁物を剥離し、押し出すことができる(請求項1)。また上述した本発明の汚れ除去方法においては、投光部と受光部との間に洗浄水と気体とを混合した気液混合流を導入しているので、清浄な洗浄水に含まれるガスにより泡が形成されてセンサに付着した汚れを除去することができる(請求項2)。その結果、濃度センサは、常に高い検知精度を確保することが可能となる。   In the above-described method for removing dirt according to the present invention, since a gas-liquid mixed flow in which washing water and gas are mixed is introduced into the dirt adhering portion of the sensor, in addition to washing with clean washing water, complicated air bubbles are introduced. A stirring force accompanied by a turbulence can be generated, and the adhering suspension can be peeled off and extruded (Claim 1). Moreover, in the dirt removal method of the present invention described above, since a gas-liquid mixed flow in which cleaning water and gas are mixed is introduced between the light projecting unit and the light receiving unit, the gas contained in clean cleaning water is used. Dirt adhered to the sensor by forming bubbles can be removed (claim 2). As a result, the density sensor can always ensure high detection accuracy.

また本発明に係る汚れ除去方法は、気液混合流を前記投光部と前記受光部との間を旋回する旋回流としている。このため、センサの投光面および受光面に気液混合状態の洗浄水が旋回し、よりいっそう効果的にセンサ面に付着した汚れを除去することができる(請求項3)。
この旋回流は、具体的には複数の噴射ノズルを介して前記投光部と受光部との間に導入されて、各噴射ノズルが互いに噴射方向をずらして位相差を設け配置されている(請求項4)。このため、各噴射ノズルから噴射される気液混合流は、センサの投光部および受光部と間を旋回する旋回流となり、センサに付着した汚れを効果的に除去することが可能となる。
In the dirt removal method according to the present invention, the gas-liquid mixed flow is a swirl flow that swirls between the light projecting unit and the light receiving unit. For this reason, the cleaning water in the gas-liquid mixed state swirls on the light projecting surface and the light receiving surface of the sensor, and the dirt adhering to the sensor surface can be more effectively removed.
Specifically, the swirling flow is introduced between the light projecting unit and the light receiving unit via a plurality of jet nozzles, and the jet nozzles are arranged with a phase difference by shifting the jet direction from each other ( Claim 4). For this reason, the gas-liquid mixed flow ejected from each ejection nozzle becomes a swirl flow that swirls between the light projecting unit and the light receiving unit of the sensor, and it is possible to effectively remove the dirt adhering to the sensor.

また本発明に係る汚れ除去方法は、複数の前記噴射ノズルは、各噴射口の位置を同一水平面内において径方向にずらして配置しているので、筒状の容器にセンサの投光部および受光部が収められている濃度センサにあっては、センサ近傍の水流を効果的に旋回させた旋回流を作ることができ、その旋回流によりセンサに付着した汚れを除去することが可能となる(請求項5)。   Further, in the method for removing dirt according to the present invention, the plurality of spray nozzles are arranged by shifting the positions of the spray ports in the radial direction within the same horizontal plane. In the concentration sensor in which the portion is housed, it is possible to create a swirl flow that effectively swirls the water flow in the vicinity of the sensor, and it is possible to remove dirt attached to the sensor by the swirl flow ( Claim 5).

以下、本発明の一実施形態に係る汚れ除去方法に関し、図面を参照しながら説明する。
図1は本発明に係る汚れ除去方法が適用される懸濁物濃度計の主要構成のみを示すブロック図である。この図において10は、被計測水(図1に図示せず)の中に、後述する気液混合流を噴射するノズルであり、5は、被計測水中に浸漬されて被計測水の懸濁物濃度を検出する透過光型センサの一部である。ちなみにノズル10から噴射される気液混合流は、洗浄水と気体とが混合された二相状態の流体である。この懸濁物濃度計には、センサ5を洗浄する洗浄液を保持する洗浄液タンク11が設けられている。この洗浄液タンク11には、例えば清浄な洗浄水Wが蓄えられるようになっている。この洗浄液タンク11に蓄えられた洗浄水Wは、所定の圧力に加圧する水ポンプ12より加圧される。また懸濁物濃度計には、空気Aを圧縮する圧縮ポンプ13と、この圧縮ポンプ13により圧縮された空気Aを一時的に蓄える圧力タンク14が備えられている。
Hereinafter, a dirt removal method according to an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a block diagram showing only the main configuration of a suspension concentration meter to which the soil removing method according to the present invention is applied. In this figure, reference numeral 10 denotes a nozzle for injecting a gas-liquid mixed flow, which will be described later, into measured water (not shown in FIG. 1). Reference numeral 5 denotes a suspension of measured water that is immersed in the measured water. It is a part of a transmitted light type sensor that detects an object concentration. Incidentally, the gas-liquid mixed flow ejected from the nozzle 10 is a two-phase fluid in which cleaning water and gas are mixed. The suspension concentration meter is provided with a cleaning liquid tank 11 that holds a cleaning liquid for cleaning the sensor 5. In the cleaning liquid tank 11, for example, clean cleaning water W is stored. The cleaning water W stored in the cleaning liquid tank 11 is pressurized by a water pump 12 that pressurizes to a predetermined pressure. The suspension concentration meter is provided with a compression pump 13 for compressing air A and a pressure tank 14 for temporarily storing the air A compressed by the compression pump 13.

