JP2005231984A - Thermal decomposition recycling method of fluorine-containing solid - Google Patents

Thermal decomposition recycling method of fluorine-containing solid Download PDF

Info

Publication number
JP2005231984A
JP2005231984A JP2004073427A JP2004073427A JP2005231984A JP 2005231984 A JP2005231984 A JP 2005231984A JP 2004073427 A JP2004073427 A JP 2004073427A JP 2004073427 A JP2004073427 A JP 2004073427A JP 2005231984 A JP2005231984 A JP 2005231984A
Authority
JP
Japan
Prior art keywords
fluorine
containing solid
rotary kiln
gas
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004073427A
Other languages
Japanese (ja)
Other versions
JP4357999B2 (en
Inventor
Ryuichi Abe
隆一 阿部
Hiroyuki Morita
浩之 守田
Hiroshi Hirai
啓 平井
Masao Uehara
雅夫 上原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsukishima Kankyo Engineering Ltd
Nippon Steel Eco Tech Corp
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Nittetsu Chemical Engineering Co Ltd
Nittetsu Kakoki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd, Nittetsu Chemical Engineering Co Ltd, Nittetsu Kakoki KK filed Critical Asahi Glass Co Ltd
Priority to JP2004073427A priority Critical patent/JP4357999B2/en
Publication of JP2005231984A publication Critical patent/JP2005231984A/en
Application granted granted Critical
Publication of JP4357999B2 publication Critical patent/JP4357999B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Abstract

<P>PROBLEM TO BE SOLVED: To provide the thermal decomposition recycling method of a fluorine-containing solid, by which a large amount of fluorine-containing solid can be efficiently decomposed and the decomposed product can be recovered as a valuable substance without producing harmful reaction products. <P>SOLUTION: The thermal decomposition recycling method includes a first thermal decomposition process for gasifying the fluorine-containing solid in a rotary kiln whose inside is kept at a reducing atmosphere and hydrolyzing gasified products, a second thermal decomposition process for introducing the thermally decomposed gas generated in the first thermal decomposition process into a secondary combustion furnace having an oxidizing atmosphere and being kept at a temperature of ≥1,100°C and thermally decomposing the gas into a gas containing main components composed of carbon dioxide, steam and hydrogen fluoride, and a thermal decomposition gas cooling process for rapidly cooling the thermally decomposed gas generated in the second thermal decomposition process with water so as to absorb hydrogen fluoride and recover it as hydrofluoric acid. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

弗素含有固体とは分子中に弗素原子を含有する合成高分子、すなわち弗素樹脂や、弾性体の弗素ゴムおよび弗素系熱可塑性エラストマー等であり、弗素樹脂には多くの種類があり、何れも耐熱性、耐食性等に優れている。弗素ゴムにも多くの種類があり、弗素樹脂と同様に耐熱性、対薬品性等に優れていることが知られている。このため、産業界で広い分野にわたって使用されている。
本発明は、弗素含有固体を、一般廃棄物や産業廃棄物の分別品として、あるいは工場における生産工程から出される歩留まり落ち品等として回収し、これらを高温熱分解により分解した後、弗素分を弗酸として回収するリサイクル方法に関するものである。
Fluorine-containing solids are synthetic polymers containing fluorine atoms in their molecules, that is, fluorine resins, elastic fluororubbers, and fluorine-based thermoplastic elastomers. There are many types of fluororesins, all of which are heat resistant. Excellent in corrosion resistance and corrosion resistance. There are many types of fluorine rubber, and it is known that they are excellent in heat resistance, chemical resistance and the like, as in the case of fluorine resin. For this reason, it is used in a wide range of industries.
The present invention collects fluorine-containing solids as separated products of general waste and industrial waste, or as yield-removed products produced from production processes in factories, and decomposes them by high-temperature pyrolysis, and then removes the fluorine content. The present invention relates to a recycling method for recovering as hydrofluoric acid.

弗素含有固体は、合成高分子の中では最も安定な物質の一つであり、廃プラスチックが埋立処分する上で安定物質である観点から、従来は不用物としてそのまま埋立処分とされていた。
しかし、弗素含有固体は、一般廃棄物や産業廃棄物の焼却炉に少なからず混入することがあり、それらを焼却処理する場合には、従来の焼却設備の排ガス処理設備において、弗素含有固体の熱分解によって発生する弗化水素が、強い腐食性ガスであるために、弗素含有量が多い場合には、鋼構造物や耐火物が短時間で腐食を受け、その対策が困難であるために弗素含有固体の混入が問題となっていた。
Fluorine-containing solids are one of the most stable materials among synthetic polymers, and from the viewpoint that waste plastics are stable materials for landfill disposal, they have conventionally been used as landfill disposal as waste.
However, fluorine-containing solids are often mixed in incinerators for general waste and industrial waste. When incinerating them, the heat of fluorine-containing solids in the exhaust gas treatment equipment of conventional incineration equipment is used. Since hydrogen fluoride generated by decomposition is a strong corrosive gas, if the fluorine content is high, steel structures and refractories are corroded in a short time, and it is difficult to take measures against them. Mixing of contained solids has been a problem.

また、弗素樹脂等を処理するために専用の焼却炉を計画する場合には、従来の一般廃棄物や産業廃棄物の焼却炉技術を応用するだけでは、分解効率や装置の耐食性の観点から困難なことが多く、これまでに実用化された例が見当たらない。  In addition, when planning a dedicated incinerator for processing fluorine resin, etc., it is difficult from the viewpoint of decomposition efficiency and corrosion resistance of the equipment simply by applying conventional incinerator technology for general waste and industrial waste. In many cases, no examples have been put to practical use.

このように焼却処理の難しさが知られている弗素樹脂を処理する方法について、具体的に記載されているものに、例えば特許文献1〜3がある。
特許文献1は、弗素樹脂をカルシウム無機化合物の存在下に燃焼させるもので、実施例には、弗素樹脂を消石灰中に埋めて、オキ火燃焼させる例が開示されている。
特許文献2には、「含フッ素有機化合物を反応させる際、反応終了後の酸素濃度が約10vol%以上になるように含酸素ガスを供給し、反応後の反応生成ガスをフッ化物として固定することを特徴とする含フッ素有機化合物の処理方法」が開示されている。具体的には、弗素樹脂シート等を細断したものをニッケル製反応器に仕込み、空気あるいは酸素を流しつつ昇温して、フッ化カルボニルに変換させ、この反応生成ガスを加水分解し、アルカリと反応させてフッ化カルシウム等のフッ化物として固定するものである。
また、特許文献3では、フッ素含有樹脂を、弗素原子に対する水素原子の割合を特定範囲とした状態で、燃焼温度1000〜1600℃の条件において旋回気流中で浮遊燃焼させる方法を開示している。
特開昭48−54180号公報 特開平3−26384号公報 特許第3438174号公報
For example, Patent Documents 1 to 3 specifically describe methods for treating a fluorine resin, which is known to be difficult to incinerate.
Patent Document 1 discloses a method in which a fluorine resin is burned in the presence of a calcium inorganic compound, and an example discloses an example in which a fluorine resin is buried in slaked lime and burned by fire.
Patent Document 2 states that “when a fluorine-containing organic compound is reacted, an oxygen-containing gas is supplied so that the oxygen concentration after the reaction is about 10 vol% or more, and the reaction product gas after the reaction is fixed as fluoride. "A method for treating a fluorine-containing organic compound characterized by the above" is disclosed. Specifically, a fluorinated resin sheet or the like cut into pieces is charged into a nickel reactor, heated while flowing air or oxygen, converted into carbonyl fluoride, this reaction product gas is hydrolyzed, And fixed as a fluoride such as calcium fluoride.
Patent Document 3 discloses a method in which a fluorine-containing resin is subjected to floating combustion in a swirling air flow at a combustion temperature of 1000 to 1600 ° C. in a state where the ratio of hydrogen atoms to fluorine atoms is in a specific range.
JP-A-48-54180 JP-A-3-26384 Japanese Patent No. 3438174

弗素含有固体を熱分解し弗化水素としてリサイクルする際に要求される要件としては、以下の点である。
1.弗素含有固体の熱分解工程で生成する物質に対し、装置の耐食性が良好で十分な寿命を有すること。
2.弗素含有固体の熱分解工程で生成する物質が、処理装置から漏洩することがないこと。
3.合成高分子である弗素含有固体は、分解完了時に弗化水素、水、炭酸ガスに十分な分解率で分解されること。
4.弗化水素を別途利用する際に、化学原料として容易に利用できる形態に変換できること。
Requirements required when pyrolyzing a fluorine-containing solid and recycling it as hydrogen fluoride are as follows.
1. The equipment has good corrosion resistance and has a sufficient life against substances generated in the pyrolysis process of fluorine-containing solids.
2. Substances generated in the pyrolysis process of fluorine-containing solids should not leak from the processing equipment.
3. Fluorine-containing solids that are synthetic polymers must be decomposed into hydrogen fluoride, water, and carbon dioxide at a sufficient decomposition rate when decomposition is completed.
4). When hydrogen fluoride is used separately, it can be converted into a form that can be easily used as a chemical raw material.

これらの要件を従来の焼却技術によって解決することは困難である。従来のロータリキルン焼却炉、ストーカ焼却炉、流動床焼却炉では、前記の課題を解決することが困難な理由を以下に具体的に説明する。  These requirements are difficult to solve by conventional incineration techniques. The reason why it is difficult to solve the above problems in the conventional rotary kiln incinerator, stoker incinerator, and fluidized bed incinerator will be specifically described below.

図2に従来型の焼却炉を使用する焼却設備の一例を示す。図2中の21は、ロータリキルン、ストーカ炉または流動床炉等の焼却炉であり、それに続いて再燃焼炉22、減温塔23、集塵装置24、湿式スクラバ25、誘引ファン26、煙突27等から構成されている。従来の技術では、焼却炉21に投入された弗素含有固体を、助燃バーナを燃焼した状態で、弗素含有固体の炭素分を中心とする可燃元素を燃焼空気により燃焼させる。その過程で焼却炉21内には、分解遊離された弗化水素が生成する。
弗素含有固体の大部分は、通常の焼却温度(800〜900℃)で分解し、多量の固定炭素を生ずるが、酸素の存在下であっても、燃焼は十分進行することができず、未燃分が多量に残留する。一方分解生成物の弗化水素は、焼却炉の耐火物を構成している二酸化珪素(SiO)、酸化カルシウム(CaO)と反応し、極端に耐火物の寿命を毀損させる。
また、排ガス処理設備の排ガス温度が低下する煙道や湿式洗浄塔において、シェルを構成する鋼板の温度が弗化水素の露点を下回り、弗酸により酸腐食を受け、極端に設備の寿命を毀損させる。以上のような状態が惹起されるために、従来の焼却技術は実用的には適用困難である。
FIG. 2 shows an example of incineration equipment using a conventional incinerator. In FIG. 2, 21 is an incinerator such as a rotary kiln, a stoker furnace or a fluidized bed furnace, followed by a recombustion furnace 22, a temperature reducing tower 23, a dust collector 24, a wet scrubber 25, an induction fan 26, a chimney. 27 etc. In the conventional technique, a combustible element mainly composed of carbon content of a fluorine-containing solid is combusted by combustion air in a state in which the fluorine-containing solid charged into the incinerator 21 is burned in the auxiliary burner. In the process, hydrogen fluoride decomposed and released is generated in the incinerator 21.
Most of the fluorine-containing solids decompose at a normal incineration temperature (800 to 900 ° C.) to produce a large amount of fixed carbon. However, even in the presence of oxygen, combustion cannot proceed sufficiently, and A large amount of fuel remains. On the other hand, hydrogen fluoride as a decomposition product reacts with silicon dioxide (SiO 2 ) and calcium oxide (CaO) constituting the refractory of the incinerator, and extremely deteriorates the life of the refractory.
In addition, in flue and wet cleaning towers where the exhaust gas temperature of exhaust gas treatment equipment decreases, the temperature of the steel plate that forms the shell is below the dew point of hydrogen fluoride and is subject to acid corrosion by hydrofluoric acid, which significantly reduces the life of the equipment. Let Since the above states are caused, the conventional incineration technique is difficult to apply practically.

本発明は、上記の弗素含有固体を熱分解しリサイクルするために要求される機能を達成するために開発されたものである。
請求項1の発明は、炉内が還元雰囲気で、700℃以上に維持されたロータリキルンにおいて弗素含有固体をガス化し、ガス化生成物を加水分解する第1熱分解工程と、前記第1熱分解工程から発生する熱分解ガスを、酸化雰囲気で、1100℃以上に維持された2次燃焼炉に導入し、二酸化炭素(CO)、水および弗化水素(HF)の主成分ガスに熱分解する第2熱分解工程と、前記第2熱分解工程から発生する熱分解ガスを水急冷し、所要の濃度に濃縮後、弗酸として回収する熱分解ガス冷却工程により構成されることを特徴とする弗素含有固体の熱分解リサイクル方法である。
The present invention has been developed to achieve the functions required for pyrolyzing and recycling the above fluorine-containing solid.
The first aspect of the present invention is a first pyrolysis step in which a fluorine-containing solid is gasified in a rotary kiln maintained in a reducing atmosphere and maintained at 700 ° C. or higher to hydrolyze a gasification product, and the first heat The pyrolysis gas generated from the decomposition process is introduced into a secondary combustion furnace maintained at 1100 ° C. or higher in an oxidizing atmosphere, and the main components gas of carbon dioxide (CO 2 ), water, and hydrogen fluoride (HF) are heated. It comprises a second pyrolysis step for decomposing, and a pyrolysis gas cooling step in which the pyrolysis gas generated from the second pyrolysis step is quenched with water, concentrated to a required concentration, and recovered as hydrofluoric acid. This is a method for thermally decomposing and recycling fluorine-containing solids.

上記の請求項1に記載された弗素含有固体の熱分解リサイクル方法によれば、弗素含有固体が投入されるロータリキルン炉内の前部空間において水蒸気が添加されると共に、ロータリキルン内部のガス温度が、燃焼空気比が1未満に設定された助燃バーナの燃焼により700〜900℃に維持された状態で、弗素含有固体の一部を燃焼させるに必要な少量の燃焼空気をロータリキルン内に導入させることにより、ロータリキルンの内部雰囲気は高温還元状態が維持される。
この反応条件により、弗素含有固体は多量の遊離固定炭素を生ずることなく一部は昇華し、一部は添加した水蒸気と反応して水性ガス反応により一酸化炭素および水素に改質され、少量の遊離固定炭素と共に反応生成物は、第2熱分解工程に導入される。第2熱分解工程の2次燃焼炉では、燃焼空気の導入、または必要に応じて助燃バーナを燃焼させることにより、1100℃以上の高温酸化状態を形成させ、第1熱分解工程から導入した熱分解ガスを高温で酸化分解させる。
According to the method for pyrolyzing and recycling a fluorine-containing solid described in claim 1, steam is added in the front space in the rotary kiln furnace into which the fluorine-containing solid is charged, and the gas temperature inside the rotary kiln is increased. However, a small amount of combustion air necessary for burning a part of the fluorine-containing solid is introduced into the rotary kiln in a state where the combustion air ratio is maintained at 700 to 900 ° C. by the combustion of the auxiliary burner whose combustion air ratio is set to less than 1. By doing so, the internal atmosphere of the rotary kiln is maintained in a high-temperature reduced state.
Under this reaction condition, the fluorine-containing solid partially sublimates without producing a large amount of free fixed carbon, and part of the fluorine-containing solid reacts with the added water vapor to be reformed to carbon monoxide and hydrogen by a water gas reaction. The reaction product together with free fixed carbon is introduced into the second pyrolysis step. In the secondary combustion furnace of the second pyrolysis step, heat introduced from the first pyrolysis step is formed by introducing combustion air or burning an auxiliary combustion burner as necessary to form a high-temperature oxidation state of 1100 ° C. or higher. The cracked gas is oxidatively decomposed at high temperature.

第1熱分解工程で生成した生成ガスは、易分解ガスに改質されているために、高温の酸化状態で、容易に可燃性物質が炭酸ガス、水、弗化水素に極めて高効率で分解することができる。さらに高温燃焼排ガスは、高温を維持したまま、2次燃焼空間と直結して設置されている直接冷却型の水急冷部(冷却缶の冷却機能部)に導入され、水の沸点以下にまでごく短時間に冷却され、通常燃焼排ガスの徐冷却において生成されるとされるダイオキシン類縁物質等の有害物質の再合成を防止している。
同時に弗化水素は非常に水溶性が高い性質であるため、大部分が弗酸として冷却水に吸収され、さらに未吸収ガスは、冷却缶に続いて設置されている吸収塔で水吸収され、ほとんど全量の弗化水素が弗酸として回収される。
前記の熱分解ガス冷却工程においては、弗化水素を吸収させた後、所望の濃度に濃縮して弗酸を回収する。これは、化学原料として別途利用する際に、容易に利用できる形態とするためである。
Since the product gas generated in the first pyrolysis process is reformed into an easily decomposable gas, the combustible substance is easily decomposed into carbon dioxide, water, and hydrogen fluoride with high efficiency in a high-temperature oxidation state. can do. Furthermore, the high-temperature combustion exhaust gas is introduced into a directly-cooled water quenching section (cooling function section of the cooling can) that is installed directly connected to the secondary combustion space while maintaining a high temperature, and is only below the boiling point of water. It cools in a short time and prevents the recombination of harmful substances such as dioxin-related substances that are usually generated in the slow cooling of combustion exhaust gas.
At the same time, hydrogen fluoride is very water-soluble, so most of it is absorbed in the cooling water as hydrofluoric acid, and the unabsorbed gas is absorbed in the absorption tower installed next to the cooling can, Almost all of the hydrogen fluoride is recovered as hydrofluoric acid.
In the pyrolysis gas cooling step, hydrogen fluoride is absorbed and then concentrated to a desired concentration to recover hydrofluoric acid. This is because it can be easily used when separately used as a chemical raw material.

請求項2記載の発明は、使用するロータリキルンが、耐食耐熱金属製リフトピンが内挿され、ロータリキルン回転摺動部の炉内への漏洩空気量がシール長1mあたり30Nm/h以下に抑制され、炉内側に98%以上のAlを含んでなる硬質耐火物で構成されていることを特徴とするものである。リフトピンに用いる耐食耐熱金属としては、耐食耐熱鋳鋼やハステロイ等を使用することが好ましい。In the invention according to claim 2, the rotary kiln to be used has a corrosion-resistant and heat-resistant metal lift pin inserted therein, and the amount of air leaked into the furnace of the rotary kiln rotating sliding portion is suppressed to 30 Nm 3 / h or less per 1 m of seal length. The inside of the furnace is made of a hard refractory material containing 98% or more of Al 2 O 3 . As the corrosion-resistant and heat-resistant metal used for the lift pins, it is preferable to use a corrosion-resistant and heat-resistant cast steel or Hastelloy.