水ポンプ12により加圧された洗浄水Wと圧縮ポンプ13により圧縮された空気Aは、それぞれ洗浄水制御弁15および空気制御弁16を介して洗浄水Wと圧縮空気Aを混ぜ合わせる混合器17に送られるようになっている。この混合器17は、洗浄水Wと空気Aと混ぜ合わせて気液混合状態(二相状態)の流体(気液混合液)を生成する役割を担う。そして混合器17で生成された気液混合液は、ノズル10から被計測水Mに浸漬されて被計測水Mの懸濁物濃度を検出する透過光型センサ5に噴射される。   The water 17 compressed by the water pump 12 and the air A compressed by the compression pump 13 are mixed with the water 17 and the compressed air A through the water control valve 15 and the air control valve 16, respectively. To be sent to. The mixer 17 plays a role of mixing the cleaning water W and the air A to generate a gas-liquid mixed state (two-phase state) fluid (gas-liquid mixed liquid). The gas-liquid mixed solution generated by the mixer 17 is injected from the nozzle 10 to the transmitted light type sensor 5 that detects the suspension concentration of the measured water M by being immersed in the measured water M.

概略的には、上述したようにしてセンサの汚れを除去する本発明に係る汚れ除去方法が特徴とするところは、予め洗浄液と気体とを混合した気液混合液をセンサの洗浄液とした点、気液混合液を旋回流としてセンサに噴射してセンサを洗浄する点にある。
このような特徴ある本発明に係る汚れ除去方法に関し、図を参照しながらより詳細に説明する。図2は、透過光型懸濁物濃度計のセンサ部を示す概略構成図である。この図において5は前述した透過光型センサであって、図示しない発光部から照射された光を被計測水M内へ導いて、その端面から被計測水Mに光を照射する光ファイバ7を備えている。この光ファイバ7の端面は、被計測水Mに光を照射する投光部1を形成している。この投光部1と対峙する位置には、他の光ファイバ7の端面が設けられている。この光ファイバ7は、投光部1から被計測水Mに照射された光を、その端面から受光する受光部2を形成するものである。この受光部2から受光した光は、光ファイバ7により図示しない濃度測定部に導かれて、被計測水Mにおける懸濁物の濃度を計測する検出信号となる。
In general, the dirt removing method according to the present invention for removing dirt from the sensor as described above is characterized in that the gas-liquid mixed liquid obtained by mixing the washing liquid and the gas in advance is used as the sensor washing liquid. The gas / liquid mixture is jetted onto the sensor as a swirling flow to clean the sensor.
The dirt removal method according to the present invention having such characteristics will be described in detail with reference to the drawings. FIG. 2 is a schematic configuration diagram showing a sensor unit of the transmitted light type suspension concentration meter. In this figure, reference numeral 5 denotes the above-mentioned transmitted light type sensor, and an optical fiber 7 that guides light irradiated from a light emitting unit (not shown) into the measured water M and irradiates the measured water M from its end face. I have. The end face of the optical fiber 7 forms a light projecting unit 1 that irradiates the water to be measured M with light. An end surface of another optical fiber 7 is provided at a position facing the light projecting unit 1. This optical fiber 7 forms the light receiving part 2 which receives the light irradiated from the light projecting part 1 to the water M to be measured from its end face. The light received from the light receiving unit 2 is guided to a concentration measuring unit (not shown) by the optical fiber 7 and becomes a detection signal for measuring the concentration of the suspended matter in the measurement target water M.