本発明において熱分解に用いられるロータリキルンは、弗素含有固体を構成する個々の固体に対して均一に昇温、加熱をさせるために、キルン内に投入された塊状のバルク固体を攪拌し、常にバルク固体層内部に滑り面を生じさせるように、耐食耐熱金属製リフトピンが内挿されている。このリフトピンにより、ロータリキルン内において弗素含有固体の滑りが抑制され、ロータリキルンの回転に伴い、持ち上げられたバルク固体は固体内部で滑って攪拌される。この攪拌を行うための装置には、例えば特開平10−267239号公報に記載されている装置を用いることが好ましい。
また、一般にロータリキルンの回転摺動部には微少の隙間を生じることと、ロータリキルンの運転時に内部圧力を負圧としているので、外部から炉内に空気が漏れ込むことになる。この漏れ込み量が多量になれば、ロータリキルンの内部雰囲気を還元雰囲気に維持できなくなるために、回転摺動部の漏れ込み空気量を、シール長1mあたり30Nm/h以下に抑制する必要がある。このための回転摺動部のシール装置としては、例えば特開2001−21046号公報に開示されている装置を用いることが好ましい。
ロータリキルン内の熱分解生成ガス中には、弗素含有固体の分解に伴う多量の弗化水素が存在する。この弗化水素により、耐火物を構成する二酸化珪素、酸化カルシウムが減耗し、耐火物の強度が減少する。このためAlの含有量が98%以上の耐火物で表層における接ガス部を構成することが好ましい。
The rotary kiln used for the thermal decomposition in the present invention stirs the bulk bulk solid charged in the kiln so that the individual solids constituting the fluorine-containing solid are uniformly heated and heated. A corrosion-resistant and heat-resistant metal lift pin is inserted so as to generate a sliding surface inside the bulk solid layer. This lift pin suppresses the sliding of the fluorine-containing solid in the rotary kiln, and the lifted bulk solid slides and stirs inside the solid as the rotary kiln rotates. As an apparatus for performing this stirring, for example, an apparatus described in JP-A-10-267239 is preferably used.
Further, generally, a minute gap is formed in the rotary sliding part of the rotary kiln, and the internal pressure is set to a negative pressure during the operation of the rotary kiln, so that air leaks into the furnace from the outside. If this leakage amount becomes large, the internal atmosphere of the rotary kiln cannot be maintained in a reducing atmosphere, so the amount of leakage air in the rotating sliding portion must be suppressed to 30 Nm 3 / h or less per 1 m of seal length. is there. For this purpose, it is preferable to use, for example, a device disclosed in Japanese Patent Application Laid-Open No. 2001-21046 as a sealing device for the rotary sliding portion.
A large amount of hydrogen fluoride accompanying the decomposition of the fluorine-containing solid exists in the pyrolysis product gas in the rotary kiln. By this hydrogen fluoride, silicon dioxide and calcium oxide constituting the refractory are depleted, and the strength of the refractory is reduced. It is preferable that the content of the order Al 2 O 3 constitutes a gas contacting portion in the surface layer in the refractory of 98% or more.

請求項3記載の発明は、上述のロータリキルンにおける耐火物を98%以上のAlを含んでなる硬質耐火物表層とするために、ロータリキルンの耐火物として85%以上のAlを含有するハイアルミナ耐火物をライニングし、そのライニング層において運転初期に弗化水素を表層に存在する酸化カルシウム(CaO)、二酸化珪素(SiO)と反応させ、CaF、SiFの反応生成物としてガス中に揮散させ、表層を少なくともAl含有率98%以上の硬質のアルミナ層へ改質し、弗化水素に対して耐食不動態化させるようにする。
CaO、SiOと弗化水素の800℃域の反応は式(1)、式(2)で示すことができる。
In order to make the refractory in the rotary kiln described above into a hard refractory surface layer containing 98% or more of Al 2 O 3 , 85% or more of Al 2 O is used as the refractory of the rotary kiln. A high alumina refractory containing 3 is lined, and hydrogen fluoride is reacted with calcium oxide (CaO) and silicon dioxide (SiO 2 ) present in the surface layer at the initial stage of operation in the lining layer to react CaF 2 and SiF 4 . The product is volatilized in the gas, and the surface layer is reformed to a hard alumina layer having an Al 2 O 3 content of 98% or more so as to be corrosion-resistant and passivated against hydrogen fluoride.
The reaction in the 800 ° C. region between CaO, SiO 2 and hydrogen fluoride can be represented by the formulas (1) and (2).

化11

CaO(s)+2HF(g)→CaF(g)+HO(g)・・・・・(1)CaO (s) + 2HF (g) → CaF 2 (g) + H 2 O (g) (1)

化22

SiO(s)+4HF(g)→SiF(g)+2HO(g)・・・・・(2)SiO 2 (s) + 4HF (g) → SiF 4 (g) + 2H 2 O (g) (2)

式(1)によれば、CaOはガス中のHFと化学平衡的には直ちに反応が進行する。式(2)によれば、SiOの酸による腐食減耗量は、キルンの排ガス量を760Nm/h、排ガス組成をHO20%、HF10%として、15kg/hであり、ロータリキルンの寸法を1.6mφ、長さL3.6mとすると、嵩比重γ=2.5t/mとして、化学平衡からみた減耗量が0.33mm/hになり、表層部におけるSiOは早期に揮散してしまうことが判る。According to the formula (1), CaO reacts immediately with HF in the gas in chemical equilibrium. According to the equation (2), the amount of corrosion loss due to the acid of SiO 2 is 15 kg / h when the exhaust gas amount of the kiln is 760 Nm 3 / h, the exhaust gas composition is H 2 O 20%, HF 10%, and the dimensions of the rotary kiln Is 1.6 mφ and length L is 3.6 m, the bulk specific gravity is γ = 2.5 t / m 3 , the amount of wear from the chemical equilibrium is 0.33 mm / h, and SiO 2 in the surface layer is volatilized early. It can be seen that.

これに対し、Alと弗化水素の800℃域の反応は、式(3)に示すようになる。On the other hand, the reaction of Al 2 O 3 and hydrogen fluoride in the 800 ° C. region is as shown in formula (3).

化3Chemical 3

γ−Al(s)+6HF(g)→2AlF(g)+3HO(g)・・・・・(3)
式(3)によれば、Alの酸による腐食減耗量は、キルン排ガス量を760Nm/h、排ガス組成をHO20%、HF10%として、0.017kg/hであり、ロータリキルン寸法を1.6mφ、長さL3.6mとすると、γ=2.5として、化学平衡からみた減耗量が3mm/8000hになり、十分実用に耐えられるレベルであることが判る。
この性状差により、運転初期に表層の耐火物を緻密で硬質な純アルミナ層へ改質することが可能となる。
γ-Al 2 O 3 (s) + 6HF (g) → 2AlF 3 (g) + 3H 2 O (g) (3)
According to the equation (3), the corrosion depletion amount due to the acid of Al 2 O 3 is 0.017 kg / h, assuming that the kiln exhaust gas amount is 760 Nm 3 / h, the exhaust gas composition is H 2 O 20%, and HF 10%. Assuming that the kiln size is 1.6 mφ and the length L is 3.6 m, γ = 2.5, and the amount of wear as viewed from the chemical equilibrium is 3 mm / 8000 h.
This property difference makes it possible to modify the surface refractory to a dense and hard pure alumina layer at the beginning of operation.

請求項4記載の発明は、本発明で用いるロータリキルンの耐火物が、シェル側にアルミナ質の断熱ボードまたは断熱ウールを備え、炉内側に98%以上のAlを含有する硬質耐火物を備えたものである。
ロータリキルンの耐火物の構成としては、通常は断熱キャスタブル+耐火キャスタブルまたは断熱レンガ+耐火レンガの2層構造が一般的である。回転体に施工を施すため、保持力を強固にするために断熱ボードは用いられない。しかし、断熱キャスタブルには断熱機能を維持するためにSiOおよびCaOの含有量が多く、弗素含有固体の処理にあたって、レンガの目地またはキャスタブルのスポーリング隙間から弗化水素が耐火物内部に進入し、鉄皮側に施工した断熱キャスタブルまたは断熱レンガを侵食する。この結果耐火キャスタブルまたは耐火レンガの保持力が毀損され、耐火物の脱落等につながることになる。本発明では通常の断熱キャスタブルまたは断熱レンガに代えて、断熱ボードまたは断熱ウールを用いるようにした。これにより保持力が低下した分フック金物の適正な配置と強度の強化を図れば、一般的な断熱キャスタブル+耐火キャスタブルと同等の機能を有するようになる。
The invention according to claim 4 is that the refractory of the rotary kiln used in the present invention is provided with an alumina heat insulating board or heat insulating wool on the shell side, and contains 98% or more of Al 2 O 3 on the inside of the furnace. It is equipped with.
As a structure of the refractory of the rotary kiln, a two-layer structure of heat insulating castable + fireproof castable or heat insulating brick + refractory brick is generally used. Since construction is performed on the rotating body, a heat insulating board is not used to strengthen the holding force. However, the heat-insulating castable has a high content of SiO 2 and CaO in order to maintain the heat-insulating function, and when processing fluorine-containing solids, hydrogen fluoride enters the refractory through brick joints or castable spalling gaps. Erosion of heat-insulated castable or heat-insulated bricks installed on the iron skin side. As a result, the holding power of the refractory castable or the refractory brick is damaged, and the refractory is dropped off. In the present invention, a heat insulating board or heat insulating wool is used in place of a normal heat insulating castable or heat insulating brick. As a result, if the hook metal fitting is properly disposed and the strength is increased by the reduced holding force, it has a function equivalent to a general heat-insulating castable + fire-resistant castable.

請求項5記載の弗素含有固体の熱分解リサイクル方法は、ロータリキルンが、炉前の弗素含有固体投入部において、炉内側の耐火材表面の投入された未反応弗素含有固体が存在し、接触する炉内壁面の耐火材表面に、耐食性特殊鋼がライニングされていることを特徴としている。
弗素含有固体の投入部には、水性ガス反応用の水蒸気、炉内温度維持用の還元燃焼助燃バーナの燃焼排ガス、および必要に応じて少量の燃焼空気が供給される。
弗素含有固体から遊離した弗素ガスは、水蒸気の存在により瞬時に(4)の反応で弗化水素に変化する。
In the method for pyrolyzing and recycling fluorine-containing solids according to claim 5, the rotary kiln is in contact with the fluorine-containing solid input part before the furnace where unreacted fluorine-containing solids are introduced on the surface of the refractory material inside the furnace. It is characterized in that a corrosion-resistant special steel is lined on the surface of the refractory material on the inner wall of the furnace.
The fluorine-containing solid charging portion is supplied with water vapor for water gas reaction, combustion exhaust gas from a reduction combustion auxiliary burner for maintaining the furnace temperature, and a small amount of combustion air as required.
The fluorine gas liberated from the fluorine-containing solid instantly changes to hydrogen fluoride by the reaction (4) due to the presence of water vapor.

化44

2HO(g)+2F→4HF(g)+O(g)・・・・・(4)
化学平衡から考察しても、酸素濃度にかかわらず弗素ガスは、ほぼ弗化水素で存在する。HO20%、弗化水素濃度を10%とすると、800℃域において弗素ガスのモル濃度は1.75×10−21(還元雰囲気)〜3.03×10−20(酸化雰囲気)で、化学平衡上は弗素ガスの存在を考えなくてよい。しかし、弗素含有固体が存在する空間では反応前駆物質としての弗素ガスが存在することも事実である。この弗素ガスとAlの反応は(5)式で示すことができる。
2H 2 O (g) + 2F 2 → 4HF (g) + O 2 (g) (4)
Considering from chemical equilibrium, fluorine gas exists almost as hydrogen fluoride regardless of the oxygen concentration. Assuming that H 2 O is 20% and the hydrogen fluoride concentration is 10%, the molar concentration of fluorine gas is 1.75 × 10 −21 (reducing atmosphere) to 3.03 × 10 −20 (oxidizing atmosphere) at 800 ° C. In terms of chemical equilibrium, it is not necessary to consider the presence of fluorine gas. However, it is also true that fluorine gas exists as a reaction precursor in a space where a fluorine-containing solid exists. The reaction between the fluorine gas and Al 2 O 3 can be represented by the formula (5).

化55

6F(g)+2γ−Al(s)→4AlF(g)+3O(g)・・・・・(5)
前記した弗化水素と化学平衡的に共存する弗素ガスのモル濃度を21.75×10−21とすれば弗化水素とAlとの反応に比べ減耗速度は0.001倍遅いが、反応前駆物質としての弗素ガスを考慮すると運転の状況によっては無視できないAlの減耗が起こる可能性がある。
このAlの減耗が生じる可能性がある範囲の耐火物表層に、耐食性特殊鋼例えばハステロイをライニングしてAlの保護を図ることにより、耐火物の寿命をさらに延長することができる。
6F 2 (g) + 2γ-Al 2 O 3 (s) → 4AlF 3 (g) + 3O 2 (g) (5)
If the molar concentration of the fluorine gas coexisting with hydrogen fluoride in chemical equilibrium is 21.75 × 10 −21 , the depletion rate is 0.001 times slower than the reaction between hydrogen fluoride and Al 2 O 3. Considering the fluorine gas as the reaction precursor, there is a possibility that Al 2 O 3 depletion that cannot be ignored depending on the operating conditions occurs.
It is possible to further extend the life of the refractory by lining the refractory surface layer where there is a possibility that the Al 2 O 3 is depleted to protect the Al 2 O 3 by lining a corrosion-resistant special steel such as Hastelloy. it can.

請求項6記載の弗素含有固体の熱分解リサイクル方法は、還元雰囲気を形成せしめる手段としてキルン炉前固定フードに取付けられた助燃バーナの燃焼空気比を0.5〜0.9の範囲で還元燃焼することを特徴としている。弗素含有固体を構成する主成分元素は、炭素、弗素であり、一般的に水素の含有量は少量である。従って高温熱分解で弗素が固体から脱離した残留物は、炭素分が主体となるために、弗素含有固体の熱分解のみでは還元性ガスを生成せしめることは困難である。従ってキルン炉前固定フードに取付けられた助燃バーナを前記のように還元燃焼せしめることにより還元雰囲気を形成するようにした。  The method for pyrolyzing and recycling fluorine-containing solid according to claim 6, wherein the combustion air ratio of the auxiliary combustion burner attached to the fixed hood in front of the kiln furnace is reduced and burned in the range of 0.5 to 0.9 as means for forming a reducing atmosphere. It is characterized by doing. The main component elements constituting the fluorine-containing solid are carbon and fluorine, and generally the hydrogen content is small. Therefore, since the residue from which fluorine is detached from the solid by high-temperature pyrolysis is mainly composed of carbon, it is difficult to generate a reducing gas only by pyrolysis of the fluorine-containing solid. Accordingly, a reducing atmosphere is formed by reducing and burning the auxiliary burner attached to the fixed hood in front of the kiln furnace as described above.

請求項7記載の弗素含有固体の熱分解リサイクル方法は、加水分解に必要な水分を弗素含有固体の供給シュート内において水蒸気として吹込み、弗素含有固体に接する境膜気体が水蒸気に置換された状態で、ロータリキルンに弗素含有固体を供給することを特徴としている。
弗素含有固体は高温の加熱を受け、熱分解により弗素が弗素含有固体から脱離した直後、前記反応(4)により水蒸気と反応し弗化水素が生成するまでの短時間は弗素ガスとして存在する。反応(4)は瞬間反応であるが、その反応速度は水蒸気の拡散律速に依存している。
従って、水蒸気は弗素含有固体の供給と共に、予め弗素含有固体の接する境膜が水蒸気に置換されていれば、あるいは弗素含有固体周囲の雰囲気が十分な水蒸気分圧があれば容易に且つ速やかに弗素ガスは弗化水素に置換される。この結果弗素ガスによる耐火物の侵食を抑制することができる。
The method of pyrolyzing and recycling a fluorine-containing solid according to claim 7, wherein water necessary for hydrolysis is blown as water vapor in the supply chute of the fluorine-containing solid, and the film gas in contact with the fluorine-containing solid is replaced with water vapor Thus, a fluorine-containing solid is supplied to the rotary kiln.
The fluorine-containing solid is heated at a high temperature, and immediately after the fluorine is desorbed from the fluorine-containing solid by thermal decomposition, a short period of time from the reaction (4) until it reacts with water vapor to produce hydrogen fluoride exists as fluorine gas. . Reaction (4) is an instantaneous reaction, but its reaction rate depends on the diffusion rate of water vapor.
Accordingly, when the fluorine-containing solid is supplied in advance and the boundary film in contact with the fluorine-containing solid is replaced with water vapor, or if the atmosphere around the fluorine-containing solid has a sufficient water vapor partial pressure, the water vapor can be easily and quickly added. The gas is replaced with hydrogen fluoride. As a result, erosion of the refractory by the fluorine gas can be suppressed.

発明の効果The invention's effect

請求項1記載の弗素含有固体の熱分解リサイクル方法により、未燃炭素を熱分解ガス中に残留させず、ダイオキシン類縁化合物等の有害物質を熱分解ガス中に残留させずに、装置を構成する鋼構造および耐火物の寿命を延長することにより、設備の稼動率を高め、不純物を含まない高純度の弗酸を回収できる。  According to the method for pyrolytic recycling of a fluorine-containing solid according to claim 1, the apparatus is constructed without leaving unburned carbon in the pyrolysis gas and leaving no harmful substances such as dioxin-related compounds in the pyrolysis gas. By extending the life of the steel structure and refractory, the operating rate of the equipment can be increased, and high-purity hydrofluoric acid containing no impurities can be recovered.