この投光部1および受光部2の近傍には、前述したノズル10が設けられて、その先端から投光部1および受光部2に対して洗浄液Wを含む気液混合流が吹きつけられるようになっている。つまり本発明の一実施形態における汚れ除去方法が適用される濃度センサにあっては、ノズル10から常時または定期的に投光部1および受光部2に対して、洗浄液およびガスを混合した流体(気液混合流)を吹きつけることによって、投光部1や受光部2に付着した懸濁物による汚れを除去している。   The above-described nozzle 10 is provided in the vicinity of the light projecting unit 1 and the light receiving unit 2 so that a gas-liquid mixed flow containing the cleaning liquid W is blown from the tip of the nozzle 10 to the light projecting unit 1 and the light receiving unit 2. It has become. That is, in the concentration sensor to which the dirt removing method according to the embodiment of the present invention is applied, a fluid (a mixture of cleaning liquid and gas) from the nozzle 10 to the light projecting unit 1 and the light receiving unit 2 constantly or periodically. By spraying the gas-liquid mixed flow), dirt due to the suspended matter adhering to the light projecting unit 1 and the light receiving unit 2 is removed.

さて透過光型の光学式懸濁物濃度計は、投光部1から被計測水Mに照射した光が被計測水Mに含まれる懸濁物によって受光部2に到達する光の一部が遮られる。したがって、被計測水Mの懸濁物濃度が高いほど、被計測水Mに含まれる懸濁物によって、投光部1から照射された光が受光部2へ到達する割合が減少する。この減少する割合は、被計測水Mに含まれる懸濁物濃度に比例する。光学式懸濁物濃度計は、このような作動原理に基づいて被計測水Mの懸濁物濃度を検出する計測装置である。しかし、このように構成された懸濁物濃度計の投光部1または受光部2に被計測水Mに含まれる懸濁物が付着すると、受光部2へ到達する受光レベルが低下する。それ故、被計測水Mの懸濁物濃度の真値を得ることができず、投光部1や受光部2に付着した懸濁物によって計測誤差を生じることになる。   In the transmitted light type optical suspension concentration meter, a part of the light that reaches the light receiving unit 2 by the suspended matter contained in the measured water M is irradiated by the light irradiated from the light projecting unit 1 to the measured water M. Blocked. Therefore, the higher the suspension concentration of the water to be measured M, the lower the rate at which the light irradiated from the light projecting unit 1 reaches the light receiving unit 2 due to the suspension contained in the water to be measured M. This decreasing ratio is proportional to the concentration of the suspension contained in the water M to be measured. The optical suspension concentration meter is a measuring device that detects the suspension concentration of the water M to be measured based on such an operation principle. However, when the suspended matter contained in the water to be measured M adheres to the light projecting unit 1 or the light receiving unit 2 of the suspension concentration meter configured as described above, the light reception level reaching the light receiving unit 2 is lowered. Therefore, the true value of the suspension concentration of the water M to be measured cannot be obtained, and a measurement error is caused by the suspension adhering to the light projecting unit 1 and the light receiving unit 2.