請求項2記載の弗素含有固体の熱分解リサイクル方法により、請求項1記載のロータリキルンに内挿された耐食耐熱金属製リフトピン11a、11bにより、弗素含有固体は均一に加熱を受け、未反応固体の消滅を迅速に行え、ロータリキルン回転摺動部の炉内への漏洩空気がシール長1mあたり30Nm/h以下に抑制できるシール装置10aの適用により炉内を還元雰囲気に保つことができ、耐火物表層が98%以上のAlを含んでなる硬質耐火物表層を構成されることにより耐火物の寿命を延長できる。The fluorine-containing solid is uniformly heated by the corrosion-resistant and heat-resistant metal lift pins 11a and 11b inserted in the rotary kiln according to claim 2 by the thermal decomposition and recycling method of the fluorine-containing solid according to claim 2, and the unreacted solid Can be quickly extinguished, and the inside of the furnace can be kept in a reducing atmosphere by applying the sealing device 10a that can suppress the leakage air into the furnace of the rotary kiln rotary sliding part to 30 Nm 3 / h or less per 1 m of seal length, The life of the refractory can be extended by forming a hard refractory surface layer that comprises 98% or more of Al 2 O 3 as the refractory surface layer.

請求項3記載の弗素含有固体の熱分解リサイクル方法により、85%以上のAlを含有する通常のハイアルミナ耐火物から運転初期の耐火物改質運転により、Al含有率98%以上の硬質のアルミナ層へ改質でき、耐火物の寿命が延長できる。According to the method for thermally decomposing and recycling a fluorine-containing solid according to claim 3, an Al 2 O 3 content of 98 is obtained from a normal high alumina refractory containing 85% or more of Al 2 O 3 by a refractory reforming operation at the initial stage of operation. % Hard alumina layer can extend the life of the refractory.

請求項4記載の弗素含有固体の熱分解リサイクル方法により、シェル側に設けられたAl断熱ボード12bまたは断熱ウールにより98%の緻密なAlでは断熱機能を達成できない分を完全に断熱し、耐火物支持フック金物の適性配置と支持強度の強化により耐火物の脱落を防止した。According to the pyrolytic recycling method for fluorine-containing solid according to claim 4, the heat insulation function cannot be achieved with 98% dense Al 2 O 3 by Al 2 O 3 heat insulation board 12b or heat insulation wool provided on the shell side. Refractory support hook metal fittings were properly placed and support strength was strengthened to prevent refractories from falling off.

請求項5記載の弗素含有固体の熱分解リサイクル方法により、炉前の弗素含有固体の投入部において、炉内側の耐火材表面の投入された未反応弗素含有固体が存在する強腐食環境であるロータリキルン炉内において、アルミナ耐火物表面にライニングした耐食性特殊鋼31がAlを完全に保護し、耐火物の寿命を延長した。The rotary containing a non-reacted fluorine-containing solid placed on the surface of the refractory material inside the furnace in the fluorine-containing solid charging portion in front of the furnace according to the method for pyrolyzing and recycling fluorine-containing solid according to claim 5. In the kiln furnace, the corrosion-resistant special steel 31 lined on the surface of the alumina refractory completely protected Al 2 O 3 and extended the life of the refractory.

請求項6記載の弗素含有固体の熱分解リサイクル方法により、ロータリキルン炉内雰囲気を安定して還元雰囲気に維持することができ、助燃料を燃焼させることで高温熱分解に必要な加熱源としている。  According to the method for pyrolyzing and recycling fluorine-containing solid according to claim 6, the atmosphere in the rotary kiln furnace can be stably maintained in a reducing atmosphere, and the auxiliary fuel is burned to provide a heating source necessary for high-temperature pyrolysis. .

請求項7記載の弗素含有固体の熱分解リサイクル方法により、弗素含有固体の熱分解で生成する弗素ガスを瞬時に弗化水素に変換でき、弗素による耐火物の侵食を抑制できるようになる。  According to the pyrolytic recycling method for fluorine-containing solids according to claim 7, the fluorine gas generated by pyrolysis of the fluorine-containing solids can be instantaneously converted to hydrogen fluoride, and refractory erosion by fluorine can be suppressed.

図1は弗素含有固体の熱分解リサイクル設備のプロセスフロー図である。また、図3はロータリキルン炉前投入部の拡大図である。図1および図3により本発明を実施するための設備について説明する。  FIG. 1 is a process flow diagram of a pyrolytic recycling facility for fluorine-containing solids. Moreover, FIG. 3 is an enlarged view of the rotary kiln furnace front charging part. A facility for carrying out the present invention will be described with reference to FIGS.

処理対象の弗素含有固体は図1の投入ホッパ1に受入れられ、切出しコンベア2により投入シュート4を経由してロータリキルン5に投入される。投入シュート4には、停止時に炉内空間から遮断するための遮断弁3を設けてある。
ロータリキルン5に投入された弗素含有固体は、助燃バーナ5aにより炉前温度(TE1)が700〜900℃に昇温保持され、助燃バーナ5aの空燃比が1未満で助燃料を燃焼した還元燃焼排ガス、炉内に吹き込まれる水蒸気および必要に応じて供給される少量の燃焼空気の混合ガスからなる雰囲気の中で熱分解され、CO、HO、HF、CO、H、浮遊炭素、および弗素含有固体の昇華ガスに転換され、これらの混合ガスの雰囲気は還元状態が維持される。尚、多量の空気の炉内への漏れ込みを防止できるように、漏れ込み量がシール長さ1mあたり、30Nm/h以下を維持できる高性能なキルンシール装置10a、10bが具備されている。
The fluorine-containing solid to be processed is received by the charging hopper 1 shown in FIG. 1 and charged into the rotary kiln 5 via the charging chute 4 by the cutting conveyor 2. The charging chute 4 is provided with a shut-off valve 3 for shutting off from the furnace space when stopped.
The fluorine-containing solid charged into the rotary kiln 5 is maintained at an elevated temperature before the furnace (TE1) of 700 to 900 ° C. by the auxiliary burner 5a, and the auxiliary combustion is burned when the air-fuel ratio of the auxiliary burner 5a is less than 1. Thermally decomposed in an atmosphere consisting of a mixture of exhaust gas, water vapor blown into the furnace, and a small amount of combustion air supplied as necessary, CO 2 , H 2 O, HF, CO, H 2 , floating carbon, Then, it is converted to a sublimation gas of fluorine-containing solid, and the atmosphere of these mixed gases is maintained in a reduced state. In order to prevent a large amount of air from leaking into the furnace, high-performance kiln seal devices 10a and 10b capable of maintaining a leakage amount of 30 Nm 3 / h or less per 1 m of seal length are provided.

キルン炉内に投入された弗素含有固体は、前記の高温炉内雰囲気ガスと十分な接触を短時間で図れるために、炉内には耐食耐熱金属製リフトピンによる複数列の攪拌装置11a、11bが内挿され、その攪拌装置により弗素含有固体はロータリキルンの回転と共に駆動する11a、11bの耐食耐熱金属製リフトピンにより十分な攪拌がなされる。
この第1熱分解工程の出口温度(TE2)は、700〜900℃に維持される。
Since the fluorine-containing solid charged in the kiln furnace can be sufficiently brought into contact with the high-temperature furnace atmosphere gas in a short time, a plurality of rows of stirring devices 11a and 11b using corrosion-resistant and heat-resistant metal lift pins are provided in the furnace. The fluorine-containing solid is interpolated by the stirring device, and is sufficiently stirred by the corrosion-resistant and heat-resistant metal lift pins 11a and 11b that are driven as the rotary kiln is rotated.
The outlet temperature (TE2) of the first pyrolysis step is maintained at 700 to 900 ° C.

第1熱分解工程から排出される熱分解ガスは、2次燃焼炉7に導入され、当該排ガスに含まれる未燃分は、助燃バーナ7aにより2次燃焼炉出口温度が1100℃以上に保持される2次燃焼空間内において、高温酸化分解を受け、CO、HO、HFまでほぼ全量が転換される。The pyrolysis gas discharged from the first pyrolysis step is introduced into the secondary combustion furnace 7, and the unburned content contained in the exhaust gas is maintained at a secondary combustion furnace outlet temperature of 1100 ° C. or higher by the auxiliary burner 7a. In the secondary combustion space, the entire amount is converted to CO 2 , H 2 O, and HF by being subjected to high temperature oxidative decomposition.