このため、本発明に係る汚れ除去方法は、常時または定期的にノズル10から投光部1および受光部2に対して、洗浄液を含む気液混合流を吹きつけることによって、投光部1や受光部2に付着した懸濁物による汚れを除去するものである。ちなみに、このノズル10から投光部1や受光部2に吹きつける気液混合流は、清浄な洗浄水Wに加えて、空気Aを含む洗浄水である。したがって洗浄水Wまたは空気Aをそれぞれ単独で加えた場合に比べて、投光部1または受光部2に付着した懸濁物の除去能力が高い。つまり洗浄液を気液混合流にすることによって、複雑な乱れを伴った撹拌力を生起し、投光部1および受光部2に付着した懸濁物を剥離させる力を得る。つまり被計測水よりも清浄な洗浄水を導入することで、センサに付着した懸濁物を剥離する効果を高め、かつ剥離した懸濁物の再付着を抑制することができる。また、気液混合流は、気泡が大きくなって行く過程において拡散力を生み出し、投光部1および受光部2から剥離した懸濁物を押し出す効果をもたらす。このため、本発明に係る汚れ除去方法は、効果的に投光部1または受光部2に付着した懸濁物を取り除くことができ、被計測水Mの懸濁物濃度の真値を得ることが可能となる。   For this reason, the dirt removing method according to the present invention sprays the gas-liquid mixed flow containing the cleaning liquid from the nozzle 10 to the light projecting unit 1 and the light receiving unit 2 constantly or periodically. This removes dirt due to suspended matter adhering to the light receiving unit 2. Incidentally, the gas-liquid mixed flow blown from the nozzle 10 to the light projecting unit 1 and the light receiving unit 2 is cleaning water containing air A in addition to clean cleaning water W. Therefore, compared with the case where washing water W or air A is added individually, the ability to remove the suspended matter attached to the light projecting unit 1 or the light receiving unit 2 is high. That is, by making the cleaning liquid into a gas-liquid mixed flow, a stirring force with complicated disturbance is generated, and a force for peeling off the suspended matter attached to the light projecting unit 1 and the light receiving unit 2 is obtained. That is, by introducing cleaning water that is cleaner than the water to be measured, it is possible to enhance the effect of separating the suspended matter attached to the sensor and to suppress the reattachment of the separated suspended matter. In addition, the gas-liquid mixed flow creates a diffusing force in the process of bubbles becoming larger, and has an effect of pushing out the suspended matter separated from the light projecting unit 1 and the light receiving unit 2. For this reason, the dirt removing method according to the present invention can effectively remove the suspended matter adhering to the light projecting unit 1 or the light receiving unit 2, and obtain the true value of the suspended matter concentration of the water M to be measured. Is possible.

尚、好ましくはセンサの投光部1および受光部2に吹き付ける気液混合流は、旋回流とすることが望ましい。つまり、投光部1および受光部2の近傍を洗浄液を旋回させることによって、単に気液混合流を吹き付けたときに比べて、より効果的に懸濁物を取り除くことができる。具体的には、透過光型センサ5には、投光部1および受光部2の周囲を覆う図2および3に示すように端部を開放した筒状のケース6が設けられている。ちなみに、図3は、旋回流を理解しやすくするため投光部1および受光部2を省略している。   In addition, it is preferable that the gas-liquid mixed flow sprayed on the light projecting unit 1 and the light receiving unit 2 of the sensor is a swirl flow. That is, by rotating the cleaning liquid in the vicinity of the light projecting unit 1 and the light receiving unit 2, it is possible to remove the suspended matter more effectively than when the gas-liquid mixed flow is simply sprayed. Specifically, the transmitted light type sensor 5 is provided with a cylindrical case 6 having an open end as shown in FIGS. 2 and 3 covering the periphery of the light projecting unit 1 and the light receiving unit 2. Incidentally, in FIG. 3, the light projecting unit 1 and the light receiving unit 2 are omitted for easy understanding of the swirl flow.

図3に示すようにノズル10の噴射口をケース6の内壁面に向かうようにケース6に取り付ける。するとノズル10からケース6の内部に噴射される洗浄水Wおよび空気Aを含んだ気液混合流は、ケース6の内壁面により、その水平断面状を旋回する旋回流を生じる。このとき気液混合流は、気液混合流に含まれる空気Aにより得られる浮力によりケース6の内部を旋回しながらケース6の上方へ向かう。   As shown in FIG. 3, the nozzle 10 is attached to the case 6 so that the injection port faces the inner wall surface of the case 6. Then, the gas-liquid mixed flow containing the cleaning water W and the air A sprayed from the nozzle 10 into the case 6 generates a swirl flow swirling in the horizontal cross section by the inner wall surface of the case 6. At this time, the gas-liquid mixed flow is directed upward of the case 6 while turning inside the case 6 by buoyancy obtained by the air A contained in the gas-liquid mixed flow.

ちなみにケース6内に効果的に旋回流を形成するには、図4(a)に示すように気液混合流を噴射するノズル10を2個、互いにケース6内に同方向の旋回流を生じるように配置することが望ましい。このとき一対のノズル10は、各噴射口の位置を同一水平面内において径方向にずらして配置するとよい。
またより効果的に旋回流を形成するためノズル10を例えば3個、4個と増やしてもよい。この場合は、図4(b)および図4(c)に示すように、気液混合流を噴射するノズル10を互いにケース6内に同方向の旋回流を生じるように配置すればよい。
Incidentally, in order to effectively form a swirl flow in the case 6, two nozzles 10 for injecting a gas-liquid mixed flow are produced in the case 6 in the same direction as shown in FIG. It is desirable to arrange so that. At this time, the pair of nozzles 10 may be arranged by shifting the positions of the respective injection ports in the radial direction within the same horizontal plane.
Moreover, in order to form a swirl flow more effectively, the number of nozzles 10 may be increased to 3, 4, for example. In this case, as shown in FIG. 4B and FIG. 4C, the nozzles 10 for injecting the gas-liquid mixed flow may be arranged in the case 6 so as to generate a swirling flow in the same direction.

尚、上述した汚れ除去方法は、投光部1および受光部2の周囲を覆うケース6を円筒として説明したが、角筒であってもかまわない。この場合、図4(d)に示すようなノズル10は、近接する内壁面に沿って気液混合流を液面に対して水平に噴射することによって、内壁面内を気液混合流が旋回する旋回流を作ることが可能となる。具体的には、図4(d)に示すようにノズル10は、ケース6のコーナ部7a近傍に複数個設けて、ノズル10から噴射される気液混合流を内壁面に沿って噴射するようにすれば、より効果的にケース6内を気液混合流が旋回する旋回流を形成することができる。このようにノズル10を複数設ける場合、ノズル10相互の角度を変えて旋回流を発生させることに代えて、水ポンプ12の圧力は同じで、各ノズル径が異なるものを用いたり。各ノズル径は同じで圧力または流速を異ならせることによっても位相差を生み出し、気液混合状態を伴った旋回流を形成することができる。   In the above-described dirt removal method, the case 6 covering the periphery of the light projecting unit 1 and the light receiving unit 2 has been described as a cylinder, but a square tube may be used. In this case, the nozzle 10 as shown in FIG. 4D jets the gas-liquid mixed flow horizontally with respect to the liquid surface along the adjacent inner wall surface, so that the gas-liquid mixed flow swirls in the inner wall surface. It is possible to create a swirling flow. Specifically, as shown in FIG. 4D, a plurality of nozzles 10 are provided in the vicinity of the corner portion 7a of the case 6 so that the gas-liquid mixed flow injected from the nozzles 10 is injected along the inner wall surface. By doing so, a swirl flow in which the gas-liquid mixed flow swirls in the case 6 can be formed more effectively. When a plurality of nozzles 10 are provided in this way, instead of changing the angle between the nozzles 10 to generate a swirling flow, the water pump 12 has the same pressure and different nozzle diameters. Each nozzle diameter is the same, and a phase difference can be produced by varying the pressure or flow velocity, and a swirl flow with a gas-liquid mixed state can be formed.

また図3に示されるように各ノズルは、鉛直方向に位置をずらしたり、各ノズルの角度を変えて設置することができる。このような工夫を施すことによって、より一層激しい撹拌や旋回流を発生させ、より良好な洗浄効果を生じさせることができる。
かくして本発明に係る汚れ除去方法においては、投光部1と受光部2との間に洗浄水と気体とを混合した気液混合流を導入しているので、この気液混合流によって投光部1と受光部2との間に複雑な乱れを伴った撹拌力を生起し、投光部1および受光部2に付着した懸濁物を剥離させる力を得ることができる。また、気液混合流は、気泡が大きくなって行く過程において拡散力を生み出し、投光部1および受光部2から剥離した懸濁物を押し出す効果を得る。このため、本発明に係る汚れ除去方法は、効果的に投光部1または受光部2に付着した懸濁物を取り除くことが可能となる。
Further, as shown in FIG. 3, each nozzle can be installed by shifting the position in the vertical direction or changing the angle of each nozzle. By applying such a device, more intense stirring and swirling flow can be generated, and a better cleaning effect can be produced.
Thus, in the dirt removing method according to the present invention, since a gas-liquid mixed flow in which cleaning water and gas are mixed is introduced between the light projecting unit 1 and the light receiving unit 2, light is projected by this gas-liquid mixed flow. A stirring force with complicated disturbance is generated between the part 1 and the light receiving part 2, and a force for peeling off the suspended matter attached to the light projecting part 1 and the light receiving part 2 can be obtained. In addition, the gas-liquid mixed flow creates a diffusing force in the process of increasing the size of the bubbles, and obtains an effect of pushing out the suspended matter separated from the light projecting unit 1 and the light receiving unit 2. For this reason, the dirt removing method according to the present invention can effectively remove the suspended matter attached to the light projecting unit 1 or the light receiving unit 2.