第2熱分解工程の出口熱分解ガスは、熱分解ガスの水急冷装置8に導入され、間接冷却された2次燃焼炉出口水冷煙道13のガス流路内で、水噴射ノズル14から吹込まれた冷却水により直接、水急冷される。直接に水急冷する第2の方法としては、冷却缶15に溜まった缶水中に、入口熱分解ガス導入管の開放端を浸漬させることにより、熱分解ガスを缶水中に噴出させ、直接に水急冷する方法も選択することができる。この場合には、水噴射ノズル14は不要になる。
当該熱分解ガスに含まれる弗化水素は、熱分解ガスの水急冷装置8において水に接触・吸収され、大部分が弗酸になる。水に吸収されない少量の弗化水素を含む排ガスは、冷却缶15を経て排ガス吸収塔9に導入され、充填層19内において補給水を添加された吸収塔循環液により少量の弗化水素はほぼ完全に吸収される。吸収塔9下部の液溜めから、補給水の添加に伴い余剰となる吸収塔循環液ブロー水が、オーバフロー水として吸収塔溢流配管18を流下して、冷却缶へ供給される。この結果、冷却缶循環系において余剰となる冷却管循環水は、回収酸として冷却缶循環ポンプ16の吐出側から抜出すようにする。回収酸の弗酸濃度は、前記補給水量の設定により、必要な濃度に調整することができる。
The outlet pyrolysis gas in the second pyrolysis step is introduced from the water injection nozzle 14 into the gas flow path of the secondary combustion furnace outlet water-cooled flue 13 that is introduced into the water quenching device 8 for the pyrolysis gas and indirectly cooled. Water quenching is directly performed by the cooled cooling water. As a second method of water quenching directly, the open end of the inlet pyrolysis gas introduction pipe is immersed in the can water accumulated in the cooling can 15 so that the pyrolysis gas is jetted into the can water and directly into the water. A method of rapid cooling can also be selected. In this case, the water injection nozzle 14 becomes unnecessary.
Hydrogen fluoride contained in the pyrolysis gas comes into contact with and is absorbed by water in the pyrolysis gas water quenching device 8, and most of it becomes hydrofluoric acid. Exhaust gas containing a small amount of hydrogen fluoride that is not absorbed by water is introduced into the exhaust gas absorption tower 9 through the cooling can 15, and the small amount of hydrogen fluoride is almost eliminated by the absorption tower circulating liquid to which makeup water is added in the packed bed 19. Fully absorbed. Absorption tower circulating liquid blow water which becomes surplus with the addition of makeup water flows down from the liquid reservoir at the lower part of the absorption tower 9 through the absorption tower overflow pipe 18 as overflow water and is supplied to the cooling can. As a result, surplus cooling pipe circulating water in the cooling can circulation system is withdrawn from the discharge side of the cooling can circulation pump 16 as recovered acid. The concentration of hydrofluoric acid in the recovered acid can be adjusted to a required concentration by setting the amount of makeup water.

前記したロータリキルン炉の前部における本発明を実施するための形態を、図3に基づいて説明する。
ロータリキルン炉前シール装置10aについては、ローラチェーン33に押え板34を固定し、当該固定板を貫通して取付けられた押えボルトにより、可撓性を有するジョイントシール材37を摺動シール座36に押しつける。必要に応じシール摺動座に給脂する。ジョイントシール材は、一端部がロータリキルン炉前固定フードに固定され、他の端部がローラチェーン押さえ板34に固定される。ローラチェーンはロータリキルン胴体に巻きつけられ、キルンの回転に対して同調動作をとらないように、ローラチェーン1週の合わせ部において回転を拘束すると共に全てのローラがロータリキルンの胴体に接触するように詰縛する。
The form for implementing this invention in the front part of an above described rotary kiln furnace is demonstrated based on FIG.
In the rotary kiln pre-sealing device 10a, a presser plate 34 is fixed to the roller chain 33, and a flexible joint seal material 37 is attached to the sliding seal seat 36 by a presser bolt attached through the fixed plate. Press against. Grease the sliding seat if necessary. One end of the joint seal material is fixed to the rotary kiln front fixed hood, and the other end is fixed to the roller chain pressing plate 34. The roller chain is wound around the rotary kiln fuselage so that it does not synchronize with the rotation of the kiln so that the rotation is constrained at the joint of the roller chain for one week and all rollers are in contact with the rotary kiln fuselage. Clog up.

請求項4記載のAl断熱ボード12bについては、ロータリキルン炉殻鉄皮に内接して設置され、鉄皮への過剰な伝熱を抑制する。ロータリキルン耐火物12に生じるスポーリングの隙間から弗化水素を含む熱分解ガスの腐食性成分が進入しても、十分な耐食性を有するAlにより断熱機能が阻害されず、また腐食減耗がないことから耐火物12の保持性も長期間維持できる。The Al 2 O 3 insulation board 12b according to claim 4, placed inscribed in a rotary kiln furnace shell steel shell, to suppress excessive heat transfer to the furnace shell. Even if corrosive components of pyrolysis gas containing hydrogen fluoride enter through the spalling gap generated in the rotary kiln refractory 12, the heat insulating function is not hindered by Al 2 O 3 having sufficient corrosion resistance, and the corrosion is reduced. Therefore, the retention of the refractory 12 can be maintained for a long time.

請求項5記載の耐食性特殊鋼ライニング31については、投入された弗素含有固体が存在し、ロータリキルンの耐火物に接触する範囲において、ロータリキルン炉殻鉄皮30に固定された耐食性特殊鋼ライニング用取付フック32が耐火物を貫通し、耐火物表面に突出するように、同時にライニング31を保持する必要数量を耐火物表面の平面的に配設している。ライニング31は取付フック32により固定される。攪拌装置11aについては、耐食性金属、例えば材質がハステロイでできた棒鋼を取付フランジにより取替可能なようにロータリキルンの炉殻に取り付ける。  The corrosion-resistant special steel lining 31 according to claim 5 is used for a corrosion-resistant special steel lining fixed to the rotary kiln shell 30 in the range where the injected fluorine-containing solid exists and contacts the refractory of the rotary kiln. A necessary quantity for simultaneously holding the lining 31 is arranged in a plane on the surface of the refractory so that the mounting hook 32 penetrates the refractory and protrudes to the surface of the refractory. The lining 31 is fixed by a mounting hook 32. About the stirrer 11a, a corrosion-resistant metal, for example, a steel bar made of Hastelloy, is attached to the rotary kiln shell so that it can be replaced by a mounting flange.

本発明で処理対象とする弗素含有固体とは、分子中に弗素原子を含有する合成高分子、すなわち、弗素樹脂、弾性体の弗素ゴムおよび弗素系熱可塑性エラストマー等である。弗素樹脂には、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン−ヘキサフルオロプロピレンコポリマー(FEP)、テトラフルオロエチレンーパーフルオロアルキルビニルエーテルコポリマー(PFA)、ポリクロロトリフルオロエチレン(PCTFE)、エチレンテトラフルオロエチレンコポリマー(ETFE)、ポリ弗化ビニリデン(PVDF)、ポリ弗化ビニル(PVF)、エチレン−クロロトリフルオロエチレンコポリマー(ECTFE)等があり、何れも耐熱性、耐食性等に優れている。弗素ゴムには、弗化ビニリデン−クロロトリフルオロエチレンコポリマー、弗化ビニリデン−ヘキサフルオロプロピレンコポリマー、弗化ビニリデン−ヘキサフルオロプロピレン−テトラフルオロエチレンコポリマー、テトラフルオロエチレン−プロピレン−弗化ビニリデンコポリマー等があり、弗素樹脂同様に耐熱性、対薬品性等に優れている。  The fluorine-containing solid to be treated in the present invention is a synthetic polymer containing fluorine atoms in the molecule, that is, a fluorine resin, an elastic fluorine rubber, a fluorine-based thermoplastic elastomer, or the like. Fluororesin includes polytetrafluoroethylene (PTFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), polychlorotrifluoroethylene (PCTFE), ethylenetetrafluoro. There are ethylene copolymer (ETFE), polyvinylidene fluoride (PVDF), polyvinyl fluoride (PVF), ethylene-chlorotrifluoroethylene copolymer (ECTFE), etc., all of which are excellent in heat resistance, corrosion resistance and the like. Fluoro rubber includes vinylidene fluoride-chlorotrifluoroethylene copolymer, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene copolymer, tetrafluoroethylene-propylene-vinylidene fluoride copolymer, etc. Like the fluororesin, it has excellent heat resistance and chemical resistance.

図1に示すプロセスフローと同じ構成の弗素含有固体の熱分解リサイクル実証設備を使用して、表1の4種類の弗素含有固体を対象に実証運転を行った。尚、実証運転中のロータリキルン回転摺動部の炉内への漏洩空気量は、シール長1mあたり30Nm/h以下を維持していた。Using the fluorine-containing solid pyrolysis recycling demonstration facility with the same configuration as the process flow shown in FIG. 1, the demonstration operation was conducted for the four types of fluorine-containing solids shown in Table 1. The amount of air leaked into the furnace of the rotary kiln rotary sliding part during the demonstration operation was maintained at 30 Nm 3 / h or less per 1 m of seal length.

Figure 2005231984
Figure 2005231984
Figure 2005231984
Figure 2005231984

実証運転結果を表2に示すが2次燃焼炉出口の熱分解ガス中に残留する未反応ガスとしてCOおよび有機弗素化合物を代表物質として濃度を調査した結果全て不検出であり、良好な分解性能を確認した。  The results of the demonstration operation are shown in Table 2. As a result of investigating the concentration of CO and organic fluorine compounds as representative substances as unreacted gas remaining in the pyrolysis gas at the outlet of the secondary combustion furnace, all are undetected and good decomposition performance It was confirmed.

Figure 2005231984
Figure 2005231984

ロータリキルンの耐火物としてハイアルミナ耐火物をアルミナの含有率を変えて3種類を採用し、ロータリキルン内の適当な場所に3種類のハイアルミナ耐火物を施工した。
運転前後の耐火物の組成変化と、耐火物剥離物としてのロータリキルン出口の残査溜まりボックスに溜まった残査の組成を調査した。
Three types of high-alumina refractories were adopted as the refractories of the rotary kiln by changing the alumina content, and three types of high-alumina refractories were constructed at appropriate locations in the rotary kiln.
The composition change of the refractory before and after the operation and the composition of the residue accumulated in the residue accumulation box at the rotary kiln outlet as the refractory exfoliation were investigated.