また本発明に係る汚れ除去方法は、気液混合流を前記投光部と前記受光部との間を旋回する旋回流としている。このため、センサの投光面および受光面の旋回流によって、一層効果的にセンサ面に付着した汚れを除去することができる。
また投光部1および受光部2に導入される旋回流は、具体的には複数の噴射ノズルを介して前記投光部と受光部との間に導入されて、各噴射ノズルが互いに噴射方向をずらした位相差を設けて配置されている。このため、各噴射ノズルから噴射される気液混合流は、センサの投光部および受光部と間を旋回する旋回流となり、センサに付着した汚れを除去することができる。
In the dirt removal method according to the present invention, the gas-liquid mixed flow is a swirl flow that swirls between the light projecting unit and the light receiving unit. For this reason, the dirt adhering to the sensor surface can be more effectively removed by the swirling flow of the light projecting surface and the light receiving surface of the sensor.
Further, the swirl flow introduced into the light projecting unit 1 and the light receiving unit 2 is specifically introduced between the light projecting unit and the light receiving unit through a plurality of jet nozzles, and the jet nozzles are in the jet direction with respect to each other. Are arranged with a phase difference shifted from each other. For this reason, the gas-liquid mixed flow ejected from each ejection nozzle becomes a swirl flow swirling between the light projecting unit and the light receiving unit of the sensor, and the dirt attached to the sensor can be removed.

また本発明に係る汚れ除去方法は、複数の前記噴射ノズルは、各噴射口の位置を同一水平面内において径方向にずらして配置しているので、筒状の容器にセンサの投光部および受光部が治められている濃度センサの場合、センサ近傍の水流を効果的に旋回させた旋回流を作ることができ、その旋回流によりセンサに付着した汚れを効果的に除去することが可能となる。   Further, in the method for removing dirt according to the present invention, the plurality of spray nozzles are arranged by shifting the positions of the spray ports in the radial direction within the same horizontal plane. In the case of a concentration sensor in which the part is controlled, it is possible to create a swirling flow that effectively swirls the water flow in the vicinity of the sensor, and it is possible to effectively remove dirt attached to the sensor by the swirling flow. .

更に上述した実施形態においては、噴射ノズルから空気を含む気液混合流を噴出させたが、空気の他に炭酸ガス、窒素ガス、アルゴンガス等であってもかまわない。これは、空気を被計測水Mに噴出することによって被計測水の特性が変化する虞があるような場合、適切なガス(例えば不活性ガス)を選択することによって、汚れ除去に伴う影響を排除すすることができる。   Furthermore, in the embodiment described above, the gas-liquid mixed flow containing air is ejected from the ejection nozzle, but it may be carbon dioxide, nitrogen gas, argon gas or the like in addition to air. In the case where there is a possibility that the characteristics of the water to be measured may be changed by jetting air to the water to be measured M, the influence of the dirt removal can be obtained by selecting an appropriate gas (for example, an inert gas). Can be eliminated.

勿論、本発明に係る汚れ除去方法は、上述した濃度センサの他、pH計、COD計、BOD計等、懸濁液からなる被計測水に浸漬されるセンサに適用することが可能である等、実用上多大なる効果を奏する。   Of course, the method for removing dirt according to the present invention can be applied to a sensor immersed in water to be measured such as a suspension, such as a pH meter, a COD meter, and a BOD meter, in addition to the concentration sensor described above. There is a great effect in practical use.

本発明に係る汚れ除去方法が適用される光学式懸濁物濃度計の概略構成を示すブロック図。The block diagram which shows schematic structure of the optical suspension concentration meter to which the dirt removal method which concerns on this invention is applied. 本発明に係る汚れ除去方法が適用される光学式濁質濃度計の透過型センサ近傍を示す概略図。Schematic which shows the permeation | transmission type | mold sensor vicinity of the optical turbidity concentration meter to which the dirt removal method which concerns on this invention is applied. 図2に示す光学式濁質濃度計のケースに取り付けられたノズルによって作られる気液混合流の旋回流を示す図。The figure which shows the swirl | vortex flow of the gas-liquid mixed flow made by the nozzle attached to the case of the optical turbidity concentration meter shown in FIG. 図3に示す光学式濁質濃度計のケースに取り付けたノズルの変形例を示す図。The figure which shows the modification of the nozzle attached to the case of the optical turbidity concentration meter shown in FIG. 従来の光学式濁質濃度計の概略構成を示すブロック図。The block diagram which shows schematic structure of the conventional optical turbidity concentration meter.