表3に、ハイアルミナ耐火物の3種類についての運転前後の性状変化を示す。この結果と運転後の炉内の点検結果から後述のような結果を得た。  Table 3 shows changes in properties before and after operation for three types of high alumina refractories. From this result and the result of inspection in the furnace after operation, the following results were obtained.

比較例として示すハイアルミナ耐火物Aは、赤く変色し、特に炉前から約500mmの範囲が顕著である。また、表面の剥離や局部的にはえぐれも見られる。さらには、キャスタブル固定用アンカーフック先端の露出が2箇所確認できた。耐火物は容易に剥ぎ取れる程度の脆さになっている。これはSiOが弗化水素により浸食を受け結合力を毀損されたAlが剥離することが原因であることを見出した。
残査の性状調査から前記により剥離したAlが残査の主成分であることを表3のように確認できた。
The high-alumina refractory A shown as a comparative example turns red, and the range of about 500 mm from the furnace front is particularly remarkable. In addition, peeling of the surface and local pitting are also observed. Furthermore, the exposure of the tip of the anchor hook for fixing the castable was confirmed at two places. The refractory is brittle enough to be easily peeled off. It has been found that this is because SiO 2 is eroded by hydrogen fluoride and Al 2 O 3 whose bond strength is damaged is peeled off.
It was confirmed from Table 3 that the Al 2 O 3 peeled off as described above was the main component of the residue from the property investigation of the residue.

比較例として示すハイアルミナ耐火物Bは、表面がざらざらしており、ハイアルミナ耐火物Aほどではないが表面が剥離していた。また、キャスタブル固定用アンカーフックの先端の露出が1箇所確認できたが、耐火物は容易には剥ぎ取れない硬さであった。  The surface of the high-alumina refractory B shown as a comparative example was rough, and although not as high as the high-alumina refractory A, the surface was peeled off. Moreover, although the exposure of the tip of the anchor hook for castable fixation was confirmed at one place, the refractory had a hardness that could not be easily peeled off.

ハイアルミナ耐火物Cは、表面は滑らかで、わずかに赤く変色していた。耐火物の表層は非常に硬かった。以上のようにAlの含有量が耐火物の消耗に大きく影響していることがわかり、Alの含有量が85%以上であれば、運転初期に少量含まれるSiOを弗化水素と反応させ、脱離することによりAl含有量が100%に近い硬い緻密な表層へと改質できることを確認した。The high alumina refractory C had a smooth surface and was slightly reddish. The surface layer of the refractory was very hard. See that the content of Al 2 O 3 as described above has a significant effect on consumption of refractories, when the content of Al 2 O 3 is 85%, the SiO 2 contained a small amount in the beginning of operation It was confirmed that the Al 2 O 3 content could be modified to a hard and dense surface layer close to 100% by reacting with hydrogen fluoride and desorbing.

炉前から500mmの範囲は、弗素含有固体の熱分解が活発に行われる範囲であり、Alの消耗速度が実用上問題になる場合には、耐火物表層を耐食性特殊鋼、例えばハステロイで製作されたライニングを施工することにより、耐火物の寿命を延ばすことができる。The range of 500 mm from the front of the furnace is a range where the pyrolysis of the fluorine-containing solid is actively performed. When the consumption rate of Al 2 O 3 becomes a practical problem, the surface of the refractory is made of a corrosion-resistant special steel, for example, By constructing the lining made in, the life of the refractory can be extended.

Figure 2005231984
Figure 2005231984

本発明は、弗素含有固体の主成分である弗素を、原料または原料廃棄物を熱分解の手段を用いて脱離し、工業原料として有効に再資源化することを目的にしている。
弗素樹脂の製造業における生産工程からの残査物、製品の規格から外れた不具合品、または製品加工時における歩留まり落ち品等を、生産工程の一工程として本発明の弗素脱離処理を行い、廃棄物として外部処理することなく、資源リサイクル設備として利用できる。
さらに市場に流通した多くの弗素含有固体を、廃棄物として処分する際に本発明の弗素脱離処理を行い、廃棄物の減容化と弗素の回収を行えば、最終処分地である埋立地の延命化と資源リサイクルを図ることができ、利用用途は広く産業上裨益するところ大である。
An object of the present invention is to effectively recycle fluorine, which is a main component of a fluorine-containing solid, as an industrial raw material by desorbing raw material or raw material waste by means of thermal decomposition.
Residues from the production process in the fluorine resin manufacturing industry, defective products that deviate from product specifications, or products that have lost yield during product processing, etc., are subjected to the fluorine desorption treatment of the present invention as one step in the production process, It can be used as a resource recycling facility without being treated as waste.
Furthermore, when many fluorine-containing solids distributed in the market are disposed of as waste, the fluorine desorption treatment of the present invention is performed to reduce the volume of waste and recover fluorine. Can be used to prolong the life and recycle resources, and its usage is very wide for industrial benefits.

本発明を構成するプロセスフローシートである。1 is a process flow sheet constituting the present invention. 従来技術に係る一般的な廃棄物焼却設備のブロック構成図である。It is a block block diagram of the general waste incineration equipment which concerns on a prior art. 本発明の第1熱分解工程におけるロータリキルンの炉前部分の概要を示す断面図である。It is sectional drawing which shows the outline | summary of the front part of the rotary kiln in the 1st thermal decomposition process of this invention.

符号の説明Explanation of symbols

1 弗素含有固体投入ホッパ
2 弗素含有固体切出しコンベア
3 遮断弁
4 投入シュート
5 ロータリキルン
5a ロータリキルン助燃バーナ
6 残査ボックス
7 2次燃焼炉
7a 2次燃焼炉助燃バーナ
8 熱分解ガスの水急冷装置
9 排ガス吸収塔
10a ロータリキルン炉前シール装置
10b ロータリキルン炉尻シール装置
11a 1列目炉内耐食耐熱金属製リフトピン
11b 2列目炉内耐食耐熱金属製リフトピン
12 ロータリキルン耐火物
12a ロータリキルン炉前耐火物堰
12b ロータリキルン断熱ボード
13 2次燃焼炉出口水冷煙道
14 熱分解ガス水噴射ノズル
15 冷却缶
16 冷却缶循環ポンプ
17 吸収塔循環ポンプ
18 吸収塔溢流配管
19 充填層
21 焼却炉
22 再燃焼炉
23 減温塔
24 集塵装置
25 湿式スクラバ
26 誘引ファン
27 煙突
30 ロータリキルン炉殻鉄皮
31 耐食性特殊鋼ライニング
32 取付用フック
33 ローラチェーン
34 押え板
35 押えボルト
36 シール摺動座
37 ジョイントシール材
DESCRIPTION OF SYMBOLS 1 Fluorine containing solid injection hopper 2 Fluorine containing solid cutting conveyor 3 Shut-off valve 4 Input chute 5 Rotary kiln 5a Rotary kiln auxiliary burner 6 Residual box 7 Secondary combustion furnace 7a Secondary combustion furnace auxiliary burner 8 Water quenching device of pyrolysis gas 9 Exhaust gas absorption tower 10a Rotary kiln furnace front seal device 10b Rotary kiln furnace bottom seal device 11a First row furnace anti-corrosion heat resistant metal lift pin 11b Second row furnace anti-corrosion heat resistant metal lift pin 12 Rotary kiln refractory 12a In front of rotary kiln furnace Refractory weir 12b Rotary kiln insulation board 13 Secondary combustion furnace outlet water cooling flue 14 Pyrolysis gas water injection nozzle 15 Cooling can 16 Cooling can circulation pump 17 Absorption tower circulation pump 18 Absorption tower overflow pipe 19 Packed bed 21 Incinerator 22 Recombustion furnace 23 Decreasing tower 24 Dust collector 25 Wet scrubber 26 Induction fan 2 7 Chimney 30 Rotary kiln shell shell 31 Corrosion resistant special steel lining 32 Hook for mounting 33 Roller chain 34 Presser plate 35 Presser bolt 36 Seal sliding seat 37 Joint sealant

Claims (7)

炉内が還元雰囲気で、700℃以上に維持されたロータリキルンにおいて弗素含有固体をガス化し、ガス化生成物を加水分解する第1熱分解工程と、前記第1熱分解工程から発生する熱分解ガスを、酸化雰囲気で、1100℃以上に維持された2次燃焼炉に導入し、二酸化炭素、水および弗化水素の主成分ガスに熱分解する第2熱分解工程と、前記第2熱分解工程から発生する熱分解ガスを水急冷し、所要の濃度に濃縮後、弗酸として回収する熱分解ガス冷却工程により構成されることを特徴とする弗素含有固体の熱分解リサイクル方法。  A first pyrolysis step in which a fluorine-containing solid is gasified in a rotary kiln maintained at 700 ° C. or higher in a reducing atmosphere in the furnace, and the gasification product is hydrolyzed, and thermal decomposition generated from the first pyrolysis step A second pyrolysis step in which the gas is introduced into a secondary combustion furnace maintained at 1100 ° C. or higher in an oxidizing atmosphere and pyrolyzed into main components gas of carbon dioxide, water and hydrogen fluoride, and the second pyrolysis A method for pyrolyzing and recycling fluorine-containing solids, comprising a pyrolysis gas cooling step in which pyrolysis gas generated in the process is quenched with water, concentrated to a required concentration and then recovered as hydrofluoric acid. ロータリキルンは、耐食耐熱金属製リフトピンが内挿され、ロータリキルン回転摺動部の炉内への漏洩空気量がシール長1mあたり30Nm/h以下に抑制され、炉内側に98%以上のAlを含んでなる硬質耐火物で構成されている請求項1記載の弗素含有固体の熱分解リサイクル方法。The rotary kiln has a corrosion-resistant and heat-resistant metal lift pin inserted therein, the amount of air leaked into the furnace of the rotary kiln rotary sliding part is suppressed to 30 Nm 3 / h or less per 1 m of seal length, and 98% or more of Al is placed inside the furnace. pyrolysis recycling method of the fluorine-containing solid according to claim 1, wherein is composed of a hard refractory material comprising 2 O 3. ロータリキルンにおける98%以上のAlを含んでなる硬質耐火物が、85%以上のAlを含有するハイアルミナ耐火物をライニングし、前記ライニング層において運転初期に、表層に存在する酸化カルシウム、二酸化珪素と弗素化合物とを反応させ、反応生成物としてガス中に揮散させて、表層を少なくともAl含有率98%以上の硬質のアルミナ層へ改質し、弗素化合物に対して耐食不動態化させたものである請求項1または2記載の弗素含有固体の熱分解リサイクル方法。A hard refractory containing 98% or more of Al 2 O 3 in a rotary kiln is lined with a high alumina refractory containing 85% or more of Al 2 O 3 and is present in the surface layer in the initial stage of operation in the lining layer. Calcium oxide, silicon dioxide and fluorine compound to be reacted are volatilized in a gas as a reaction product, and the surface layer is modified to a hard alumina layer having an Al 2 O 3 content of 98% or more to form a fluorine compound. 3. The method for pyrolyzing and recycling a fluorine-containing solid according to claim 1 or 2, wherein the fluorine-containing solid is subjected to corrosion resistance passivation. ロータリキルンが、シェル側にアルミナ質の断熱ボードまたは断熱ウールを備え、炉内側に98%以上のAlを含有する硬質耐火物を備えたものである請求項1〜3のいずれかに記載の弗素含有固体の熱分解リサイクル方法。The rotary kiln is provided with a hard refractory containing an alumina-based heat insulation board or heat insulation wool on the shell side and containing 98% or more of Al 2 O 3 on the inner side of the furnace. The method for thermally decomposing and recycling fluorine-containing solids as described. ロータリキルンが、炉内手前の弗素含有固体投入部で、投入された未反応弗素含有固体が接触する炉内壁面の耐火材表面に耐食性特殊鋼のライニングが施されている請求項1〜4のいずれかに記載の弗素含有固体の熱分解リサイクル方法。  5. The rotary kiln is provided with a corrosion-resistant special steel lining on the surface of the refractory material on the inner wall surface of the furnace in contact with the charged unreacted fluorine-containing solid at the fluorine-containing solid charging portion before the furnace. The method for thermal decomposition and recycling of a fluorine-containing solid according to any one of the above. 第1熱分解工程における還元雰囲気が、ロータリキルンの炉前固定フードに設置されている助燃バーナの燃焼空気比を0.5〜0.9の範囲で還元燃焼させて形成される請求項1〜5のいずれかに記載の弗素含有固体の熱分解リサイクル方法。  The reducing atmosphere in the first pyrolysis step is formed by reducing and burning the combustion air ratio of the auxiliary combustion burner installed in the fixed hood before the furnace of the rotary kiln in the range of 0.5 to 0.9. 6. The method for pyrolyzing and recycling a fluorine-containing solid according to any one of 5 above. 第1熱分解工程における加水分解に必要な水分を、弗素含有固体の供給シュート内に水蒸気として吹込み、弗素含有固体に接する境膜気体が水蒸気に置換された状態で、ロータリキルン内に弗素含有固体を供給する請求項1〜6のいずれかに記載の弗素含有固体の熱分解リサイクル方法。  Moisture required for hydrolysis in the first pyrolysis step is blown into the supply chute of the fluorine-containing solid as water vapor, and the fluorine gas is contained in the rotary kiln in a state where the film gas contacting the fluorine-containing solid is replaced with water vapor. The method for pyrolyzing and recycling a fluorine-containing solid according to any one of claims 1 to 6, wherein the solid is supplied.
JP2004073427A 2004-02-17 2004-02-17 Method for pyrolytic recycling of fluorine-containing solids Expired - Lifetime JP4357999B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004073427A JP4357999B2 (en) 2004-02-17 2004-02-17 Method for pyrolytic recycling of fluorine-containing solids

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004073427A JP4357999B2 (en) 2004-02-17 2004-02-17 Method for pyrolytic recycling of fluorine-containing solids

Publications (2)

Publication Number Publication Date
JP2005231984A true JP2005231984A (en) 2005-09-02
JP4357999B2 JP4357999B2 (en) 2009-11-04

Family

ID=35015325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004073427A Expired - Lifetime JP4357999B2 (en) 2004-02-17 2004-02-17 Method for pyrolytic recycling of fluorine-containing solids

Country Status (1)

Country Link
JP (1) JP4357999B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100851370B1 (en) 2007-06-07 2008-08-12 동명알피에프 주식회사 Apparatus for manufacturing oil thermal decomposition thereof of including tubular reactor using waste heat
JP2013088102A (en) * 2011-10-21 2013-05-13 Jfe Engineering Corp Fluorine-containing waste treatment method, and fluorine-containing waste treatment apparatus
JP2014040662A (en) * 2012-08-21 2014-03-06 Heraeus Precious Metals Gmbh & Co Kg Apparatus and method for thermal treatment of product containing fluorine and noble metal
CN111678140A (en) * 2020-06-22 2020-09-18 周丹 Magnetization pyrolysis oven
WO2020218341A1 (en) * 2019-04-26 2020-10-29 株式会社新見ソーラーカンパニー Pyrolysis apparatus
US11927345B1 (en) * 2019-03-01 2024-03-12 XRG Technologies, LLC Method and device to reduce emissions of nitrogen oxides and increase heat transfer in fired process heaters

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100851370B1 (en) 2007-06-07 2008-08-12 동명알피에프 주식회사 Apparatus for manufacturing oil thermal decomposition thereof of including tubular reactor using waste heat
JP2013088102A (en) * 2011-10-21 2013-05-13 Jfe Engineering Corp Fluorine-containing waste treatment method, and fluorine-containing waste treatment apparatus
JP2014040662A (en) * 2012-08-21 2014-03-06 Heraeus Precious Metals Gmbh & Co Kg Apparatus and method for thermal treatment of product containing fluorine and noble metal
CN103695645A (en) * 2012-08-21 2014-04-02 贺利氏贵金属有限责任两合公司 Device and method for the thermal treatment of products containing fluorine and precious metals
US11927345B1 (en) * 2019-03-01 2024-03-12 XRG Technologies, LLC Method and device to reduce emissions of nitrogen oxides and increase heat transfer in fired process heaters
WO2020218341A1 (en) * 2019-04-26 2020-10-29 株式会社新見ソーラーカンパニー Pyrolysis apparatus
JP2020203281A (en) * 2019-04-26 2020-12-24 株式会社新見ソーラーカンパニー Thermal decomposition apparatus
CN111678140A (en) * 2020-06-22 2020-09-18 周丹 Magnetization pyrolysis oven
CN111678140B (en) * 2020-06-22 2023-07-04 上海艾尔天合环境科技有限公司 A magnetization pyrolysis oven for refuse treatment

Also Published As

Publication number Publication date
JP4357999B2 (en) 2009-11-04

Similar Documents

Publication Publication Date Title
US9657941B2 (en) Method and apparatus for gasification of organic waste
US20090064581A1 (en) Plasma-assisted waste gasification system
CN1170116A (en) Heat recovery system and power generation system
JP2009280633A (en) Method and apparatus for cracking tar
JP2007099927A (en) Tar cracking system and cracking method
JP4357999B2 (en) Method for pyrolytic recycling of fluorine-containing solids
JP4172938B2 (en) Exhaust gas treatment method and treatment apparatus
JP2006038439A (en) Waste fluid incineration method
TWI289644B (en) Method and apparatus for treating waste
US6074623A (en) Process for thermal destruction of spent potliners
JP4061564B2 (en) Cooling jacket structure of high-temperature gasifier in waste gasifier
US3445192A (en) Apparatus for production and recovery of hydrogen halides
TW201408784A (en) Device and method for thermal treatment of fluorine-containing and noble metal-containing products
JP2004277647A (en) Process for gasification of waste product and installation therefor
JP2008018371A (en) Method for using organic waste
JP5490488B2 (en) Waste melting treatment method
JP2004256657A (en) Produced gas cooling unit for high-temperature gasification furnace
JP2000273473A (en) Method for treating waste generated in coke oven
CN213141936U (en) Multiphase substance internal cold exciting gasification furnace
CN109974009B (en) Three-waste integrated reactor and method for treating nitrous gases
JP7254465B2 (en) Mercury recovery device and mercury recovery method
JPH10132235A (en) Waste disposing apparatus with cooler
JP3878994B2 (en) Method and apparatus for producing useful gas from halogen-containing combustible material and alkali-containing material
JP3607624B2 (en) Method and apparatus for decomposing organic compounds
CN211176810U (en) Gasification reaction furnace with furnace body wall surface heat available

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060614

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20061227

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090728

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090805

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4357999

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130814

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130814

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250