符号の説明Explanation of symbols

10 ノズル
11 洗浄液タンク
12 水ポンプ
13 圧縮ポンプ
14 圧力タンク
15 洗浄水制御弁
16 空気制御弁
17 混合器
DESCRIPTION OF SYMBOLS 10 Nozzle 11 Cleaning liquid tank 12 Water pump 13 Compression pump 14 Pressure tank 15 Washing water control valve 16 Air control valve 17 Mixer

Claims (5)

懸濁液からなる被計測水中に設置され、前記被計測水の物性や不純物量を計測するセンサの汚れを除去するに際し、
前記センサの汚れ付着部に洗浄水と気体とを混合した気液混合流を導入して、前記センサに付着した汚れを除去することを特徴とする汚れ除去方法。
When removing dirt from the sensor that is installed in the water to be measured consisting of suspension and measures the physical properties and the amount of impurities of the water to be measured,
A dirt removing method comprising introducing a gas-liquid mixed flow in which cleaning water and gas are mixed into a dirt attaching portion of the sensor to remove dirt attached to the sensor.
投光部から被計測水中に照射した光の上記被計測水を透過した透過光、前記被計測水に含まれる懸濁物により散乱された散乱光、および上記懸濁物により反射された反射光の少なくとも1つを受光する受光部を備えた濃度センサの汚れを除去するに際し、
前記投光部と前記受光部との間に洗浄水と気体とを混合した気液混合流を導入して、前記濃度センサに付着した汚れを除去することを特徴とする汚れ除去方法。
Transmitted light that has passed through the measurement water of light irradiated into the measurement water from the light projecting unit, scattered light scattered by the suspension contained in the measurement water, and reflected light reflected by the suspension When removing dirt from a density sensor having a light receiving unit that receives at least one of
A dirt removing method comprising introducing a gas-liquid mixed flow obtained by mixing cleaning water and gas between the light projecting part and the light receiving part to remove dirt adhered to the concentration sensor.
前記投光部と前記受光部との間への気液混合流の導入は、前記濃度センサの投光部および受光部を洗浄するものであって、
前記気液混合流は、前記投光部と前記受光部との間を旋回する旋回流からなるものである請求項2に記載の汚れ除去方法。
The introduction of the gas-liquid mixed flow between the light projecting unit and the light receiving unit cleans the light projecting unit and the light receiving unit of the concentration sensor,
The dirt removal method according to claim 2, wherein the gas-liquid mixed flow is a swirl flow swirling between the light projecting unit and the light receiving unit.
前記気液混合流は、複数の噴射ノズルを介して前記投光部と前記受光部との間に導入されるものであって、
複数の前記噴射ノズルは、互いに噴射方向をずらして配設し、各噴射ノズルから噴射される気液混合流によって、前記投光部と前記受光部との間を旋回する旋回流を発生させて、前記濃度センサに付着した汚れを除去することを特徴とする請求項1乃至3のいずれかに記載の汚れ除去方法。
The gas-liquid mixed flow is introduced between the light projecting unit and the light receiving unit via a plurality of injection nozzles,
The plurality of injection nozzles are arranged with their injection directions shifted from each other, and a swirl flow that swirls between the light projecting unit and the light receiving unit is generated by a gas-liquid mixed flow injected from each injection nozzle. 4. The dirt removing method according to claim 1, wherein dirt attached to the density sensor is removed.
複数の前記噴射ノズルは、各噴射口の位置を同一水平面内において径方向にずらして配置したものである請求項4に記載の汚れ除去方法。   The dirt removing method according to claim 4, wherein the plurality of spray nozzles are arranged by shifting the positions of the spray ports in the radial direction within the same horizontal plane.
JP2004078595A 2004-03-18 2004-03-18 Dirt removal method Expired - Fee Related JP4458244B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004078595A JP4458244B2 (en) 2004-03-18 2004-03-18 Dirt removal method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004078595A JP4458244B2 (en) 2004-03-18 2004-03-18 Dirt removal method

Publications (2)

Publication Number Publication Date
JP2005265608A true JP2005265608A (en) 2005-09-29
JP4458244B2 JP4458244B2 (en) 2010-04-28

Family

ID=35090326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004078595A Expired - Fee Related JP4458244B2 (en) 2004-03-18 2004-03-18 Dirt removal method

Country Status (1)

Country Link
JP (1) JP4458244B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008002956A (en) * 2006-06-22 2008-01-10 Dkk Toa Corp Washing apparatus and water quality meter
JP2008128976A (en) * 2006-11-24 2008-06-05 Matsushita Electric Works Ltd Method and instrument for continuously measuring characteristic of liquid
CN109540747A (en) * 2018-11-12 2019-03-29 中国飞行试验研究院 A kind of aircraft power plant cabin agent concentration airborne measurement device
JP2019150067A (en) * 2019-06-19 2019-09-12 株式会社アクト Washing device
WO2021004220A1 (en) * 2019-07-11 2021-01-14 江苏南大五维电子科技有限公司 Automatic cleaning device for water quality monitoring sensor
CN114778870A (en) * 2022-06-13 2022-07-22 深圳市帝迈生物技术有限公司 Sample analyzer and cleaning method thereof
CN115582331A (en) * 2022-10-21 2023-01-10 新兴铸管股份有限公司 Coke oven gas metering orifice plate cleaning system and cleaning method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008002956A (en) * 2006-06-22 2008-01-10 Dkk Toa Corp Washing apparatus and water quality meter
JP2008128976A (en) * 2006-11-24 2008-06-05 Matsushita Electric Works Ltd Method and instrument for continuously measuring characteristic of liquid
CN109540747A (en) * 2018-11-12 2019-03-29 中国飞行试验研究院 A kind of aircraft power plant cabin agent concentration airborne measurement device
JP2019150067A (en) * 2019-06-19 2019-09-12 株式会社アクト Washing device
WO2021004220A1 (en) * 2019-07-11 2021-01-14 江苏南大五维电子科技有限公司 Automatic cleaning device for water quality monitoring sensor
CN114778870A (en) * 2022-06-13 2022-07-22 深圳市帝迈生物技术有限公司 Sample analyzer and cleaning method thereof
CN115582331A (en) * 2022-10-21 2023-01-10 新兴铸管股份有限公司 Coke oven gas metering orifice plate cleaning system and cleaning method thereof

Also Published As

Publication number Publication date
JP4458244B2 (en) 2010-04-28

Similar Documents

Publication Publication Date Title
US7611684B2 (en) Effluent gas scrubber and method of scrubbing effluent gasses
JP4458244B2 (en) Dirt removal method
KR102253395B1 (en) Apparatus and method thereof for water pipe using low nitrogen and clean ball
TW201802448A (en) Side-stream foam monitor and control system
JP2008002956A (en) Washing apparatus and water quality meter
JP6104399B2 (en) Contaminated water purification system provided with fine bubble generating device and fine bubble generating device
JP5588582B2 (en) Cleaning device
KR20180028626A (en) Flotation device using high efficiency tank for dissolving a gases into liquids
JP2007117799A (en) Microbubble generator and microbubble generating apparatus using the same
KR101921604B1 (en) Beverage distribution head integrating cleaning module
KR102118842B1 (en) apparatus for generating micro bubbles
JP2003190750A (en) Gas dissolution apparatus
JP2007268390A (en) Bubble generating device
KR101688638B1 (en) Apparatus for cleaning organic matter using fine ozone bubble
KR101877766B1 (en) An Ultrasound Apparatus for Measuring an Interface Surface of an Active Carbon
JP4863013B2 (en) Water quality inspection apparatus and cleaning method thereof
KR102430172B1 (en) A vessel-mounted water quality analysis device, and a vessel-mounted degasser
JP2011240229A (en) Spray nozzle for scum removing device
JP2016113845A (en) Air-lift pump device and aquatic contamination component removing method
JP2005221322A (en) Ultrasonic sludge interface level meter
JP2013160663A (en) Turbidity measuring device
JPH04198754A (en) Water quality measuring device
JP2007125545A (en) Waste water treatment equipment
WO2021166292A1 (en) Method for analyzing water quality
KR101428394B1 (en) Fine air bubble generator for floating particle in water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Ref document number: 4458244

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100202

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140219

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees